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Abstract

Optimization of Electricity Systems Under Uncertainty

By

Tomás Valencia Zuluaga

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Shmuel S Oren, Chair

In this dissertation, we study a market design problem and two investment planning prob-
lems: three different issues at the intersection of optimization under uncertainty and appli-
cations in electricity systems. Addressing the uncertainty associated with renewable energy
and decentralized resources through computational optimization often leads to large-scale
problems that are difficult to solve numerically. We propose models, solution methods and
computational implementations in which we address this issue to approach some of the chal-
lenges faced by modern electricity systems.

We start with a market design problem in retail aggregation markets. Adopting a linear
cooperative game model, we propose a mechanism to distribute collective savings in a com-
munity residential customers with local generation (so-called prosumers). We exploit the
strong duality of Linear Programs to prove that stable imputations in a desired class, the
uniform price core, are guaranteed to exist and can be found efficiently, overcoming scala-
bility issues of the methods previously existing in the literature. We then show that looking
for fair distributions in that class may come at the expense of computational tractability for
large problem instances. To overcome this challenge, we propose a sampling methodology
which we prove returns imputations in an acceptable relaxation of the uniform price core.

Next, we consider an investment planning problem from the perspective of a wind power
producer: sizing a colocated battery to mitigate the revenue uncertainty caused by the
intermittency in wind power production. We propose a Markovian model whose structure
we exploit to develop a reduction technique that allows formulating an infinite horizon,
average profit dynamic program as a low-dimensional numerical problem that can be solved
with off-the-shelf software. The model obtained is a simple, stylized model that lends itself
well for high-level sensitivity analyses of interest for project developers.

Finally, we adopt a central planner’s perspective and consider a Capacity Expansion Plan-
ning (CEP) problem for climate resilience. In this part of our work, we address the need
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for a software tool that can solve a two-stage stochastic CEP model on a realistic instance
of the California power system, incorporating weather data from downscaled climate projec-
tion models. To successfully solve the resulting large-scale Mixed Integer Linear Program
utilizing High Performance Computing resources, the problem is decomposed by scenarios
by way of the Progressive Hedging Algorithm. We first show results of a successful software
implementation on an instance with over 8,000 buses and 360 representative weather days,
using a simplified network flow model instead of a more accurate representation of power
flow. We then address this simplification by considering different models of the DC power
flow formulation, including bθ and Power Transfer Distribution Factors formulations that
incorporate transmission losses. We assess the impact of these improved models on time
performance and solution quality.
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Chapter 1

Introduction

1.1 Optimization in modern electricity systems

From charging a phone to launching a space rocket, electricity is essential in modern so-
cieties. Often called the largest machine in the world, the power grid is the backbone of
our modern standard of life, as well as a key enabler of ongoing technological advancements.
Although the early development of the power system occurred before the advent of computa-
tional optimization, the US power grid started taking its modern shape through the regional
interconnections of the 1950s and 1960s, in part enabled by the simultaneous development
of computational optimization.

Over the years, advancements in optimization tools and complexification of power systems
have occurred through a symbiotic relationship. For example, the Stochastic Dual Dynamic
Programming Method, a now widely used tool in multi-stage stochastic optimization, was
first developed for scheduling hydro dam reservoir operation in Brazil’s power system [83].
In the opposite direction, improvements in large-scale linear optimization software, and later
on mixed integer linear optimization, have been fundamental for routinely solving the unit
commitment and economic dispatching problems that modern electricity markets rely on for
pricing and scheduling.

We could classify the applications for optimization in power systems into three categories
of problems: investment (long-term) planning, operation (short-term) planning, and market
design. These categories are not independent, nor mutually exclusive. Take, for instance,
the project of installing a battery on-site at a wind power plant, the setting of the problem
we address in Chapter 3. The investment planning question can be addressed by formulating
an optimization problem to find the best size of battery to purchase to maximize profit. The
optimal size depends of course on the revenue or savings the battery can generate during
its lifetime, which depends on how the battery is operated. So in order to answer the
question, a second optimization problem must be posed to determine the operation, which
in turn depends on the rules of the markets to which the battery has access. To complete
the circle, a market designer will try ensuring that the market rules provide incentives so
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that investment and operation decisions are made in a socially optimal manner. In this
dissertation, we concern ourselves with optimization problems of market design and long-
term planning, but by necessity, also dip into modeling optimal operation.

The work presented in this dissertation lies at the intersection between electricity sys-
tems and optimization techniques. At the time of writing, as we approach the end of the
first quarter of the 21st century, the two main challenges driving new development in that
intersection are the increasing penetration of renewable, intermittent sources in the gener-
ation mix, and the new role played by decentralized resources, increasingly active in both
generation and demand. In this thesis, we confront those challenges through a wide range
of contributions, including modeling and theoretical results as well as software development
and implementation of algorithms.

Sometimes, the opportunity for model innovation and theoretical contributions appears
by bridging gaps between the problem and the state of the art in other fields of Oper-
ations Research (OR). For example, in Chapter 3, we propose a novel Markovian model
for battery sizing in a wind power plant that can be reduced to a numerically optimizable
low-dimensional problem by utilizing results and algorithms from the fluid queue literature.
Similarly, in Chapter 2, we obtain a model that provably addresses the challenge of scalabil-
ity in peer-to-peer electricity market design by identifying structural similarities with linear
production games, an old and well studied subject in OR. A further challenge of scalability
arises when we modify the mechanism to obtain fairer outcomes. Computational tractability
can be recovered again by drawing from the statistical learning literature in a problem with
different application but similar mathematical structure.

In other cases, innovation is driven by necessity. Recent events like the Texas winter
storm in February 2021, or increasingly common prolonged heat domes in the western U.S.
have made apparent the need for incorporating the effect of a changing climate into the plan-
ning process of power grid infrastructure planning. Climate projections of increasingly high
resolution and long-ranging scope are becoming available, but incorporating them into the
power system Capacity Expansion Planning (CEP) process in a computationally tractable
manner is not a trivial task. In Chapters 4 and 5, as part of a project led by Lawrence
Livermore National Laboratory (LLNL), we propose a parallel computing implementation of
an existing scenario decomposition method for a CEP model using the Progressive Hedging
Algorithm (PHA), to take advantage of increasingly powerful High Performance Computing
(HPC) platforms.

We next briefly go over some background that we consider useful for the entire disserta-
tion, before providing an overview of the outline of this document and the contributions of
this thesis.

1.2 Theoretical background

Providing exhaustive background on the optimization techniques used in this thesis is out of
the scope of this dissertation. In this section, we introduce some key concepts that are used
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throughout the document, and provide useful references for further reading. As is common
in the optimization literature, we adopt here the language of cost minimization, which is the
setting of all chapters except Chapter 3.

Stochastic optimization

In Chapters 4 and 5, and Section 2.7 of Chapter 2, we model the problems of decision
making under uncertainty as two-stage stochastic optimization problems. In this setting, a
decision must be made in the present, called first stage, at a time when some of the future
data, and hence the costs associated with that decision, are still uncertain, but have some
degree of structure that is known. The second stage occurs after the uncertainty is revealed.
Additional decisions, called second-stage decisions, can then be made. Second-stage decisions
may encompass multiple time periods, but it is assumed that no more uncertainty persists at
that point. In this thesis, we consider only risk-neutral decision makers, i.e. decision makers
who in the face of uncertainty opt for minimizing the expected future cost1.

Following the notation and exposition of [9], a generic linear two-stage stochastic op-
timization problem can be written as in (1.1). Uncertainty is modeled through random
experiments with possible outcomes Ω. An individual outcome is denoted ω. In stochastic
optimization, an outcome is more commonly called a scenario. x is the vector of first-stage
variables, which must be decided upon before the uncertainty is cleared. y is the vector
of second-stage variables, which can be chosen after the outcome is known. ξ is a random
vector that encompasses all the scenario-dependent second-stage data. Note that the prob-
lem contains deterministic constraints on first-stage variables (1.1b) and scenario-dependent
constraints coupling first-stage and second-stage variables (1.1c).

min
x

{
c · x+ Eξ

[
min
y
q(ω) · y

]}
(1.1a)

s.t. Ax = b (1.1b)

T (ω)x+Wy(ω) = h(ω) (1.1c)

x ≥ 0, y(ω) ≥ 0 (1.1d)

In all the two-stage stochastic models we consider, we model random variables as discrete,
which allows writing the two-stage linear stochastic optimization problem as in (1.2).

min
x,y

c · x+
∑
ω∈Ω

p(ω)q(ω) · y(ω) (1.2a)

s.t. Ax = b (1.2b)

T (ω)x+Wy(ω) = h(ω) ∀ω ∈ Ω (1.2c)

x ≥ 0, y(ω) ≥ 0 ∀ω ∈ Ω (1.2d)

1Some of the models proposed in this thesis could be easily extended to handle risk-aversion. A useful
textbook for this approach is [94].
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Note that if Ω is finite, problem (1.2) can be fully written and is a conventional Linear
Program (LP), which can be solved by passing it to a commercial LP solver. This approach
is called solving the problem in Extensive Form.

If some of the first-stage variables are integer or binary, as is the case in Chapters 4
and 5, (1.2) is a Mixed Integer Linear Program (MILP). Note moreover that it has a block-
angular structure, where the vector x contains all the variables that couple all constraints.
If x is fixed, the resulting problem can be decomposed into a series of smaller, independent
problems. Hence, problem (1.2) can be solved in Extensive Form by passing it directly to
a MILP solver, or by exploiting the block-angular structure to perform some decomposition
technique, which is the avenue pursued in Chapter 4. Decomposition techniques in stochastic
and deterministic MILPs is a well-studied topic; for textbook references, see e.g. [9, 21].

Stochastic infinite-horizon dynamic programming

We find it useful to briefly highlight here the difference between the two-stage stochastic
model presented above and the approach taken to model uncertainty in Chapter 3, an infinite-
horizon, average cost problem with an initial decision, expressed in generic form in (1.3).
We omit here details about formulating dynamic programs of this type. A useful textbook
reference is [5].

min
x∈X
µ(·)

c · x+ lim
T→∞

Eξt

[
1

T

∫ T

0

f(yt, ξt;x)dt

∣∣∣∣ y0] (1.3a)

ẏt = g (yt, µ(yt), ξt;x) (1.3b)

Here, x is a first-stage decision vector with known cost that will affect the dynamics of the
system, as well as the costs incurred, µ(·) is a stationary policy for determining the action
taken at each time, and the stochastic process ξt affects both the dynamics of the system and
the costs incurred. If the optimal policy µ(·) can be expressed as a function of x, and ξt is
an ergodic stochastic process taking values in a discrete state space, then the limit in (1.3a)
can be expressed with help of a limiting distribution ψ over a discrete space S of states,
obtaining (1.4).

min
x∈X

c · x+
∑
s∈S

(ψs(x) · f(s;x)) (1.4)

At first glance, the resemblance between (1.4) and (1.2a) might lead us to believe that (1.4)
is also a two-stage stochastic program; we have indeed a first-stage variable with known
cost and a second-stage probability-weighted sum over states that might be thought of as
scenarios. Note, however that the probabilities in (1.2) are part of the problem data, while
in (1.4) they are a function of the first-stage variable x. This fact, moreover, makes problem
(1.4) a non-linear optimization problem, unlike the linear problems presented before. And
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finally, the reduction of (1.3) to the two-stage-looking expression in (1.4) was a result of
exploiting some of the assumptions in the model, but the uncertainty was not assumed to
be completely revealed after one stage. On the contrary, the stochastic process ξt spans over
all t ≥ 0. So despite the similar final appearance, both the representation of uncertainty and
the approach taken to optimize under it in Chapter 3 are quite different from that of other
chapters.

Optimality gaps in MILPs

The stochastic optimization problems of Chapters 4 and 5 are in fact stochastic MILPs.
The solution approach implemented in that work relies on commercial MILP solvers for the
solution of the subproblems posed, which employ enhanced branch-and-bounding algorithms.
A good textbook reference for Mixed Integer Program (MIP) and branch and bounding
methods is [73]. We omit here a full description of branch and bounding, but do consider
helpful introducing the concept of MIP gap, which plays an important role in assessing the
performance of the methods proposed in Chapters 4 and 5.

(P ) : z = min c · x+ d · y (1.5a)

s.t. Ax+My = b (1.5b)

x ≥ 0, y ≥ 0 (1.5c)

x ∈ Z, y ∈ R (1.5d)

(LPj) : zLPj = min c · x+ d · y (1.6a)

s.t. Ax+My = b (1.6b)

gix+ hiy = ei, ∀i ∈ Cj (1.6c)

x ≥ 0, y ≥ 0 (1.6d)

x ∈ R, y ∈ R (1.6e)

Consider the generic MILP given in (1.5), and consider its linear relaxation (1.6), to
which we have added a set of valid cuts Cj, initially empty, i.e. C0 = ∅. We say the cut
gix+hiy = ei is valid if we can guarantee that it is satisfied by the optimal solutions (x∗, y∗)
of (P ). Thus, if all cuts in Cj are valid, (x∗, y∗) is guaranteed to be in the feasible set of (LPj)
and thus zLPj ≤ z for all j. Let (x̂, ŷ) be an integer-feasible candidate solution, i.e. a point
in the feasible set of (P ). In particular, consider that we keep track of candidate feasible
solutions found and let (x̂j, ŷj) be the best feasible solution of (P ) that the algorithm has
found up to iteration j; let ẑj be its objective value. Then, the following two-sided inequality
holds:

zLPj ≤ z ≤ ẑj
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The quantity ẑj−zLPj

|ẑj | is called the MIP gap2 obtained by the algorithm by iteration j.
In the branch and bound method implemented by commercial solvers, a series of heuristic
and cut generation routines are used to obtain a sequence of better integer-feasible solutions
(x̂j, ŷj) and tighter cuts Cj that lead to a smaller MIP gap. When the gap drops below
a predefined threshold ε, the algorithm stops and the feasible solution (x̂j, ŷj) is returned.
Although branch and bounding algorithms are guaranteed to converge to 0 gap in a finite
number of iterations, for large-scale problems this can take unreasonably long. This issue
underscores the importance of achieving an acceptable gap soon enough in the execution of
the algorithm, as discussed in Chapters 4 and 5.

1.3 Outline of this dissertation

In this dissertation, we study three independent problems that all fall in the intersection of
optimization under uncertainty and at least one of the power system challenges mentioned
in Section 1.1, i.e. problems of long-term planning and market design under a landscape of
increased uncertainty driven by intermittent energy sources and decentralized participants.
Chapter 2 is about addressing the challenge of scale posed by decentralization in a mar-
ket design problem. In Chapter 3 we study an investment planning problem under wind
and price uncertainty from the perspective of a private owner. In Chapters 4 and 5, we
adopt the perspective of a central planner and do a computational implementation of an
investment planning problem under climate and weather uncertainty. Chapters 3 and 2 are
self-contained. Chapters 4 and 5 are conceived as a self-contained sequential unit.

Chapter 2

In this chapter, we consider a problem of stable and fair market design in Community Choice
Aggregation (CCA) settings. We adopt an existing cooperative game model from the litera-
ture to distribute the collective savings resulting from aggregation of demand in a group of
prosumers at the retail level, and make several major theoretical contributions to improve
it and complement it. First, we characterize a set of allocations of interest, which we call
uniform price stable allocations, and prove that they are guaranteed to exist. Moreover, we
propose a computationally scalable methodology, based on solving a pair of primal, dual LPs,
to find a uniform price stable allocation. Next, we illustrate that uniform price allocations
may not be unique and may not be equally preferred by a social planner. We propose an
optimization framework for selecting the most-preferred uniform price allocation. Finally, we
show that although a computationally efficient and scalable methodolgy for exactly solving
the optimization problem proposed is not available at the moment, satisfactory and com-
putationally tractable solutions can be obtained via sampling by bridging existing results
from the statistical learning literature. Most of the chapter is dedicated to studying the

2 Note that a special case, omitted here, needs to be considered if the denominator is 0.
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deterministic case, but a stochastic version that takes into account the uncertainty induced
by renewable sources and demand is also discussed.

The results of this chapter are under consideration for publication at the time of pub-
lishing of this thesis. A part of the results of this chapter were presented in [106].

Chapter 3

In this chapter, we consider the case of a Wind Power Producer (WPP) who wants to install a
Battery Energy Storage System (BESS) on site to mitigate the uncertainty in the production
of electric power by firming its output and thereby increasing revenue. The WPP is interested
in finding the optimal size to maximize their long-term average profit. We propose a modeling
framework in which the wind power output of the plant and the market prices of eletricity are
modeled as a joint Markovian stochastic process. The ergodicity of the process is exploited
to reduce the expression of the infinite-horizon average profit to a low-dimensional function
that can be optimized numerically. Special attention is paid to the case where market prices
are constant, i.e. the WPP sells its power through forward contracts. A full solution of the
model is derived in that case, and a numerical implementation is presented to illustrate how
the model lends itself to performing sensitivity analyses.

The contributions of this chapter are: a stylized Markovian stochastic model for battery
sizing of colocated storage in WPPs; a solution method for the aforementioned model in the
case with constant prices via a bridge between a recent algorithm for numerically computing
limiting distributions in multiregime fluid queues; and initial results in characterizing the
optimal control policy for BESSs for the case with variable prices, potentially providing a
path towards a usable implementation for that case as well. A substantial part of the results
of this chapter were published in [107].

Chapters 4 and 5

In these chapters, we consider a long-term investment planning problem: developing parallel
computing software for stochastic joint generation, transmission and storage CEP. The work
presented in these chapters was performed in collaboration with LLNL, as part of a project
aiming to bridge the gap between climate projection models and infrastructure planning.

In Chapter 4, we present the CEP that we adopt and extend, and the implementation of
the PHA proposed to solve the large-scale MILP that results from it. Both the model and the
solution method through scenario decomposition presented in this chapter had been proposed
in the literature before. The contributions of our work are in the software implementation,
which makes use of Pyomo, a Python modeling language for optimization, and mpi-sppy,
a Python extension for solving stochastic optimization problems in HPC clusters. This
implementation allows handling a stochastic nodal CEP larger than what had been solved
in the literature before.

The model used in Chapter 4 uses a simplified network flow representation of power
flow. In Chapter 5, we consider other linear representations of power flow and assess their
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impact on the execution time and solution quality obtained. In particular, we test two
common representations of DC power flow: the bθ formulation and the Power Transfer Dis-
tribution Factors (PTDF) formulation. The conventional versions of these representations
neglect transmission losses; versions of the model that take these losses into account are
proposed and some statistically justifiable heuristics are introduced to maintain the compu-
tational tractability of the model. The work in this chapter contains contributions on both
modeling and software implementation. On the modeling part, the CEP model with PTDF
formulation, which had been proposed in the literature for Transmission Expansion Planning
(TEP), was extended to also include generation and storage. We also propose a methodology
to include transmission losses under this formulation, which had not been proposed in the
literature before. On the implementation part, a systematic test on 365 different loading
and generation conditions, corresponding to a year of realistic data in a 500-bus testcase
system, was performed to evaluate the time and quality performance of the different models,
obtaining very promising results for the proposed PTDF model, which dominates the more
common bθ model in the lossless case, and offers an interesting tradeoff in the lossy case.

The software developed as part of this work will be released as open software after the end
of the ongoing project, which has not occurred at the time of submission of this dissertation.
A substantial part of the results of Chapter 4 have been presented in [105] and will be
published in [104].

Chapter 6

Finally, in Chapter 6 we discuss avenues for future research that spawn from the work
performed during the completion of this dissertation.
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Chapter 2

Stable and Fair Uniform Price
Allocations of Community Choice
Aggregation Gains in Retail
Electricity Markets 1

Abstract

The advent of differentiated prices for consuming (buying) and injecting (selling) electricity
at the residential level promotes the emergence of local peer-to-peer electricity markets for
prosumers, which can deliver savings to participants as long as an attractive cost sharing
mechanism can be designed. Building on cooperative game theory models that have been
proposed in the literature, we define the uniform price core, a class of desirable distribution
of savings in this context, and prove constructively that it is not empty. We propose the
shadow price imputation, a computationally efficient stable uniform price imputation, which
we show to be equivalent to a dual imputation in the sense of cooperative linear production
games. In the second part of the chapter, we compare the shadow price imputation to
other imputations in the uniform price core through the lens of fairness. To overcome the
challenge of tractability for larger numbers of participants, we extend an existing sampling
methodology and apply it to optimization problems devised to obtain a fair imputation.
The long-term incentive implications for different stakeholders, as well as a generalization
to a stochastic case where the uncertainty in renewable production and local demand is
considered, are also discussed. We present theoretical results and numerical experiments
and examples to illustrate our approach.

1 A substantial part of the text that constitutes this chapter was submitted for publication under the
name “Uniform Price Allocations of Community Choice Aggregation Gains in Retail Electricity Markets”,
authored by Tomas Valencia Zuluaga and Shmuel S. Oren, and was under review at the time of publishing of
this thesis. A conference paper version of the sampling methodology presented in Section 2.5 was presented
and published in [106].
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2.1 Introduction

After years of incentive measures like Net Metering, and even mandatory installation of
rooftop Photovoltaic (PV) and local Battery Energy Storage Systems (BESSs) in new build-
ings in certain jurisdictions ([81]), the so-called prosumer, a consumer of electricity with
local means of production, is expected to become nearly ubiquitous in modern distribution
systems. With the advent of the end of net metering subsidy programs, the use of different
retail prices for consuming (buying) and injecting (selling) electricity is likely to become more
common. In this way, public utilities may reconcile their non-convex cost structure, driven
by significant fixed costs, with a need to maintain linear (volumetric) prices, as shown by [63].
In this context, prosumers find that trading among each other can offer savings compared
to the conventional scheme where all transactions are settled with the public utility, and
so forming local markets, usually called peer-to-peer markets or local aggregation markets
becomes naturally attractive. One of the main challenges when setting up such a market is
designing a mechanism to distribute the collective savings in such a way that participants
are incentivized to remain in the market.

In this chapter, we approach this problem through a cooperative game theoretic model,
where we formally define some desired characteristics of a distribution mechanism: uniform
prices, computational efficiency and a certain notion of fairness.

We propose an efficient mechanism that satisfies the two former desiderata, and analyze
a framework to obtain more fair distributions in a computationally efficient way. We also
investigate through numerical examples if more fair distributions exist as the number of
participants grows. We close with a discussion of long-term incentive implications of the
scheme proposed here.

2.1.1 Related research

There are numerous examples of cooperative game models applied to peer-to-peer electricity
markets in the literature, which differ in the market structure (centralized or decentralized),
the representation of the grid and flows (copper-plate, linear, non-linear), among numerous
other model details. Recent, comprehensive reviews are available in [16] and [59].

Our approach is closest to the models of [38] and [54], which analyze the obtention of
a profit distribution mechanism using a centralized, linear model with several time periods
linked through storage devcies, like ours. The former authors find that the Shapley value
is often not in the core of the game and can fail to incentivize participation. The nucleolus
is proposed as a stable, albeit computationally challenging, alternative. The latter authors,
whose formulation and notation we adopt in this chapter, propose overcoming the computa-
tional challenges of the nucleolus computation with a linear optimization problem to obtain
the least core allocation, although the least core Linear Program (LP) proposed still requires
an exponential number of constraints in its description. They also restrict allocations to the
ones that can be described as uniform prices, but do not formalize it or analyze it like we
do here.
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In our model, the value of a coalition is obtained from solving an LP. In this chapter, we
exploit LP strong duality to obtain an imputation that is guaranteed to be in the core of the
game. This is the same approach followed for example by [19] in the context of inventory
centralization problems. All these problems are special cases of the linear production games
proposed by [78], who shows that such games are totally balanced and that the dual impu-
tation, sometimes called in the literature Owen imputation, is guaranteed to be in the core.
[78] also shows that although the core and the set of dual imputations are not the same for
general linear games, they become the same in the limit as the number of players grows to
infinity through replication.

Fairness in the context of cooperative games can have numerous interpretations and has
been the subject of extensive study (for a textbook reference, see e.g. [69]). A classic notion
of fairness in this context is that of Shapley, who proposes through an axiomatic approach
that a fair allocation should reflect each individual’s contribution to other potential alloca-
tions. It is in this light that we analyze unfairness in Example 2.4.1: essential participants
may be allocated zero profits by a dual imputation, which are thus unfair in this regard.
This phenomenon was identified by [82] for general linear production games, where they
characterize a class of more fair allocations, but find that their existence in the core cannot
be guaranteed.

This analysis of unfairness in our context is related to finding a uniform price that is
intermediate between the utility selling and buying prices and thus distribute savings between
buyers and sellers. This is addressed by [102] by proposing a mid-market rule (MMR), which
is somewhat similar to our price-control mechanism introduced in Section 2.4. However, their
model is a single-period model without storage, and the MMR is not in the core of the game,
as shown in the numerical tests of [54].

Our approach of finding the best core allocation via optimization can be interpreted as
the social planner’s problem of finding a social optimum, with our objective value being a
social welfare function, in the sense of classic Welfare Economics as covered e.g. in [60]. We
do not expand on this angle of analysis, but point the interested reader to [29] for a related
approach of finding an egalitarian allocation in cooperative games.

Describing the core in general games requires a number of constraints exponential in the
number of players. This is a known shortcoming of finding stable imputations in general
settings. In the statistical learning literature, [3] propose two probabilistic relaxations of the
core and show that imputations therein can be learned from a number of samples that is
polynomial in the number of players. This is adapted by [106] to the same setting studied
in our work to find the least core allocation in a relaxation of the core of the game for p2p
markets with larger numbers of participants. In Section 2.5, we apply that approach to
optimization problems with general objective functions.

2.1.2 Contributions of this work

The contributions of this work can be summarized as follows:
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• In the context of P2P electricity markets, we formalize a class of imputations that is
desirable in a cost sharing mechanism: imputations that can be described through uni-
form prices. Although numerous models in the literature use this class of imputations,
we have not found examples where the difference between this class and the regular
game core is formally analyzed.

• We prove that core of the game and the uniform price core are not the same, which
justifies the formalization of the uniform price core. We prove that the uniform price
core is not empty for the peer-to-peer electricity market.

• We give a methodology to obtain a uniform price imputation in the core of the game,
which we call the shadow price imputation. This methodology only requires solving
a primal, dual LP pair of moderate size, and is thus computationally efficient for p2p
markets with larger numbers of participants. We show that this imputation is a dual,
or Owen imputation, when our model is interpreted as a linear production game in the
sense of [78].

• To our knowledge, the relation of this structure of p2p market with the aforementioned
linear production games has not been established in the literature before. Besides its
academic interest, this bridge is of value because it allows applying the asymptotic
result that dual imputations are the unique core imputations for large enough markets,
for which we find some evidence in numerical tests.

• We show that shadow price imputations may be unfair in a Shapley sense and propose
a framework for obtaining better uniform price imputations through optimization. The
proposed framework has scalability challenges. To overcome them, a sampling tech-
nique is proposed based on statistical learning results that are shown to be applicable
to this setting.

2.1.3 Structure of this chapter

In Section 2.2, we present the setting of the peer-to-peer electricity market and describe
in detail the cooperative game model adopted. We also present the preliminary results
about cooperative game theory necessary for our approach. In Section 2.3, we introduce
the class of uniform price imputations and show that the set of such imputations in the
core is not empty through the introduction of shadow price imputations. In Section 2.4,
we show how shadow price imputations, despite their desirable characteristics, might be
unfair and propose an optimization framework to find the most desirable imputation. In
Section 2.5, we present a sampling methodology to overcome the challenge of scalability in
implementing that optimization framework in markets with larger numbers of prosumers,
and present numerical tests that validate the methodology. In Section 2.6, we discuss some
considerations about long-term responses of participants and the public utility which are not
captured in our model. Section 2.7 discusses the generalization of this model to a stochastic
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case that considers uncertainty in the local production and electricity demand. Finally,
conclusions are presented in Section 2.8.

2.2 Setting and preliminaries

In this section, we present the setting for our peer-to-peer electricity market, and introduce
the cooperative game chosen to model it. Other than some minor exposition and notation
choices, the model is identical to that of [54].

After presenting the model, we define the class of uniform price imputations and the
uniform price core, a related refinement of the core, and illustrate how they differ through
a small example. Finally, we prove that the uniform price core is not empty and provide
a methodology to efficiently find an imputation therein, which constitutes one of the main
contributions of this work.

2.2.1 Nomenclature

Sets
N : Set of all market participants, i.e. prosumers. Indexed by i.
T : Set of time periods considered in horizon, indexed by t.
Variables
Primal
sci,t: energy (in kWh) charged into i’s BESS during period t.
sdi,t: energy (in kWh) drawn from i’s BESS during period t.
ei,t: energy (in kWh) in i’s BESS at the end of period t.
ℓi,t: net consumption of i during period t.
zt: net collective consumption of all prosumers during period t.
wt: net collective generation of all prosumers during period t.
Dual
πt: dual variable of energy balance constraint at period t.
αi,t: dual variable of i’s BESS charge limit constraint in period t.
βi,t: dual variable of i’s BESS discharge limit constraint in period t.
γ
i,t
, γi,t: dual variable of i’s BESS lower and upper energy storage limit constraint in period

t.
δi: dual variable of i’s BESS zero net usage constraint.
Parameters
pt: utility price for consuming (buying) electricity during period t (in $/kWh).
ht: utility price for injecting (selling) electricity during period t (in $/kWh).
di,t: Prosumer i’s gross demand (in kWh) during period t.
gi,t: Prosumer i’s gross PV production (in kWh) during period t.
si, si: i’s discharge and charge limit during one period.
Ei, Ei: i’s lower and upper energy storage level limit.
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ηci , η
d
i : prosumer i’s BESS charge and discharge efficiency.

e0i : prosumer i’s BESS initial state of charge.

Notation

Unless otherwise specified, the vector is noted by omitting the corresponding index, e.g.
π = [πt]t∈T .

2.2.2 Model description

We consider a set of prosumers N who have some electricity consumption needs, and some
of which have local generation (solar PV) and/or a BESS. The utility company has a pair
of predetermined import and export prices pt, ht for each period t in the day, with pt > ht.
During period t, any customer may purchase any amount of electricity from the utility
company at a price pt $/kWh, and sell any amount of electricity for a price ht $/kWh. A
subset S ⊆ N of prosumers may get together and form a coalition; a coalition is treated as
a single customer by the utility company, i.e. the coalition is charged for the combined net
consumption of all members, and remunerated for the combined net injection.

Members of a coalition can coordinate the usage of their BESSs to shift their consumption
in order to minimize the collective electricity bill of the coalition. We assume that utility
prices, as well as the generation and demand profile for each customers is known for the
entire horizon (day) when the coordination plan is determined. The coordination problem
for a coalition S ⊆ N is denoted (PS) and given by (2.1).
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(PS) : C(S) =

min
sc,sd
z,w

∑
t∈T

ptzt − htwt (2.1a)

s.t zt − wt =
∑
i∈S

ℓi,t ∀t ∈ T [πt] (2.1b)

sci,t ≤ si ∀i ∈ S, t ∈ T [αi,t] (2.1c)

sdi,t ≤ si ∀i ∈ S, t ∈ T [βi,t] (2.1d)

Ei ≤ e0i + ei,t ≤ Ei ∀i ∈ S, t ∈ T [γi,t, γi,t] (2.1e)∑
t∈T

(
ηci s

c
i,t − sdi,t

)
= 0 ∀i ∈ S [δi] (2.1f)

ℓi,t = di,t + sci,t − ηdi sdi,t − gi,t ∀i ∈ S, t ∈ T

ei,t =
t∑

τ=0

(
ηci s

c
i,τ − sdi,τ

)
∀i ∈ S, t ∈ T

sci,t, s
d
i,t, zt, wt ≥ 0 (2.1g)

Note ℓi,t and ei,t are just shorthands for customer i’s net consumption and BESS level
during period t respectively, and can be substituted directly into (2.1b) and (2.1e), so they
are not assigned a dual variable. Constraints (2.1c) and (2.1d) enforce the charging and
discharging limits of the batteries, while (2.1e) ensures that battery levels remain within
limits. To avoid end-of-horizon effects, (2.1f) makes sure that the battery ends the day
with the same level as it started. Constraint (2.1b) computes the combined net load of the
coalition during each time period t and assigns its positive and negative parts to auxiliary
variables zt and wt, which are used in (2.1a) to compute the total cost (revenue) of energy
purchased from (sold to) the utility. It is not hard to verify that because ht < pt, any

optimal solution will satisfy zt · wt = 0, which justifies the interpretation zt =
(∑

i∈S ℓi,t
)+

,

wt =
(∑

i∈S ℓi,t
)− ∀ t ∈ T .

We consider a cooperative game model G defined by the set of prosumers N and the
characteristic function V : S ∈ 2N → R+ given by (2.2).

V (S) =
∑
i∈S

C({i})− C(S) (2.2)

The characteristic function V can be interpreted as the surplus that can be achieved by
a coalition comparing their collective bill to the situation where each customer deals with
the utility individually. We next show that getting together is attractive for prosumers.
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2.2.3 Other preliminaries

Next, we go over some preliminaries of cooperative game theory and results from related
research that is relevant to our approach.

Definition 2.2.1. We say a function f : S ⊆ N → R is superadditive if for all disjoint sets
S, T ⊆ N , we have f(S ∪ T ) ≥ f(S) + f(T ).

Theorem 2.2.1 (Theorem 1 of [54]). The value function V is superadditive.

Proof. To make this thesis self-contained and to account for differences in model description,
a proof is provided in Section 2.A.

Theorem 2.2.1 implies that for any partition P of the set N , V (N) ≥ ∑S∈P V (S), and
thus, it is socially optimal for all customers to join the same coalition, which is called the
grand coalition. The next natural question is if all participants can be incentivized to do the
socially optimal action of joining the grand coalition.

Definition 2.2.2. An allocation or imputation is a vector x ∈ R|N |+ :
∑

i∈N xi = V (N).

The value of the grand coalition V (N) is the total surplus that the entire set of prosumers
can achieve by coordinating. An allocation is one possible distribution of this surplus among
the participants.

Definition 2.2.3. We say that a coalition S blocks or is blocking for allocation x if
∑

i∈S xi <
V (S)

If a coalition S is blocking for allocation x, the prosumers in S could abandon the grand
coalition, coordinate only among themselves and find an alternative allocation in which
they would all receive no less surplus than they are receiving under allocation x, with some
receiving strictly more. Therefore, the existence of blocking coalitions provokes the collapse
of the grand coalition. This introduces the concept of stability: an imputation x is said to
be stable if there exists no coalition that is blocking for x. The set of all stable coalitions is
called the core of game G. We denote the core of G with C.

The Shapley allocation is an important concept from the cooperative game theory liter-
ature; it represents the allocation that best remunerates each participant’s contribution to
the group, and is the most fair allocation in that sense. It is unique, denoted by ϕ and can
be computed from (2.3). Note that the expression in (2.3) requires enumerating all com-
binations of coalitions in N , which becomes computationally intractable for larger games.
Moreover, the Shapley imputation is only guaranteed to be in the core of the game for convex
games.

ϕi =
1

N

∑
S⊆N\{i}

(V (S ∪ {i})− V (S))(
n−1

n−|S|−1

) , i ∈ N (2.3)



CHAPTER 2. UNIFORM PRICE ALLOCATIONS OF AGGREGATION GAINS 17

Theorem 2 of [54] shows that this game is balanced, and thus has a nonempty core.
However, the game is not convex, so the Shapley imputation is not guaranteed to be sta-
ble. [38] find in their numerical tests several such instances. We provide a small example of
an unstable Shapley imputation in an instance of our game in Example 2.4.2.

We are not interested in just any stable imputation; in the next section, we define a
particular class of imputations on which we will focus for the remainder of the chapter.

2.3 Uniform price imputations

In this section, we present the first of our main contributions. We formalize the set of
imputations that we are interested in obtaining, prove that this set is not empty, and provide
an efficient method to get an imputation therein.

First, it will be useful in our context to interpret allocations not just as distributions
of surplus, but also as proposals for splitting the collective bill, so we introduce one more
definition.

Definition 2.3.1. A bill splitting is a vector b ∈ R|N | :
∑

i∈N bi = C(N) with bi ≤ C ({i})
for all i ∈ N .

We interpret bi as the amount charged to customer i’s by the local electricity market,
i.e. their local electricity bill. If negative, |bi| is the amount paid to customer i. It is easy
to verify that there is a 1:1 correspondence between bill splittings and imputations given by
bi = C({i}) − xi for each i ∈ N . Similarly, a coalition S is blocking for x if and only if∑

i∈S bi > C(S). For a given imputation, we refer to its corresponding bill splitting as its
bill-splitting form. We denote the core in bill-splitting form B. The core can be expressed in
regular and bill-splitting form respectively as:

C =
{
x ∈ R|N |+ :

∑
i∈N

xi = V (N),
∑
i∈S

xi ≥ V (S) ∀S ⊆ N

}
(2.4)

B =

{
b ∈ R|N | :

∑
i∈N

bi = C(N),
∑
i∈S

bi ≤ C(S) ∀S ⊆ N

}
. (2.5)

2.3.1 The uniform price core

To facilitate the implementation of the cost sharing mechanism, we want imputations to
be describable through uniform prices. In other words, we want to define local selling and
buying prices of electricity, such that each participant’s bill can be expressed as the result
of a sequence of buying and selling transactions, performed at prices that are common to all
market participants.
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Table 2.1: Values of the collective bill for all coalitions in Example 2.3.1.

S C(S) S C(S)
{A} -2 {A,B} -1
{B} 5 {A,C} 5
{C} 15 {B,C} 20

{A,B,C} 10

Definition 2.3.2. A uniform price imputation or uniform price allocation in the context
of game G is an imputation x (or b, in bill-splitting form) for which there exist prices
λb, λs ∈ R|T |+ such that ht ≤ λbt , λ

s
t ≤ pt for each t ∈ T , and:

bi =
∑
t∈T

(
λbt
(
ℓ∗i,t
)+ − λst (ℓ∗i,t)−) ∀i ∈ N (2.6)

, where ℓ∗i,t is the value of ℓi,t in an optimal solution of (PN).

We denote the set of uniform price allocations with U , and its bill-splitting form with V .
Its intersection with the core is called the uniform price core. We have found no examples
in the P2P electricity market literature where the concepts of uniform price allocations and
uniform price core are formalized as we have done here, although they are implicitly defined
by [54]. We believe this formalization is not a moot point, because the core and the uniform
price core are not the same, as shown in Example 2.3.1.

Example 2.3.1 (U ∩C ≠ C). Consider a simple case with three participants N = {A,B,C},
and one time period. We drop the time subscript for this example. The utility prices
are p=5$/kWh, h=1$/kWh. Participant A has a net generation of 2kWh. B has a net
consumption of 1kWh and C a net consumption of 3kWh. There are no BESSs in this
example. Table 2.1 gives the collective bill C(S) for each coalition, i.e. the optimal value of
(PS) for each S ⊆ N .

Substituting the values in Table 2.1 into (2.5) and working through some algebra we get
the characterization of the core in bill-splitting form:

B = {(bA, bB, bC) = (σ, 5, 5− σ), σ ∈ [−10,−6]} .

Now let us characterize the uniform price core for this example. With λs the local price
for selling and λb the local price for buying, uniform price imputations in bill-splitting form
are

V =
{
(bA, bB, bC) = (−2λs, λb, 3λb),
2λb − λs = 5, 1 ≤ λs, λb ≤ 5

}
.

, which implies bC = 3bB, so that the only uniform price allocation in the core is obtained
making σ = −10, and is B ∩ V = {(bA, bB, bC) = (−10, 5, 15)}. In other words, allocations



CHAPTER 2. UNIFORM PRICE ALLOCATIONS OF AGGREGATION GAINS 19

in bill-splitting form (bA, bB, bC) = (σ, 5, 5− σ), σ ∈ (−10,−6] are all in the core, but cannot
be expressed through uniform prices.

2.3.2 Shadow price imputations

We are now ready to introduce shadow price imputations. These imputations are related
to (DS), the dual of (PS). In fact, we will show that shadow price imputations are Owen
imputations for our linear game. A description of (DS) is given in (2.7).

(DS) : W (S) =

max
π,α,β
γ,γ,δ

∑
t∈T,i∈S

πt (di,t − gi,t) + αi,tsi + βi,tsi + γi,t
(
Ei − e0i

)
+ γi,t

(
Ei − e0i

)
(2.7a)

s.t. − πt + αi,t +

|T |−1∑
τ=t

ηciγi,τ + ηciγi,t + ηci δi ≤ 0 ∀i ∈ S, t ∈ T [sci,t] (2.7b)

ηdi πt + βi,t −
|T |−1∑
τ=t

(
γi,t + γi,t

)
− δi ≤ 0 ∀i ∈ S, t ∈ T [sdi,t] (2.7c)

πt ≤ pt ∀t ∈ T [zt] (2.7d)

− πt ≤ −ht ∀t ∈ T [wt] (2.7e)

αi,t, βi,t, γi,t ≤ 0, γi,t ≥ 0 (2.7f)

The first main result of this work is given by the following theorem.

Theorem 2.3.1. Let
(
z∗, w∗, sc∗, sd∗

)
and (π∗, α∗, β∗, γ∗, γ∗, δ∗) be an optimal solution pair

to the primal-dual pair (PN), (DN). Then the imputation given in bill-splitting form for each
i ∈ N by (2.8) is in the uniform price core of the game.

θi =
∑
t∈T

π∗
t ℓ

∗
i,t (2.8)

, where ℓ∗i,t, as usual, is a shorthand for di,t − gi,t + sc∗i,t − ηdi sd∗i,t.
The crux of our proof is in the following proposition.

Proposition 2.3.1. Let (z∗, w∗, sc∗, sd∗), (π∗, α∗, β∗, γ∗, γ∗, δ∗) be a pair of optimal primal-
dual solutions to the primal-dual pair (PN), (DN). Then, for each i ∈ N :∑

t∈T
π∗
t ℓ

∗
i,t =

∑
t∈T

[π∗
t (di,t − gi,t)

+ α∗
i,tsi + β∗

i,tsi

+γ∗
i,t

(
Ei − e0i

)
+ γ∗i,t

(
Ei − e0i

)]
(2.9)
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Proof. See Appendix 2.A.2.

Proof of Theorem 2.3.1. We first check that θ is indeed a uniform price allocation in bill-
splitting form. θ satisfies the form of Definition 2.3.2 with λb = λs = π∗, with ht ≤ π∗

t ≤ pt
by (2.7d) and (2.7e), so we need only verify that it is an allocation, i.e. that

∑
i∈N θi = C(N).

Applying Proposition 2.3.1 and summing over i ∈ N , we get∑
i∈N

θi =
∑

i∈N,t∈T
π∗
t ℓ

∗
i,t

= W (N)

= C(N)

, where the second equality is true because summing over i ∈ N , the right-hand side of (2.9)
becomes (2.7a), the optimal value of (DN), and the last equality is true by strong duality of
(PN), (DN).

Next, we need to check that no coalition blocks allocation θ, i.e. we need to verify that∑
i∈S θi ≤ C(S) for all S ⊆ N . Consider any S ⊆ N . Then applying Proposition 2.3.1 and

summing over i ∈ S, we have:∑
i∈S

θi =
∑

i∈S,t∈T

[
π∗
t (di,t − gi,t) + α∗

i,tsi + β∗
i,tsi + γ∗

i,t

(
Ei − e0i

)
+ γ∗i,t

(
Ei − e0i

)]
. (2.10)

Observe that the right-hand side of (2.10) is the objective value of (DS) corresponding to

the solution
(
π∗,
(
α∗, β∗, γ∗, γ∗, δ∗

)
i∈S

)
, which it is easy to check is feasible for (DS). Then:∑

i∈S
θi ≤ W (S) = C(S)

, where in the last equality we applied strong duality to the pair (PS), (DS).

Remark 2.3.1. Proposition 2.3.1 in the proof of Theorem 2.3.1 shows that shadow price
allocations are just a different way of expressing a dual (or Owen) imputation of game G.
As mentioned before, dual imputations are shown by [78] to be in the core for games with a
linear production structure. Therefore, a different way to prove this result would be to verify
that game G has the structure of a linear production game, and prove that the shadow price
imputation corresponds to the Owen imputation, by e.g. invoking Proposition 2.3.1. Since
the latter already includes most of the work of the whole proof, we decided to make this
proof self-contained.

Theorem 2.3.1 gives us a uniform price allocation that is guaranteed to be in the core.
Moreover, it is a uniform price allocation that has equal selling and buying prices for each
time period. This implies the two corollaries below.
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Corollary 2.3.1 (Non-emptiness of the uniform price core). The uniform price core of game
G is not empty.

Corollary 2.3.2 (Non-emptiness of the uniform price core with identical prices). The set
of allocations in the uniform price core of game G with equal selling and buying prices is not
empty.

To close this section, we discuss some important consequences of Theorem 2.3.1. First,
in [54], optimization problems are formulated where the feasible set is restricted to the set
of uniform price imputations. Because the existence of core imputations was proven, it is
assumed by the authors that stable uniform price imputations also exist, but there was no
guarantee that the least-core optimization problem is feasible. Corollary 2.3.1 guarantees
the existence of such imputations, and thus the soundness of that method.

In fact, Theorem 2.3.1 does more than just that: it also makes the method somewhat
obsolete. The methodology in [54] requires solving a linear problem with an exponential
number of constraints. [106] propose a sampling methodology to address this issue by working
with a relaxation of the core. Both return an imputation in the uniform price core (or a
relaxation thereof), without any preference among different imputations in that set. The
shadow price imputation is guaranteed to be in the uniform price core and only requires
solving a pair of primal-dual linear problems of small size, so it outperforms these two
methods.

Now that we have a guarantee that the uniform price core is not empty, it makes sense
to ask ourselves which of the imputations therein is the best one. We delve into that topic,
through the lens of fairness, in Section 2.4.

2.3.3 Asymptotic uniqueness of shadow price imputations in the
core

[78] also shows that although the core and the set of dual solutions are not the same (cf.
Example 2.3.1), they do asymptotically become the same as the number of players grows
to infinity through replication. In particular, all core allocations of the limit game are dual
allocations. For our application, this has the important implication that as the number of
participants grows to infinity, shadow price imputations are the only core imputations. This
suggests that for markets with very large numbers of participants, no core allocation other
than the shadow price imputation may exist, so the search for more fair allocations could be
a pointless endeavor, unless core membership is sacrificed.

Two important clarifications are necessary here: first, Owen’s result only shows that in
the limit, all core imputations are dual imputations. However, because optimal solutions to
(DN) may not be unique, it is not true in general that, in the limit, the core is a singleton
set. Second, this is only an asymptotic result, so numeric tests are necessary to see if this
behavior is perceivable for markets with a meaningful number of participants.
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Figure 2.1: Schematic representation of Example 2.4.1. Case with three participants N =
{A,B,C}, and two time periods T = {0, 1}. Participant A is a net producer of 1kWh each
period; C is a net, inflexible consumer of 5kWh in the second period and 0kWh in the first period;
and B has a lossless BESS, so B is a flexible consumer: B needs to consume 1kWh, but it can be
in either period.

2.4 Fairness of stable uniform price allocations

2.4.1 Motivation through some examples

At the end of Section 2.3, we introduced the shadow price imputation, an imputation that
satisfies two of our stated desiderata: it is in the uniform price core and can be computed
efficiently. In this section, by taking the perspective of fairness, we analyze whether other
uniform price imputations might be preferred over the shadow price imputation. We first
motivate this section with a couple of examples.

First, we introduce some notation: we denote U † (and V† in bill-splitting form) a restric-
tion of the set of uniform price allocations to allocations where the buying price and the
selling price are equal to each other at each time period.

Example 2.4.1 (Unfairness of the shadow price imputation). Consider a simple case with
three participants N = {A,B,C}, and two time periods T = {0, 1}. Participant A is a
net producer of 1kWh each period; C is a net, inflexible consumer of 5kWh in the second
period and 0kWh in the first period; and B has an ideal BESS (no losses), so B is a flexible
consumer: B needs to consume 1kWh, but it can be in either period. The situation of
Example 2.4.1 is summarized in Figure 2.1.

It is not hard to verify that minimal collective cost is achieved by having B shift their
consumption to the first period. Table 2.2 gives the collective bill C(S) for each coalition.

We will first restrict ourselves to uniform price imputations with equal selling price and
buying price, i.e. λbt = λst = λt, t = 0, 1. In bill-splitting form, these imputations are
(bA, bB, bC) = (−λ0 − λ1, λ0, 5λ1), with bA + bB + bC = C(N) = 20. This implies λ1 = 5, so
that the set of uniform price imputations with same selling price and buying price is given,
in bill-splitting and regular imputation form respectively, by:
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Table 2.2: Values of the collective bill for all coalitions in Example 2.4.1.

S C(S) S C(S)
{A} -2 {A,B} -1
{B} 5 {A,C} 19
{C} 25 {B,C} 30

{A,B,C} 20

V† = {(bA, bB, bC) = (−5− λ0, λ0, 25) , λ0 ≥ 0}
U † = {(xA, xB, xC) = (3 + λ0, 5− λ0, 0) , λ0 ≥ 0}

Note that participant C is being allocated $0 savings by all these imputations, which
include the shadow price imputation. However, C makes a positive contribution to the grand
coalition: V (A,B,C) = $8, V (A,B) = $4. In this case, the shadow price imputation would
be unfair, as it is not remunerating participant C for their contribution. Such unfairness
could fail to motivate C to join the local market, resulting in an overall loss for the whole
community.

As discussed in section 2.1, the best allocation in the sense of remunerating average
contribution is the Shapley value, which we can compute from 2.3 and the values in Ta-
ble 2.2 as (ϕA, ϕB, ϕC) = (4, 2, 2). By relaxing the constraint of equal selling and buy-
ing prices λbt = λst , the set of achievable imputations becomes, in bill-splitting form, V ={
(bA, bB, bC) = (−λs0 − λs1, λb0, 5λb1),−λs0 − λs1 + λb0 + 5λb1 = 20

}
. The Shapley allocation can

thus be achieved with λb1 = 3, λb2 = 4.6, λs1 = λs2 = 3.

Example 2.4.1 gives a situation where the shadow price allocation is unfair, in the sense
that it allocates zero savings to a participant that provides a positive contribution to the
grand coalition. In this example, allowing selling and buying prices to be different allows
the implementation of a preferable allocation, namely the Shapley imputation. However, the
Shapley value is not necessarily a suitable target imputation, since it may not be in the core
of game G, as shown in Example 2.4.2.

Example 2.4.2 (ϕ /∈ C, ϕ /∈ U). Consider again the situation of Example 2.3.1. It was
established there that the core imputations in bill-splitting form are given by

B = {(bA, bB, bC) = (σ, 5, 5− σ) , σ ∈ [−10,−6]} .

We can compute the Shapley value in this example from 2.3 and Table 2.1 as (ϕA, ϕB, ϕC) =
(14/3, 2/3, 8/3), which it is straightforward to check is not in C because it is blocked by
S = {A,C}. Moreover, the set of uniform price allocations is

V =
{
(bA, bB, bC) =

(
−2λs, λb, 3λb

)
,−λs + 2λb = 5

}
,
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which implies bC = 3bB, so the Shapley imputation is not implementable through uniform
prices either.

[38] propose the nucleolus as a desirable alternative to the Shapley value, since it is
guaranteed to be in the core of the game. As the Shapley value, it quickly becomes compu-
tationally intractable for larger games, so it is a challenging target. Moreover, in our case,
it may not be describable through uniform prices, as shown in Example 2.4.3.

Example 2.4.3 (Nucleolus not in U). Consider again the situation of Example 2.3.1. Now,
we target the nucleolus allocation, which can be computed to be (xA, xB, xC) = (6, 0, 2),
or, in bill-splitting form, (−8, 5, 13). Since the set of uniform price allocations has the form
(bA, bB, bC) =

(
−2λs, λb, 3λb

)
, the nucleolus is not implementable through uniform prices

either.

Although admittedly toy-sized, the previous examples are aimed at illustrating the follow-
ing three ideas: there are other stable uniform price allocations that could be preferred over
the shadow price imputation; preferable mechanisms could be achieved by allowing buying
and selling prices to be different (Example 2.4.1); and the Shapley value and the nucleolus,
conventional cost-sharing mechanisms from the cooperative game theory literature, besides
being computationally intractable, may be unsuitable target allocations in our case. These
three observations motivate the framework we propose next.

2.4.2 Finding the most fair allocation through optimization

In Section 2.3.2, we showed that the uniform price core is not empty and that one imputation
therein, namely the shadow price imputation, can be efficiently computed. However, this
allocation is not necessarily the most desirable one in C ∩U , as illustrated in Example 2.4.1.
Here, we propose explicitly finding a most-desirable imputation in the uniform price core via
an optimization problem:

min
x∈C∩U

f(x),

, where f is an objective function that represents a preference over imputations. We can
interpret f(x) as a metric of the unfairness (or, more generally, the undesirability) of impu-
tation x. f can also be thought of as a welfare function, as discussed in Section 2.1. In fact,
we allow the preference over uniform price imputations to also be affected by the associated
prices λb, λs, so the optimization problem can be written, with imputations expressed in
bill-splitting form, as

(A) : min
b∈B∩V

f(b, λb, λs).

Mechanisms of this form admit a version where selling and buying prices are restricted
to be the same, which we denote with the superscript †:

(A†) : min
b∈B∩V†

f(b, λ).
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We next illustrate our framework by introducing three possible options for the function
f and discuss some of their characteristics.

Egalitarian mechanism In the egalitarian mechanism, the imputation sought is that
which minimizes the dispersion in the allocations to participants. This is achieved by making
the objective function in (A) equal to fe defined below:

fe(x) =
∑
i∈N

∣∣∣∣∣xi − (1/N)
∑
j∈N

xj

∣∣∣∣∣ ,
i.e. the standard deviation of the allocations with respect to the L1 norm.

Minmax mechanism In the minmax mechanism, we define fm to measure the maximal
difference in allocation of savings between prosumers, so that the mechanism finds the stable
uniform price allocation that minimizes that difference.

fm(x) = max
i∈N

xi −min
i∈N

xi.

Note that the ideal allocation with respect to both functions (i.e. the one with minimal
value) would be one where all participants receive equal savings. So if the equal division
allocation is feasible, both mechanisms are identical. However, the equal division allocation
is not guaranteed to be in the uniform price core (cf. Example 2.3.1). If that is the case, these
two mechanisms differ. An optimal allocation in the egalitarian mechanism is an allocation
in C ∩U that is closest to the equal division allocation, in L1 distance (i.e. the L1 projection
onto C ∩U). In the minmax mechanism, on the other hand, only the imputations of the two
most unequal participants matter.

These two definitions of fairness, although intuitive, have an important drawback in our
context: users would have an incentive to misrepresent themselves as multiple agents and
thereby multiply their allocations. For the scope of this thesis, we assume that it is verified
that no agent misrepresents themselves.

Price-control mechanism The last mechanism we consider is specific to our context and
is a price-control mechanism. A way of describing the unfairness in Example 2.4.1 is that
no surplus is allocated to the inflexible, net consumer C and most surplus is allocated to
the net producer A. This is likely to happen when electricity is priced at the marginal cost
of procurement, as the shadow price allocation does. An intuitive compromise to make sure
that both consumers and producers perceive benefits is to settle all local transactions at an
intermediate price between the utility’s export and import prices.

In this vein, one can define an ideal imputation as that induced by having the local selling
and buying prices be equal to each other, and equal to the average between the utility’s
import and export prices, for each time period pt = (1/2)(pt + ht). Since those prices are
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not guaranteed to support a stable, uniform price allocation, one can use its projection onto
the uniform price core. With an L1 projection, this results in an objective function fp as
follows,

fp(b, λ
b, λs) =

∑
t∈T

∣∣λbt − pt∣∣+∑
t∈T
|λst − pt| .

2.4.3 Preliminary discussion

The three mechanisms presented before are simple, intuitive mechanisms to obtain the most-
preferred allocation among all stable uniform price allocations according to three different,
but reasonable preferences. Here, we discuss some limitations of the objective functions
chosen, and possible improvements that are out of the scope of this thesis, but could be
achieved with the framework presented here. We discuss this at this stage to highlight the
relevance and versatility of this framework.

Projected Shapley value In the examples presented as motivation for these mechanisms,
we looked at fairness through a Shapley lens, i.e. the unfairness was understood as a failure
of allocations to reflect the average marginal contribution of each participant to the grand
coalition. However, the mechanisms proposed here do not compute or incorporate contri-
butions when defining the allocation, and are instead based on simple, albeit reasonable,
heuristics.

A better mechanism could be aimed at finding the uniform price stable allocation that
is closest to the Shapley value, i.e. the projection of the Shapley allocation onto C ∩ U .
For smaller cases, the Shapley value is easily computable, so this is an easily implementable
mechanism. However, for larger markets, this would become an intractable approach. Ap-
plying machine learning results to try to learn the projection of Shapley onto the uniform
price core through sampling is an interesting avenue of research, but is considered out of the
scope of this thesis.

Weighted egalitarian An immediate extension of the egalitarian mechanism presented
here is a weighted version, with different weights given to each participant. Such weights
could be updated with some frequency based on historical data and be intended to reflect
the historical marginal contribution of each participant, in the vein of learning the Shapley
projection from data.

Fairness could also be seen through a social lens. In this case, these weights could be
fixed values dependent on some structural data, like household income or household size. So
this framework is also compatible with a social interpretation of fairness.

Lp projections In all the mechanisms presented here, we use L1 for all projections and
measures of dispersion of allocations. We have done this for simplicity, to maintain the
linearity of all the optimization problems of type (A). However, note that the the non-
emptiness of C ∩ U is independent of the structure of function f , so non-linear objective
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functions, including Lp projections with p > 1 could be used instead. Investigating the effect
of such choices on the resulting imputations is an interesting problem, but is considered out
of the scope of this thesis.

Adding a regularization term The uniform prices resulting from these mechanisms
may oscillate frequently between the utility sell and buy prices. This could be considered
undesirable, and could be corrected through the inclusion of a regularization term of the
form ρ(λt−λt−1)

2. As mentioned in the previous paragraph, non-linearities are not an issue
for this framework, so regularization could be added to any of these mechanisms.

Restricting prices to be equal Since problems of form (A) are a relaxation of problems of
form (A†), their objective functions will be no worse than that of the restricted counterparts.
Moreover, Example 2.4.1 shows a case where allowing different prices results in a more
desirable imputation that was unreachable before. Thus, it seems that mechanisms with
same prices are weakly dominated by mechanisms that allow different prices and there should
be no reason to consider the restricted version. We give here two reasons why we consider
them.

First, note that the weakly dominance is true with respect to each problem’s objective
function, but not across metrics. So it is possible that a mechanism with prices restricted to
being equal outperforms others with respect to an external benchmark. Secondly, a mecha-
nism with the same price for selling and buying could be considered easier to communicate
to participants, so it could be preferred by market designers if its performance is comparable
to that of the mechanism with different prices.

Scalability All of these mechanisms share one issue: the description of the uniform price
core requires an exponential number of constraints. This is not a problem for markets of
moderate size, like the ones used for the numerical tests that are presented next, but leads
to an intractable mechanism as the number of participants increases. The issue of scalability
is addressed in Section 2.5.

2.4.4 Numerical tests

To test the proposed framework and observe how the different proposed objective functions
might lead to different outcomes, numerical tests are conducted on two test cases. The test
cases are constructed by taking a set of buildings from the Resstock database of [111], which
contains simulated consumption and PV production data for buildings across the U.S. for
an entire year at 15-minute intervals. This dataset does not contain storage information,
so it is completed by assigning BESSs of two sizes to certain prosumers, with BESS data
adapted from [54]. Two instances are created: one with n = 4 prosumers and one with n = 8
prosumers. The time horizon is a day, so for each case, 365 instances of problem (A) for each
of the three definitions of the objective function f are solved. For each mechanism, we solve
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the version with and without the restriction of equal selling and buying prices, i.e. (A) and
(A†). Note that to describe each of these optimization problems, we need to solve (PS) for
each S ⊆ N , but this only needs to be done once, since the optimal schedule is the same for
all (A) and (A†). The resulting imputations are compared to the shadow imputation, which
only requires solving (PN), (DN) once. Additionally, these two test cases are sufficiently
small that the Shapley value can be computed for each of the 365 instances using (2.3), so
that the distance to the Shapley value can be used as benchmark for comparing results.

Extensive details about the test cases and results obtained are presented in Appendix
2.C.2. Due to space constraints, we present here only Fig. 2.2, where we use the distance
to the Shapley imputation as benchmark. Three observations are noteworthy here. First,
all three proposed mechanisms serve their purpose: imputations about 30% more fair on
average are obtained with this framework for the smaller test case, compared to the shadow
imputation. The improvement decreases to about 18% for the larger test case. Second, no
mechanism seems to clearly outperform the others with respect to this benchmark. The
same is true for allowing prices to be different: there seems to be no significant difference
between the two versions of each mechanism, and no version is consistently better than the
other. Lastly, the differences between the mechanisms proposed are significantly reduced for
the larger case, both with respect to each other, and with respect to the shadow imputation.
This is in line with the asymptotic result of Section 2.3.3, and suggests that for moderate-
size markets, the size of the core is already sufficiently small, that implementing the shadow
price imputation does not constitute a significant sacrifice of achievable fairness. Identifying
if this tendency continues as the number of participants increases requires a special handling
of the exponential number of constraints in the description of C ∩ U , which we address in
Section 2.5.

2.5 Addressing scalability through learning

Solving any of the optimization problems of type (A) or (A†) introduced in Section 2.4 re-
quires enumerating an exponential number of constraints (cf. (2.5)). If an efficient algorithm
can be devised to test whether a candidate imputation is in the uniform price core or not,
then the number of constraints is not an issue, because a constraint-generation strategy can
be easily implemented to only include relevant constraints in the representation of (A).

We do not have a proof at hand to show that this uniform price membership test is hard
in a formal sense. However, in the absence of an efficient separation algorithm, we propose
a sampling approach based on statistical learning to obtain satisfactory, scalable versions of
the fair mechanisms proposed in Section 2.4.

2.5.1 Relaxations of the uniform price core

[3] introduce the concept of probably stable core and probably, approximately stable core. We
adapt those concepts to the setting of peer-to-peer markets and formalize a definition for
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Figure 2.2: Euclidean distance between each the resulting allocation and the Shapley imputation
for each mechanism. To meaningfully compare distances of different dimensions, we divide by

the number of participants, so the distance plotted here is (1/ |N |)
(∑

i∈N (ϕi − xi)
2
)1/2

, where

x is the imputation returned by each mechanism and ϕ is the Shapley imputation. Main bars
represent the average across the 365 daily instances of the test case. Error bars show the min and
max distances across the same dataset. Average savings achieved by the aggregation market are
54.56¢/participant/day for n = 8 and 99.99¢/participant/day for n = 4.

our uniform price core by considering the intersection with V , as follows.

Definition 2.5.1. Given δ > 0, we say a uniform price imputation in bill-splitting form b ∈ V
for game G is in the δ-probably stable uniform price core of game G if for any distribution
D on coalitions, we have

PS∼D

[∑
i∈S

bi ≤ C(S)

]
≥ 1− δ

Definition 2.5.2. Given δ, ϵ > 0, we say a uniform price imputation in bill-splitting form
b ∈ V for game G is in the (ϵ, δ)-probably, approximately stable uniform price core of game
G if for any distribution D on coalitions, we have

PS∼D

[
(1− ϵ)

∑
i∈S

bi ≤ C(S)

]
≥ 1− δ

If a proposed bill-splitting b is in the (ϵ, δ)-probably, approximately stable uniform price
core, then for any subset S of prosumers drawn from a distribution D, the probability that
the coalition S would be better off by forming their own P2P market and could profit by a
fraction of at least ϵ of their collective bill dictated by b is less than δ.
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In other words, a mechanism that gives imputations in the (δ, ϵ)-probably, approximately
stable core with δ and ϵ sufficiently small is a satisfactory mechanism: participants are
unlikely to find a combination of prosumers with which it would be profitable to deflect
from the grand coalition. They could find one, but it is unlikely that the collective profit
compared to the proposed mechanism would be sufficiently large to motivate a deflection.

2.5.2 A sampling method to obtain satisfactory imputations

[3] show for general cooperative games that allocations in the two aforementioned relaxations
of the core can be learned efficiently as the number of players in the game increases by
sampling only a subset of all the possible coalitions. A conceivable strategy could therefore
be to first find a general allocation that minimizes the desired objective function, and then
find a set of uniform prices that supports the obtained allocation. We discard this strategy
for two reasons: first, it would exclude functions f that depend on the local prices themselves;
secondly, not all allocations in the core are guaranteed to be supported by uniform prices
(cf. Example 2.3.1).

We show next that allocations supported by prices can be learned directly via sampling
by solving an optimization problem of the form (A⋆),

(A⋆) : min
b,λb,λs

f(b, λb, λs) (2.11a)

s.t.
∑
i∈N

bi = C(N) (2.11b)

bi ≤ C({i}) ∀i ∈ N (2.11c)∑
i∈N

bi ≤ C(S) ∀S ∈ S (2.11d)

bi =
∑
t∈T

λbt
(
ℓ∗i,t
)+ − λst (ℓ∗i,t)− ∀i ∈ N (2.11e)

ht ≤ λst , λ
b
t ≤ pt ∀t ∈ T (2.11f)

, which is a relaxation of (A) where constraint (2.11d) is enforced just for the coalitions in
a sample set S instead of for all S ⊆ N .

Theorem 2.5.1. Assuming the uniform price core is not empty, solving optimization prob-
lem (A⋆) with |S| = m samples of coalitions results in an imputation in the δ-probably stable
uniform price core with probability 1−∆. The number of samples necessary m has complexity

O
(

|N |+log(1/∆)
δ2

)
Proof. See Section 2.A.3.

Theorem 2.5.2. Assuming the uniform price core is not empty, solving optimization prob-
lem (A⋆) with |S| = m samples of coalitions results in an imputation in the (ϵ, δ)-probably
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approximately stable uniform price core with probability 1−∆. The number of samples nec-

essary m has complexity O
(
ν2 log|N |+log(1/∆)

ϵ2δ2

)
, where ν = (maxS C(S)) / (minS ̸=∅ |C(S)|) is

the spread of function C.

Proof. See Section 2.A.4.

Theorems 2.5.1 and 2.5.2 are important because they guarantee, asymptotically, that
with a sufficiently large, but tractable, number of samples m, an allocation can be obtained
such that it will be unlikely that a participant can find a set of other prosumers with whom
it could be profitable to form a new peer-to-peer market. Moreover, if they find such a set,
it is unlikely that the profit they could reap by deflecting is significant. Since these are only
asymptotic guarantees, they need to be validated with numerical experiments.

Note (A⋆) is a relaxation of (A). Theorems 2.5.1 and 2.5.2 give an asymptotic, probabilis-
tic guarantee that, although the imputation obtained with (A⋆) may not be strictly feasible
for (A), it can be arbitrarily close to the feasible set, in a probabilistic sense. However, they
do not give any bounds on the quality of the approximation in terms of objective value. We
want to argue that this is not a weakness of the approach.

One could be tempted to give some structure to the metric functions f chosen (e.g.
Lipschitz continuity) and obtain similar bounding results for the approximation quality. This
could be of value if the approach was driven by a tradeoff between stability and fairness, i.e.
if we were adopting (A⋆) instead of (A) because we are willing to sacrifice some guarantee
of stability to achieve a more fair distribution of savings. In fact, our approximation is
driven by computational intractability. The solution obtained from (A⋆) is sufficiently close
to the feasible set of (A) to prevent the collapse of the local market. Moreover, the solution
obtained is guaranteed to be at least as fair as the optimal solution of (A). Therefore, this
methodology results in a satisfactory mechanism, provided the number of samples necessary
is not too large.

2.5.3 Numerical tests

We do a numerical implementation to test the results presented above. First, since the
results of Theorems 2.5.1 and 2.5.2 are only asymptotic, we want to verify that they can
be observed with a reasonably small number of samples. Secondly, Section 2.3.3 suggests
that for large enough markets, all core imputations may be shadow price imputations, so it
may not be possible to find stable allocations significantly more fair than the shadow price
imputation. We want to check if this behavior can be observed in numerical tests.

The tests are performed on cases with 10, 12, 15, 20 and 50 participants, constructed
in the same fashion of Section 2.4.4, for one arbitrary day in the dataset. For each case
and objective function, problem (A⋆) is solved on a random sample S of coalitions, with
increasing values of |S|. The allocation returned is then tested against all coalitions in a
verification set. For cases with n ≤ 15, the verification set is 2N . For the others, 20,000
coalitions are sampled and this set is used for verification. For simplicity, coalitions were
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sampled uniformly, so that probabilities correspond to just proportion of coalitions that were
found to be blocking.

Fig. 2.4 shows a validation of the sampling method for the minmax mechanism. For
space constraints, we omit the results for the other mechanisms, which are similar and
can be consulted in the appendix. In short, the validation of Theorems 2.5.1 and 2.5.2 is
successful: the introduction of more samples in S consistently reduces the probability of
finding blocking coalitions. By slightly relaxing the stability requirement that defines when
a coalition is blocking, (ϵ = 0.005), that probability drops much more quickly: with as little
as 200 samples, the number of blocking coalitions found is close to 0 for all test cases. The
bottom plot in Fig. 2.4 provides perhaps a more direct interpretation of this result: as
the number of samples in S is increased, the expected shortfall for the remaining blocking
coalitions decreases very quickly, and therewith the potential motivation for leaving the p2p
market.

For these larger cases, computing the Shapley value is too much of a computational
burden; however, the shadow imputation can be efficiently found for all these instances from
solving the dual solution to (DN). We compute the distance of the imputation obtained
with each of the three mechanisms to the shadow imputation. Results are shown in Fig. 2.3.
The trend observed in Fig. 2.2, and suggested by the asymptotic result of [78], mentioned
in Section 2.3.3, indeed continues. As the number of participants increases, the imputations
obtained with all the mechanisms are closer to the shadow imputation.

Further research in this topic on the rate of convergence, or otherwise put, the rate at
which the size of the core shrinks, would be welcome. The results presented here provide a
strong argument in favor of using the shadow price imputation as a mechanism in local, p2p
markets.
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Figure 2.3: Euclidean distancea of resulting allocation from shadow imputation for each mecha-
nism. Main bars represent the average distance across the 10 repetitions. Error bars show the
min and max. For the day tested, the savings achieved by the aggregation market are 68.69
¢/participant/day, so the difference allocations obtained are all within 0.5% of each other.

a To meaningfully compare distances of different dimensions, we divide by the number of participants, so

the distance is (1/ |N |)
(∑

i∈N (θi − xi)
2
)1/2

, where x is the imputation returned by each mechanism and

θ is the shadow imputation.
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Figure 2.4: Results of validation tests of sampling methods for the minmax mechanism, with
different test case sizes. Top: Proportion of coalitions that block the allocation proposed by the
mechanism by at least a proportion ϵ of the collective bill, for ϵ = 0 and ϵ = 0.005. Bottom:
Expected conditional shortfallb expressed as a proportion of collective bill in log scale. Similar
results are obtained with the price-control and egalitarian mechanisms (see Appendix 2.C.2). Main
bars represent the average over 10 repetitions. Error bars show the whole range of results obtained.

b Let Λ be the collection of blocking coalitions, i.e. Λ =
{
S ⊆ N :

∑
i∈S bi > C(S)

}
, then the conditional

expected shortfall shown is (1/ |Λ|)∑S∈Λ

(∑
i∈S bi − C(S)

)
/
(∑

i∈S bi
)
.
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2.6 Long-term participant and utility response

None of the modeling and analysis presented before consider the long-term response of the
different stakeholders. In response to the distribution mechanism proposed, prosumers may
choose to invest in local generation and/or storage to get a larger piece of the collective
savings. Similarly, the utility may try to change its tariff structure in response to the revenue
reduction that such an aggregation scheme would impose on them. Although a complete
incorporation of these questions into our model is out of the scope of this work, we discuss
some important points about the long-term considerations, and how the results presented
here remain relevant in that context.

2.6.1 Long-term investments and participants response

In Examples 2.3.1 and 2.4.1, producers get a significantly higher share of the collective
savings than pure consumers. This is also the dynamic we observe in the numeric tests (see
Appendix 2.C.2). Under these conditions, in the long term, net consumers would have an
incentive to invest in solar panels and/or battery storage to reap a larger fraction of the
collective savings. However, that might be socially detrimental. In the extreme case, if all
participants become net producers they would have no choice but to sell their electricity
to the public utility, and there would be no possibility of achieving savings by aggregating
demand.

An interesting avenue of future research for this work would thus be analyzing and char-
acterizing long-term equilibrium conditions when individual investment decisions are consid-
ered. Alternatively, the investment decisions could be added to the cooperative game model.
If investments can be modeled as linear variables, the mathematical results of this work could
be easily extended to that case. This would correspond to a community where some gener-
ation and/or storage equipment is collectively owned, and the associated collective benefits
need to be distributed among members.

2.6.2 Regulatory constraints and utility response

The analysis and concepts presented in this chapter are predicated on the assumption that
the regulatory framework and the distribution system infrastructure enable the aggregation
and peer-to-peer market that our mechanism supports. This is however not the case in
most jurisdictions. In California, for example, separate properties may not, save limited
exceptions, share one electricity meter, and allowing the distribution of generation credits
corresponding to collectively owned solar systems among multiple customers is the subject
of recent regulation and ongoing debate [20, 64]. Injections of power by prosumers may
induce reverse energy flows in distribution systems, which usually have a radial topology.
While coping with this reality has been the subject of research and development for well
over a decade, most distribution systems maintain significant restrictions to bidirectional
flow, posing limitations to peer-to-peer mechanisms like the ones proposed here. Changes
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to both the regulatory framework and the distribution system infrastructure would thus be
necessary, before an implementation of any of the mechanisms proposed here can occur.

For these changes to happen, it is necessary to understand how public utility companies
might react to an eventual sprout of local community aggregation schemes. As we have
shown, significant savings by customers can be achieved by aggregating demand, exploiting
the spread between the public utility’s buying and selling prices. Those savings come directly
at the utility’s expense, who would presumably react to such a reduction of revenue. We
list below a few conceivable responses, and analyze how our proposed mechanism could be
affected by them.

Adding a fixed charge Perhaps the most likely response by the utility would be to replace
its volumetric-only pricing structure with a two-part tariff with a fixed charge per billing
period and a per-kWh charge. In the context of natural monopolies like electricity retail, such
schemes have some desirable characteristics, like allowing electricity to be priced at a value
closer to its marginal cost, thus enabling more efficient market outcomes. Additionally, if the
fixed value charged to customers is made a function of their wealth or income, as proposed
in [12], the mechanism would have the aggregated value of contributing to social equity.

Adding a capacity charge A different, but related option would be to introduce a non-
volumetric part of the tariff, but make it a charge per-kW of installed capacity. This could
serve as a long-term incentive to reduce oversizing of installations and peak-shaving at the
distribution level, both of which would increase long-term efficiency. Both of these options
respond not only to the challenge of emerging Community Choice Aggregations (CCAs),
but to the reduction of revenue driven by the installation of local generation by individual
residential customers, even in the absence of aggregation schemes.

Charging transaction costs Another conceivable response from the utility company
could be to charge prosumers a usage fee for using the utility’s grid to trade energy among
members of the CCA. In this scenario, volumetric rates would be maintained, but a usage fee
per-kWh would be charged to prosumers who inject power into the utility’s grid. Provided
that the sum of the usage fee and the utility’s injection price is less than the utility’s selling
price, the incentive for aggregation would still exist, although attainable collective savings
would be smaller.

The three alternatives considered above guarantee that the utility recoups at least part
of their fixed costs, even if the revenue from energy sales decreases. Under such a scenario,
at least part of the reason for using distinct prices for energy consumed and energy injected
would disappear, so the spread between these prices (ht and pt in our model) could be
reduced. As long as the spread is positive, the results that we present in this chapter remain
valid: there is an incentive for community aggregation and the mechanisms proposed here are
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implementable methodologies to distribute the savings, possibly with a measure of fairness
in mind.

It is even conceivable that, as proposed in the transactive energy system paradigm, the
utility may become a pure infrastructure provider and bow out of the energy retail business,
remaining only as a provider of last resort [4]. In such a scenario, the utility would have an
incentive to make sure that agents trade chiefly among themselves. A high spread between
buying and selling price would be a way to achieve that, making the results of this chapter
relevant for that framework as well.

A thorough analysis of the dynamics of spread reduction and the formation of CCAs is
out of the scope of this work, but is relevant and necessary research that should be taken
into account by the regulator when determining the just and reasonable transaction fee or
fixed charge that the utility may charge its customers.

2.7 Addressing the stochastic case

Before concluding, we discuss how the methodology presented here can be extended to handle
the stochastic case, i.e. the case where solar PV production and electricity consumption are
not known at the time when the scheduling problem (2.1) is solved. We consider a thorough
analysis and development of the extended stochastic model out of the scope of this thesis
and will only briefly outline how a stochastic model could be posed, and which challenges
need to be overcome in that avenue of research.

Consider the case where the aforementioned uncertainty is represented through a discrete
set of scenarios Ω. The scenarios could thus be added to a new dimension in the linear
problem (2.1) along with their corresponding probabilities, so that (2.1) becomes a stochastic
program. Under the assumption of relatively complete recourse, the validity of the strong
duality results that we leverage in this work continue to hold [9]. It is thus also possible to
solve the dual problem and obtain dual imputations which will be guaranteed to be in the
core of the game. One important remark here is that imputations would now correspond to
the result of transactions that are settled at uniform prices that are determined ex-ante.

The result above has an important implication regarding the strength of the mechanism.
In particular, the concept of stability and core would be somewhat weaker than in the
deterministic case. We will consider a uniform price imputation to be stable if no coalition can
obtain a better outcome in expectation (i.e. ex-ante) Blocking ex-post coalitions, however,
may exist. Stronger notions of stability have been proposed, but finding stable mechanisms
is more challenging in those cases. See [103] for a deeper analysis of this issue in general
linear stochastic games.

In the case where the net demand of participants is uncertain, the community demand
aggregation can be thought of to a certain extent as an inventory centralization problem.
In that vein, the methodology described before is analogous to that proposed in [19] in the
context of stochastic inventory centralization games, which served as inspiration for this
proposed extension.
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2.8 Conclusions

In this chapter, we have adopted a game-theoretic approach to analyze the problem of fair
cost sharing in peer-to-peer electricity markets where aggregation of prosumers is socially
optimal. We have formally described a set of desired distributions of savings in this setting:
uniform price allocations, and showed that the set of stable uniform price allocations form
a strict subset of the core of the game. Observing that the model considered is a linear
production game, we have shown that imputations stemming from the dual problem, i.e.
pricing electricity at the shadow price of the energy balance constraint, results in an impu-
tation that satisfies all these desiderata and is computationally efficient for larger numbers
of participants.

We then showed that in spite of its good qualities, the shadow price imputation could be
considered unfair, and proposed a framework to obtain the most preferred allocation through
optimization. A sampling approach is utilized to overcome the challenge of tractability posed
by solving these optimization problems, supported by theoretical, asymptotic results from
the statistical learning literature. Numerical tests validate the approach proposed.

By noting that the results of [78] apply to the setting considered here, we conclude that
for sufficiently large markets, shadow price imputations are the only stable imputations in
the market. Our numerical tests suggest that this trend begins to show for markets in the
order of tens of participants. On the one hand, this offers strong support for using the
shadow price imputation in real local markets of a certain size with a centralized aggregator,
since no other stable alternative may exist. But, as we have demonstrated, this may result in
net consumers failing to have an incentive to join the local community, so on the other hand
this may be considered a reason to limit the size of such aggregations, so that there may be
room in the uniform price core for more fair solutions, which can be found via optimization
as we propose here.

Finally, we discussed two important considerations that were out of the scope of the work
presented here. The first was long-term incentives and response by market participants and
by the public utility. Although a thorough development of that analysis would be necessary
and welcome before an implementation of the scheme proposed here is possible, we argue
that our approach would still be relevant once those implications are considered. The second
extension discussed is how the mechanism can be turned into a stochastic model to address
the uncertainty associated with PV production and electricity demand. We outline that our
results can be extended to handle that case as well.
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Appendix

2.A Proof of theorems

This section contains the theorem proofs that were not included in the main text.

2.A.1 Proof of Theorem 2.2.1

Theorem 2.2.1 is identical to Theorem 1 of [54]. We provide a proof for completeness, to
account for differences in notation and representation of the model.

Proof. Consider S, T ⊆ N , such that S∩T = ∅. We will use q as a shorthand for (z, w, sc, sd).
Let q∗ be an optimal solution of (P )S and q∗∗ an optimal solution of (P )T . We construct
q̂ as follows: for i ∈ S ∪ T , ŝic = sc∗i for i ∈ S, ŝi

c = sc∗∗i for i ∈ T . ŝi
d is defined

in the same manner. z and w are defined by ẑt = max {0, z∗t − w∗
t + z∗∗t − w∗∗

t }, ŵt =
max {0,− (z∗t − w∗

t + z∗∗t − w∗∗
t )} for t ∈ T .

It is straightforward to verify that q̂ is feasible for (P )S∪T . Let u be the objective value
of (P )S∪T corresponding to the feasible solution q̂. We have therefore C(S ∪ T ) ≤ u. We
want to prove that u ≤ C(S) + C(T ).

We introduce an auxilliary variable vt, t ∈ T to decompose u−(C(S) + C(T )), as follows.

u− (C(S) + C(T )) =
∑
t∈T

vt

vt = pt (ẑt − (z∗t + z∗∗t ))− ht (ŵt − (w∗
t + w∗∗

t ))

We claim that for all t, vt ≤ 0. Recall that because ht < pt, optimal solutions to (P )S and
(P )T satisfy z∗tw

∗
t = 0 and z∗∗t w

∗∗
t = 0 for all t ∈ T . We have thus four cases:

• w∗
t = w∗∗

t = 0⇒ ŵt = 0, ẑt = z∗t + z∗∗t ⇒ vt = 0

• z∗t = z∗∗t = 0⇒ ẑt = 0, ŵt = w∗
t + w∗∗

t ⇒ vt = 0

• w∗
t = 0, z∗∗t = 0. Two cases:

– If z∗t ≥ w∗∗
t , ŵt = 0, ẑt = z∗t − w∗∗

t ⇒ vt = w∗∗
t (ht − pt) ≤ 0

– If z∗t < w∗∗
t , ẑt = 0, ŵt = w∗∗

t − z∗t ⇒ vt = z∗t (ht − pt) < 0
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• Same as case 3, swapping the roles of z∗t , w
∗
t and z∗∗t , w

∗∗
t ⇒ vt ≤ 0

Therefore, vt ≤ 0 for all t ∈ T . Summing over t, we get u ≤ C(S) + C(T ), and thus
C(S ∪ T ) ≤ u ≤ C(S) + C(T ). Finally, we have:

C(S ∪ T ) ≤ C(S) + C(T )

⇔ −C(S ∪ T ) ≥ −C(S)− C(T )
⇔

∑
i∈S∪T

C({i})− C(S ∪ T )

≥
∑
i∈S

C({i})− C(S) +
∑
i∈T

C({i})− C(T )

⇔ V (S ∪ T ) ≥ V (S) + V (T )

2.A.2 Proof of Proposition 2.3.1

Proof. We denote (LR− P )S(π) the problem obtained by doing a Lagrangian relaxation of
constraint (2.1b) in (PS) and assigning it multiplier π. The objective function in (LR−P )S(π)
is thus:

∑
t∈T

[
ptzt − htwt + πt

∑
i∈S

[
di,t − gi,t + ηdi s

d
i,t − sci,t)− (zt − wt)

]]

=
∑

i∈S,t∈T
πt(di,t − gi,t) +

∑
t∈T

[
(pt − πt)zt − (ht − πt)wt + πt

∑
i∈S

(ηdi s
d
i,t − sci,t)

]

With constraint (2.1b) relaxed, there are now no constraints coupling z, w with sc, sd.
Similarly, there are no constraints coupling sci , s

d
i for different values of i ∈ S. Thus, (LR −

P )(π) can be separated into subproblems (LR−P )i(π) as described below. Let (LR−D)i(π)
be the dual of (LR− P )i(π).



CHAPTER 2. UNIFORM PRICE ALLOCATIONS OF AGGREGATION GAINS 41

(LR− P )S(π) :
∑

i∈S,t∈T
πt(di,t − gi,t) + min

z,w

∑
t∈T

[(pt − πt)zt − (ht − πt)wt]

+
∑
i∈S

(LR− P )i(π)

(LR− P )i(π) : min
sci ,s

d
i

∑
t∈T

πt(η
d
i s

d
i,t − sci,t)

s.t.(2.1c)− (2.1f) for just i

(LR−D)i(π) : max
αi,βi,δi
γi,γi

∑
t∈T

siαi,t + siβi,t + γi,t
(
Ei − e0i

)
+ γ

i,t

(
Ei − e0i

)
s.t.(2.7b)− (2.7c) for just i

By strong duality, (z∗, w∗, sc∗, sd∗) is also an optimal solution of (LR − P )N(π
∗), so(

sc∗i , s
d∗
i

)
is an optimal solution to (LR− P )i(π∗) for each i ∈ N .

We claim that (α∗, β∗, γ∗, γ∗, δ∗)i is also optimal for (LR −D)i(π
∗) for each i ∈ N . We

prove this by contradiction and use q as shorthand for (α, β, γ, γ, δ). It is easy to check that
q∗i is feasible for (LR −D)i(π

∗). So if q∗i is not optimal for (LR −D)j(π
∗) for some j ∈ S,

there exists q∗∗j with higher objective value than q∗j . But since the feasible sets are uncoupled,

the solution
(
π∗, (q∗i )i∈S\{j}, q

∗∗
j

)
is feasible for (DN) and would have higher objective value

than (π∗, q∗), which violates the optimality of (π∗, q∗) for (D)N .
We thus have that (sc∗, sd∗, (α∗, β∗, γ∗, γ∗, δ∗)i is an optimal primal-dual solution for pair

(LR− P )i(π∗), (LR−D)i(π
∗). Applying again strong duality to this pair, we obtain:∑

t∈T
π∗
t

(
ηdi s

d∗
i,t − sc∗i,t

)
=
∑
t∈T

siα
∗
i,t + si

∗β∗
i,t

+ γ∗i,t
(
Ei − e0i

)
+ γ∗

i,t

(
Ei − e0i

)
, which adding

∑
t∈T π

∗
t (di,t − gi,t) to both sides yields (2.9).

2.A.3 Proof of Theorem 2.5.1

Proof. Theorem 2.5.1 is a replica of Theorem 3 of [3], substituting the probably stable core
with the probably stable uniform price core we have defined. We follow the steps of their
proof, i.e. we find a class of functions that contains the uniform price core, verify that its
VC-dimension is low, and use that to find an asymptotic bound on the number of samples
necessary to find points in the uniform price core.



CHAPTER 2. UNIFORM PRICE ALLOCATIONS OF AGGREGATION GAINS 42

Proposition 2.A.1. Let n = |N |, u ∈ Rn+1, and ℓ ∈ Rn|T |. Let H′ be the class of functions
that define uniform price allocations in bill-splitting form, i.e.

H′ :=

{
u→ sign

(
n∑

i=1

biui − un+1

)
b ∈ Rn, λb, λs ∈ R|T |,

∑
i

bi = C(N), bi =
∑
t∈T

(
λbt (ℓi,t)

+ − λst (ℓi,t)−
)
∀i ∈ N

}
.

Then, H′ has VC-dimension at most n+ 1.

Proof. Following the argument of Corollary 1 of [3]:

H′ ⊆
{
u→ sign

(
n∑

i=1

biui − un+1

)
: b ∈ Rn

}
⊆ H :=

{
u→ sign(w⊤u) : w ∈ Rn+1

}
By Theorem 2 of [3], H has VC-dimension n+1. If H′ ⊆ H, then VCdim(H′) ≤ VCdim(H).

To conclude, we follow the last step of the proof of Theorem 3 of [3] as follows. Consider
q∗ = (b∗, λb∗, λs∗), an optimal solution to (A⋆), which is guaranteed to exist because the
uniform price core is non-empty by assumption. We will show q∗ is in the δ probably
stable core. Let h(u) = sign

(∑n
i=1 b

∗
iu

S
i − uSn+1

)
, where uSi = 1i∈S and uSn+1 = C(S). Let

f(u) = −1 for all u. Since (2.11d) is satisfied for all samples in S, f(u) = h(u) on all the
samples, and thus, (1/m)

∑m
i=1 1h(u)̸=f(u) = 0.

PS∼D

[∑
i∈S

bi ≤ C(S)

]

= 1− PuS :S∼D

[
sign

(
n∑

i=1

biu
S
i − uSn+1

)
̸= −1

]
= 1− PuS :S∼D

[
h(uS) ̸= f(uS)

]
= 1−

∣∣∣∣∣PuS :S∼D
[
h(uS) ̸= f(uS)

]
− (1/m)

m∑
i=1

1h(uS) ̸=f(uS)

∣∣∣∣∣
≥ 1− δ

, where the last step is true by Theorem 1 of [3], with O ((n+ log(1/∆)) /δ2) samples because
the VC-dimension of our hypothesis class H′ is at most n+ 1 by Proposition 2.A.1.
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2.A.4 Proof of Theorem 2.5.2

The proof is a replica of the proof of Theorem 5 of [3], substituting the probably, approx-
imately stable core with the probably, approximately stable uniform price core. It is easy
to check that allocations in the uniform price core satisfy all the conditions of the theorem:
they have bounded ℓ1 norm because they are in the core (Lemma 2 of their proof), and
candidate solutions to (A⋆) can be found efficiently because it is a convex problem. It only
remains to verify that minS⊂N,S ̸=∅C(S) > 0, where C(S) is the characteristic function of the
game in cost-minimization form.

The assumption is not true for game G, as we may have C(S) ≤ 0. We show here that
we can construct a game G′ that satisfies this condition and has a 1:1 correspondence with
game G.

Let K ≥ 0 be a constant such that C(S) > −K |S| for all S ⊆ N . Then, we can define
G′ as the game with set of players N and value function V ′(S) =

∑
i∈S C

′({i})−C ′(S), with
C ′(S) = C(S)+ |S|K. Note that V ′(S) = V (S) for all S ⊆ N , S ̸= ∅, so the correspondence
between G and G′ is clear, i.e. C ′ is a cost-minimization version of V , and clearly, C ′(S) > 0
for all S ⊆ N . Therefore, we only need to prove that such a K exists.

Claim 2.A.1. K = |T | (maxt∈T pt) (maxi∈N,t∈T gi,t +maxi∈N si) satisfies C(S) > −K |S|
∀S ⊆ N .

Proof. Let p⋆ = maxt∈T pt, g⋆ = maxi∈N,t∈T gi,t, s⋆ = maxi∈N si
Then, for any nonempty S ⊆ N , we have:

C(S) =
∑
t∈T

ptz
∗
t − htw∗

t

=
∑
t∈T

pt

(∑
i∈S

ℓ∗i,t

)+

− ht
(∑

i∈S
ℓ∗i,t

)−

≥
∑
t∈T
−ht

(∑
i∈S

ℓ∗i,t

)−

> −
∑
t∈T

pt

(∑
i∈S

ℓ∗i,t

)−

≥ −
∑
t∈T

pt
∑
i∈S

(
gi,t + ηdi s

d∗
i,t

)
≥ −

∑
t∈T

pt |S| (g⋆ + s⋆)

≥ − |T | p⋆ |S| (g⋆ + s⋆)

= − |S|K
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Table 2.B.1: Battery energy storage systems and price data used in test cases, adapted from
[54].

Storage Type Ei Ei si ηci ηdi
Small 7kWh 0.7 kWh 11.2kW 0.95 0.95
Big 14kWh 1.4 kWh 22.4kW 0.95 0.95
Time of day pt ht

Midnight - 7AM 7 ¢/kWh 4.03 ¢/kWh
7AM - Midnight 14.71 ¢/kWh 4.03 ¢/kWh

Table 2.B.2: Composition of the constructed test cases. Number of prosumers having PV
and/or ESS for each test case used. In parenthesis, name assigned to participant in plot
results when applicable.

Number of Total number of prosumers N =
prosumers with 4 8 10 12 15 20 50
No ESS, No PV 1 (D) 3 (A,D,H) 4 2 1 5 6
No ESS, PV 1 (A) 1 (C) 2 2 4 5 14

Small ESS, No PV 1 (C) 0 0 1 3 1 3
Small ESS, PV 0 2 (E,F) 2 4 3 3 12
Big ESS, No PV 0 1 (G) 0 1 1 2 6
Big ESS, PV 1 (B) 1 (B) 2 2 3 4 9

2.B Description of test cases for numerical

implementations

All test cases are constructed by taking generation and consumption timeseries for residential
buildings from the Resstock database [111]. We pick the census microdata area in California
with the largest number of buildings with PV installations in the dataset, and filter the
data so that only single-family houses remain. The test cases are built by arbitrarily picking
buildings with and without solar photovoltaic. The data does not include energy storage
systems (ESS), so battery ESS are arbitrarily assigned to some of the buildings. The char-
acteristics of the ESS and the utility prices are taken equal to those reported in [54] and are
summarized in Table 2.B.1.

Table 2.B.2 describes the types of agents included in each of the test cases considered.
For the numerical tests of Section 4, all 365 days in the dataset were used. For the validation
of the sampling method, one day in the data set was selected randomly.

The implementation was done in python using the pyomo modelling package and solved
with Gurobi. All tests are run on a laptop with 2.7GHz Intel Core i5 and 8GB of RAM.
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Figure 2.C.1: Scatter plot of proportion of savings allocated to each participant vs. corresponding
Shapley allocation, for the four mechanisms considered. Each row corresponds to a mechanism,
each column to a participant. Each point corresponds to a day in the year. The solid black line
represents the y = x line, so points above and under the line are overallocated and underallocated
respectively, with respect to the Shapley allocation. × for allocations allowing for different selling
and buying prices. + for allocations restricted to having equal selling and buying prices. The
shadow imputation has identical selling and buying prices.

2.C Extended results of numerical implementations

2.C.1 Optimization framework for most fair uniform price
allocation

Figures 2.C.1 and 2.C.2 show detailed results of the numeric tests performed on the test case
with n = 4 participants. Figure 2.C.3 show the results for the case with n = 8 participants.

Figure 2.C.4 shows the annual savings per participant under the shadow imputation
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Figure 2.C.2: Proportion of savings allocated to each participant for the four mechanisms consid-
ered, case with n = 4 participants. Error bars show the range of allocations obtained during the
365 days. Main bars show the average across the year. Projected Shapley is the uniform price
allocation in the core that is closest to the Shapley value in ℓ1 norm.

for different market sizes. The results show that while it is true that the range of savings
achieved by different participants vary significantly, all participants achieve positive savings,
with a majority of the savings in the range of $100’s.

2.C.2 Validation of sampling methodology

The results of the validation tests for the sampling methodology for the other mechanisms
are presented in Figures 2.C.5, 2.C.6 and 2.C.7.



CHAPTER 2. UNIFORM PRICE ALLOCATIONS OF AGGREGATION GAINS 47

A B C D E F G H
Customer

0

10

20

30

40

50

60

70

80

%
 o

f t
ot

al
 su

rp
lu

s a
llo

ca
te

d

Expected allocation to each agent in 365 days.
Minmax
Egalitarian
Price Control

Shadow
Projected Shapley
Shapley

Selling price = Buying price
Allow different prices

Figure 2.C.3: Proportion of savings allocated to each participant for the four mechanisms consid-
ered, case with n = 8 participants. Error bars show the range of allocations obtained during the
365 days. Main bars show the average across the year. Projected Shapley is the uniform price
allocation in the core that is closest to the Shapley value in ℓ1 norm.
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Figure 2.C.4: Boxplot showing the distribution of savings per participant under the shadow price
imputation for different market sizes, over the number of participants in each market. The box
extends from the first quartile (Q1) to the third quartile (Q3) of the data, with a line at the median.
Whiskers cover the whole range of data.
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Figure 2.C.5: Blocking coalitions found for obtained allocations, for different market and sample
sizes, for all mechanisms. Error bars show the range of results obtained over 10 repetitions. Main
bars show the average. The proportion of coalitions found to be blocking by at least a proportion
ϵ of the collective bill, for ϵ = 0 and ϵ = 0.005 are shown.
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Figure 2.C.6: Expected shortfall for blocking coalitions, for different market and sample sizes, for
all mechanisms. Expected conditional shortfalla expressed as a proportion of collective bill in log
scale. Main bars represent the average over 10 repetitions. Error bars show the whole range of
results obtained.

a Let Λ be the collection of blocking coalitions, i.e. Λ =
{
S ⊆ N :

∑
i∈S bi > C(S)

}
, then the conditional

expected shortfall shown is (1/ |Λ|)∑S∈Λ

(∑
i∈S bi − C(S)

)
/
(∑

i∈S bi
)
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Figure 2.C.7: Worst shortfall for blocking coalitions, for different market and sample sizes, for all
mechanisms. Shortfall expressed as a proportion of collective bill in log scale. Error bars show the
range of allocations obtained during the 365 days. Main bars show the average across the year.
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Chapter 3

A Markovian model for optimal sizing
of colocated storage for wind power
production 1

Abstract

We propose a high-level stochastic steady-state model to analyze the value of co-located
energy storage systems for wind power producers that participate in an electricity market
through forward contracts and use storage to unlock access to capacity payments. In particu-
lar, we try to find optimal storage and contract sizing, as well as stationary operating policies
for profit maximization in the long-run. We propose a stylized model calibrated to actual
wind power production that allows us to obtain limiting distributions of battery storage lev-
els, assess the value of storage size and perform a sensitivity analysis on key parameters such
as contract prices, capacity payments and storage efficiency. We develop the case with con-
tracts of constant price, outline how this model can be extended to a variable-price setting
and discuss potential challenges in that avenue.
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3.1 Introduction

The impending consequences of climate change have driven massive proliferation of Re-
newable Energy Sources (RES) around the world. However, a key obstacle to large-scale
integration of RES in power systems is the short-term uncertainty and variability of their
output. This poses both technical challenges for the reliable operation of the power sys-
tem and financial challenges for investors in RES, since it is hard to guarantee a reliable
income flow without RES incentives through policies such as feed-in tariffs and mandatory
contracting for retailers. Such policies however are not sustainable and are being challenged
due to their cost to consumers; many systems are now moving toward imposing scheduling
requirements and forward commitments on RES forcing them to compete on a level playing
field with other resources. The addition of Battery Energy Storage Systems (BESSs) to re-
newable power plants can help mitigate their uncertainty and thus can help towards solving
both the technical and financial issues. While it is intuitive to understand how storage can
mitigate uncertainty, sizing and managing BESSs is not obvious.

Optimizing contracting and operation for intermittent power plants has been a very active
research topic in both theory and application. In [48], a theoretical analysis is performed for
the case of a wind farm that uses storage to optimize its bidding strategy on the day-ahead
market in order to minimize imbalance penalties. In this, and other works that study the
behavior of Wind Power Producers (WPPs) in day-ahead markets [10, 27], it is observed
that the optimal bidding strategy for WPPs takes the form of an optimal fractile, as in the
solution to the well-known Newsvendor problem. This highlights the fact that the bidding
problem of a WPP is a reverse newsvendor problem, where the uncertainty lies not on the
demand but on the supply side.

There are also numerous references that address the issue of optimal sizing and optimal
management of co-located energy storage. In [39], the infinite-horizon average cost of elec-
tricity purchases is minimized by finding an optimal storage management policy and optimal
storage size for a power plant that serves a local demand and purchases any shortfall from
the grid in presence of dynamic pricing. The authors prove the optimality of a dual thresh-
old policy , reminiscent of optimal (s, S) policies for inventory control. In [88], the optimal
size of a BESS is found for a grid-connected photovoltaic system that can purchase and sell
energy from the grid under time-of-use pricing, and the convexity of profit in storage size is
shown. In [58], the value of co-located storage is analyzed for the case of the UK market as
subsidies are phased out by comparing different contracting schemes with help of a model
using stochastic differential equations describing wind power production and prices.

The application of high-scale, steady state models, such as fluid queues, to energy storage
remains relatively rare. Fluid queue models provide a method to characterize steady-state
behavior of a fluid container whose intake/outlet operates stochastically under certain con-
ditions, without need for Monte Carlo simulations, which is relevant for long-term decisions
such as sizing said container, as we do in this work. Limiting distributions for fluid queue
models have been most commonly used in high-speed communication networks, but also for
manufacturing [65], and energy systems, with early applications in hydro dam management



CHAPTER 3. SIZING COLOCATED STORAGE FOR WIND POWER 54

models [34]. In an approach qualitatively similar to ours, in [77], a two-state Markov-
Modulated Fluid Queue (MMFQ) is used for optimizing the size and management policy of
the US national strategic petroleum reserve.

There are also more recent applications of fluid queue models to renewable power plants
with BESSs. In [18], a model-predictive control algorithm is proposed for optimally sizing
and managing storage, and the MMFQ framework is used to analyze the reliability perfor-
mance of the method. In [28], the authors consider a case in which there is no control over the
charge/discharge rate (akin to a balancing policy), and use MMFQs to find an asymptotic
relation between the battery size and the loss of load probability for a given grid configura-
tion, so that the problem of finding the optimal size of storage to hit a target loss-of-load
probability can be solved. Unlike in these cases, here we use the MMFQ framework in the
objective function of our optimization model directly.

While short term operation of co-located storage can be optimized using dynamic pro-
gramming techniques and accounting for current information on state of charge, wind forecast
and prices, the optimal sizing of the co-located storage is based on long run average behavior
of the production/storage system under an optimized stationary policy. For this purpose we
employ a method based on the spectral analysis for characterizing limiting distributions of
n-dimensional MMFQs described in [65, 52]. This is a numerically challenging problem for
which algorithms with proven numerical stability have been developed [92, 93], but with the
limitation of having a single state with negative drift, too restrictive for our setting. In [1],
an algorithm is proposed for calculating limiting distributions of MMFQs without solving
any eigenvalue problems, and was improved and extended to also handle multi-regime fluid
queues in [47], which we use in our approach. The method employed there makes no assump-
tions regarding the structure of the fluid queue, which is a key feature for general application
models like ours.

In this chapter, we use limiting distributions directly to obtain simple expressions of
long-run profits of the system, suitable for use in a sensitivity analysis. In particular, we
are interested in investigating the effect of some key parameters such as available contract
prices on the financial outcome of the project, the optimal storage size and the optimal
contract size of a wind power plant trying to maximize its profit. This simple model would
be of interest to a wind power plant operator and project developer for early-stage project
feasibility analysis. It could also be of interest for policy designers, to evaluate the financial
viability of storage projects for wind power plants with and without special incentives.

There are several examples of modeling wind speed and wind power output as a Markov
chain in the literature, with applications in simulation of wind data series [57, 99, 114] but
also in long-run analysis [28, 18]. It has been found that performing a max likelihood pa-
rameter estimation can result in a very good approximation of the limiting distribution, but
that a key metric to obtain a more accurate model is the autocorrelation [13]. In [13], in
the context of co-located storage sizing for robust operation of microgrids, it is found that
Markovian models with an autocorrelation that poorly reflects that of the original data se-
ries can lead to underestimation of necessary storage by as much as 50%. Autocorrelation
performance can be improved by increasing the order of the Markov chain, but this increases
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the size of the state space exponentially, so that only chains of second or third order are
of practical relevance. In [79], a rolling-average method is proposed to obtain higher auto-
correlation performance in the lower range (0-6h) without increasing the size of the state
space. More recently, authors have proposed non-homogeneous Markov chains [91, 114] to
more accurately reproduce the autocorrelation of real data series, with much better results
replicating the daily behavior of wind (i.e. the autocorrelation around integer multiples of
24h). These results can also be leveraged to capture seasonal changes of longer duration in
the wind distribution. The expected range of optimal storage sizes should also inform the
decision of how much autocorrelation needs to be captured by the model. If these sizes lie in
the 0-6 hour range, capturing daily autocorrelation is less crucial than if storage is expected
to be in the 24h+ range.

We could find no references in the literature of modelling wind power production and
electricity prices as a joint Markov chain as our general framework proposes, but the discus-
sion above provides what we deem sufficient justification for our modelling of wind power
output as such a process in the constant prices case that is addressed in this chapter, as sup-
ported by the empirical results shown in Section 3.4.1. We do not claim that a Markovian
assumption is appropriate to find the actual day-to-day operating policy of a wind power
plant with co-located storage. As mentioned above, dynamic programming approaches (pos-
sibly with reinforcement learning) that utilize updated status and forecasts are best-suited
for those purposes (see e.g. [18]). However, for investment planning, a simpler, higher-level
representation is not only appropriate but necessary to get a tractable and thus useful model.
This is not in essence different from other commonly performed simplifications, just as unre-
alistic but widely accepted, like using linear regressions to represent complex socio-economic
dynamics in the context of capacity expansion. We leave a more thorough discussion of the
variable-price case for future work in which that version of this model is developed.

The remainder of this chapter is organized as follows. Section 3.2 describes the setting
for our problem. In Section 3.3, we present in detail our optimization model, as well as the
solution algorithm. Results are presented and discussed in Section 3.4. Section 3.5 presents
an exploration of the path to obtain a full solution in the case of long-term contracts with
variable prices (supply functions). Finally, we conclude and discuss possible next steps for
the development of this model in Section 3.6.

3.2 Problem setting

We consider the case of a WPP that participates in the wholesale electricity market and has
access to a long-term forward market. The WPP is also evaluating the construction of a
collocated BESS, which will be used to mitigate imbalance costs. In our setting, the wind
farm operator needs to answer two main questions: how much storage should be installed
and how much energy should be sold in a long-term contract. To answer these questions,
it is also relevant to determine a stationary management (charge/discharge) policy for the
BESS. Further aspects of our setting are described in more detail in the paragraphs below.
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We consider that the WPP is a price-taker in the long-term forward market, where it has
access to three contracts:

1. A long-term fixed quantity contract, where it can choose how much to sell for a fixed
price in every period of the wholesale electricity market.

2. A pay-as-demanded forward contract, which can be used to cover any shortfall in
generation with respect to the commitment in contract 1.

3. A pay-as-produced forward contract, which can be used to sell any excess generation
with respect to the commitment in contract 1.

In order to avoid arbitrage opportunities, which cannot exist in efficient markets in the
steady-state case considered here, contract 2 must have a higher price than contract 1 and
contract 3 must have a lower price than contract 1.

In this setting, the WPP commits to delivering any quantity up to its capacity before
the actual output, over which he has no control, is known. An imbalance penalty is paid
for the difference between the energy commitment and the actual energy delivered. The
case studied here is the special case where the commitment is the same for all periods, the
imbalance penalty for shortfall is non-negative and constant, and the imbalance penalty for
surplus is non-positive (i.e. it is a reward, not a penalty) and constant.

To mitigate the imbalance cost, the wind power producer can charge/discharge the BESS,
so that the net output of the plant, i.e. that perceived by the market is the combined
production of the wind farm and the BESS. Having a co-located BESS will have the effect
of firming the WPP’s energy output, thus giving it access to the capacity market. We also
include this source of income in our model, by considering that the WPP is a price taker in
the capacity market and is remunerated for the capacity committed in contract 1, derated
by the long-run probability of not honoring that contract.

The scope of our work is a high-level analysis that could be of interest for early-stage
project developers or policy makers. We are interested in looking at infinite-horizon average
profits by considering the steady-state behavior of the model proposed and performing sen-
sitivity analyses on a number of key parameters. To be consistent with this approach, we do
not consider the possibility of using storage for arbitrage, since planned use of capacity for
opportunistic arbitrage would not be profitable in the long run if the market is efficient.

Admittedly, this is a limited representation of real electricity markets, where producers
can and do participate simultaneously in different ways: short-term arbitrage, ancillary ser-
vices, and a sequence of medium-term forward contracts to name a few. However, in the
long-run efficient equilibrium, a long-term contract price will adjust so that participation
through the scheme modeled here will be equivalent to the other forms available to the
WPP. In essence we invoke here a no arbitrage principle, which should hold in a long run
equilibrium, implying financial equivalence of any market participation mode of a fully uti-
lized production/storage facility. This equivalence enables us to choose the most convenient
market participation mode for the purpose of our analysis even if in reality the resulting
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production/storage facility will participate in the market differently. Hence, there are two
direct interpretations of the assumptions used in our model: the forward contract is assumed
to always renew at maturity with identical conditions, or, alternatively, it is a long-term for-
ward contract with a price that makes the contract equivalent to a sequence of contracts
with shorter maturities or any other form of efficient market participation (that does not
leave money on the table).

This raises the question of whether the results obtained by the model presented here
are applicable to actual market participants who may not have a long-term contract but
rather sequence of forward contracts with shorter maturity and possibly changing prices
and quantities. The possible changes in future forward prices can be accounted for through
sensitivity analyses on the price of the contract, that our method allows. We are also
assuming that efficient utilization of a production/storage facility under a long term contract
involves capturing of capacity payments, if available, which is consistent with commitment
not changing significantly across subsequent forward contracts. For WPPs that participate
through a more varied combination of market mechanisms (arbitrage, balancing, etc.), it is
more of an open question whether this model will be directly applicable, although this model
will still be of interest.

Our approach suggests the assumption of existence of a long-run equilibrium in the
forward market, which depends on many factors that are not considered in our model, such
as long-run demand behavior and a stabilization of the cost of new capacity (which in the
case of storage, for instance, is actually expected to continue declining for some years [11]).
We do not make any such strong assumptions. While such an equilibrium may be far from
being reached, this model is a high-level analysis for which this coarse approximation of
reality is sufficient.

Finally, we do not specify any particular battery technology. We include in our analysis
the issues of charge/discharge conversion efficiency and energy dissipation. However, we do
not include the degradation of the battery because of usage and aging in our model. It
has been found that this can be an important characteristic to take into account in sizing
studies [58], so this could be an interesting feature to add to future versions of our model.
In our closing remarks in Section 3.6.1 we discuss how considering this issue could affect our
model and outline how this feature could be included in an extension, but otherwise consider
this topic out of the scope of this thesis.

3.3 Mathematical Model

3.3.1 Description of the model

To emphasize the flexibility of our model and lay the groundwork for a future extension, we
describe first the model of a forward contract that allows variable prices, and then focus on
the special case addressed in this chapter.
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The energy market

We consider a market in which the WPP is a price taker, so it commits to produce an amount
qt (in MWh) during market period t at a price pt (in $/MWh), which is known at the time
the commitment is made. During period t, the actual wind power output of the farm is wt

(in MWh), while rt is the amount energy injected into the BESS (rt < 0 if the energy is
extracted), so that the net output of the plant is wt− rt. The imbalance is yt = qt− (wt− rt)
and the imbalance penalty charged to the WPP is Ξt = Ξ(yt, pt). We assume Ξ(·) to be a
known, deterministic, time-invariant function of the imbalance and the energy price. The
profit Πt at period t is thus given by (3.1).

Πt = ptqt − Ξ(yt, pt) (3.1)

For the case with constant prices, pt is constant and Ξ(·) is defined by (3.2). Note that
the negative sign in front of κ′ implies that the WPP is not penalized for excess injection,
but, on the contrary, sells it on the forward market. To avoid arbitrage opportunities, with
κ′, κ ≥ 0, we must have κ′ < 1 and κ > 1.

Ξ(yt, pt) =

{
Ξ+(yt, pt) = −κ′ptyt if yt ≥ 0

Ξ−(yt, pt) = κptyt if yt < 0
. (3.2)

The capacity market

The WPP is also assumed to be a price taker in the capacity market. We define here capacity
payments for the case with constant prices, i.e. qt = q, and note that this definition would
need to be extended to handle variable prices. The WPP is remunerated periodically (for
simplicity, we assume hourly) for the capacity committed for sale in forward contracts at a
price pcap (in $/(MW·h)). This committed capacity is derated by the historic probability of
not honoring the contract, which in our model corresponds to the steady-state probability
of being in shortfall. The capacity payment Πcap is thus given by (3.3)

Πcap = pcap · q
(
1− lim

t→∞
P (yt < 0)

)
(3.3)

The BESS

Let ρc and ρd be the conversion efficiencies of charge and discharge respectively. Thus, the
round-trip efficiency is ρ = ρcρd. The quantity rt is measured from the exterior of the BESS,
so the energy effectively injected to the battery is ρcrt (for rt > 0) and the energy effectively
extracted from the battery is −rt/ρd (for rt < 0).

The capacity (size) of the battery is b (in MWh) and its power inversion capacity, i.e. the
maximum rate at which energy can be charged to or discharged from the battery, is g (in
MW). For simplicity, we assume the limit is the same for charging and discharging, but the
method can easily be extended to consider the asymmetric case. In order to determine an
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optimal size, we need to model the cost of installing and operating the battery. We break it
down into a cost for storage capacity and a cost for inversion capacity. Both are expressed as
linear, amortized costs and are denoted by cs in $/(MWh·h) and cp in $/(MW·h) respectively.
By doing this, we assume that the battery is replaced at the end of its lifetime with the same
capacity and at the same cost.

An important factor in BESSs is energy dissipation, i.e. the proportion of energy stored
in the BESS that is spontaneously lost without any charging or discharging performed. This
is usually expressed as a fraction η of stored energy per unit time, which is the representation
adopted in our model, with some limitations described in section 3.3.2.

Objective

In the previous paragraphs, we have referred to t as a period for ease of exposition, given its
similarity with standard electricity markets. However, we propose here a continuous-time
model, so t actually, and in all instances in the remainder of this document, refers to an
instant, and, consequently, the quantities qt, wt, rt represent power levels at time t (in MW).
Note that the price pt is indeed in $/MWh, so that our profit Πt is an instantaneous profit
rate at time t, in $/h.

We are interested in the long-run average profit Π, as defined in (3.4). The expectation
is taken with respect to the stochastic process of interest here, (wt, pt), as described next.

Π = lim
T→∞

E
[
1

T

∫ T

0

(Πt +Πcap) dt

]
− csb− cpg

= Πcap + lim
T→∞

E
[
1

T

∫ T

0

Πtdt

]
− csb− cpg (3.4)

Sources of uncertainty

We consider two sources of uncertainty in our model: wind power output and energy prices.
This is done by considering (wt, pt) as a joint continuous-time stochastic process. In partic-
ular, we model it as a Continuous-Time Markov Chain (CTMC) with a discrete state space
S = W × P , with W and P being the discrete state spaces of wt and pt respectively. This
stylized model allows for a convenient formulation of limiting distributions, as described in
the next subsection.

Optimization model

Putting the previous pieces together, we are interested in solving the infinite-horizon average
profit optimization problem in (3.5).
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max
qt, rt, b, g

Π

s.t. b, g ≥ 0,

qt ∈ [0,W ] ∀t,
qt, rt, b ∈ R ∀t

(3.5)

W is the plant capacity (in MW). Furthermore, we intend here to model an electricity
market, so we will restrict our analysis to stationary policies where the bid is a function of
the price, i.e. qt = q(pt). We can also write this as qt = qs when pt = ps, for s ∈ S.

Finally, we will also be interested in stationary charge-discharge policies rt = r(wt, qt, pt),
which we write rt = r(wt, qt, pt) = rs when (wt, qt, pt) = (ws, qs, ps). We must note, however,
that this definition must be overriden if the storage is empty or full as summarized below.

rs > 0 & storage full ⇒ rt = 0

rs < 0 & storage empty ⇒ rt = 0

In this chapter, we focus on cases where strategic storage of wind-generated energy is not
attractive because prices and imbalance penalties are constant in time. For this case, it is
known that the optimal (cost-minimizing) policy is a balancing policy, i.e. rs = ws − qs [39,
10]. It is not hard to see that this is still true in the presence of capacity payments, since
any deviation will only increase the amount by which the committed capacity is derated
and hence reduce capacity payments. Coupling this policy with the finite power inversion
capacity gives (3.6).

rs = max (min (ws − qs, g) ,−g) (3.6)

3.3.2 Steady-state analysis

By the ergodicity of CTMCs, and since we are restricting our analysis to stationary policies,
we can express the long-run average profit of (3.4) in terms of limiting distributions as in
(3.7). In words, the long-run average profit is the sum over all states of the income minus
the imbalance penalty, for which there are two cases: if storage is available, the policy can
be followed; if storage is not available (empty or full), the policy must be overriden.
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Π =Πcap +
∑
s∈S

(
psqsπs − ψsΞs(qs − ws)

− (πs − ψs)Ξs(qs + rs − ws)
)
− csb− cpg

=Πcap +
∑
s∈S

(
psqsπs − ψsκps(qs − ws)+

+ ψsκ′ps(ws − qs)+ − (πs − ψs)κps(qs + rs − ws)+

+ (πs − ψs)κ′ps(ws − qs − rs)+
)
− csb− cpg (3.7)

, where rs is given by (3.6), π = (πs)s∈S is the limiting distribution of the CTMC (wt, pt)
and ψ = (ψs)s∈S is the long-run probability of storage unavailability (empty or full). The
second equality is obtained by plugging in the definition of the imbalance in (3.2).

We present first the case with uncapacitated power conversion (cp = 0 so that g can be
made as large as necessary to make rs = ws − qs); the capacitated case is presented at the
end of this section. In this uncapacitated case, since the optimal charge/discharge policy is
balancing the output, qs+ rs−ws = 0 whenever storage is available, so that we can simplify
(3.7) and obtain (3.8).

Π =Πcap +
∑
s∈S

(
psqsπs − ψsκps(qs − ws)+

+ ψsκ′ps(ws − qs)+
)
− csb (3.8)

π can be easily determined from the generator of the CTMC (wt, pt). The long-run
probability of unavailable storage ψ can be determined from some results of fluid queue
theory, as shown next.

Limiting distribution

Our model corresponds to the model of a Markov-modulated fluid queue with finite buffer. A
characterization of the long-run distribution of this process can be obtained through spectral
analysis, which we overview next. This is based on the presentation in [52], with more details
of the proofs available in [65]. For ease of exposition, in the following overview we omit the
efficiency factor ρ.

Define r = [rs]s∈S , a vector with the discrete values taken by rt, D = diag(r), a diagonal
matrix with r in its diagonal. In the field of fluid queues, r is called the drift vector. We
assume for now that rs ̸= 0∀s ∈ S. The special case with rs = 0 is considered at the end. Let
Q be the infinitessimal generator matrix of the CTMC and F the limiting distribution of the

level state of the battery, i.e.: F (x, s) = limt→∞ P
(
Xt ≤ x, (wt, pt) = s

)
, F(x) = [F (x, s)]s∈S .
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Then, it can be shown [52] that F satisfies the differential equation

dF

dx
D = FQ (3.9)

with boundary conditions

F (0, s) = 0 if rs > 0

F (b, s) = πs if rs < 0

A spectral solution to these equations can be obtained introducing generalized eigenvalues
λ and eigenvectors u, so that λuD = uQ. The general solution to (3.9) takes then the form

F(x) =

|S|∑
i=1

ai exp(λix)u
i

, where the values of coefficients ai can be found by solving a linear system from the boundary
conditions. For brevity in later use, we denote ψs

0 = F (0, s), ψs
f = F (b, s) and ψs = ψs

0 +ψs
f .

In this manner, the long-run probability of unavailable storage can be calculated as a
function of r and b. Note, however, that the method requires solving a generalized eigenvalue
problem, which has three implications of importance for our work. First, we cannot obtain
a closed-form expression of ψ0 or ψf in terms of b and r, so that numerical calculating
approaches are necessary. Secondly, this function is not convex in general, which makes our
optimization problem possibly non-convex as well. Finally, the linear system posed by the
boundary conditions can be very ill-conditioned because of the presence of both very large
and very small eigenvalues, which is a major challenge for the method. We address this in
more detail in the description of the algorithm.

Cases with zero drift If rs = 0 for some state s ∈ S, then F (x, s) can be expressed
as a linear combination of F (x, z) for states z : rz ̸= 0. Thus, for these cases, the method
described above is performed on a reduced system that includes only states {z : rz ̸= 0}.
Then those values are used to find the distribution for the null states. Details are omitted
here, but can be found in the appendix of [93] or in [47].

Dissipation

We next address the issue of modelling dissipation. As mentioned before, it is standard
to consider that energy dissipates from the battery at a rate that is a fix multiple of the
current storage level. This would mean that an additional term should be included in the
drift vector: rt = rs−ηxt, where xt is the current storage level in the battery (in MWh), and
η is the proportion of energy stored lost per unit time (here, per hour). The addition of this
term makes the drift dependent on the storage level, so that the spectral analysis performed
earlier would no longer be valid.
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A way to handle this within the framework of fluid queues is through multi-regime fluid
queues. The key idea here is that the battery capacity is divided in bins (discretized), with
drifts allowed to variate across different bins, but being level-independent within each bin.
Introducing some notation, this can be expressed as in (3.10). Then, a system of ordinary
differential equations like in (3.9) can be formulated for each bin, with additional boundary
conditions for inter-bin boundaries.

rt = r(wt, qt, pt, xt)

= rs,j for (wt, qt, pt) = (ws, qs, ps), bj−1 ≤ xt < bj (3.10)

, where the BESS is divided into J bins with boundaries 0 = b0 < b1 < · · · < bJ−1 < bJ = b.
Note that this significantly increases the dimension of the eigenvalue problem, so that having
a numerically stable method to find the limiting distribution becomes paramount for the
success of this method. For brevity, we don’t describe this modification of the approach in
further detail and point the interested reader to [52] or [47].

The introduction of η > 0 could affect the optimality of the balancing policy. Indeed,
for sufficiently large η, it could be more profitable to sell surplus energy immediately than
to store it and have a large proportion of that lost to dissipation. To simplify our analysis,
we make the following restriction: we make a sensitivity analysis on η with κ′ = 0 and a
sensitivity analysis on κ′ with η = 0, so that the balance policy is optimal for all these
situations.

3.3.3 Units

In the previous paragraphs, we defined all quantities in their appropriate physical units.
However, it is more convenient and illustrative for the purposes of this work to express them
in per unit of power plant capacity and storage capacity, by introducing:

w = w̃W q = q̃W b = b̃W

g = g̃W r = r̃b cs = c̃sp
max

p = p̃pmax pcap = p̃cappmax cp = c̃pp
max

, with pmax = maxP , so that w̃, q̃, p̃, g̃ ∈ [0, 1], b̃ is in hours of storage of full plant capacity,
and r̃ is in units of [p.u. of b]/h, which is interpreted as the number of times that the total
storage would be charged starting from an empty state in one hour at full plant capacity.
Equation (3.8) becomes:

Π

pmaxW
=

Πcap

pmaxW
+
∑
s∈S

(
p̃sq̃sπs − ψsκp̃s(q̃s − w̃s)+ + ψsκ′p̃s(w̃s − q̃s)+

)
− c̃sb̃ (3.11)
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It is not hard to check that this change of units does not affect the spectral decomposition
and hence the values of ψ. In this chapter we are interested in the case where the price is
constant, i.e. |P| = 1, ps = pmax ∀s ∈ S and hence p̃s = 1 for all s. Finally, for readability
and ease of notation, the tildes will be omitted in the remainder of this chapter, but we will
always refer to values in per unit.

With these unit changes and simplifications, the optimization model (3.5) for the unca-
pacitated case with constant prices is written as in (3.12).

max
q, b

∑
s∈S

(
qπs − ψsκ(q − ws)+ + ψsκ′(ws − q)+

)
+ pcapq

(
1−

∑
s∈S

ψs
0

)
− csb

s.t. b ≥ 0,

q ∈ [0, 1]

(3.12)

3.3.4 Solution algorithm

There are two challenges in finding the optimal solution to problem (3.12). The first dif-
ficulty lies in evaluating the objective function. The spectral method described in Section
3.3.2 requires solving a linear system with coefficients that stem from both very large and
very small exponential terms, which makes the system very ill-conditioned and the method
numerically unstable.

This was overcome thanks to the algorithm proposed by [47], which uses a stable matrix
decomposition to obtain the limiting distribution of fluid queues without explicitly finding
eigenvalues or relying on exponentially growing terms and results on enhanced numerical
stability. This method allows multi-regime fluid queues like the one in our model when
considering non-zero dissipation and does not require any special structure in generator or
drift.

The second difficulty is that we have a non-linear, possibly non-convex objective function,
so that using a gradient descent algorithm does not provide a guarantee of global optimality.
For the scenario with constant prices, our search space only has a dimension of 2; it is thus
reasonable to start exploring the search space by means of a grid, to then use the best
candidate as starting point for a finite-difference descent algorithm, which is the algorithm
that was implemented in our tests.

3.3.5 Capacitated power conversion

We finally address the case with capacitated power conversion. In the capacitated case with
symmetric capacities, rs = max (min (ws − qs, g) ,−g), so qs + rs − ws is not always 0 and
(3.8) does not hold in general. We must therefore use the expression for Π given by (3.7).
The computation of ψ is only affected by this change to the extent that the entries in r
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change, but the method itself is still valid, so the only consequence of this capacitation is
having two more terms in the objective function and one extra decision variable, as well
as changing the expression of the capacity payments, which would be now given by (3.13).
We can, however, show with help of Theorem 3.3.1 that these changes do not make the
optimization significantly more difficult.

Πcap = pcapq
∑

s∈S:ws−rs−q≥0

(πs − ψs
0) (3.13)

Theorem 3.3.1. Let (q∗, b∗, g∗) be an optimal solution to optimization problem (3.5). If
cp > 0, then g∗ =

∣∣ws∗ − qs∗
∣∣ for some s∗ ∈ S or g∗ < mins |ws − qs|.

Proof. If g∗ ≤ mins |ws − qs|, the statement clearly holds, so we only need to prove that if
g∗ > mins |ws − qs|, then g∗ =

∣∣ws∗ − qs∗
∣∣ for some s∗ ∈ S. We prove by contradiction.

Suppose g∗ > mins |ws − qs| but the statement does not hold. To create our contradic-
tion, let s̃ ∈ argmaxs {|ws − qs| : |ws − qs| < g∗} and let g̃ =

∣∣ws̃ − qs̃
∣∣. We want to show

that the point (q∗, b∗, g̃) achieves a higher profit than (q∗, b∗, g∗), which would contradict its
optimality. First, note that by construction of g̃, for any s ∈ S, max (min (ws − qs, g̃) ,−g̃) =
max (min (ws − qs, g∗) ,−g∗). This implies that the charge/discharge vectors in both cases
are identical: r(q∗, b∗, g̃) = r(q∗, b∗, g∗). Since ψ is a function of b and the drift vec-
tor, ψ(b∗, r̃) = ψ(b∗, r∗). Thus, the terms inside the summation in (3.7) are identical for
Π(q∗, b∗, g∗) and Π(q∗, b∗, g̃). And hence, Π(q∗, b∗, g∗)− Π(q∗, b∗, g̃) = cp (g̃ − g∗) < 0, which
concludes the proof.

The takeaway from Theorem 3.3.1 is that we do not need to consider the entire feasible
set spanned by g when optimizing (3.5), as only a handful candidate solutions need to be
tried. We can thus define Π as in (3.14), and optimize for Π over q and b only.

Π(q, b) = max
s∈S
{(3.6) : g = |ws − qs|} (3.14)

For the case with constant prices, this takes the form of (3.15).

max
q, b

Π(q, b)

s.t. b ≥ 0,

q ∈ [0, 1]

(3.15)

To close this section, we make two comments about this method. First, each evaluation
of Π requires |S| calls to the routine that calculates ψ. Thanks to the algorithm in [47],
this routine is very efficient, so this calls are not very costly computationally. They can
also be easily parallelized if several cores are available. Moreover, for the case with constant
prices, S is the discretized state space of wind power outputs, which we expect would have
a cardinality in the order of tens in most applications [79], keeping the computational cost
of each evaluation of Π manageable. Finally, our tests suggest that when sorting |ws − qs|
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in ascending order, expression (3.7) is concave in g. If this can be verified, it can further
reduce the number of calls necessary to evaluate Π, which could be of value in extensions to
variable prices, where |S| may be larger.

And secondly, we note that the method outlined above only finds an optimal solution
to (3.5) if the condition in Theorem 3.3.1 holds, i.e. if g∗ ≥ mins |ws − qs|. We make two
observations to argue, omitting some mathematical details, that this would not be an issue
in practical applications. Suppose the condition is not true. Then, the optimal solution has
g∗ < mins |ws − qs|, which implies rs = −g if ws − qs < 0 and rs = g if ws − qs > 0. Note
also that g∗ is upper-bounded by the mesh size of W , so it is a relatively small value. This
in turn implies that qs −ws and qs + rs −ws are close to each other, which can also be said
of the penalties Ξ(qs−ws) and Ξ(qs + rs−ws). The summation term in (3.7) for this point
would therefore be similar to that of the no-storage case. Since the case with storage must
also take into account the cost terms, this can only be possible if both b∗ and g∗ are quite
small. In other words, our method may fail to find the optimal solution in a case where the
optimal solution would be to build a storage of positive, but very small size in both energy
capacity and power conversion capacity. Such a case can be constructed, but would not be
of practical interest.

3.4 Results and discussion

3.4.1 Model data estimation

Wind model

To obtain the values of the generator matrix that defines the CTMC, the methodology
outlined in [79] is followed. The methodology consists in first passing the wind power output
through an averaging window of one hour, then discretizing the output with N = 15 levels,
and finally performing a max-likelihood estimation on the resulting data sequence, i.e. finding
the transition probabilities from counting transitions in the sequence. The number of states
chosen is identified in [79] as a level of resolution that captures well the autocorrelation of
the wind power series used as data source without the need for introducing a second-order
Markov model. As in [18], the wind data available in [76] was used.

Reference parameters

We perform sensitivity analyses on the other model parameters. Reference values are given
in Table 3.4.1. We comment on the choice of the reference cost of storage in the following
paragraphs.
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Table 3.4.1: Reference values for sensitivity analyses

Parameter Value Parameter Value Parameter Value
κ 1.35 cs 0.005 η 0
κ′ 0 cp 5E-4 ρd 0.95
pcap 0 ρc 0.95

Empirical validation

To provide an empirical reference for comparison with our model, we use the same data
series to solve the ex-post sizing and contracting optimization problem (3.16).

max
q, b, g

h(q, b, g)

s.t. b, g ≥ 0,

q ∈ [0, 1]

(3.16)

, where h(q, b, g) is a function that computes the ex-post average profit over the time available
in the data series for contract quantity q and storage size b. The value of function g can
be computed easily using the fact that the the balancing policy is known to be optimal. A
detailed description of the algorithm used to compute h(q, b, g) is provided as an appendix.

The results of the model (3.12) and (3.16) are shown in Figure 3.4.1 and discussed below.
In terms of model validation, it is worth mentioning that there is a good level of agreement
between the curves given by the model and the empirical ex-post best. An interesting
continuation of this work would be to perform a similar analysis using a non-homogeneous
Markov chain to model the wind power output as in [91, 114].

3.4.2 Value of storage

As a first step before doing sensitivity analyses, we are interested in observing the value of
storage for the WPP in the setting described. To do this, we fix b and g at different values
and solve (3.12) and (3.16) for q only to find the optimal commitment and corresponding
profit. The profit is compared to the profit that would be obtained from a feed-in-tariff
contract with the same price. For the case without capacity payments, this profit is an
upper-bound reference for comparison.

We can make four important observations from the results in Figure 3.4.1. First, without
capacity payments, as expected, even with unlimited storage, recovering feed-in-tariff profits
is not possible, which is explained by efficiency losses in storage discharge. If there is access
to capacity payments, the additional profits are higher, but the overall shape of the value
curve remains unchanged. Secondly, we note that the optimal bidding function does not
have the form of an optimal fractile of wind power production here. Observe that since the
supportW is discrete, such a function would be step-shaped, while our optimal curve is not.
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Third, in line with the results of other authors under different structural assumptions [39,
10], the value of storage in the reference case studied has diminishing marginal profit. This
allows identifying two quantities of interest. First, the marginal profit at b = 0 gives the
critical amortized cost of storage: if storage costs more than this quantity, it is not worth
having co-located storage. The second quantity is the optimal size; for an amortized cost of
storage cs, the optimal size of storage is the quantity for which the marginal profit is equal
to cs. These results justify our choice of a descent algorithm to find the optimal storage size.
These observations also seem to hold for the value of power conversion.

Finally, as anticipated, expected imbalances are reduced as storage sizes grows without
limit. It is worth observing, however, that positive imbalances increase for the lowest range
of storage sizes. This can be explained by the fact that in our model for the given reference
values, the optimal contracting strategy in absence of storage is to commit the entire capacity
of the plant, which eliminates positive imbalances. As storage drives the optimal commitment
down, positive imbalances appear. With enough storage, these imbalances are then brought
down too.

For the reference case shown in Fig. 3.4.1, the critical cost is found at co = 0.0193,
which for a reference price of energy of 60$/MWh, corresponds to an amortized cost of
10.14$/kWh-yr. Note that this is a whole order of magnitude below the reference cost of
100$/kWh-yr for 2020 [66], meaning that under this setting and the reference values used,
installing co-located storage is not profitable. Access to capacity payments does not seem
to significantly change this conclusion (Fig. 3.4.1, bottom-right). Even taking into account
that the cost of storage is declining rapidly, a tenfold reduction is beyond what we should
expect to see in the near future. So according to these results, a different setting would need
to be in place for co-located storage to be attractive.

In fact, in our setting, the WPP is not sufficiently exposed to uncertainty to justify
paying for expensive storage. Indeed, the WPP is already covered against prices higher than
κp by the pay-as-demanded forward contract, so that further risk hedging via storage is
only modestly attractive. In Fig. 3.4.1 (bottom-right), we see that as the coverage cap κ
is increased and the WPP is exposed to higher penalties, the critical cost co at which it is
willing to invest in storage also rises. However, the pay-as-demanded forward contract would
need to be available at a premium of several times the WPP’s normal selling price to get
anywhere near the actual current critical cost.

Figure 3.4.2 depicts the value of storage considering non-zero energy dissipation η. Two
observations are worth highlighting here. First, considering a non-zero value of losses to
dissipation has an important effect of reducing the value of storage. For a reference value of
η = 0.2%/h, this reduction can be as high as 50%. This shows the importance of consid-
ering this effect when evaluating collocated storage. Results suggest that the overall shape
of the value curve remains unchanged, i.e. we have decreasing marginal value of storage,
with an upper bound being met asymptotically for very large values of storage. This asymp-
totic behavior can only be observed when the refinement of the discretization of storage is
increased.

The second set of observations has to do with the limitations of the model used here
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Figure 3.4.1: Plots of value of storage obtained solving the contract size problem for fixed storage
capacity. Top-left : Long-run average profit in excess of no-storage profit for different storage sizes.
The feed-in-tariff benchmark (red) is equal to the average output of the power plant (because price
is normalized to 1). Top-center : Optimal energy commitment for different storage sizes compared
to no-storage and average plant output benchmarks. Top-right : Expected positive and negative
imbalance for different storage sizes. Bottom-left : Long-run average profit in excess of no-storage
profit for different power inversion capacities. Bottom-left : Long-run average profit in excess of
no-storage profit for different power inversion capacities. Feed-in-tariff benchmark in red. Bottom-
center : Optimal energy commitment for different power inversion capacities compared to no-storage
and average plant output benchmarks. Bottom-right : Critical storage cost for different values of
shortfall penalty factor and capacity payment. Critical storage cost is the slope of the profit curve
vs. storage size at b = 0.

and the effect of the granularity of the discretization of storage levels when considering
dissipation. For very large values of storage, the model assumption of considering dissipation
level-independent within each bin is too coarse and leads to artificial reductions in the value
of storage. As expected, this effect is mitigated by increasing the number of bins in the
discretization (at the cost of more computational burden).

For values of storage in the order of less than ten hours, it seems like a level-independent
model is sufficiently accurate. For storage in the order of 10 to 100 hours, it seems necessary
to include a multi-regime formulation with at least 10 to 20 bins to accurately model the value
of storage. This implies a state space with size in the hundreds of states, which highlights
the importance of having a numerically stable algorithm in this state range.
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Figure 3.4.2: Value of storage and optimal contract size for η = 0.2%/h with multi-regime fluid
queue model, for different number of regimes |J |. Left : Long-run average profit in excess of no-
storage profit for different storage sizes. Right : Optimal commitment for different storage sizes
compared to no-storage and average plant output benchmarks.

3.4.3 Sensitivity analyses

The main scope of the model proposed here is performing sensitivity analyses at a high level,
such as during a project feasibility study or for policy evaluation. In this section, we show the
results of some of these analyses. Despite the previous discussion regarding current costs,
sensitivity analyses to changes in some key parameters are of interest, since they provide
understanding regarding the interplay between some key quantities.

We are interested in observing the behavior of the model as key parameters are modified.
The current cost of storage, cs ≈ 0.2 is above the critical cost for the reference case, so
the optimal size would be 0, and the behavior of the results to changes in other parameters
would be hidden. To avoid this, we take a reference storage cost of cs = 0.005. Although
unrealistically low, it allows observing the behavior of the optimal size as some parameters
of interest change. Sensitivity curves are shown in Figure 3.6.2 and are commented in the
following paragraphs.

Forward contract prices

The sensitivity to changes in shortfall penalty is aligned with intuition: larger storage be-
comes more attractive as the penalty for energy shortfall grows, i.e. as the exposure to high
penalties increases. On the other hand, the change with respect to the price of the pay-as-
generated forward contract shows a more interesting dynamic. As κ′ is raised and the value
of surplus energy increases, it becomes less undesirable to have excess energy, so that the
optimal commitment q decreases. This leaves room for increasing the optimal storage size,
as more energy is available for accumulation. After a certain point, however, the price of the
pay-as-generated contract is so close to the price of the long-term fixed contract that the lat-
ter becomes less attractive, so that the commitment drops. With a very low commitment in
the long-term contract, the motivation for investing in storage also disappears progressively,
leading to a smaller optimal storage size.
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Capacity payments

Access to capacity payments provides an important incentive for storage deployment, for
both storage and powe¡r inversion capacities.

Efficiency and dissipation

The behavior when the round-trip efficiency and dissipation vary is in line with our expecta-
tion. As the system becomes more inefficient, storage becomes less attractive. For discharge
efficiency parameter ρd, the relation between optimal size and efficiency appears to be close
to linear. The sensitivity to the charge efficiency ρc is very similar and is omitted. Again, the
curves highlight the importance of including dissipation in our model, with optimal storage
capacity being most sensitive to this parameter for values near 0.

3.5 Extension to variable prices

The model introduced in 3.3 allows for a general Markovian process where both prices and
wind power production are stochastic. However, throughout this chapter, we have focused
on the case where prices are constant. A complete incorporation of the varable-price case
into the model is out of the scope of this thesis. However, in this section, we discuss some
challenges to our solution approach when this assumption is relaxed, briefly overview how
they could be overcome, and present some preliminary results in that avenue. Although the
work presented in this section is in a relatively early stage of maturity, we include here as it
may prove helpful to a reader interested in extending our work to handle variable prices.

3.5.1 Challenges

There are two main challenges to extending the methodology presented in this chapter to a
case with variable prices. The first one is one of validity: while assuming that the stochastic
process of wind power output has a Markovian behavior may be an acceptable approximation
for a high-level analysis, as we presented before, it is less clear that this assumption can be
justified for the joint process of wind power output and prices. Some validation work based on
historical data should be performed to guarantee the soundness of that approach. Assuming
the validity of that assumption, a technical challenge remains: the balancing policy is no
longer optimal in general in the variable-price case. We overview next how this challenge
could be overcome leveraging known literature results.
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3.5.2 Potential solution strategy

Consider the extension of the optimization problem of (3.5) to the case with variable prices:

max
q, r, b, g

Π

s.t. b, g ≥ 0
(3.17)

, where b and g are scalars, as in the case with constant prices, but q and r are now general
functions of the state of the system. In a case with variable prices, a conceivable q would
take the form of a supply function, so we would have q = q(pt), and if we restrict ourselves to
stationary policies under a discrete state space, q is a vector with same size as the state space
of the stochastic process pt. To reduce the search space for r, we leverage the results of [39],
where it is shown that the optimal charging policy in the discrete time case, when surplus
energy is curtailed at no cost and no penalty (i.e. κ′ = 0 in our model), is a double-threshold
policy.

Double-threshold policy The double-threshold policy is described in equation form in
(3.18) and graphically for the iid2 case in Fig. 3.5.1. In words, the charging policy is battery-
level dependent. If the level xt is below a threshold h−, then the optimal policy dictates
that the battery should be charged back to h−, regardless of the imbalance status. If the
level is above a threshold h+, the battery should be used for balancing, i.e. store any surplus
generation and compensate any shortfall in generation by discharging from the battery as
necessary, going no further than h+. If the level is between both thresholds, any excess
should be stored, but no power should be extracted from the battery. The values of the
thresholds h− and h+ are functions of the state of the system, i.e. functions of the price pt
and the imbalance qt − wt.

rt =


h− − xt if xt < h−

(wt − qt)+ if h− ≤ xt ≤ h+

wt − qt if xt > h+
(3.18)

For simplicity, the version given in (3.18) is a simplified version where we assume perfect
round-trip efficiency of the charge/discharge cycle, and ignore ramping limitations on the
charge and discharge and energy dissipation. The results of [39] consider these cases as well.
We note here three additional results of [39] that are of relevance for our work. First, if the
round-trip efficiency of the charge/discharge cycle is perfect, h− = h+. Next, for states where
pt takes its maximum value (recall we assume a finite discrete state space), h+ = h− = 0.
And finally, for the case where the stochastic process (qt−wt, pt) is iid, the thresholds depend
only on the price pt, not on the imbalance.

Conjecturing that the optimal policy in the continuous time case also has a double-
threshold structure, optimization problem (3.17) takes the form of (3.19).

2iid=independent and identically distributed
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Figure 3.5.1: Graphical description of double-threshold policy for the case where thresholds only
depend on the price process (not the imbalance). 1○: stock up to h−, 2○: Store excess only, 3○:
balancing policy. Observe the thresholds h− and h+ depend on the price pt.

max
q, h+, h−, b, g

Π

s.t. b, g ≥ 0
(3.19)

, where h+ and h− are functions of the state of the system, so they can be represented by
vectors with same size as the state space. Moreover, if the optimal thresholds depended only
on prices, the size of the variables h+ and h− would only be that of the space state of pt,
which considerably reduces the search space.

3.5.3 Preliminary results

We put this conjecture to the test, i.e., whether the optimal charge/discharge policy has a
double-threshold structure, and if so, whether the thresholds depend on prices only or also
on the imbalance, by conducting an experiment on a small test instance, which we describe
in this section.

Consider the continuous-time setting described in this chapter, where the commitment
qt = q is constant and known, and the processes wt and pt are each an independent CTMC
with discrete, finite state-space W and P respectively, so that the joint stochastic process
(wt, pt) is a CTMC with discrete finite state space S =W×P . We next consider a discrete-
time problem by sampling from (wt, pt) periodically at intervals of length ∆t.

From standard results in Markov chains, we know that if (wt, pt) has generator Q, this
sampling procedure results in a discrete-time stochastic process (wtk , ptk) with transition
matrix P∆t = exp(∆tQ). If we assume that the wind power output and price remain
constant during the period [tk, tk+1), the resulting problem falls exactly in the setting of [39].
Therefore, we know that the optimal policy for that case has a double-threshold form. If, as
conjectured, the optimal policy in continuous time has a double-threshold form as well, we
expect those thresholds to converge as ∆t→ 0. We next make this idea more precise.

Let ξt = (wt, pt), let ξ
∆t
k = (wtk , ptk), k ∈ N, be the discrete-time stochastic process

resulting from sampling from ξt at periodic intervals ∆t. Let h∆t(w, p), for (w, p) ∈ S be
the function that returns the optimal threshold for each state of the discrete system with
sampling period ∆t. Recall that since we are considering perfect round-trip efficiency, both
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thresholds coincide, i.e. h+ = h− = h. We expect to obtain lim∆t→0 h
∆t(·) = h∗(·) for some

h∗.
Next, we present the method used to obtain the optimal thresholds for each discretized

problem. In [39], conventional dynamic programming techniques (LP formulation) are used
to obtain the optimal values for the numerical examples solved, which involves discretizing
the space of storage levels also as space B. In this context, an action is how much energy
to charge or discharge into (from) the BESS. Therefore, if the storage level is discretized,
this automatically discretizes the action space as well. In fact, we can interpret the system
dynamics in the two following equivalent forms.

• An action utk is the energy (in MWh) that is injected into the BESS (which we interpret
as extraction if < 0), so that the BESS level at the next time period is xtk+1

= xtk +utk

• An action µtk is the BESS level at which the BESS will be at the next time period:
xtk+1

= µtk .

It is clear that these two definitions of an action are related by µtk = xtk + utk . The
second definition makes evident that discretizing the state space of xtk also discretizes the
action state space. We will use both definitions to describe the policy iteration algorithm.

One important consideration in our discretization as ∆t becomes smaller is maintaining
precision. Let ∆b be the granularity of the discretization of the storage capacity (in MWh).
If we maintained this granularity constant, the energy imbalance (w − q)∆t would become
negligible compared to ∆b as ∆t→ 0, so our analysis would become meaningless, as results
would trivially converge due to lack of precision. We thus need to adjust the granularity of
the storage discretization. To avoid noise introduced by rounding, we choose ∆b such that
(w − q)∆t is a multiple of ∆b for all w ∈ W . This significantly augments the size of our
problem as ∆t→ 0 and makes it harder to solve, but is a necessary step.

3.5.4 Policy iteration algorithm

We omit here many details and assume the reader is familiar with optimality in infinite-
horizon average cost problems. For a deeper presentation of this topic, see [5]. To describe the
policy iteration algorithm used, consider first the optimality equation (3.20) of the infinite-
horizon average cost problem, with v(·) the relative cost function and λ the optimal average
cost. This optimality equation is satisfied because our process satisfies the Weak Accessibility
assumption of [5], as verified in the proof of Theorem 8 of [39].

v(xtk , wtk , ptk) + λ = min
rt

{
ptk
(
q − (wtk − rtk)

)+
+ E

[
v
(
xtk + rtk , wtk+1

, ptk+1

)∣∣∣wtk , ptk

]}
(3.20)
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Since our state space is finite, we can express this equation introducing a vector V to
represent the relative cost function, a vector gr to represent the cost incurred at the current
step and a matrix Pr to represent the the transition matrix under policy r. Formally,

V = [v(x,w, p)](x,w,p)∈B×S

gr = [p(q − w + r(x,w, p))+](x,w,p)∈B×S

Pr

(
(x1, s1), (x2, s2)

)
= P

(
(xtk+1

, stk+1
) = (x2, s2)

∣∣∣(xtk , stk) = (x1, s1), rtk = r(x1, s1)
)

, so that the policy iteration algorithm can be implemented as in Algorithm 1. In words, we
start from a balancing policy: r(x,w, p) = w− q ∀(x,w, p) ∈ B×S. In the policy evaluation
step, we construct the matrix Pr (which can be defined as a sparse matrix to enhance
performance) and solve a linear system to update the values of V and λ. In the policy
improvement step, for each (x,w, p) ∈ B × S, the action that minimizes the right-hand-side
in (3.20) is found by enumeration of the entire action space.

In the general form shown in Algorithm 1, the entire action space is searched looking for
the optimal policy. As ∆t gets smaller and Nb = |B| becomes larger, this enumeration of the
action space becomes prohibitively time-consuming.

An alternative, in order to make possible testing smaller values of ∆t is thus to re-
place the policy improvement step with one in which only threshold policies are consid-
ered. This is shown in Algorithm 2. Note that for this class of policies, once the optimal
action for the first storage level x = 0 is determined for some (w, p), the action for all
other storage levels x corresponding to the same (w, p) is determined as well: we have
µ(x,w, p) = min{bmax,max{x+w− q, µ(0, w, p)}}. This allows saving one loop execution of
length Nb, which is significant since Nb is the size of the largest space in our problem.

The size of the search space can be further reduced if thresholds depend only on prices,
as shown in Algorithm 3. In this case, once the optimal action has been determined for
w = 0, x = 0 for one value of p, it is just copied over for all (x,w) for the same value of p
as µ(x,w, p) = min{bmax,max{x + 0 − q, µ(0, 0, p)}}. Note that if thresholds that depend
on prices only are optimal, the values of w and x chosen to perform the policy improvement
step will not matter.

3.5.5 Numerical tests

The algorithms presented earlier were implemented in Matlab to run tests on a small system
as a first approach to test our conjectures. Historical wind power output and price data
were obtained from [76] and used to get a generator Q that represents (wt, pt), following the
method described in [79]. To obtain a model of manageable size, the discretization of the
state space was done with N = |W| = 3, Np = |P| = 2. Separate generator matrices were
first obtained for each process, and then combined into a larger generator matrix Q making
sure to maintain independence.

All quantities were converted to per unit (p.u.) with respect to the wind power plant
capacity. Storage capacity and level is expressed in hours of storage (at full plant capacity).
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/* We start with balancing policy */

for x ∈ B do
for w ∈ W do

for p ∈ P do
u0(x,w, p)← w − q
µ0(x,w, p)← min{bmax,max{0, x+ w − q}}

end

end

end
ℓ← 0
repeat

// Policy evaluation

Pr ← 0NNkNb×NNkNb
for x ∈ B do

for w ∈ W do
for p ∈ P do

Pr

(
(x,w, p), (µℓ(x,w, p), :, :)

)
← P∆t

gr
(
(x,w, p)

)
← p(q − w + uℓ(x,w, p))+

end

end

end
/* Solve linear system to obtain V and λ */

A← [Pr,−1; 1,0]
b← [−gr; 0]
χ← A−1 · b
V ← χ(1 : end− 1)
λ← χ(end)
// Policy improvement

for x ∈ B do
for w ∈ W do

for p ∈ P do
uℓ+1(x,w, p)←
argminy

{
p(q − w + y)+

∑
w′∈W,p′∈P P∆t(w′, p′) · V (x+ y, w′, p′)

}
µℓ+1(x,w, p)← uℓ+1(x,w, p) + x

end

end

end
ℓ← ℓ+ 1

until µℓ+1 == µℓ or iteration limit
Algorithm 1: General policy iteration algorithm used
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// Policy improvement, threshold policies only

for w ∈ W do
for p ∈ P do

uℓ+1(0, w, p)← argminy

{
p(q−w+y)+∑w′∈W,p′∈P P∆t(w′, p′)·V (0+y, w′, p′)

}
µℓ+1(0, w, p)← uℓ+1(0, w, p) + x
for x ∈ B do

µℓ+1(x,w, p)← min{bmax,max{x+ w − q, µℓ+1(0, w, p)}}
uℓ+1(x,w, p)← µℓ+1(x,w, p)− x

end

end

end
Algorithm 2: Policy improvement step searching only the space of threshold policies.

// Policy improvement, price-dependent threshold policies only

for p ∈ P do
w ← 0

uℓ+1(0, w, p)← argminy

{
p(q − w + y)+

∑
w′∈W,p′∈P P∆t(w′, p′) · V (0 + y, w′, p′)

}
µℓ+1(0, w, p)← uℓ+1(0, w, p) + x
for x ∈ B do

for w ∈ W do
µℓ+1(x,w, p)← min{bmax,max{x+ w − q, µℓ+1(0, 0, p)}}
uℓ+1(x,w, p)← µℓ+1(x,w, p)− x

end

end

end
Algorithm 3: Policy improvement step searching only the space of price-dependent
threshold policies.

Prices are also expressed in per unit (normalized) with respect to the maximum price. The
most important parameters are summarized in Table 3.5.1.

For the test system defined, the discrete-time problems were solved successively for de-
creasing values of ∆t. The results are discussed next.

3.5.6 Results

As expected from the results in [39], even when searching the space of all possible policies,
the optimal policy found has always a double-threshold form. Moreover, as predicted, we
obtain h− = h+ and h = 0 for the states with maximum price (w, p), p = pmax = 1. The
results of the thresholds obtained for system states with price p = 0.208, for the different
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Parameter Value
N = |W| 3
W {0,0.5,1}

Np = |P| 2
P {0.22,1}
∆w 0.1 p.u.
bmax 2 hours (at 1 p.u. capacity)
q 0.4 p.u.

Table 3.5.1: Numerical test parameters
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Figure 3.5.2: Optimal thresholds obtained for discrete-time model with decreasing sampling inter-
val ∆t. At the top, optimal threshold h+ = h− = h(w, p) for each value of ∆t. Colors represent
different values of w: w = 0 in blue, w = 0.5 in red, w = 1 in black. All values correspond to
p = 0.22. It was found h(w, 1) = 0∀w and is not included in the plot.
At the bottom, optimal average cost obtained, in arbitrary money units. For both plots, × rep-
resent values obtained when searching the entire space of policies (this was not possible within
the time execution limit defined for the three smallest values of ∆t tested). □ represents values
obtained when restricted to threshold policies, ▷ represents values obtained when restricted to
price-dependent threshold policies.
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values of ∆t tested, are shown in Figure 3.5.2.
There are several insights to extract from these plots. First, contrary to what we hoped

for, and although the price and wind power output processes are independent from each
other, we find that the optimal thresholds depend on the value of the wind power output,
i.e. they are different for different values of w ∈ W . This implies,that restricting the space
of policies to policies where the threshold depends only on the price excludes the optimal
policy.

This is confirmed when looking at the optimal average cost, which is higher for the latter
class of policies. It is worth noting, however, that the cost increases by less than 2% for all
values of ∆t tested. This suggests that although suboptimal, price-dependent policies might
provide an acceptable heuristic.

Next, observe that it was not possible to run the policy iteration algorithm to completion
when searching the entire space of policies for the three smallest values of ∆t. However, the
optimal solution found when restricting the search to threshold policies is the same as the
one found when searching the entire policy space for all values of ∆t for which both were
computed, which suggests the optimal solutions found for the smallest values of ∆t would
also be globally optimal. However, note that we do not have a guarantee of this at this point,
as it is pointed out in [39] that convexity of the problem could be lost when applying this
restriction, and hence convergence to local optima is possible.

Finally, and most importantly, there seems to be a convergence of optimal thresholds
as ∆t is decreased. This is consistent with the conjecture of the optimal policy for the
continuous-time case also having a double-threshold form. This is of course only one partic-
ular case and is hence far from being a proof, but is encouraging for pursuing this research
avenue. We might be tempted to also suggest that the discretization and policy iteration
path taken here could be a way to approximately compute the optimal thresholds of the
continuous-time case. Although in principle this is correct, for a problem of a more realistic
size, it seems unlikely that the discrete-time problem could be solved quickly enough for this
approach to be appealing.

3.6 Conclusion and future research

In sum, we are proposing a model to perform a high-level steady-state analysis of the value
of co-located storage for a wind power producer that participates in the electricity market
through long-term forward contracts. In particular, we assess the optimal size of storage
and optimal quantity to sell in forward contracts under different values of key parameters
regarding contract prices and storage efficiency. We find that in a setting such as the one
considered in this chapter the producer is not exposed to enough uncertainty in income for
storage to be attractive at current prices. This is likely to be different with variable prices,
which is the natural extension of our model.

In this avenue, we regard the result of the model with non-zero dissipation as very
important because of its implications for the extension to a variable-price setting, which



CHAPTER 3. SIZING COLOCATED STORAGE FOR WIND POWER 80

are twofold. First, these results demonstrate the ability of the method to handle larger
dimensions, which in our case appear as we refine the discretization of the storage levels.
In the tests performed, we introduced as many as 750 states, which the algorithm of [47]
could handle without issues. This is encouraging since introducing variable prices increases
the dimension of the system in a similar way. Second, it is proved in [39] that the optimal
charge/discharge policy when prices are variable is a dual-threshold policy, a policy in which
the charge/discharge decision is level-dependent, which lends itself to be easily handled
through the formulation proposed here. These two facts in conjunction allow regarding an
extension of this method to variable prices as promising from a technical point of view.
In [47], they find the algorithm to be numerically stable with a state size of more than 2000.
Combining the factors discussed above, it would not be hard to reach a model of this size,
which is why it is key for these cases to verify that the algorithm remains numerically stable
as the size grows and to reduce as much as possible the number of states introduced, e.g.
by using non-uniform bin sizes (with lower resolution at lower levels) and only the number
of bins necessary to accurately depict storage sizes in a reasonable range using engineering
criteria.

We close this work with a discussion of how we envision addressing the problem of battery
aging and battery replacement through an extension of the model presented in this thesis.

3.6.1 Battery replacement

All the models covered here assume that battery capacity does not decay during its lifetime
and that when it is replaced, it can be done at the same cost and size as the initial decision.
All these assumptions can be lifted by considering an additional decision variable in the
problem, namely the time of replacement of the battery. Figure 3.6.1 depicts the pattern
that is obtained from considering a linear capacity decay with periodic replacement. As
can be seen there, in order to get a system with an average storage capacity over its lifetime
equal to a certain desired value (e.g. the constant value for which our current model designs),
some oversizing of the initial installation is necessary, which implies some additional cost.
There is a tradeoff between the magnitude of this oversizing and the replacement period T .
More frequent replacement reduces the magnitude of oversizing necessary to maintain some
average capacity, and hence the total installation cost, but increases the amortized cost, as
it reduces the amortization period.

A first simple approximation to incorporate the effect of this phenomenon into our model
could be an ad hoc post-processing stage where after finding the optimal battery size, a
replacement period is chosen arbitrarily, and the battery oversize is selected to maintain
the average size that was designed. The cost implications of this oversizing can then be
computed and fed back to adjust the selected battery size. A more sophisticated approach,
which could balance better this tradeoff, would be to include T as a decision variable in an
extended version of our model.

Finally, we note that this same framework can be utilized to address one more relevant
feature in the context of battery storage investment, which is that of falling costs due to
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Figure 3.6.1: Pattern of battery capacity decay with linear decay and periodic replacement T . The
initial capacity b must be oversized in order to obtain some desired average capacity.

technological advancements. In this case, the cost of replacing the battery at the end of the
replacement period would be a decreasing function of time. An additional tradeoff would
therefore appear, as a longer replacement period would require a larger initial oversizing,
and would decrease the amortized cost as mentioned before, but would in addition allow for
a cheaper installation cost for the replacement battery. It is conceivable that the abundant
literature in machine replacement problem, which handles a case with many similarities to
this, would be of great value to formulate this model extension.
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Figure 3.6.2: Sensitivity of optimal quantities (by column) to some model parameters (by row).
Columns: Left : Profit gain with respect to no-storage. Center-left : Optimal storage size. Center-
right : Optimal power inversion size. Right : Optimal contract size.
Rows: Sensitivities with respect to changes in... Top row : Shortfall penalty factor κ. Second
row : Discount factor κ′. Third row : Capacity payments pcap. Fourth row : Discharge efficiency ρd.
Bottom row : Dissipation losses factor η (in p.u. of storage lost per hour). These tests were run on
the uncapacitated model and thus do not include the optimal power inversion output.
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Appendix

3.A Pseudocode of ex-post computation
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Input: q, b, g,w, κ, κ′, ρ,∆
w // Wind power output data series

∆ // Sampling period of wind power output data series

T ← length(w) x0 ← 0 // Initial state of charge

x, xprev // Current, previous state of charge

Π← q × T ×∆ // Average profit

for t = 1 to T do
r ← min (max (wt − q,−g) , g) // Capacitated BESS injection

empty← xprev +∆r < 0 // Determine if storage is empty

full← xprev + ρ∆r > b // Determine if storage is full

excess← ∆(wt − q − r)+
shortfall← ∆(q + r − wt)

+

if full then
excess← excess+∆r − (b− xprev) /ρ

end
if empty then

shortfall← shortfall−∆r − xprev
end
Π← Π+ κ′excess− κshortfall
if r < 0 then

x← max (min (xprev +∆r, b) , 0)
end
else

x← max (min (xprev + ρ∆r, b) , 0)
end
xprev ← x

end

Π← Π
T∆

return Π
Algorithm 4: Ex-post function to obtain average profit for given contract size, storage
size and wind power output data
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Chapter 4

Parallel Computing for Large-Scale
Stochastic Capacity Expansion
Planning 1

Abstract

We implement a nodal stochastic generation and transmission Capacity Expansion Planning
(CEP) planning model that incorporates the output from high-resolution climate projection
models through load and generation availability scenarios. We implement our model in Py-
omo and perform computational studies on a realistically-sized test case of the California
electric grid in a high performance computing environment. We propose model reformu-
lations and algorithm tuning to efficiently solve this large problem using a variant of the
Progressive Hedging Algorithm. We utilize the parallelization capabilities and overall ver-
satility of mpi-sppy, exploiting its hub-and-spoke architecture to concurrently obtain inner
and outer bounds on an optimal expansion plan. Our results show that instances with 360
representative days on a system with over 8,000 buses can be solved to within 5% of op-
timality in under 4 hours of wall clock time. These are encouraging results on the path
towards solving a large-scale power system expansion planning problem across a wide range
of climate-informed operational scenarios.

1The results, as well as parts of the text in this chapter were presented at the 23rd Power Systems
Computation Conference (PSCC 2024) [105], and will be published in the associated journal publication [104]
under the name “Parallel computing for power system climate resiliency: solving a large-scale stochastic
capacity expansion problem with mpi-sppy”, authored by Tomas Valencia Zuluaga, Amelia Musselman,
Jean-Paul Watson and Shmuel Oren. See Acknowledgements at the beginning of this chapter for a brief
description of the individual contributions of the author of this thesis to the work presented in this chapter.
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD Program
under Project 22-SI-008, and by the Advanced Grid Modeling Program of the Office of Electricity of the
U.S. Department of Energy. I would also like to thank Gurobi for providing the academic license used to
run all tests.
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The work presented in chapters 4 and 5 is the result of a collaboration with Lawrence Liver-
more National Laboratory (LLNL), during two summer internships at LLNL and subsequent
LLNL-funded graduate student research appointments at UC Berkeley. As is natural in such
collaborations, the efforts of different people contributed to the resulting work. I do not in-
tend to claim that the totality of the models and algorithms presented in this chapter are
my own. This section clarifies individual contributions of the LLNL team members to the
work presented here.

The model proposed is based on the model by Go, Muñoz, and Watson [35]; the mod-
ifications proposed in this chapter are the result of a joint effort with Amelia Musselman.
Complementing the California Test System (CATS) with data for our capacity expansion
model was an effort led by Amelia Musselman. Details about this process can be found in a
forthcoming paper [72].

Minda Monteagudo procured the climate projection data and the electricity load forecast
data used as baseline to obtain the weather-adjusted load timeseries. The model to estimate
weather impacts on electricity demand is also her work [67]. Matthew Signorotti developed
the software tool that produces timeseries of potential generation availability for wind and
solar power from the output of downscaled projected climate data [95], and provided the
generation availability timeseries used in all tests. The model reformulations for minimizing
spurious transmission losses (Section 4.3.6), as well as the runtime-dependent Mixed Integer
Program (MIP) gap heuristic feature (Section 4.4.2) were proposed by the author of this
thesis. The software implementation of these features and the overall methodology in mpi-
sppy (Section 4.4) was mainly undertaken by the author of this thesis, as was preparing and
running all the computational tests. Jean-Paul Watson was the project lead; he and Amelia
Musselman contributed numerous useful suggestions during weekly conversations.

4.1 Introduction

Widespread penetration of renewable, intermittent, and decentralized generation resources
is rapidly transforming the power grid and increasing its sensitivity to weather. Maintaining
a resilient power grid as this transition unfolds will require strategic infrastructure invest-
ments. The recent Net-Zero America study [45] estimates that achieving carbon neutrality
by 2050 will require quadrupling previous average annual build rates for renewable generation
and increasing the total installed transmission capacity by a factor between 3 and 5. Incor-
porating climate projections into expansion planning tools can improve their relevance to
decision makers, but the results are only meaningful if the uncertainty associated with these
projections is also considered. Stochastic optimization is well-suited for this purpose, but of-
ten leads to computationally challenging optimization problems, for which high-performance
computation can be a very valuable asset.

Developing implementable expansion plans for an efficient and resilient power system
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requires both sufficiently high geographical resolution to accurately represent power system
components and a sufficiently large representative set of scenarios to encompass all relevant
potential weather impacts. The curse of dimensionality usually forces planners to face a
tradeoff between these two dimensions.

The first computational challenge arises due to the size of the power system model. It is
common to use very coarse geographic resolution models, representing entire states or nations
as a single node in the power network. Obtaining actionable decisions from these unrealistic
representations of the power grid requires iteratively solving increasingly high-resolution
optimization models for each subregion of the grid. Solving power system planning models
in this way not only leads to sub-optimal solutions but also underestimates the variability
of wind and solar resources and load by aggregating these resources across a large area.
To address the need for a realistic power system model suitable for research studies, the
CATS testcase was recently developed [101]. This system, which we adopt and extend for
the tests presented in this chapter, includes over 8,000 buses for the state of California. For
comparison, a model often used for expansion plans in the literature has 240 buses for the
entire U.S. Western Interconnection [115].

The second computational challenge is in adequately capturing the uncertainty, which we
address in this work using stochastic optimization. Even without consideration of climate-
dependent uncertainties, stochastic optimization has been shown to have significant economic
benefits for power grid capacity expansion planning when compared to deterministic opti-
mization and heuristic scenario planning [35, 70]. Climate uncertainty underscores these
benefits. For example, in [68], a multi-level model is proposed to optimize a convex com-
bination of expected and worst-case cost, as a balance between cost and security in the
Brazilian power system, but the long-term uncertainty is reduced to just three states regard-
ing occurrence of El Niño. A rapidly changing climate requires climate model projections,
rather than just historical data or stylized low-dimensional models, to be fed into capacity
expansion models. However, despite recent advances in global circulation model downscal-
ing algorithms to obtain multi-decadal, high-resolution weather projections, the uncertainty
associated with these projections is substantial, and so can be the potentially adverse effect
of picking a single deterministic timeseries to inform investment plans.

Despite this necessity, the usage of stochastic optimization in actual planning processes is
still modest, with computational limitations being an often-cited reason for preferring deter-
ministic models. Muñoz et al. [71, 70] and Go, Muñoz, and Watson [35] lay the ground-work
for using stochastic programming for capacity expansion planning, addressing the aforemen-
tioned tradeoff through model simplifications. In [71], a scalable stochastic expansion model
is proposed, using decomposition by scenarios, with tests conducted on a universe of 8,760
one-hour scenarios that is reduced to 100-500 scenarios after clustering, on the geographi-
cally simplified 240-bus WECC test case. However, interconnection between time periods are
neglected, which does not allow storage or other inter-temporal resources to be represented.
Inter-temporal storage decisions are included in [35], but only a small, 24-bus, test-case with
5 scenarios is solved.

In the examples above, the scenarios of the stochastic optimization problem are obtained
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by constructing a probability space from historical data, then reducing that probability space
to a sample space of representative days or hours through statistical clustering techniques. A
similar approach can be taken by substituting future weather projections for historical data,
which is what we do in this work. We propose thus a climate-dependent stochastic generation,
transmission, and storage capacity expansion model adapted from the model proposed in [35]
and solve this model for a realistically-sized test case of California, leveraging mpi-sppy and
High Performance Computing (HPC) resources at LLNL.

Structure of this chapter

In the work presented in this chapter, we solve a stochastic, nodal capacity expansion plan-
ning problem for the aforementioned high spatial-resolution, realistic test system of the
California electricity grid [101], with a large number of scenarios derived from the output
of a downscaled climate model. In Section 4.2, we go over some preliminaries about CEP,
parallel computing for stochastic optimization, the mpi-sppy tool, and climate models. In
Section 4.3, we present the mathematical model proposed. In Section 4.4, we present the so-
lution approach followed: implementing the Progressive Hedging Algorithm (PHA) to utilize
scenario decomposition in a HPC cluster. We present some generalities of the algorithm and
focus on the key features of our implementation. Finally, results are presented and discussed
in Section 4.5.

4.2 Preliminaries

In this section, we briefly review some necessary preliminaries about CEP models, the mpi-
sppy tool for using parallel computing for stochastic optimization, and climate models.

4.2.1 Capacity expansion planning

Power system infrastructure projects have long (multi-year) construction times, require very
large investments, often of public funds, and affect the cost and reliability of the electricity
service for all consumers, which is essential in modern societies. Accordingly, transmission
and generation expansion planning is a very well-studied problem, for which copious litera-
ture can be found. Models proposed for CEP differ by their decision-making structure, the
scope of the expansion plan, the level of detail of the model and how uncertainty is addressed,
among other aspects. We attempt here a very brief overview to provide the relevant context
for the model that is proposed in this chapter. Useful reviews for the interested reader can
be found in [22, 36, 41, 70, 71], among many other references.

Decision-making structure The electrical power system developed as a vertically in-
tegrated natural monopoly, so all decisions, including both long-term investment decisions
and everyday operational decisions, were made under the framework of a cost-minimizing,
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centralized decision maker. Accordingly, most models use a central planner perspective that
minimizes total cost (and/or maximizes social welfare). After the liberalization of electricity
markets in many jurisdictions starting in the late 1980’s, the generation and retail portions
of the business were opened to competition, but the transmission and distribution activities
remained a regulated, natural monopoly2. As a consequence, generation and transmission
expansion decisions were no longer made by the same agents. Decentralized, multi-level
equilibrium, leader-follower models have been proposed to better capture that reality [84,
90].

Even for regions where the expansion plan is no longer centrally mandated, some central
oversight of private long-term plans is required [26, 97], so a model adopting a central
planner’s perspective continues to be a relevant tool in CEP.

Scope of the expansion plan Driven by computational challenges, most conventional
CEP models address the Generation Expansion Planning (GEP) problem and the Trans-
mission Expansion Planning (TEP) problem separately. As MIP tools and computational
capabilities improve over the years, co-optimization of generation, transmission, and storage
resources have become more common [36], which can prove to be very valuable as penetration
of intermittent renewable resources increases [35].

Temporal and geographic resolution Power system investments are very costly invest-
ments that can take years to build and decades to pay off. CEP models must therefore span
a long horizon, often of several decades. It quickly becomes computationally intractable to
maintain a high level of detail with such a large temporal scope; a tradeoff ensues affecting
many model features, including geographic and temporal resolution, formulation of power
flow, and the timeline of decisions.
Zonal representations are common, especially in GEP, but at such a high level of aggrega-
tion, accurate estimates of transmission congestion, which is key in determining the need for
load shedding and hence for assessing climate resiliency, may be lost. Instances of capacity
expansion models that maintain the full detail of the transmission network, and thus have
comparable sizes to the one of this work, exist in the literature, but are solved via determin-
istic scenario planning [86], or, if considering uncertainty, for a significantly reduced number
of scenarios [62].

Temporal resolution is also sacrificed: rather than trying to model every time period of
the planning horizon, only a handful of snapshots, usually called representative hours, are
kept. That comes at the cost of dropping inter-temporal constraints like unit commitment,
ramping limitations, and storage dynamics.

Power flow representation The conventional representation of power flow in transmis-
sion grids is the so-called AC power flow. Although very accurate, this formulation is nonlin-

2 For more about this history, see e.g. [49, 96, 98].
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ear and nonconvex3, so its usage for long-term planning and large-scale system is limited. A
common, tractable alternative is the so-called DC power flow representation, in which repre-
sentation of voltage variations, reactive power flow and losses are ignored. An even simpler
representation is the network flow model, sometimes called transportation or pipeline model,
where full control over the flow of electricity in a grid is assumed. This is the representa-
tion of power flow adopted in this chapter. The DC power flow, very common in small and
medium-sized systems, can become challenging at larger scales. We look into these aspects
with more detail in Chapter 5.

Multistage vs. two-stage CEP is a continuous process in which decisions are made
by different stakeholders at different points in time, affecting subsequent decisions being
made. A multistage formulation allowing for investment decisions at several points in time
can therefore better capture the decision process, but will make a stochastic formulation
significantly more challenging [2]. In two-stage formulations, it is assumed that all investment
decisions are made at the same time, and that all projects are constructed during some time
previous to the target horizon, which typically lies several years in the future. Although less
representative of the true decision process, this compromise simplifies the computational
challenge while still being informative for decision makers.

Uncertainty representation Models also differ by how they address the uncertainty
associated with such a large temporal scope. There are numerous sources of uncertainty
in CEP models: investment and operational costs, future demand, price and availability
of fuel for electricity generation, availability of intermittent energy sources for hydro, wind
and solar power, public policy at different jurisdictional levels, and technological advances
to just name the main ones. Including all of these would lead to an intractable model, so
it is common to formulate deterministic optimization problems and address these issues via
sensitivity analyses of a handful of parameters.
Alternatively, the uncertainty can be directly incorporated into the model, usually via a
discretization (or sampling) of the probability space. Appropriate levels of risk aversion can
then be achieved by considering a corresponding risk measure, ranging from risk-neutral sto-
chastic optimization where expected cost is minimized, to risk-adjustable conditional Value-
at-risk formulations, all the way to robust optimization formulations, or even combinations
thereof [68].

4.2.2 Parallel computing for stochastic optimization

Two-stage stochastic optimization problems are classic examples of optimization problems
with a block-angular structure, i.e. optimization problems where only a handful of variables
(first-stage, investment variables) couple otherwise independent variables (second-stage, op-
eration variables). Thus, if first-stage variables are fixed to a certain value, the stochastic

3Although numerous convex relaxations and approximations exist. See e.g. [100].
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optimization problem can be decomposed into much smaller operational subproblems that
can be solved independently. Problems with block-angular structure are thus very good
candidates for iterative solution algorithms with the broad structure of Algorithm 5. Two
algorithms that implement that structure are the L-shaped method [9] and the Progressive
Hedging Algorithm. [9, 21, 94].

repeat
Fix the first-stage variables to some value.
Solve all second-stage subproblems for that fixed value.
Update the value of the first-stage variable, possibly by solving a first-stage
master problem, based on the subproblems results.

until some termination criterion is met
Algorithm 5: General structure of a decomposition algorithm for problems with block-
angular structure

Since subproblems are independent once the first-stage variable is fixed, they can be
solved simultaneously if computational resources are available. This is what makes these
problems very well suited for implementation in HPC clusters, where hundreds of compu-
tation cores are available for parallel execution. Setting up a code to run in parallel in an
HPC cluster is not a trivial task, so having a tool that facilitates it is very helpful.

mpi-sppy

mpi-sppy [50] is a recently developed extension of the Pyomo [14, 40] optimization package in
Python, specifically designed to solve stochastic optimization problems in HPC environments
using the Message Passing Interface (MPI). We highlight here the two main features that
make this tool so valuable for this work: the simplified implementation of the PHA in an
HPC cluster, and its hub-and-spokes architecture. Note that we describe these features here
in terms of the PHA because that is the method chosen in this work, but mpi-sppy does not
use that algorithm exclusively: the L-shaped method is also implemented, and the framework
is compatible with other scenario-decomposition-based algorithms.

Simplified implementation Any parallel program requires some degree of communica-
tion between the different processes that run simultaneously, in order to assign tasks to
each process and collect the results of the distributed work. MPI is a very commonly used
standard for this purpose. For an algorithm following the structure of Algorithm 5, such
communication steps include, for instance, assigning subproblems to individual processes,
communicating updated values of first-stage variables to all processes and collecting second-
stage results from them. mpi-sppy uses the Python implementation mpi4py [25] of MPI to
perform these communication tasks, so that the user does not need more than a few lines of
code to setup the model.
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Moreover, mpi-sppy already has an implementation of the Progressive Hedging Algo-
rithm, including numerous common heuristics and features, e.g. fixing variables. Some of
the mpi-sppy features that were used and extended in this work are mentioned in Section
4.4.2.

Hub-and-spokes architecture4 In the mpi-sppy architecture, processes5 are sorted into
different functional groups, called cylinders. The main cylinder is the hub, which solves the
conventional PHA, with subproblem solutions being parallelized across the processes that
belong to it. A known shortcoming of the PHA is that before convergence, there is no
guarantee regarding the quality of the solution, i.e. no lower or upper bounds on the optimal
cost of the CEP. Furthermore, for MIPs, interim solutions are most likely non-integer and
hence unfeasible, so it does not provide a candidate solution in case of early termination of
the algorithm.

In mpi-sppy, optimality bounds are obtained by the other groups of processes, called
spokes. Each spoke runs an algorithm that can be decomposed by scenario subproblems and
parallelized across the spoke’s processes. They can get information from the hub to form
and update subproblems, and return information to the hub from which an outer or inner
bound6 of the stochastic optimization problem can be obtained. The architecture is depicted
in Fig. 4.2.1.

An example of an outer bound spoke is running a variant of PHA without quadratic terms,
i.e. the Lagrangian subproblem. This provides valid outer bounds of the subproblem optimal
cost, and under certain conditions, may follow an independent multiplier update rule [33]. An
example of an inner bound spoke is successively evaluating the first-stage solution of each
subproblem on all other subproblems to obtain a fully implementable (feasible) solution.
Note that inner bounds also provide a solution candidate in case of early termination of the
algorithm. Several spokes of each type may be run concurrently, so that the best bound
obtained so far can be used by the hub. Outer and inner bounds are used by the hub to
obtain optimality gaps and decide on an early termination of the overall algorithm.

4.2.3 Climate models

Among the numerous sources of uncertainty in CEP, we focus in this work on climate and
weather uncertainty. In particular, our model takes into account how climate and weather
may affect the availability of generation resources and electricity demand during the planning
horizon, which affects the need for generation and transmission expansion. The paragraphs
that follow are a summary of [24], a great introductory-level text about climate projection
data for models of energy systems. The reader is encouraged to consult that text and the
references therein for more details.

4This paragraph assumes some familiarity with the PHA. The unfamiliar reader may prefer to come back
to this paragraph after reading Section 4.4.1.

5Note that each process may, and in our tests, does, have access to several CPU cores.
6For minimization problems, outer bounds are lower bounds and inner bounds are upper bounds.
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Outer bounder spoke

Inner bounder spoke

Hub cylinder

Processes (ranks)

CPU core

Figure 4.2.1: Diagram of mpi-sppy’s hub-and-spokes architecture. Each process (rank in MPI
nomenclature) corresponds to a scenario subproblem. Typically, information going from the hub
to the spokes includes PHA weights for each scenario and the solution average across scenarios.
Spokes typically send an upper or lower bound back to the hub. Note that each process may be
assigned several CPU cores to exploit lower-level parallelization in certain tasks, e.g. linear algebra
operations and branch & bound exploration by the optimization solver.

Craig et al. [24] enumerate five requirements for climate data for CEP models. The data
should:

1. have sufficient spatial and temporal resolution,

2. be synchronous (maintain relevant correlation between inputs),

3. be convenient to process,

4. be computationally manageable, and

5. accurately represent relevant meteorological data.

Traditional CEP models have used historical climate data, which satisfy these requirements,
and restrict their analysis to geographically and temporally reduced scopes. However, as
human-made climate change increases the frequency and intensity of events that deviate from
historical behavior, the probability of such an approach leading to suboptimal investment
plans increases, and the traditional approach becomes less sensible. In this work, the output
of climate projection models is used instead.

Climate projection models for energy systems can be seen as a serial sequence, or pipeline,
of processes, depicted in Fig. 4.2.2, based on the methodology of [95]. The process starts
with Global Circulation Models (GCMs), physics-based models of the thermodynamics of
atmospheric circulation at coarse spatial resolution, with a scope of several decades for the
entire planet. A multitude of parameters and modeling choices affect the outcome of GCMs,
so great effort is spent in tuning and validating models against available past data [44].
Different GCMs may have different spatial and temporal scopes, and define different metrics
for validating the model, which leads to different degrees of validity in CEP applications.
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Figure 4.2.2: Data pipeline for climate and weather inputs for the CEP model. The output of
GCMs, low-resolution atmoshpheric variables is input into a downscaling model, which produces
surface-level variables with high spatial resolution, like surface temperature, humidity and wind
speed. These variables are the input of specific models that produce hourly timeseries for the
availability of each generation technology and the electricity load at each location in the network.

The next step is downscaling, a process by which the coarse atmospheric data output
of GCMs is converted to surface-level quantities relevant for modeling energy systems. Dif-
ferent methodologies, including statistics-based and dynamics-based approaches, exist for
performing this process, and, once again, can have significantly different results depending
on the final-use in mind for the data. In our tests, we use the output of the California
Regionally Refined Model (CARRM) [116].

Finally, surface-level climate and weather timeseries are fed to appropriate models to
obtain impacts on the availability of energy resources (e.g. output of solar and wind power
plants, inflow into hydropower dams, transmission line load-carrying capability, etc.) and
forecasts of electricity demand (e.g. impact on heating and air-conditioning demands).

The climate science and energy system modeling communities are becoming increasingly
aware of the gap between the climate data output by climate projection models and the
input needed by models of energy systems7. Accordingly, models and methods have been

7The project at LLNL under which this work was performed is evidence of this awareness.
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and continue to be developed which specifically aim to be relevant and valid for use in the
planning of energy infrastructure, e.g. the Department of Energy’s Energy Exascale Earth
System Model (E3SM) [53], which we use in our tests.

Nonetheless, it remains true that including climate data from just one year of one param-
eterization of one model may question the validity of the investment plan obtained from the
CEP model. CEP models that aim to enhance climate resiliency with some credibility should
therefore be capable of handling data from multiple sources simultaneously to account for
the associated uncertainty. This leads to large-scale CEP models that pose computational
challenges. This is the problem we address in the work presented in this chapter.

A note about the term ‘scenario’ Among the numerous exogenous parameters that
affect the outcome of GCMs, one to which a lot of attention is paid, because of its significant
impact, is the assumed behavior of the biosphere, and in particular, human activity. To ac-
count for this unpredictability, GCM datasets are published for different parameterizations of
the model. Most importantly among them are Representative Concentration Pathways [61],
different assumptions agreed upon by the climate science community, about the rate at which
humans will continue to emit CO2 into the atmosphere over the next decades.

These different parameterizations are referred to in the climate science field as “sce-
narios”. In the context of stochastic programming, scenarios are possible realizations of
stochastic processes. In particular, for two-stage stochastic optimization with a discrete
probability space, like we have here, a scenario is each representative operational horizon.
Certain parameters and variables in the model are indexed by scenarios, and may have
scenario-dependent values. In this thesis, we always use the term scenario in the stochastic
optimization sense.

4.3 Mathematical model for CEP

Our capacity expansion model is an adaptation of the model proposed in [35]. We give first
a high-level description of the model before providing a full model description. At the end
of the section, we discuss briefly about our model features that differ from the reference.

4.3.1 General description

Our capacity expansion model is a two-stage stochastic program that co-optimizes gen-
eration, transmission and storage investments in the first stage and solves a multi-period
Optimal Power Flow (OPF) problem in the second stage. Second-stage suproblems, i.e.
representative days, differ from each other in the hourly nodal demand and generation avail-
ability.

Renewable generation and storage investments are modeled as continuous (installed ca-
pacity), thermal generation investments as integer (number of installed units), and transmis-
sion investments as binary (build or no-build for candidates) variables. All investment costs
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are assumed to be linear. Storage investments consist of two decisions8 : energy storage
capacity (in MWh, which can be interpreted as storage duration) and instantaneous power
charging/discharging capacity (in MW). These two decisions are made independently and
have linear costs.

In this chapter, the second-stage OPF is modeled with a transportation relaxation of
power flow incorporating transmission losses. Improved linear representations of power flow
are considered in Chapter 5. Ramping and start-up constraints are disregarded. Storage
levels are assumed to be cyclic (level at the end of the last period must equal the initial
storage level).

4.3.2 Nomenclature

Sets
B: Set of all buses (nodes) in the network. Indexed by b (or i,m, n where noted).
G: Set of generation types, indexed by g.
GR: Set of renewable generation types.
GZ: Set of generation types modeled with integer variables (turbine-generator set).
GR: Set of generation types modeled with continuous variables (inverter-based).
S: Set of storage types, indexed by s.
L: Set of transmission branches, i.e. transmission lines and transformers. Indexed by ℓ.
L†: Set of existing transmission branches.
L⋆: Set of candidate transmission branches.
L◦: Set of transmission branches modeled as lossless.
L•: Set of transmission branches modeled as lossy.
T : Set of periods in a representative horizon. Indexed by t.
Ω: Set of scenarios in the uncertainty set of the stochastic optimization problem. Indexed
by ω.

GZ and GR constitute a partition of G, i.e. GZ ∩ GR = ∅ and GZ ∪ GR = G. Similarly, L†

and L⋆ constitute a partition of L. L◦ and L• constitute a possibly different partition of L.
Index maps
o(ℓ): Origin bus (also called ‘from’ bus) of branch ℓ
d(ℓ): Destination bus (also called ‘to’ bus) of branch ℓ

Parameters
Existing resources
XG

b,g: existing generation of type g at bus b, in MW.

8 An alternative formulation for which data is easier to procure is to have only storage power conversion
capacity as decision variable, and use fixed ratios of storage duration (i.e. energy capacity) to power con-
version capacity. Different durations can then be included as different storage types. A version of the model
with this alternative formulation is currently under development at LLNL, and will be published after the
conclusion of this thesis.
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XS
b,s: existing storage capacity of type s at bus b, in MWh.

XS-PC
b,s : existing storage power conversion capacity of type s at bus b, in MW.

Fixed costs
CG-cap

ℓ : Capital cost for generator type g, amortized over its lifetime, in $/(MWy)
CS-cap

g : Capital cost of storage for storage type s, amortized over its lifetime, in $/(MWhy)
CS-PC-cap

s : Capital cost of power conversion for storage type s, amortized over its lifetime, in
$/(MWy)
CL-cap

s : Capital cost for branch candidate ℓ, amortized over its lifetime, in $/y
CG-FOM

g : Fixed operation and maintenance cost for generation type g, in $/(MWy).
CS-FOM

s : Fixed operation and maintenance cost for storage type s, in $/(MWhy).
CS-PC-FOM

s : Fixed power conversion operation and maintenance cost for storage type s, in
$/(MWy).
Variable costs
CG-fuel

g : Fuel cost, or equivalent per-MWh operating cost, for generation type g, in $/(MWh).
CG-VOM

g : Variable operation and maintenance cost for generation type g, in $/(MWh).
CS-dch

s : Variable discharge cost for storage type s, in $/(MWh).
CS-VOM

s : Variable operation and maintenance cost for storage type s, in $/(MWh).
Csh: Cost of load shedding, in $/MWh.
Operational parameters
P G
g : capacity per unit of generator type g, in MW.
Db,t,ω: demand at bus b during period t of scenario ω.
αb,g,t,ω: fraction of generation capacity of type g that is available at bus b during period t of
scenario ω.
ηS-ch: power conversion efficiency for storage type s when charging.
ηS-dch: power conversion efficiency for storage type s when discharging.
ηLℓ : efficiency of branch ℓ.
χℓ: reactance of branch ℓ, in p.u.
rℓ: resistance of branch ℓ, in p.u.
Fℓ: transmission capacity of branch ℓ in MW.
Construction and planning parameters
KB

b : maximum buildable capacity across generation types at bus b, in MW.
KG

g : maximum buildable capacity of generation type g across all buses, in MW.

KBG
b,g : maximum buildable capacity of generation type g at bus b, in MW.

KS
s : maximum buildable capacity of storage type s across all buses, in MWh.

KBS
b,s : maximum buildable capacity of storage type s at bus b, in MWh.

ρRPS: renewable portfolio standard, i.e. fraction of generated energy that must be from
qualified renewable generation types.
λRPS: penalty for RPS non-compliance, in $/MWh .
Other model parameters
T rep: number of times that the representative time horizon repeats in a year.
τ : length of each period t in a representative time horizon, in h.
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πω: probability assigned to scenario ω in the stochastic optimization problem.
Decision variables
Investment variables
xGb,g: new generation of type g at bus b, expressed as number of generation units.

xSb,s: new storage capacity of type s at bus b, in MWh.
xS-PCb,s : new storage power conversion capacity of type s at bus b, in MW.
xLℓ : binary variable indicating whether candidate ℓ is built.
Operation variables
pGb,g,t,ω: output of generator of type g at bus b during period t of scenario ω, in MW.

pSb,s,t,ω: energy stored (level) in storage facility of type s at bus b during period t of scenario
ω, in MWh.
pS-chb,s,t,ω: power input (charging) of storage facility of type s at bus b during period t of scenario
ω, in MW.
pS-dchb,s,t,ω: power output (discharging) of storage facility of type s at bus b during period t of
scenario ω, in MW.
pshb,t,ω: load shed at bus b during period t of scenario ω, in MW.
fℓ,t,ω: power flow through branch ℓ during period t of scenario ω, in MW.
f+
ℓ,t,ω: power flow through branch ℓ during period t of scenario ω, in direction o(ℓ) → d(ℓ),
in MW.
f−
ℓ,t,ω: power flow through branch ℓ during period t of scenario ω, in direction d(ℓ) → o(ℓ),
in MW.
pNC
ω : RPS non-compliance in scenario ω, in MWh.
Auxiliary variables and expressions
C inv: Annualized total investment cost in $/y.
Cop

ω : Operation cost of scenario ω excluding RPS non-compliance, expressed in $/y.
Cop-RPS

ω : Operation cost of scenario ω including RPS non-compliance, expressed in $/y.
Notation
Unless otherwise specified, the vector is noted by omitting the corresponding index, e.g.
f = [fℓ]ℓ∈L

4.3.3 Objective

The objective is to minimize the total cost of expanding, maintaining and operating the
system, which we break into an investment cost C inv and an expected operation cost Eζ [C

op
ω ].

The random variable ζ is used to represent in compact form all the scenario-dependent data.
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C inv =
∑
ℓ∈L⋆

CL-cap
ℓ xLℓ +

∑
b∈B

(∑
g∈G

(
CG-cap

g + CG-FOM
g

)
P G
g x

G
b,g

+
∑
s∈S

[(
CS-cap

s + CS-FOM
s

)
xSb,s +

(
CS-PC-cap
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s

)
xS-PCb,s

])
(4.1a)

Eζ [C
op
ω ] =

∑
ω∈Ω

πωC
op
ω =

∑
ω∈Ω

(
πωT

rep
∑
t∈T

∑
b∈B

τ ·
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Cshpshb,t,ω +

∑
g∈G

(
CG-fuel

g + CG-VOM
g

)
pGb,g,t,ω

+
∑
s∈S

(
CS-dch

s + CS-VOM
s

)
pS-dchb,s,t,ω

])
(4.1b)

The operation cost during each representative horizon ω is multiplied by T rep so that all
costs are in $/year.

Note that to obtain the total cost of maintaining and operating the system, we should
also include the fixed costs of existing generation and storage resources. However, since we
do not include retirements in our decision variables, these costs do not affect the optimization
problem, so we omit them here.

4.3.4 Decision variables

Investment variables

Transmission expansion is considered through a set of candidate investments L⋆, which can be
either built or not built, so the corresponding decision variables are binary. Some storage and
generation technologies have a modular characteristic with small module size, like inverter-
based technologies (solar photovoltaic, wind, battery storage). We thus consider that any
size can be built at a linear cost, and model expansion decisions with continuous variables.
Traditional generation technologies, based on a turbine and synchronous generator set, do
not have such a modular behavior with small module size. To avoid having an investment
plan with unrealistically small generation buildouts, those technologies are modeled with
integer variables, so that only integer multiples of commercial unit sizes can be built. We
thus obtain the domains of (4.2).

xGb,g ∈ Z+ ∀b ∈ B,∀g ∈ GZ (4.2a)

xGb,g ∈ R+ ∀b ∈ B,∀g ∈ GR (4.2b)

xS-PCb,s , xSb,s ∈ R+ ∀b ∈ B, ∀s ∈ S (4.2c)

xLℓ ∈ {0, 1} ∀ℓ ∈ L⋆ (4.2d)
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Operation variables

All operation variables are continuous (we do not include unit commitment or ramping
in the second-stage problem). The outputs of all generators are non-negative. Storage
charge and discharge are modeled separately in order to account for conversion losses, so
the corresponding variables are non-negative too. Load shedding and Renewable Portfolio
Standards (RPS) non-compliance are also non-negative continuous variables.

Branch flows Transmission branches can be modeled as lossless or lossy. Power flow
through lossless transmission branches is represented by a single, sign-unconstrained variable
fℓ, while lossy transmission branches are assigned one non-negative variable for flow in each
direction, so that net flow in the o(ℓ)→ d(ℓ) direction is f+

ℓ − f−
ℓ . See section 4.3.6 for more

details. The domains of operational variables are those of (4.3).

pGb,g,t,ω ∈ R+ ∀b ∈ B, g ∈ G, t ∈ T , ω ∈ Ω (4.3a)

pSb,s,t,ω, p
S-ch
b,s,t,ω, p

S-dch
b,s,t,ω ∈ R+ ∀b ∈ B, s ∈ S, t ∈ T , ω ∈ Ω (4.3b)

pshb,t,ω ∈ R+ ∀b ∈ B, t ∈ T , ω ∈ Ω (4.3c)

pNC
ω ∈ R+ ω ∈ Ω (4.3d)

f+
ℓ,t,ω, f

−
ℓ,t,ω ∈ R+ ∀ℓ ∈ L◦, t ∈ T , ω ∈ Ω (4.3e)

fℓ,t,ω ∈ R ∀ℓ ∈ L•, t ∈ T , ω ∈ Ω (4.3f)

4.3.5 Constraints

Construction constraints

We consider construction limits for new generation and storage resources. Limits are con-
sidered for each generation type at each bus (4.4a), each generation type across all buses
(4.4b), and each bus across all generation types (4.4c). For storage, limits are considered
for the energy capacity only (not for power conversion), for each storage type at each bus
(4.4d) and each storage type across all buses (4.4e). Other combinations and limits for power
conversion capacity were not considered in this formulation, but could easily be added to
the model.
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P G
g x

G
b,g +XG

b,g ≤ KBG
b,g ∀b ∈ B, g ∈ G (4.4a)∑

b∈B

(
P G
g x

G
b,g +XG

b,g

)
≤ KG

g g ∈ G (4.4b)∑
g∈G

(
P G
g x

G
b,g +XG

b,g

)
≤ KB

b b ∈ B (4.4c)

xSb,s +XS
b,s ≤ KBS

b,s ∀b ∈ B, s ∈ S (4.4d)∑
b∈B

(
xSb,s +XS

b,s

)
≤ KS

s s ∈ S (4.4e)

Operational constraints

Physical limits of generation and storage The output of each generator cannot ex-
ceed the available power, which is dictated by the installed capacity and the availability of
intermittent resources (4.5a). Similarly, the charge and discharge of storage facilities cannot
exceed the installed power conversion capacity (4.5b),(4.5c), and the availability of storage
must be respected (4.5d). Note that this model does not consider a minimum operational
storage level other than 0, but this could easily be added to the model if deemed appropriate.

pGb,g,t,ω ≤ αb,g,t,ω

(
XG

b,g + P G
g x

G
b,g

)
∀b ∈ B, g ∈ G, t ∈ T , ω ∈ Ω (4.5a)

pS-chb,s,t,ω ≤ xS-PCb,s +XS-PC
b,s ∀b ∈ B, s ∈ S, t ∈ T , ω ∈ Ω (4.5b)

pS-dchb,s,t,ω ≤ xS-PCb,s +XS-PC
b,s ∀b ∈ B, s ∈ S, t ∈ T , ω ∈ Ω (4.5c)

pSb,s,t,ω ≤ xSb,s +XS
b,s ∀b ∈ B, s ∈ S, t ∈ T , ω ∈ Ω (4.5d)

Energy storage The change in energy storage level at each facility is driven by its charge
and discharge (4.6a). To avoid end-of-horizon effects, we use the last period of the horizon as
the initial storage state (4.6b). A constraint to impede simultaneous charging and discharging
of storage units is omitted. We discuss more about this in Section 4.5.

pSb,s,t,ω = pSb,s,t−1,ω + τ
(
ηS-chs pS-chb,s,t,ω − pS-dchb,s,t,ω

)
∀b ∈ B, s ∈ S, t ∈ T \ {|T |} , ω ∈ Ω (4.6a)

pSb,s,0,ω = pSb,s,|T |−1,ω + τ
(
ηS-chs pS-chb,s,t,ω − pS-dchb,s,t,ω

)
∀b ∈ B, s ∈ S, ω ∈ Ω (4.6b)
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Load shedding Shedded load cannot exceed demand (4.7).

pshb,t,ω ≤ Db,t,ω ∀b ∈ B, t ∈ T , ω ∈ Ω (4.7)

Power balance In this chapter, we consider a nodal representation of power flow, so the
energy balance is ensured at each individual bus (4.8). Note that for each lossy branch ℓ, it
is assumed that only a fraction ηLℓ makes it to the other end of the branch, in each direction.
See section 4.3.6 for more details.

∑
g∈G

pGb,g,t,ω +
∑
s∈S

(
ηS-dchs pS-dchb,s,t,ω − pS-chb,s,t,ω

)
−

∑
ℓ∈L◦:o(ℓ)=b

fℓ,t,ω +
∑

ℓ∈L◦:d(ℓ)=b

fℓ,t,ω

−
∑

ℓ∈L•:o(ℓ)=b

(
f+
ℓ,t,ω −

(
1− ηLℓ

)
f−
ℓ,t,ω

)
−

∑
ℓ∈L•:d(ℓ)=b

(
f−
ℓ,t,ω −

(
1− ηLℓ

)
f+
ℓ,t,ω

)
+ pshb,t,ω = Db,t,ω ∀b ∈ B, t ∈ T , ω ∈ Ω (4.8)

Power flow & transmission limits In this chapter, we adopt a simplified version of
power flow where it is assumed that power can be routed through the network as desired.
This model is often called a transportation, or pipeline, formulation of power flow, and it
ignores the physics that dictate how electricity flows in the grid. In chapter 5, improved
linear representations of power flow are considered, and the impact of their inclusion on
the investment plan obtained are assessed. The transportation formulation corresponds to
a classic capacitated network flow problem, for which we only need to consider the nodal
balance constraints (4.8), and the thermal capacity of the branches. Limits for existing
branches are enforced by (4.9a) and (4.9b), while (4.9c) and (4.9d) ensure them for built
branches, as well as that unbuilt branches have no flow. Note we consider separately lossless
and lossy branches.

−Fℓ ≤ fℓ,t,ω ≤ Fℓ ∀ℓ ∈ L◦ ∩ L†, t ∈ T , ω ∈ Ω (4.9a)

f+
ℓ,t,ω + f−

ℓ,t,ω ≤ Fℓ ∀ℓ ∈ L• ∩ L†, t ∈ T , ω ∈ Ω (4.9b)

−Fℓx
L
ℓ ≤ fℓ,t,ω ≤ Fℓx

L
ℓ ∀ℓ ∈ L◦ ∩ L⋆, t ∈ T , ω ∈ Ω (4.9c)

f+
ℓ,t,ω + f−

ℓ,t,ω ≤ Fℓx
L
ℓ ∀ℓ ∈ L• ∩ L⋆, t ∈ T , ω ∈ Ω (4.9d)

Planning constraints

Renewable Portfolio Standards (RPS) constraints represent policies in place in certain juris-
dictions, whereby it is mandated that at least some fraction ρRPS of annual energy produced
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must be generated with qualified renewable resources. This is the only constraint that couples
operational variables from different scenarios, so it needs special treatment for a successful
decomposition approach. We discuss more about this constraint in the next section.

∑
ω∈Ω

πω ·

∑
t∈T

∑
b∈B

∑
g∈GR

pGb,g,t,ω

 ≥ ρRPS
∑
ω∈Ω

πω ·
(∑

t∈T

∑
b∈B

∑
g∈G

pGb,g,t,ω

)
(4.10)

4.3.6 Differences with respect to base model

In the following paragraphs, we describe in more detail the set of investment candidates, our
model for transmission losses, and the RPS constraints, all of which deviate from the model
in [35].

Investment candidates

In the model description of [35], the set of generation and storage investment candidates
consists of all combinations of candidate technologies and power system buses. This set
is later reduced to an explicit list of candidate units when the problem data is specified.
We make this methodology precise by considering all combinations of technologies and buses
subject to threemaximum potential capacity constraints. The three constraints limit the total
installed capacity for each storage/generation type at each bus, for each type across all buses,
and for each bus across all types. In actual instances of the model, the maximum potential
capacity is zero for many generator type, location combinations, allowing the number of
variables included in actual instantiations of the model to remain tractable.

Transmission losses

As is common when performing planning studies, the model in [35] disregards transmission
losses. However, ignoring these losses can significantly affect the solution obtained from
the model, especially for systems with renewable generation, in which power may need
to be transported over very large distances [32, 74]. Accurately capturing the quadratic
nature of transmission losses without losing the model’s linearity requires adding several
linear segments for each transmission line, which greatly increases the number of variables
in the model. To avoid this increase, we consider a single-segment linear approximation.
Specifically, we consider each transmission branch ℓ to have a constant efficiency ηLℓ given
by

ηLℓ = 1− Fℓrℓ

(
1 +

r2ℓ
χ2
ℓ

)
, (4.11)

where χℓ is the reactance, rℓ is the resistance, and Fℓ is the long-term capacity rating of
branch ℓ, all in p.u. This linear approximation, based on Fitiwi et al. [32], is the result of
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taking a first-order approximation of the quadratic model around the point fℓ,t,ω = Fℓ and
forcing the intercept at 0. This will overestimate losses in transmission branches that are
loaded below their capacity, leading to somewhat conservative solutions. In contrast, assum-
ing lossless transmission across long distances will significantly underestimate transmission
capacity needs.

In order to correctly assign losses to buses, we also deviate from [35] by using two non-
negative variables f+

ℓ , f
−
ℓ to represent branch flows, as illustrated in Fig. 4.3.1. Note that

formulation (b) only represents formulation (a) accurately if f+
ℓ · f−

ℓ = 0. Otherwise, model
(b) will have higher losses than the corresponding model (a) with same net outgoing branch
flow.

if 𝑓ℓ < 0

𝑓ℓ
"

𝑓ℓ#
(1 − 𝜂ℓ)𝑓ℓ# (1 − 𝜂ℓ)𝑓ℓ"

𝑓ℓ

1 − 𝜂ℓ |𝑓ℓ|

if 𝑓ℓ > 0

(a) (b)

Figure 4.3.1: Proposed representation of flow in transmission branches to model transmission losses.
In model (a), the flow is represented by sign-unconstrained variable fℓ. The losses can be computed
as a fraction of |fℓ|. The switch determines the end of the branch to which losses are assigned
depending on the direction of flow. In model (b), the same is achieved by breaking the sign-
unconstrained variable into positive and negative parts, representing flow in each direction, so that
fℓ = f+

ℓ − f−
ℓ . Model (b) and model (a) are equivalent if f+

ℓ · f−
ℓ = 0.

Simplifying transmission losses Using one variable for flow in each direction as de-
scribed above adds |L| · |T | variables to each scenario subproblem (over 260,000 variables
in our test case), which can have a large impact on subproblem solution time. Further-
more, note that for branches with negligible losses, i.e. ηLℓ ≈ 1, replacing fℓ with f+

ℓ , f
−
ℓ

increases degeneracy, as described next. Observe that for given f̂+
ℓ , f̂

−
ℓ , any f

+
ℓ , f

−
ℓ such that

f+
ℓ − f−

ℓ = f̂+
ℓ − f̂−

ℓ , and such that f+
ℓ + f−

ℓ ≤ Fℓ, will be a feasible solution with same
objective value. Degeneracy can extend the crossover time, i.e. the time needed to obtain a
basic feasible solution from an interior solution with same cost, which can be problematic in
Mixed Integer Linear Program (MILP) solvers.

To mitigate these undesired effects, we propose partitioning the set of transmission
branches into lossy branches L• and lossless branches L◦. Lossy branches are modeled
as described above, while flow through lossless branches is modeled with a single sign-
unconstrained variable fℓ. A threshold rthresh is defined to assign each branch ℓ to one
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of the two sets:

ℓ ∈
{
L◦ if 1− ηLℓ > rthresh

L• otherwise
(4.12)

Testing across different loading configurations in our test case, we have found that rthresh =
5 · 10−3 p.u. reduces the number of additional variables by over 50% and the subproblem
solution time by nearly 50%, while still accounting for more than 80% of the losses in the
system. This is discussed in more detail in Chapter 5.

Spurious losses As seen in Fig. 4.3.1, making f+
ℓ and f−

ℓ simultaneously nonzero artifi-
cially increases the losses in a transmission element. We call these artificial losses spurious
losses. This phenomenon can be prevented, at high computational cost, by introducing a
binary variable for each branch and time period to enforce f+

ℓ · f−
ℓ = 0. This is normally

considered unnecessary, because spurious losses usually increase costs and would hence be
naturally avoided by the optimization model. However, during certain periods, if the Loca-
tional Marginal Prices (LMPs) at the ends of a transmission element are negative, creating
spurious losses will be optimal.

In the absence of policy incentives, negative LMPs are related with congestion during
unusual loading conditions and are rare [32]. In [74], they have been found to occur in less
than 0.2% of operating hours. The introduction of RPS constraints can create incentive for
artificial load loss (through transmission and storage loops) if not implemented properly. A
way of addressing this issue without increasing the computational burden is discussed next.

Renewable Portfolio Standards

The RPS constraint dictates that at least a fraction ρRPS of total energy generated during
a certain horizon (usually, annualy) should come from qualified renewable sources. Given
the nature of the data whence we obtain the scenarios in our stochastic program, scenarios
correspond to representative days of the target year, not to different realizations thereof.
Therefore, the RPS constraint should not be enforced for each scenario. Rather, it is formu-
lated using the expectation across scenarios as presented in (4.10). This constraint presents
a challenge for both computational tractability and model validity.

First, the expectation constraint couples the second-stage variables across scenarios. This
is not an issue in [35] because the extensive form of the problem is solved. However, when
implementing decomposition algorithms as we do in this work, second-stage decision vari-
ables must be independent across scenarios. A possible solution is to dualize the constraint
and add the corresponding Lagrangian term with multiplier λRPS to the objective, to create
a reformulation that is again decomposable by scenario. This approach is justified by the
existence of a Renewable Energy Certificates (REC) market where utilities may trade sur-
plus and shortfall of renewable energy production across days to satisfy the RPS mandate.
Nonetheless, it poses the additional problem of finding the right value for λRPS, the REC
price.
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In [71], where this approach is taken, three methods are proposed: (a) using the value
from real-world REC markets, (b) using the value of the dual variable of (4.10) in the solution
to the linear relaxation of the stochastic program in extensive form (impractical for very large
instances like ours), and (c) performing a sensitivity analysis until the achieved proportion
of renewable energy in total production is satisfactory. We implement the third option.

The second challenge, to which we alluded in the previous section, is inducing spurious
losses through negative LMPs. During days with low demand and high renewable availability,
the REC market can depress LMPs and make them negative in certain parts of the grid.
If this is widespread, the accuracy of the model is compromised, since there is an incentive
to under-invest in renewable generation facilities, and meet RPS targets by way of creating
artificial loads during such days instead. Tests in our model showed that if left uncontrolled,
spurious losses could increase to over 50% of total demand during certain operating hours.
Such an unrealistic behavior would put the validity of the whole model into question.

To address this issue while avoiding the computational burden of adding binaries to
prevent spurious losses, we make the RPS constraint a soft constraint enforced at each
scenario, so constraint (4.10) now takes the form of (4.13).

pNC
ω +

∑
b∈B,g∈GR

t∈T

pGb,g,t,ω ≥ ρRPS
∑

b∈B,g∈G
t∈T

pGb,g,t,ω ∀ ω ∈ Ω (4.13)

pNC
ω ≥ 0 is the soft constraint’s slack variable, i.e. i.e. the RPS target non-compliance of
each scenario, when there is some. A term λRPSpNC

ω is added to the operational costs of each
scenario, as shown in (4.14).

Cop-RPS
ω = Cop

ω + λRPSpNC
ω ∀ω ∈ Ω (4.14)

This model corresponds to a case where there is no REC market; instead, penalties are
assessed at the end of each representative horizon (day) and charged to utilities found to
be out of compliance. Our model is likely to over-incentivize renewable investments and
over-estimate expected operational costs, compared to an implementation of the RPS policy
as an expectation constraint, but is an acceptable compromise to include transmission losses
in the model.

4.3.7 CEP model

The two-stage stochastic, nodal capacity expansion planning problem that we consider in
this thesis is thus given by putting all of the above together, shown in compact form in
(4.15).
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minC inv + Eζ

[
Cop-RPS

ω

]
s.t. A⋄x ≥ b⋄ (4.15a)

M⋄
ωx+N⋄

ωyω ≥ ξ⋄ω ∀ω ∈ Ω (4.15b)

x ∈ X , yω ∈ Yω ∀ω ∈ Ω (4.15c)

x represents a concatenation of all investment variables xG, xS , xS-PC, xL, with X an abstract
representation of their domains (4.2). yω represents a concatenation of all operation variables
pGω, p

S
ω, p

S-ch
ω , pS-dchω , pshω , fω, f

+
ω , f

−
ω , p

NC
ω for scenario ω, with Yω an abstract representation of

their domains (4.3). Constraint (4.15a) corresponds to construction limits constraints (4.4).
Finally, constraint (4.15b) represents operation constraints (4.5)-(4.9), and the soft RPS
constraint (4.13). We have used superscript ⋄ in all symbols to avoid confusion with other
variables and parameters that use the same letters.

4.4 Solution approach with parallel computing

Problem (4.15) is a MILP, so in principle, one could try solving it by passing it to a com-
mercial solver. In the stochastic programming field, this is called solving the problem in
extensive form. Our problem, however, suffers from the curse of dimensionality: we are
interested in solving an instance of the problem on a system with almost 9,000 buses, on at
least hundreds of scenarios. At this scale, solving our MILP in extensive form without some
decomposition can be very difficult.

Instead, we use an implementation of the PHA, and make adaptations as needed to solve
the capacity expansion problem posed. Detailed and rigorous descriptions of the PHA can
be found in [30, 33, 46, 87, 110], among many other references. Here, we provide only
a high-level description of the strategy of the decomposition and the algorithm, applied
to our two-stage stochastic program, followed by a discussion of the main features of our
implementation that differ from conventional implementations of the PHA.

4.4.1 The Progressive Hedging Algorithm

We first offer an overview of the strategy behind the scenario decomposition in the PHA,
and then present the algorithm itself. This is meant as illustration for the unfamiliar reader
and not as a rigorous exposition. The interested reader is encouraged to consult the afore-
mentioned references for more details.

Decomposition strategy

Three steps are taken to decompose the two-stage problem (4.15) into a set of subproblems,
one for each scenario:
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1. Replicate first-stage variables

2. Relax and dualize the non-anticipativity constraint

3. Add a penalty to induce convergence

Replicating first-stage variables The first step is replicating the first-stage (investment)
variables x, creating one copy xω for each scenario ω. x is substituted with xω in constraints
(4.15a) and (4.15b), as well as in the expression of investment cost C inv, which we now call
C inv

ω . To ensure that the resulting optimization problem (4.16) is equivalent to (4.15), a
constraint is added to make all copies equal to each other (4.16c). This constraint is called
the non-anticipativity constraint, because if it is absent, a different investment xω could be
chosen for each scenario ω, anticipating the output of the uncertain second stage.

min
∑
ω∈Ω

πω
(
C inv

ω + Cop-RPS
ω

)
s.t. A⋄xω ≥ b⋄ ∀ω ∈ Ω (4.16a)

M⋄
ωxω +N⋄

ωyω ≥ ξ⋄ω ∀ω ∈ Ω (4.16b)

πωxω = πωx ∀ω ∈ Ω (4.16c)

x, xω ∈ X ∀ω ∈ Ω, yω ∈ Yω ∀ω ∈ Ω (4.16d)

Dualizing non-anticipativity constraint and decomposing into subproblems The
next step is dualizing the non-anticipativity constraint (4.16c), assigning it multipliers wω.
Without (4.16c), there are no longer any constraints coupling different scenarios. The con-
sensus first-stage decision variable x is replaced with a fixed parameter x̂, which will be
updated iteratively. Optimization problem (4.17) results, which can then be decomposed
into the subproblems given in (4.18).

min
∑
ω∈Ω

πω
(
C inv

ω + Cop-RPS
ω + wω (xω − x̂)

)
s.t. A⋄xω ≥ b⋄ ∀ω ∈ Ω (4.17a)

M⋄
ωxω +N⋄

ωyω ≥ ξ⋄ω ∀ω ∈ Ω (4.17b)

xω ∈ X ∀ω ∈ Ω, yω ∈ Yω ∀ω ∈ Ω (4.17c)
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minC inv
ω + Cop-RPS

ω + wω (xω − x̂)
s.t. A⋄xω ≥ b⋄ (4.18a)

M⋄
ωxω +N⋄

ωyω ≥ ξ⋄ω (4.18b)

xω ∈ X , yω ∈ Yω (4.18c)

Adding a quadratic penalty to induce convergence Finally, the quadratic penalty
term 1

2
ρ ∥xω − x̂∥2 is added to the objective function. In the convex case, this term is

important to obtain strongly convex subproblems, so that optimal solutions are unique, and
guarantee convergence of the algorithm. Note that this term vanishes when consensus is
reached, i.e. when xω = x̂ ∀ω.

minC inv
ω + Cop-RPS

ω + wω (xω − x̂) +
1

2
ρ ∥xω − x̂∥2

s.t. A⋄xω ≥ b⋄ (4.19a)

M⋄
ωxω +N⋄

ωyω ≥ ξ⋄ω (4.19b)

xω ∈ X , yω ∈ Yω (4.19c)

The algorithm

The classic PHA consists in iteratively solving each subproblem (4.19) and updating the
multipliers wω and consensus variable x̂ until some desired level of consensus is reached
for all first-stage variables across all subproblems (scenarios). A description is provided in
Algorithm 6.

Caveats in the nonconvex case The convergence of the PHA, as well as the optimality
of the result obtained at convergence, are only guaranteed in the convex case. However,
since our capacity expansion problem has mixed integers, it is not convex, and has no such
guarantees. The PHA for stochastic MILP is thus considered only a heuristic methodology.
It can be, however, a good heuristic, as discussed next.

4.4.2 Acceleration heuristicsis

The PHA is a very popular algorithm with numerous extensions and variants. Again, more
extensive reviews can be found in [33, 46, 110, 109]. Here, we do a quick overwiev of
some features implemented in our software to overcome the two challenges mentioned above:
accelerating convergence and obtaining optimality guarantees.
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/* 0-th iteration */

k ← 0
for ω ∈ Ω do

x
(k)
ω ← argminxω ,yω

(
C inv

ω + Cop-RPS
ω

)
:(4.19a)-(4.19c)

end

x̂(k) ←∑
ω∈Ω πωx

(k)
ω

for ω ∈ Ω do

w
(k)
ω ← ρ

(
x
(k)
ω − x̂(k)

)
end
/* main PHA algorithm */

repeat
k ← k + 1
for ω ∈ Ω do

x
(k)
ω ← argminxω ,yω

{(
C inv

ω + Cop-RPS
ω + w

(k)
ω

(
xω − x̂(k)

)
+ 1

2
ρ
∥∥xω − x̂(k)∥∥2)

: (4.19a)-(4.19c)}
end

x̂(k) ←∑
ω∈Ω πωx

(k)
ω

for ω ∈ Ω do

w
(k)
ω ← ρ

(
x
(k)
ω − x̂(k)

)
end

until
∑

ω∈Ω πω

∥∥∥x(k)ω − x̂(k)
∥∥∥2 < ϵ or k > iteration limit

Algorithm 6: Classic Progressive Hedging Algorithm

Accelerating convergence

In the PHA, the stochastic program is decomposed by scenario. As for any decomposition
algorithm, the key to a successful implementation is that each subproblem can be solved fast.
This section highlights measures undertaken to ensure that individual subproblems can be
solved in a relatively short time and convergence of first-stage variables (consensus) occurs
quickly.

Linearize quadratic term Despite recent advances in commercial solvers, quadratic
mixed integer programs remain harder to solve than MILPs and the quadratic (also called
proximal) terms (introduced in step 3 of the PHA scenario decomposition) can considerably
delay the subproblem solution times. To reduce this effect, we linearize the proximal terms
in the PHA subproblems. For binary variables, the quadratic term automatically reduces to
a linear term, so no special linearization is necessary. For integer and continuous variables,
an extra variable is added to represent the squared variables, and the quadratic penalty
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is under-approximated by successive linear cuts added as needed during the execution of
the algorithm [109]. It may seem inconsistent to take this approach here but discard doing
something similar to approximate quadratic transmission losses. However, note that we only
add linear sections for active first-stage variables, which is a much smaller number than
the number of lossy transmission branches in each scenario subproblem. This linearization
procedure is already included as a feature in the current mpi-sppy distribution.

Accelerating crossover The branch and cut algorithm implemented by commercial MILP
solvers like Gurobi requires a basic feasible solution to the linear relaxation of the problem
– the so-called root relaxation on which the algorithm branches. By design, the Simplex
Algorithm returns such a solution. For problems of large size, like the one considered here,
interior point algorithms are much faster, but require a crossover phase to convert their so-
lution into an extreme point optimal solution. The crossover process can be accelerated by
reducing degeneracy in the problem formulation. In our case, a few simple model improve-
ments like adding a reference bus and simplifying the model for branches with negligible
losses as described in section 4.3 were used to improve crossover time.

Setting ρ The value chosen for the parameter ρ, the coefficient associated with the
quadratic penalty term and the weight update step, is known to have a great impact on
the convergence of the PHA. Although the standard description of the PHA assumes that
the same parameter ρ is used for all non-anticipative variables, it has been found that better
results can be obtained if the parameter is made variable-dependent. In [71], generator in-
vestment variables are assigned different values of ρ from transmission investment variables,
so as to maintain an approximately constant ratio of penalty/(investment $). In [110], it is
found that even better results can be obtained if the value of ρ is determined individually for
each variable after assessing the level of agreement in the optimal solution across scenarios
at the first PHA iteration. The authors call this method sep-rho. Here, we implement the
sep-rho method as the ρ-setting policy.

Fixing variables A common heuristic in the PHA literature is to fix variables when there
has been agreement across scenarios for a number of iterations. This can significantly reduce
the time to convergence, especially in the presence of binary or integer variables. The caveat
associated with this heuristic is that it may lead to suboptimal solutions, since variables
might get fixed to suboptimal values early in the algorithm. Although there is no guarantee
that this can be avoided, the availability of optimality gaps somewhat alleviates this concern.
This heuristic is already included in mpi-sppy, so its implementation, as well as experimen-
tation with different values for the number of iterations that triggers the fixing, is greatly
simplified. In our problem, the largest impact was observed when fixing investment variables,
in particular transmission lines, after agreement around the lower bound, i.e. eliminating
candidates that are not built in any of the scenarios considered.
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Figure 4.4.1: Runtime-dependent MIP gap. Solver execution starts from the point in the top-left
corner and finishes the first time that the MIP gap curve is crossed. Conventional solver behavior
allowing a fixed target MIP gap or a runtime limit is represented by the red dashed curve. By
implementing the solid orange curve instead, a time ∆ta on sample run a can be saved; a time ∆tb
can be saved in sample run b, sacrificing ∆mb of the final optimality gap obtained.

Runtime-dependent MIP gap To simultaneously avoid spending too much time on one
individual subproblem and avoid sacrificing MIP quality at later PHA iterations, a time-
dependent MIP gap scheme was implemented, where the MIP gap was increased from the
initial target value after some time of solver execution. This is depicted in Fig. 4.4.1.

4.4.3 Obtaining optimality gaps

The mpi-sppy package includes various types of inner and outer bound spokes. Several
combinations were tested, with satisfactory results being obtained when using the Lagrangian
outer bound spoke and looper inner bound spoke. Our tests have not been exhaustive, so
other spoke combinations may behave better as more scenarios or other power systems are
considered in the continuation of this work.

4.5 Computational study

At the time of development of this research, the interested consisted in verifying that we
can solve a large instance of our model by the method described in the previous section in
a reasonable time. To do that, we implement the stochastic optimization model on a large,
realistic power system and vary the number of scenarios included.
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4.5.1 Test case and scenarios

CATS system We test our model on an extension of the CATS system developed in [101],
adapted for capacity expansion planning [72]. The CATS is a geographically realistic rep-
resentation of the California generation and transmission system, which includes over 8,000
buses and 10,000 transmission branches, with locations based on publicly available data and
simulated, but realistic values for electrical parameters that are not publicly available.

RPS target Current California legislation states an RPS target of 60% by 2035, with a
goal of 100% renewable energy by 2045 [15]. With current technology, such a target, if not
interpreted as a net target, can only be obtained at prohibitively expensive costs. For the
tests conducted here, an intermediate but still ambitious RPS target of 70% by 2045 was
chosen.

Climate-informed scenarios Load and generation profiles used are generated based
on projected weather and climate data from a regional refinement for California of the E3SM
global circulation model for the year 2045, using a 3km-resolution grid [116]. A probability
space can be constructed from the projected data, where each element corresponds to one
day of hourly data for the target year. The space is reduced to a sample space via clustering
using the k-means algorithm on a normalized feature vector of load and generation profiles
using the default implementation of k-means available in scikit [80]. This process is similar
to that of [71], but using projected weather data rather than historical data. The size of the
sample space is varied in different tests cases. Each sample in the sample space corresponds
to a scenario of the stochastic optimization problem.

Algorithm and computational parameters All tests were done on the quartz HPC
cluster at LLNL. Each node of the cluster has 36 2.1GHz Intel Xeon cores and 128GB RAM.
Within each cylinder, 3 CPU cores are dedicated to each optimization subproblem, with
each subproblem corresponding to a scenario of the stochastic optimization problem. Three
cylinders were used for each test: one hub, one lower-bounder and one upper-bounder, so
that each test instance uses 9 CPU cores per scenario. Our model was implemented using
mpi-sppy 0.11.1.2 and Pyomo 6.2. Gurobi 10.0.2 was used to solve the MILPs.

The different techniques described here that have been used to solve this problem in-
troduce numerous parameters, and hence degrees of freedom, into our algorithm. For the
purpose of this study, parameters have only been varied from their default values to the
extent necessary to obtain a solution within the time limit imposed. Although there is room
for further exploration of the interaction between solution time and solution quality across
test instances, fixed parameter settings across test instances were found to be sufficient to
achieve the desired MIP gap within the time limit imposed.

4.5.2 Results and discussion

Table 4.5.1 summarizes computational results for all instances tested. As expected for prob-
lems of this size, all instances hit the iteration limit before PHA convergence. In all cases, a
solution with an optimality gap below 5% is obtained in under 4h. This gap is in the vicin-
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ity of 2% for the cases with over 100 scenarios, which may be of more interest to decision
makers. These results suggest that when maintaining a constant ratio of cores per scenario
subproblem, the growth in total computation time as more scenarios are included remains
tractable.

We expect that accounting for the uncertainty in climate projections will require including
many more scenarios in our pool. Nevertheless, we find these results encouraging for two
reasons. First, they suggest that reasonably low computation times can be obtained by
keeping the ratio of cores per scenario subproblem constant. It is worth pointing out that
our largest scenario instance only used about 3% of the computational capacity of the HPC
cluster, so a more than tenfold increase in the number of scenarios seems well within reach.
Second, scenario reduction techniques are considered outside of the scope of this thesis, but it
is clear that as many more scenarios are included, some scenario reduction methodology will
be necessary. In [71], with computational limitations in mind, the initial space of samples
is reduced to the order of 50 scenarios. We expect that being able to handle a much larger
number of scenarios than that, together with improved scenario reduction techniques, will
allow working with a larger climate uncertainty set.

As mentioned before, one important feature of mpi-sppy is providing optimality bounds
during the excution of the PHA. The evolution of the bounds for each case is shown in Fig.
4.5.1. All tests were run for 60 iterations, but the progression of optimality bounds shows
that, if desired, termination could have been triggered earlier if a looser optimality target
had been set. Moreover, these results suggest that, as is common for this type of problems,
good-quality feasible solutions can be obtained relatively quickly, within 10 or 20 iterations.
After that, most of the gap reduction is provided by tightening lower bounds. In our tests,
computational resources were allocated symmetrically to all cylinders. Some improvement
could likely be obtained by dedicating more computational power to the more demanding, but
more impactful, outer-bounding cylinder, especially after the initial iterations are finished.

Table 4.5.1: Optimality gaps achieved, total computation time and number of nodes dedi-
cated, for various numbers of scenarios.

Number of
scenarios

CPU
Cores

Wall-clock
time (min)

PHA
Iterations

Optimality gap
achieved (%)

10 90 85 60 4.8

20 180 102 60 4.1

50 450 132 60 3.8

100 900 170 60 2.1

200 1,800 200 60 2.8

360 3,240 206 60 2.4
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Figure 4.5.1: Optimality bounds provided by mpi-sppy during the execution of the algorithm for
different number of scenarios.

In Fig. 4.5.2, we compare the optimal capacity expansion plan across instances tested.
It is interesting to note that as more scenarios are considered, both the optimal cost and
the optimal investment plan continue to vary. This behavior could perhaps be mitigated by
more sophisticated scenario selection methods, but nonetheless highlights the importance of
using a sufficiently large scenario set in the stochastic program.

It is also noteworthy that no storage facilities were built in any of our test cases, although
it is imaginable that this could change if the RPS target were increased. While our focus in
this chapter is on the computational aspects of our method and we leave a thorough analysis
of the obtained results for future work, it seems clear that at least part of the value of storage
may fail to be captured in the current model. This could be improved by including planned
retirements of the existing generation fleet, as well as model modifications that highlight the
value of flexibility brought by storage units: for example unit commitment and ramping,
representation of security constraints, and improved power flow representation.

RPS penalty and achieved RPS A sensitivity analysis on the value of the soft con-
straint penalty λRPS in (4.13) was performed using the case with 20 scenarios (Fig. 4.5.3).
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Figure 4.5.2: Comparison of solution results for various numbers of scenarios. Left : Breakdown of
optimal expected cost. Center : Generation and storage buildout. *Note that no storage was built
in any of our test cases. Right : Expected proportion of energy generated with renewables.
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Figure 4.5.3: Sensitivity of proportion of total energy served with renewables to RPS penalty λRPS.
Tests were performed using the instance with 20 scenarios. Based on these results, a penalty of
$80/MWh was used for the value of λRPS for all test instances.

A value around $80/MWh resulted in produced renewable energy near the target of 70%,
so this was the value used for all the other test cases. This result appears to be relatively
stable as the number of scenarios vary, as can be seen in Fig. 4.5.2, although the investments
required to maintain it do change.

Spurious losses It is worth discussing why spurious transmission losses are a problem
but spurious storage losses from simultaneous charging and discharging do not seem to be.
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This difference can be understood by comparing the total potential spurious losses and the
available potential spurious losses of each type. By total potential spurious losses we refer
to the total losses incurred if all resources were used at full capacity9: in our test system,
this is in the order of 200MW for storage facilities, and 16GW for transmission assets. So
the potential for impact is orders of magnitude higher with transmission than storage. To
illustrate the second factor, note that the negative LMPs that drive spurious losses also
encourage using storage facilities to store energy for future use (in a genuine, non-spurious
way). Thus, using storage facilities to create spurious losses only makes sense if the storage
facility is already full, which reduces the potential for spurious storage losses. This does
not happen for transmission elements. The combination of these two factors explains why
considering transmission losses has such a high impact on the relevance of spurious losses on
our model.

As stated in section 4.3.6, the change in the RPS constraint eliminates the induced
negative LMPs, other than those potentially caused by congestion. As expected, spurious
losses associated with these were found to be negligible in all tests.

4.6 Conclusions

We have extended the stochastic capacity expansion model of [35], with the goal of represent-
ing a power system of sufficiently high-resolution to adequately capture climate variability
and geographically realistic generation, storage, and transmission expansion decisions. To
handle the high-resolution geographical and temporal data required for this improved accu-
racy, we implemented a variant of the model that could be decomposed by scenario and solved
in an HPC environment using an implementation of PHA specifically tuned for our problem.
mpi-sppy was used to facilitate the parallelization of the algorithm, as well as for obtaining
optimality bounds during algorithm execution. Tests were conducted on a full-resolution,
synthetic but realistic representation of the California generation and transmission system,
with scenarios based on a high-resolution climate projection for 2045. Instances with up to
360 representative days were satisfactorily solved to under 5% optimality gaps within a few
hours.

We envision the continuation of this research along two main directions: validation and
improvement of the model, and improvement of the computational solution. On the former,
a sensitivity analysis of the impact of key model parameters and modeling assumptions (e.g.
the chosen representation of power flow and the presence of resource flexibility constraints) on
the obtained investment plan needs to be better understood. Part of this work is addressed
in Chapter 5, where we look into the impact of different power flow formulations on the
solution quality and time.

On the latter, our tests suggest that a significant performance improvement can be
achieved by adopting an asymmetric management of computational resources across cylin-

9This is not a feasible operation status, but serves as an upper bound for the total losses in the system,
and hence for spurious ones.
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ders. In addition, addressing the difference in computational time among scenarios by way of
an asynchronous decomposition of the optimization problem through scenarios, could have
a significant impact on both solution time and quality. This is a functionality that has been
recently added to mpi-sppy [30] and would constitute a natural extension of this work in the
short term.
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Chapter 5

Improved linear power flow
representation for Capacity
Expansion Planning

Abstract

In this chapter, we consider four additional versions of the Capacity Expansion Planning
(CEP) model of Chapter 4, obtained adding representations of power flow constraints using
the bθ and Power Transfer Distribution Factors (PTDF) formulations of DC power flow,
with and without transmission losses. We present special modeling performed to tractably
include transmission losses in the PTDF formulation of CEP. The performance in terms of
computational time and solution quality of all formulations is tested on 365 different loading
and generation conditions of a 500-bus realistic testcase, to obtain comparisons and issue a
recommendation for usage on the Progressive Hedging Algorithm (PHA) implementation of
the stochastic CEP in future work. We find that the PTDF should be preferred over the bθ
formulation, although neither significantly outperforms the network flow representation of
Chapter 4 in the tests performed.
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The work presented in chapters 4 and 5 is the result of a collaboration with Lawrence Liver-
more National Laboratory (LLNL), during two summer internships at LLNL and subsequent
LLNL-funded graduate student research appointments at UC Berkeley. As is natural in such
collaborations, the efforts of different people contributed to the resulting work. I do not in-
tend to claim that everything presented in this chapter is solely the result of my work. This
section clarifies individual contributions of the LLNL team members to the work presented
here (see also the analogous section in Chapter 4).
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data used as baseline to obtain the weather-adjusted load timeseries. The model to estimate
weather impacts on electricity demand is also her work [67]. Matthew Signorotti developed
the software tool that produces timeseries of potential generation availability for wind and
solar power from the output of downscaled projected climate data [95], and provided the
generation availability timeseries used in all tests.

The individual contributions of the author of this thesis include:

• the extension of the PTDF model of [85] to the joint CEP model, as well as the
conceptualization of the representation chosen for transmission losses in the PTDF
formulation;

• the elaboration of the testcase used in this chapter, based on the power system data
of [8] and the cost data gathered by Amelia Musselman for the California Test System
(CATS) testcase [72] ;

• and all software implementation and experiment design.

Jean-Paul Watson was the project lead; he and Amelia Musselman contributed numerous
useful suggestions during weekly conversations.

5.1 Introduction

It is common in generation CEP models to use a zonal representation of the power grid, in
which only the aggregate transmission capacity between zones is modeled, not the actual
transmission network. In this work, we include transmission expansion in the expansion
planning process, so a more accurate representation of the network is needed. In chapter
4, a nodal model where individual transmission lines are represented was proposed. How-
ever, this model used a regular network flow formulation, often called in the literature a
transportation formulation. In the network flow model, nodal power balance and thermal
capacity of transmission lines are satisfied, but the physics that dictate how electricity flows
in a grid are disregarded. In other words, it is assumed that at each node of the network, the
operator may route power as desired through each connected element. The transportation
formulation is thus a relaxation of a more accurate model that considers power flow con-
straints, and can potentially be overly optimistic, i.e. it may avoid necessary transmission
investments by routing power through the grid in unrealistic ways, leading to suboptimal
investment plans. Neglecting transmission losses can have similar consequences. Ignoring
them may result in overestimating the capacity of transmission lines, thereby producing a
suboptimal plan that ultimately leads to unforeseen load shedding and thus overcosts.

To maintain the linearity, and hence computational tractability, of the optimization
model, the so-called DC representation of power flow is often used in CEP models (see [22]
and references therein). This includes the models used as base for our model [35, 71].
However, as is often the case in Mixed Integer Linear Programs (MILPs), computational
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tractability is not guaranteed at scale. Even this conventional representation can signifi-
cantly increase the solution time of Transmission Expansion Planning (TEP) models, driving
researchers to look for alternatives, like the PTDF formulation.

Incorporating the switching of transmission lines into the PTDF model has been a stan-
dard practice in power systems for contingency analysis, through so-called line outage dis-
tribution factors and compensated PTDFs (see e.g. [112]). The strategy there is to use a
PTDF formulation that can be used for the normal conditions of the grid, as well as sce-
narios where single (or several) transmission elements are taken out of service. However,
in those cases, the switching of transmission elements occurs because of contingencies, i.e.
they are parameters of the analysis, not a decision variable. In [89], a model for optimal
transmission switching is proposed where virtual power injections are added to cancel power
flows in outaged branches, the same principle of compensated PTDF matrices in line outage
analysis.

The only example we have found where this methodology is extended to transmission
expansion planning is [85], where only transmission expansion, not generation and storage,
are considered. The PTDF formulation of DC power flow is used in security-constrained
generation capacity expansion in [43], but only generation, not transmission and storage, is
considered. In this chapter, we incorporate the formulation of [85] into our joint generation,
storage and transmission CEP model.

The effect of including transmission losses in TEP models has been studied in the liter-
ature before [32, 74]. In [74], a joint generation, transmission and storage CEP problem is
solved for the European interconnection, finding differences of as much as 66% between en-
ergy transmitted long-distance vs. generated locally when transmission losses are included
in the model, and associated overcosts in the vicinity of 6%. They use however a zonal
representation of power flow, with 250 nodes for the entire continent.

The model in [85] is a lossless model. We are not aware of any examples in the literature
of lossy PTDF formulations for capacity expansion. In [31], a methodology is proposed to
include losses in a PTDF formulation of power flow for an operational problem: finding local
marginal prices. In that methodology, a linearization of power flow is obtained starting from
a solution to the AC power flow problem. This approach would require iterative updating
when the loading conditions change, which would make a computational implementation of
this method harder for a glscep problem.

In this chapter, we propose improvements to the model presented in the previous chapter
by considering all combinations of the two dimensions mentioned in the paragraphs above: we
test the bθ and PTDF formulations of power flow, in their variants neglecting and considering
transmission losses, and analyze their impact on the solution quality and solution time of
the investment plan obtained.

The main contributions of this chapter are two joint generation, transmission and storage
CEP models using the PTDF formulation of DC power flow, of which one includes transmis-
sion losses. We provide justification for the heuristics used in the modeling of transmission
losses based on a systematic study of numerous load and generation conditions. Finally,
our tests comparing the performance of the different power flow representations along two
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dimensions: solution quality and time to reach Mixed Integer Program (MIP) gaps are also
a contribution of this work.

Structure of this chapter

This chapter constitutes a self-contained sequential unit with Chapter 4; familiarity with
the contents of Chapter 4 is assumed. The other chapters of this dissertation are not a
prerequisite for understanding this content.

In Section 5.2, we cover some preliminaries of the two formulations of DC power flow used
in our models: bθ and PTDF. We also cover the models for switching transmission elements
in both formulations, with focus on the less common flow-cancelling model for switching in
the PTDF formulation. In Section 5.3, we present the models proposed in this work, as well
as some empirical justification for the approximations used in the lossy PTDF formulation.
In Section 5.4 we briefly present the testcase developed for all tests. In Section 5.5, we
present and discuss the results of the performance tests. Finally, we conclude in 5.6

5.2 Preliminaries

In this section, we present an overview of some necessary preliminaries for introducing the
model improvements of linear power flow in CEP models that we propose in this chapter.
We first overview the bθ and PTDF formulations of power flow, and then present how each
can be incorporated into the CEP model introduced in Chapter 4.

5.2.1 Nomenclature

We list here only the nomenclature introduced for the formulations introduced in this chapter,
i.e. those not already included in section 4.3.2, as well as any notation that deviates from
the previous chapter.
Set indices
B: To avoid confusion with a branch’s susceptance, in this chapter we avoid using b to index
the set of buses B. i,m, n are used instead as noted.
Parameters
Electrical parameters
χℓ: reactance of branch ℓ, in p.u.
rℓ: resistance of branch ℓ, in p.u.
bℓ: susceptance of branch ℓ, in p.u.
Sensitivity matrices
Ψ: PTDF matrix of the network,
L: sensitivity matrix of transmission branch losses to nodal power injections,
Decision variables
Operation variables
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θi,t,ω: voltage angle at bus i during period t of scenario ω, in radians.
f̃ℓ,t,ω: virtual injection to cancel flow through candidate branch ℓ during period t of scenario
ω, in MW
Auxiliary variables
pinji,t,ω: Net power injection at bus i during period t of scenario ω, in MW.
fL•
ℓ,t,ω: Power lost to thermal dissipation in branch ℓ during period t of scenario ω, in MW.
Auxiliary parameters
σℓ: direction of flow on restricted lossy branch ℓ ∈ L•,
ϱℓ,ω: metric for the bidirectionality of branch ℓ across the time periods of scenario ω,
δd: threshold for metric ϱℓ,ω, above which branch ℓ is restricted to one direction,
rthresh: threshold for branch efficiency. For ηLℓ above 1 − rthresh, branches are considered
lossless.
Notation
Unless otherwise specified, the vector is noted by omitting the corresponding index, e.g.
f = [fℓ]ℓ∈L. A colon (:) is sometimes used as a subscript to signify all the elements in a
dimension of a matrix, to emphasize that an entire row or column is sliced. For example,
Ψ:,b is the b-th column of matrix Ψ, and Ψℓ,: is the ℓ-th row of matrix Ψ.

5.2.2 Lossless linear power flow

We start with a quick overview of DC power flow in the lossless case. We follow here the
exposition of [31] and briefly overview the DC power flow model. A complete derivation
of it from Ohm’s and Kirchhoff’s laws is omitted; we refer the interested reader to the
aforementioned reference or classic textbooks like [37, 100, 113] for a more detailed analysis.

The power flow problem is posed to identify, given a set of balanced power injections
and withdrawals in an electricity network, how electricity flows through the transmission
network. Power flow in electricity grids depends on voltage magnitudes and angles at each
node of the network, according to a nonlinear relation. Given the computational challenge
of solving a large, nonlinear mixed integer optimization problem, it is common in TEP to
sacrifice some model accuracy by adopting three key assumptions:

• Voltage magnitudes are very close to their rated values (1 p.u.),

• Voltage angle differences between branch ends are small (sin∆θ ≈ ∆θ),

• Resistance of transmission elements is negligible compared to their reactances: rℓ ≪ χℓ,
so that losses in transmission elements can be neglected.

These assumptions allow some approximations that result in a linear representation of power
flow, commonly called DC power flow. We next present the conventional formulation of DC
power flow, often called the bθ formulation, and the equivalent (in the lossless case) PTDF
formulation, which presents some advantages in certain circumstances.
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bθ formulation

To lighten the notation, we omit subscripts ω and t for scenario and period in this section.
Consider a transmission element ℓ, with end nodes which are arbitrarily labeled origin and
destination, and denoted by o(ℓ) and d(ℓ) respectively. Let θm be the voltage angle at nodem,
and bℓ the susceptance of the branch. Then, the flow fℓ through ℓ, in direction o(ℓ)→ d(ℓ),
is given by (5.1a). The origin and destination ends were chosen arbitrarily; a negative value
of fℓ indicates that power actually flows in the reverse direction. As is common in linear
programming, the sign-unrestricted variable fℓ can be represented in split form with two
non-negative variables as f+

ℓ − f−
ℓ , as in (5.1b). The bθ DC power flow problem is obtained

by simply adding (5.1) to the network flow formulation introduced in chapter 4. Note the
right hand side of the equations, which gives this formulation its name. We will see how this
equation modifies the CEP problem, but let us first present the PTDF formulation.

fℓ = bℓ
(
θo(ℓ) − θd(ℓ)

)
∀ℓ ∈ L† ∩ L◦ (5.1a)

f+
ℓ − f−

ℓ = bℓ
(
θo(ℓ) − θd(ℓ)

)
∀ℓ ∈ L† ∩ L• (5.1b)

Reference bus Note that only angle differences matter in (5.1), so there are infinitely
many values of voltage angles that describe the same state of the power system, as long as
angle values relative to each other are maintained. To obtain a unique solution, the angle at
an arbitrary bus, called the reference bus is fixed to a given value (without loss of generality,
0).

PTDF formulation

The purpose of the PTDF methodology is to obtain a matrix Ψ such that the flow in each
branch of the network induced by an injection of 1MW at a certain node m compensated by
a withdrawal of 1MW at bus n is given by1

f = Ψ(em − en) ,

where f = [fℓ]ℓ∈L is the vector of all branch flows and ei is the canonical unitary vector
with a 1 at position n and zeros everywhere else. By considering the superposition of
multiple such unitary injections/withdrawals, the effect of any set of balanced injections and
withdrawals pinj as defined in (5.2) is given by (5.3). We can thus restate the goal of the

1 This statement is not true in general. In fact, the PTDF methodology is a linearization of power
flow around a given point. So what takes the form given here is the change in branch flow induced by an
additional 1MW power injection/withdrawal with respect to an initial point of operation. Since here we
consider a purely linear power flow, the initial point of operation does not affect the linearization and our
statement is true.
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PTDF methodology as finding a matrix Ψ such that the flows in all branches of the system
for any given set of balanced nodal power injections and withdrawals is given by (5.3). The
matrix Ψ is called the matrix of Power Transfer Distribution Factors (PTDF), which gives
the method its name.

pinji =
∑
g∈G

pGi,g +
∑
s∈S

(
ηS-dchs pS-dchi,s − pS-chi,s

)
+ pshi −Di ∀i ∈ B (5.2)

f = Ψpinj (5.3)

Since energy balance must always be satisfied, all power injections and withdrawals in pinj

must be compensated by injections and withdrawals of equal magnitude and opposite sign
somewhere else in the network. In the PTDF methodology, this is assumed to occur at a
reference bus called the slack bus. Note that compensations are of equal magnitude because
transmission losses are neglected for now.

To derive the expression of the PTDF matrix, we start from the bθ equation (5.1), which
can be written for all branches in matrix form as

f = −BdAθ, (5.4)

where A is a network incidence matrix2, Bd is a diagonal matrix with [bℓ]ℓ∈L in its main
diagonal, and θ = [θn]n∈B is the vector of all bus angles. The nodal balance constraint (4.8)
can be written in matrix form as

pinj = ATf. (5.5)

Combining (5.4) and (5.5), we obtain (5.6).

pinj = −ATBdAθ, (5.6)

from which we can obtain an expression of θ that can be substituted into (5.4), which yields:

f = −BdA
[
ATBdA

]−1
pinj, (5.7)

so that the desired PTDF matrix is given by the expression (5.8).

Ψ = −BdA
[
ATBdA

]−1
(5.8)

The previous presentation is a very quick overview for the reader already familiar with
the PTDF methodology and is not indended as thorough or rigorous. Unfamiliar readers are
encouraged to consult the aforementioned references for a rigorous derivation. To conclude
this brief overview, we enumerate a few important remarks.

2 i.e. an L×B matrix where for each row ℓ, Aℓ,o(ℓ) = −1, Aℓ,d(ℓ) = +1, and Aℓ,i = 0 for all other i ∈ B.
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Disconnected components In this analysis, we assume the network consists of a single
connected component, since it is otherwise not true that injections anywhere in the system
can be compensated at a single, arbitrary, slack bus. If there is more than one connected
component in the grid, a PTDF matrix must be obtained (and a slack bus must be defined)
for each one of them.

Reference bus and validity of the inversion Matrix ATBdA is in fact a singular
matrix. This is a consequence of system (5.4) being an underdetermined system because, as
mentioned before, only angle differences matter in (5.1), so there are infinitely many values
of voltage angles that describe the same state of the power system. A unique solution, is
obtained by fixing the angle at the reference bus at 0. The reference bus and the slack bus are
usually chosen to be the same, but this does not need to be the case in general. If chosen to
be the same, ATBdA can be made invertible by deleting the row and column corresponding
to the reference (and slack) bus.

Choice of the slack bus A natural question to ask is whether the choice of the slack
bus affects the results obtained with the PTDF method. Neglecting transmission losses, it
does not. This can be easily verified observing that a superposition property is satisfied for
PTDF expressions. Suppose an injection or withdrawal at a bus n1 is in fact compensated
at a bus n2, instead of at the slack bus ns that was assumed during derivation of Ψ. The
new compensation can be expressed as the superposition of an injection at n1 compensated
at ns and a withdrawal of same magnitude at n2, compensated at ns. In consequence, as
long as the network consists of a single connected component, the choice of the slack bus
does not affect the results. This is not true in the lossy case, as will be seen in Section 5.3.2.
Another related question is how to consider an injection at the slack bus. Since under the
PTDF methodology, it will be compensated at the same slack bus, there will be no effect
on transmission branches. If in reality there is an injection at the slack bus, compensated
at some other bus n1 of the system, the effect of this injection can be seen as the effect of a
withdrawal of equal magnitude at n1.

Topology dependence and nodal representation Given a PTDF matrix Ψ, expression
(5.3) directly gives flows in all branches, so thermal limit constraints (4.9a) can be included
in the model without the need for a nodal representation of the network flow. In other words,
nodal power balance constraints (4.8) can be omitted from the power flow formulation. The
topology of the system is thus captured within the PTDF matrix Ψ. This allows a more
compact formulation, since voltage angle variables and nodal balance equations are no longer
necessary, but also pose an additional problem: in transmission expansion, the topology of
the system changes depending on which transmission candidates are built. How can the
PTDF methodology be adapted to that case? We address that question in the following
section.
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5.2.3 CEP model with bθ power flow constraints

We now present the result of including the bθ power flow constraints of the previous section
into the CEP model of Chapter 4.

In a network under expansion, there are two types of branches: existing and candidates
for construction. Constraints (5.1) should be enforced for all existing branches, as well as for
candidate branches that are selected for construction, but should be ignored for candidate
branches that are not built. This logic can be easily implemented using a traditional Big-M
formulation:

−
(
1− xLℓ

)
M ≤ fℓ − bℓ

(
θo(ℓ) − θd(ℓ)

)
≤
(
1− xLℓ

)
M ∀ℓ ∈ L⋆ ∩ L◦ (5.9a)

−
(
1− xLℓ

)
M ≤ f+

ℓ − f−
ℓ − bℓ

(
θo(ℓ) − θd(ℓ)

)
≤
(
1− xLℓ

)
M ∀ℓ ∈ L⋆ ∩ L•, (5.9b)

where xLℓ , as before, is the binary variable that represents the decision to build candidate
transmission element ℓ. Recall that (4.9c) and (4.9d) ensure that flow is zero for unbuilt
candidate branches. Assuming the system is connected, we can use the graph of the power
system G = (B,L), defining Fℓ/bℓ as the length of edge ℓ, to obtain valid values for the
big-M. For each candidate ℓ, a valid Mℓ is given by the length of the shortest existing path
between the candidate’s ends. For more details, see [6].

Domain of θ As mentioned before, the angle at the reference bus is fixed to 0. If we
have an upper bound MΘ on the maximum angle difference between any pair of buses, then
a valid domain for all bus angles would be

[
−MΘ,MΘ

]
. Assuming the system consists of

just one connected component, we can obtain a valid MΘ by finding the longest path on the
graph of the power system G = (B,L), using again Fℓ/bℓ as the length of edge ℓ. MΘ would
be the length of the longest path. For our tests, however, we have found a value of 2π to be
sufficient.

−MΘ ≤ θi,t,ω ≤MΘ ∀i ∈ B, t ∈ T , ω ∈ Ω (5.10a)

θi,t,ω ∈ R ∀i ∈ B, t ∈ T , ω ∈ Ω (5.10b)

To obtain the nodal stochastic capacity expansion model with the bθ formulation of DC
power flow, it suffices to add the bθ constraints to the model obtained before. In compact
form, it has the same general two-stage stochastic MILP form of problem (4.15), show here
in (5.11). Note, however, that incorporating the bθ formulation into the model requires the
addition of voltage angle variables θt,ω, and one more power flow constraint of type (5.1) or
(5.9) for each branch, so |B| more variables and |L| more constraints for each scenario and
period are added to the model. So considering power flow constraints indeed restricts and
complicates the model.
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minC inv + Eζ

[
Cop-RPS

ω

]
s.t. A⋄x ≥ b⋄ (5.11a)

M◁
ωx+N◁

ωyω ≥ ξ◁ω ∀ω ∈ Ω (5.11b)

x ∈ X , y◁ω ∈ Y◁
ω ∀ω ∈ Ω (5.11c)

The objective is defined in (4.1), as before. As in (4.15), x represents the concatenation of
all investment variables xG, xS , xS-PC, xL, with X an abstract representation of their domains
(4.2). The concatenation of all operation variables now also includes θω, and is denoted y◁ω,
with Y◁

ω a compact representation of their domains, which now besides (4.3) also includes
(5.10). Constraint (5.11a) is an abstract representation of construction limits constraints
(4.4), and is the same as in model (4.15). Finally, constraint (5.11b), the abstract represen-
tation of operation constraints, now includes (4.5)-(4.9), (4.13), (5.1), and (5.9). We have
used superscript ◁ in all abstract symbols that differ from model (4.15) to avoid confusion.

5.2.4 CEP model with PTDF power flow constraints

In the PTDF formulation presented before, voltage angle variables have been eliminated from
the model, so power flow constraints (5.9) for candidate branches cannot be used. Instead,
the changing topology is addressed through so-called virtual injections. The modeling strat-
egy consists in first considering an extended power system where all candidate transmission
elements are added to the grid. Then, the branches that are not chosen for construction are
switched off by adding appropriately calculated virtual injections and withdrawals of power
at the branch’s ends.

Virtual power injections

We follow the exposition of [85] ; [112] can also be consulted for a detailed formulation with
examples. Consider a branch ℓ with ending buses m = o(ℓ) and n = d(ℓ), which we want to
switch off. We will achieve that by considering virtual injections of magnitude f̃ℓ at m and
n. This is depicted in Fig. 5.2.1.

The flow through ℓ before the addition of the virtual injections is, from (5.8):

fℓ =
∑
i∈B

Ψℓ,ip
inj
i ,

so that after adding the virtual injections, we get

fℓ =
∑
i∈B

Ψℓ,ip
inj
i +Ψℓ,mf̃ℓ −Ψℓ,nf̃ℓ.
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𝑓ℓ = 𝑓ℓ#

𝑓ℓ#𝑓ℓ#

𝑚 𝑛
𝑓ℓ = 0

𝑓ℓ# = 0

𝑚 𝑛

𝑓ℓ# = 0

Figure 5.2.1: Virtual injections to switch a transmission branch off. On the left, situation with
virtual injections f̃ℓ such that f̃ℓ = fℓ. Observe that the resulting flows in the rest of the network
are the same as when switching the branch off, as shown in the situation on the right.

Note, however, that all other branches are also affected by the virtual injections caused by
switching off ℓ, so (5.3) becomes:

f = Ψpinj + (Ψ:,m −Ψ:,n) f̃ℓ

If the virtual injection f̃ℓ is chosen to match the value of fℓ, the power flowing through
branch ℓ entirely comes from and goes to the virtual injection and withdrawal. So, from the
perspective of the rest of the grid, the effect is the same as what would be obtained if branch
ℓ was not connected to the grid (see Fig. 5.2.1). To switch branch ℓ off, one therefore needs
to enforce

f̃ℓ =
∑
i∈B

Ψℓ,ip
inj
i + (Ψℓ,m −Ψℓ,n) f̃ℓ.

When considering the simultaneous disconnection of all the elements in a set L′, one can
apply linear superposition to the results above. A pair of virtual injections would thus be
added for each disconnected element, obtaining (5.12) and (5.13).

f = Ψpinj +
∑
ℓ∈L′

(
Ψ:,o(ℓ) −Ψ:,d(ℓ)

)
f̃ℓ (5.12)

f̃ℓ = Ψℓ,:p
inj +

∑
ℓ′∈L′

(
Ψ:,o(ℓ′) −Ψ:,d(ℓ′)

)
f̃ℓ′ ∀ℓ ∈ L′ (5.13)

Transmission expansion planning with PTDF

As mentioned before, the plan is to only enforce (5.13) for lines that are not selected for
construction, so that they are switched off. Lines selected for construction should not be
switched off, so they should not have any virtual injection, but they must satisfy the thermal
limit constraint (4.9c). This can be enforced with help of a big-M formulation as in (5.14)
and (5.15).
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−MxLℓ ≤ f̃ℓ −Ψℓ,:p
inj −

∑
ℓ′∈L⋆

(
Ψ:,o(ℓ′) −Ψ:,d(ℓ′)

)
f̃ℓ′ ≤MxLℓ ∀ℓ ∈ L⋆ (5.14)

−M ′ (1− xLℓ ) ≤ f̃ℓ ≤M ′ (1− xLℓ ) ∀ℓ ∈ L⋆ (5.15)

It is shown in [85] that the combined result of enforcing (4.9c), (5.14) and (5.15) can also be
obtained from (5.15) and (5.16). Valid values for M ′ can be obtained from a shortest-path
problem as described for the bθ formulation. Given Mℓ for branch ℓ, a valid M ′

ℓ would be
given by M ′

ℓ = bℓMℓ. As in [85], however, we find that using 10 p.u. is sufficient for all our
tests.

−Fℓx
L
ℓ ≤ f̃ℓ −Ψℓ,:p

inj −
∑
ℓ′∈L⋆

(
Ψ:,o(ℓ′) −Ψ:,d(ℓ′)

)
f̃ℓ′ ≤ Fℓx

L
ℓ ∀ℓ ∈ L⋆ (5.16)

As mentioned before, thermal limits in existing branches can also be enforced without
explicitly defining fℓ, as in (5.17).

−F ≤ Ψpinj +
∑
ℓ∈L⋆

(
Ψ:,o(ℓ) −Ψ:,d(ℓ)

)
f̃ℓ ≤ F (5.17)

, where F = [Fℓ]ℓ∈L† is the vector of rated capacities of all existing branches.

The domain of the virtual injections f̃ is thus

−M ′
ℓ ≤ f̃ℓ ≤M ′

ℓ ∀ℓ ∈ L⋆ (5.18a)

f̃ℓ ∈ R ∀ℓ ∈ L⋆ (5.18b)

5.3 Power flow model improvements for CEP

We are now ready to introduce the power flow model improvements for CEP proposed in
this thesis. The first is a straightforward extension of the PTDF approach for TEP of [85]
presented before to the joint CEP that we consider in this work. We then propose some
modeling choices based on statistical analysis to include transmission losses in the PTDF
representation of power flow.

5.3.1 Joint generation, storage and transmission CEP with
PTDF

In the model proposed for transmission expansion planning in [85] and presented above,
the entries in the bus injection vector pinj contain only the output from existing generation
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facilities. However, the validity of the approach is not affected by considering generation and
storage candidates in those entries. We can thus incorporate this formulation of power flow
constraints in lieu of the bθ formulation, while keeping the rest of our capacity expansion
model.

Power balance Nodal balance constraints (4.8) are not part of the PTDF model, so we
need to add an aggregate power balance constraint (5.19).

∑
i∈B

(∑
g∈G

pGi,g,t,ω +
∑
s∈S

(
ηS-dchs pS-dchi,s,t,ω − pS-chi,s,t,ω

)
+ pshb,t,ω

)
=
∑
i∈B

Di,t,ω ∀t ∈ T , ω ∈ Ω (5.19)

In compact form, our nodal stochastic capacity expansion model with the PTDF formu-
lation of DC power flow takes the form of (5.20). Again, it has the same general two-stage
stochastic MILP form of our two previous formulations (4.15) and (5.11). Here, voltage
variables θω and flow variables fω are not necessary, but virtual injections f̃ω are added, so
this formulation has |B|+ |L| − |L⋆| less variables than the bθ formulation for each scenario
and period. Moreover, nodal balance and power flow constraints are substituted by a single
global balance constraint and the virtual injection constraints (5.15),(5.16). Therefore, for
each scenario and period, this formulation has |B|+ |L|− 2 |L⋆| − 1 less constraints than the
bθ formulation.

minC inv + Eζ

[
Cop-RPS

ω

]
s.t. A⋄x ≥ b⋄ (5.20a)

M▷
ωx+N▷

ωyω ≥ ξ▷ω ∀ω ∈ Ω (5.20b)

x ∈ X , y▷ω ∈ Y▷
ω ∀ω ∈ Ω (5.20c)

Once again, the objective is defined in (4.1). As in the two previous formulations, x rep-
resents the concatenation of all investment variables, with X an abstract representation
of their domains (4.2). The concatenation of all operation variables now only includes
pGω, p

S
ω, p

S-ch
ω , pS-dchω , pshω , p

NC
ω , f̃ω, and is denoted y▷ω, with Y▷

ω a compact representation of their
domains (4.3a)-(4.3d), (5.18). Constraint (5.20a) is an abstract representation of construc-
tion limits constraints (4.4), and is the same as in the other two models. Finally, as men-
tioned before, constraint (5.20b), which represents operation constraints, excludes nodal
balance constraints (4.8) and power flow equations (5.1),(5.9), so it only includes (4.5)-(4.7),
(4.13), (5.15)-(5.19). We have used superscript ▷ in all abstract symbols that differ from the
previous models to avoid confusion.
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Advantages and shortcomings of the PTDF approach

Comparing models (5.20) and (5.11), it is not obvious that either is a better formulation of
the capacity expansion problem than the other. In fact, there are tradeoffs between the two
formulations. We discuss here some of them to motivate why it can be a sensible choice for
our capacity expansion model.

Compactness vs sparsity There is a tradeoff between two important attributes for linear
computational solvers: model size and model sparsity. The bθ formulation requires more
variables and constraints, which leads to a significantly larger model: |B| voltage angle
variables, |B| nodal power balance constraints and |L| power flow constraints are part of
the bθ formulation, but not of the PTDF one. However, enforcing power flow equations
to satisfy the thermal constraint for each branch ℓ in the bθ formulation only involves the
branch flow variable fℓ and the voltage angles of the corresponding end buses, so while
larger, it is also a very sparse formulation, which solvers can handle better. On the other
hand, it can be seen in (5.12) that the power flow constraint for each branch includes power
injection variables (i.e. generation and storage outputs) from all buses in the system. So
the resulting constraint matrix is smaller, but much more dense. There is a non-trivial
tradeoff between the two, but in general, it is likely that considering the full model PTDF
description (5.20), bθ formulations would outperform the PTDF one. This is however not
a meaningful comparison because in practice, the PTDF formulation is used in conjuction
with two impactful heuristics.

PTDF heuristics: thresholding and branch monitoring The first common heuristic
is to consider all entries of Ψ with absolute value below some threshold (or absolute value,
relative to the max within its row), to be zero. This can reduce the density of the resulting
matrix, at small accuracy cost. The justification for this technique is that when considering a
particular branch, injections very far away in the system will have a negligible impact on flows
in said branch, and can thus be disregarded. The second, more impactful heuristic, is that
in most applications, the list of transmission elements, for which thermal limit constraints
will be tight at any given operational period is known from historical data. In other words,
planners know which elements are likely to be the ones dictating reinforcement or expansion
needs, and which ones can be excluded from the model without affecting the optimal plan.
Explicitly defining a list of monitored branches and only including those elements in (5.17)
in the model can further reduce the size of the system, and compensate for the increased
density of the remaining lines. Note that even if the same approach is attempted in the
bθ formulation, all nodal balance and power flow equations are necessary to include just a
subset of thermal limits, so defining a list of monitored elements does not reduce the model
size significantly.

Reduction of the MIP gap Capacity expansion planning models are in most cases, in-
cluding ours, mixed integer problems of very large size, which cannot be solved to optimality
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(i.e. until the MIP gap is reduced to zero) within a reasonable time. Since subproblem
execution is often ended by reaching a predefined time limit (cf. Section 4.4.2), the rate at
which MIP optimality gap is reduced is very relevant for determining a preferred method
among different alternatives. An advantage found by Rahmani, Kargarian, and Hug is that
solving the transmission expansion planning problem with a PTDF formulation reduces MIP
gap more quickly than its bθ counterpart, so that time-limited suboptimal solutions are of
better quality in the PTDF case. In our solution approach, we often interrupt the solver
before reaching the predefined target optimality gap. The results of [85] suggest that PTDF
is a better formulation for that approach.

Pre-solve computational cost A substantial part of the computational cost in the PTDF
formulation consists of obtaining the PTDF matrix, which includes inversion operations, very
costly for large systems like the ones that we concern ourselves with in this thesis. It has
been found that this overhead is too long for smaller systems, but could become worth it
when the system considered is larger [85]. On its own, that could be enough justification
for the choice of a PTDF power flow formulation in our capacity expansion problem. In
addition, if solving the problem with the PHA, the matrix is the same for all iterations, so
the expensive computational step of calculating Ψ and posing the model is only incurred
once. In subsequent iterations, the reduced and compact formulation could outperform the
bθ formulation.

5.3.2 Transmission system losses

In Section 4.3.6, we incorporated transmission losses into the capacity expansion model with
a transportation formulation and discussed some implications of this modeling choice. In
the previous sections of this chapter, we have presented more accurate representations of
power flow, so that the value of transmission assets is not overestimated by the capacity
expansion model. However, these models have considered until now the lossless case, an
inaccuracy that may maintain some overestimation of the system’s flexibility, possibly at the
expense of other flexibility-providing resources, like storage facilities, and ultimately leading
to operational overcosts. In this section, we treat the incorporation of transmission losses to
the capacity expansion model with power flow constraints without sacrificing the linearity
of the model. We discuss some challenges and the methodology proposed to overcome them.

The strategy chosen is to utilize again the linear loss model presented in Section 4.3.6,
where transmission losses are modeled as a constant proportion of branch flow, thus implying
that each transmission element has a constant efficiency ηLℓ . Recall that the value of efficiency
chosen for each transmission line, given by (5.22), is the branch’s efficiency at its rated
capacity, according to the common quadratic loss model [32, 31]. This choice implies that
transmission losses are overestimated in most branches, during most time periods. In spite of
its simplicity, implementing this linear model has some challenges, which we describe next.
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Transmission system losses in the bθ formulation

Adding (5.1) and (5.9) to the network flow model (4.15) already results in a bθ model
with transmission losses represented as in section 4.3.6. Just like in the transportation
formulation, spurious losses may appear as a result of having f+

ℓ · f−
ℓ > 0 for some branch

ℓ ∈ L•. We do not make any considerations other than those made for the transportation
formulation, to address spurious transmission losses. See section 4.3.6 for more details about
that.

Transmission system losses in the PTDF formulation

As derived above, and shown in several references (e.g. [85, 113]), the bθ and PTDF formu-
lations are equivalent when transmission losses are disregarded3.

The methodology proposed in [31] to include transmission losses in a PTDF formulation
for nodal pricing requires initialization from a solution to the AC power flow problem. In
our application, the state of the system can change significantly for different representative
days and periods within each day, and throughout the optimization process depending on
investment candidates built. Adopting a similar methodology in our case would require
iteratively updating the calculation of the PTDF matrix during the optimization process,
with challenges of convergence and computational tractability. As mentioned before, part of
the justification for the PTDF version of the model is that the expensive PTDF calculation
needs to occur only once. Thus, sacrificing some accuracy, we instead propose a linear model
that can be maintained during the optimization process.

Finding a suitable loss distribution factors matrix The classic loss ditribution factors
approach, and that followed in [31], is to obtain a sensitivity matrix L such that the losses
fL• in all transmission elements can be obtained as fL• = Lpinj. In that general approach,
the matrix L is obtained via a Jacobian-based sensitivity analysis, and thus depends on the
state of the system on which the Jacobian is evaluated, i.e. on the starting operational point.
The underlying assumption is that matrix L will be used for system states in the vicinity of
that operational point. Using an initial state of fℓ = 0 for all ℓ ∈ L leads to a trivial L = 0,
leading to a lossless model. If, on the other hand, the Jacobian is evaluated at a non-zero
operational point, but the resulting L is used for all system states, unrealistic results like
negative losses could be obtained, as illustrated next.
Consider the linearization of (4.11), which we rewrite below as (5.21) and (5.22), and the

3This statement holds for the PTDF formulation derived in section 5.2, but may not for the formulation
that uses heuristic simplifications. The inclusion of only monitored lines in the thermal limits constraints
and the approximatiotn of Ψ entries with low absolute value to 0 may break that equivalence.
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original linearization (5.23) from [32].

fL•
ℓ =

(
1− ηLℓ

)
fℓ (5.21)

1− ηLℓ = rℓFℓ

(
1 +

(
rℓ
χℓ

)2
)

(5.22)

1− η̂Lℓ = rℓf̂ℓ

(
1 +

(
rℓ
χℓ

)2
)

(5.23)

where f̂ℓ is the value of fℓ at the operational point chosen and η̂Lℓ is the branch’s efficiency
at that operational point. Note that the definition in (5.22) ensures ηLℓ < 1, so having fℓ < 0
in (5.21) will lead to negative losses. This is not surprising since what we are attempting is
representing a quadratic function with a linear function.

Negative losses are not only possible but likely to happen since they would compensate
the cost of expensive generation, and would be favored by the optimization model. This will
not happen if the point where the linearization is performed is updated, because updating
the value of f̂ℓ < 0 in (5.23) would lead to η̂Lℓ > 1 and thus nonnegative losses in (5.21).
An approach similar to that pursued in the bθ formulation could be attempted, i.e. adding
separate, non-negative, branch flow variables f+

ℓ , f
−
ℓ for flow in each direction. However,

that would imply adding 2 |L| variables and non-negativity constraints, which undermines
the compactness of the PTDF. We thus prefer a different solution that we describe next:
modeling lossy transmission elements as unidirectional.

Limiting branch flow direction Suppose that for a specific scenario (representative day
ω) and period (t), the set of all branches in the model is partitioned into two categories:
bidirectional branches, through which power may flow in either direction, and unidirectional
branches, through which power may only flow in one predetermined direction. Furthermore,
lossy branches are a subset of unidirectional branches. In that case, negative losses are no
longer an issue, since we can write them via (5.24), (5.25).

fL•
ℓ,t,ω = σℓ,t,ω ·

(
1− ηLℓ

)
fℓ,t,ω (5.24)

σℓ,t,ω =


0 , if ℓ ∈ L◦

+1 , if ℓ ∈ L• and flow is o(ℓ)→ d(ℓ)

−1 , if ℓ ∈ L• and flow is o(ℓ)← d(ℓ)

(5.25)

Note that this approach does come at a computational cost. Flow variables f are not explic-
itly part of the formulation, so direction restriction is added to the model through constraints
(5.26). These constraints must be added for all lossy lines, including non-monitored ones.
As mentioned before, these constraints add very dense rows to the problem, so they come at
a high computational cost. This approach is therefore only appealing if the size of L• is not
too large.
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σℓ,t,ω ·
(
Ψℓ,:p

inj +
∑
ℓ′∈L⋆

(
Ψℓ,o(ℓ′) −Ψℓ,d(ℓ′)

)
˜fℓ′,t,ω

)
≥ 0 ∀ℓ ∈ L•, t ∈ T , ω ∈ Ω (5.26)

Assigning losses to buses In the derivation of the PTDF matrix Ψ, the nodal balance
constraint (5.5) assumed that no energy was lost in the transmission network. If part of the
energy does not make it to the end of the branch, (5.5) must be updated to (5.27)

pinj = ATf − ÃTdiag(1− ηL)f, (5.27)

where Ã is an |L| × |B| non-negative matrix, where each row adds to 1. Each entry Ãℓ,m

is the proportion of losses in branch ℓ that are assumed to occur at bus m. A common
approximation, adopted in [74] and the Pyomo-based power system tool egret [51], is to
assign half of the losses to each end of the branch, i.e. Ã = (1/2) · |A|. This is a reasonable
approximation if the flow direction is not known a priori. Since in our model, flow direction
is known for lossy branches, we can directly assign them as in (5.28) and (5.29).

Ãℓ,o(ℓ) =

{
1 if σℓ < 0

0 otherwise
(5.28)

Ãℓ,d(ℓ) =

{
1 if σℓ > 0

0 otherwise
(5.29)

Substituting (5.27) for (5.5) in (5.8), we get

Ψ = −BdA
[(
AT − ÃTdiag

(
1− ηL

))
BdA

]−1

. (5.30)

Choice of the slack bus In the previous section, we argued that the choice of the slack
bus is not consequential in the lossless case, because superposition guarantees that the effect
of choosing different slack buses cancel each other. This is no longer true in the lossy
case. A lengthier and rigorous exposition can be found in [31] and [55] in the context of
locational marginal pricing, but for illustration, it may suffice to imagine an injection of
1MW at a bus A with two possible locations for the compensating withdrawal: B and C.
Because of transmission losses, the withdrawal at either B or C will be < 1MW, call them
uB and uC respectively. Suppose that B is chosen as the slack bus when calculating the
PTDF matrix, but C is actually where the injection is compensated. Then, the result of a
compensation at C can be expressed as the superposition of an injection of 1MW at A and a
negative injection uC/uB at C, both compensated at B. In other words, in order to make the
superposition work, we would need to adjust all injections based on the ratio of losses, which
depends on which bus is actually the slack bus at a given state of the system, and which
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bus was assumed to be the slack bus in the PTDF calculation. In our model, the actual
slack is likely to change for different periods and throughout the optimization process, as
different candidates are considered, which would significantly complicate the computational
optimization process. A common approximation is to use a distributed slack bus, where
a constant fraction of losses is assumed to be compensated at each of a handful of buses.
See [55] for more details about this approach. We present our approach for determining the
distributed slack buses in the next section.

Spurious losses Spurious losses in the sense of Section 4.3.6 are not an issue here, since
bidirectional flow is never permitted for lossy branch elements.

Power balance with losses The power balance constraint (5.19) must be updated, since
losses now affect the balance. Recall that variable fℓ,t,ω is no longer part of the formulation;
it is used in (5.31) as shorthand for the right-hand side of (5.12).

∑
i∈B

(∑
g∈G

pGi,g,t,ω +
∑
s∈S

(
ηS-dchs pS-dchi,s,t,ω − pS-chi,s,t,ω

)
+ pshb,t,ω

)
−
∑
ℓ∈L•

σℓ,t,ω
(
1− ηLℓ

)
fℓ,t,ω

=
∑
i∈B

Di,t,ω ∀t ∈ T , ω ∈ Ω (5.31)

Implementation and empirical justification of PTDF heuristics

In the methodology presented in the two previous sections, we have introduced two heuris-
tic methodologies to exploit the compactness of the PTDF formulation and obtain a better
capacity expansion model. However, we have left two key details about the heuristics unad-
dressed: how are monitored lines selected, and how are directed/undirected lines partitioned
and assigned a direction. We cover those two questions in the following paragraphs.

Selecting monitored branches Monitored branches are selected following the same
methodology as [85]: the linear relaxation of the capacity expansion problem (5.11) is solved
first. For each scenario ω, if the flow through a transmission element ℓ during period t is
above a predefined threshold (expressed as a proportion of the branch’s rated capacity), the
pair ℓ, t is added to the list of monitored branches for that representative day. The value of
the threshold was set after some iterative testing, and was set at 0.8 for all our tests.

Partitioning lossy and directional branches The approach of partitioning branches
into lossy and lossless, and restricting lossy branches to be unidirectional is predicated on
two assumptions:

• Transmission losses are not evenly distributed across branches. In other words, it
suffices to consider a small fraction of all branches to capture most of the losses in the
system.



CHAPTER 5. IMPROVED LINEAR POWER FLOW FOR CEP 138

• In most lossy branches, power flows in just one direction in most states of the system
for which a PTDF matrix will be shared.

The first assumption can be checked by analyzing the distribution of losses across branches on
a sample of power flow solutions. To check the second assumption, a metric of directionality
is necessary. We propose the directionality metric of (5.32), which we will use to restrict the
direction of flow in lossy branches for all periods t ∈ T of each scenario ω ∈ Ω. Different
grouping of periods are conceivable, and the metric would need to be modified accordingly.

ϱℓ,ω =

∣∣∑
t∈T fℓ,t,ω

∣∣∑
t∈T |fℓ,t,ω|

(5.32)

Note that 0 ≤ ϱℓ,ω ≤ 1. It is equal to 1 if the flow through branch ℓ has the same direction
for all periods t in the scenario ω considered. It is 0 if the cumulative energy through ℓ in one
direction throughout the day is the same as the cumulative energy in the opposite direction.
In this sense, the closer that ϱℓ,ω is to 1, the more unidirectional the branch is in the periods
considered.
The implementation of the heuristic that we propose is inspired in the one for monitored
branches. The linear relaxation of the CEP (5.11) is first solved. The solution is analyzed to
obtain directionality metrics for all branches in the system. Only branches with inefficiencies
above a certain threshold and enough unidirectionality are considered lossy and directed.
This is made precise for each ω ∈ Ω in (5.33), with δd and rthresh as thresholds.

ℓ ∈
{
L• if ϱℓ,ω > δd and 1− ηLℓ > rthresh

L◦ otherwise
(5.33)

Remark. In (5.32), ϱℓ,ω is a metric of how unidirectional branch ℓ is across the time periods
of representative day ω. Accordingly, its value is used to determine whether branch ℓ will be
restricted to one direction for all time periods of ω. It is conceivable that periods are grouped
in some other way, e.g. peak hours of similar representative days (in the same season) are
grouped together, and the same for mid-day off-peak hours and midnight off-peak hours.
This approach can be easily extrapolated for that use case as well.

Empirical validation To asses the empirical validity of the aforementioned assumptions,
we introduce two more statistical metrics. Consider the inefficiency threshold rthresh and
unidirectionality threshold δd as used in (5.33). We define ηL⋆(rthresh) as the proportion of
total losses in the system incurred in branches with efficiencies below 1− rthresh. We define
ϱ⋆(δd) as the proportion of total losses in the system incurred in branches with directionality
metric ϱ > δd. These two quantities are illustrated in Fig. 5.3.1.
The empirical validity of these two assumptions was tested on a realistic power system4.
The test conducted consisted in solving 100 instances of the multiperiod Optimal Power

4See Section 5.4 for details about the system.
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Flow (OPF) problem (i.e. solving only the operational part of the CEP problem without
expansion candidates, for 100 values of ω) and obtaining the values of the two metrics defined
above.

The results are at the bottom of Fig. 5.3.1. Consistently across the 100 instances tested,
over 95% of system losses occur in branches with ϱ metric ≥ 0.99. So the first assumption
holds. Similarly, around 85% of system losses occur in branches with efficiencies under
1− 5 · 10−3, which correspond to about 45% of the total branches.

Caveats of heuristic In these paragraphs, we highlight some limitations of the previous
empirical test in regard to the optimality of the resulting model, and argue why this heuristic
model can be of value nonetheless. First, consider the directionality restriction. By restrict-
ing the direction of flow in some branches, we are strictly reducing the size of the feasible
set of optimization model (5.20). The previous empirical analysis suggests that the optimal
solution would have had flow through restricted branches in the chosen direction anyway. In
other words, it suggests that the optimal solution was not in the region deleted by restricting
flow direction, and thus, the restriction comes at no cost. There is, however, no guarantee
that this is in fact the case. The effect of this inaccuracy can be mitigated by tuning the
value of the threshold δd.
Secondly, consider the disregard of losses in branches with bi-directional flow. A key fact
is that we only need to consider in the model the transmission losses whose inclusion will
lead to obtaining an optimal investment plan with lower cost than the one obtained with
the lossless model. Thus, if disregarding the losses in bidirectional branches does not change
the optimal investment plan obtained, this simplification of the model is not problematic.
One of the possible consequences of neglecting transmission losses in the expansion model
is overbuilding cheaper generation in remote places and underbuilding it in buses closer to
the load, as a result of overestimating the actual energy that can make it to the demand
from the remote source. In this type of situation, the losses causing the change in the
optimal investment plan correspond to flows that are always in the same direction, and
would therefore be captured in our model. There is no guarantee, however, that these are
the only consequential transmission losses. If some of the transmission losses driving a change
in the optimal investment plan occur in bidirectional branches, then our methodology fails
to capture those losses, and can also lead to suboptimal investment plans comparable to
those of the lossless model.
Finally, we revisit our analysis of the results in Fig. 5.3.1. The conclusion that we can
disregard losses in the most efficient transmission branches because ηL⋆(rthresh) > 0.85, i.e.
85% of total losses would still be captured is predicated on the assumption that all losses
are equally consequential. In other words, it is assumed that a transmission element with
lower absolute losses is unlikely to cause a change in optimal investment plan with respect
to the lossless case. Once again, this is reasonable, but not guaranteed. A numerical test is
necessary to gauge better how effective our heuristic is on realistic power system data. We
consider this outside the scope of this work.
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Figure 5.3.1: Empirical test of assumptions for heuristics in lossy PTDF formulation. Top: Illus-
tration of validation metrics ηL⋆ and ϱ⋆ on a particular scenario ω. Left : Empirical Cumulative
Distribution Function (CDF) of branch losses vs. ϱ is obtained by sorting all branches in ascending
order by ϱℓ,ω, and summing total branch losses across periods in the same order. The marker shows
an example of ϱ⋆(δd) for δd = 0.65. Right : Empirical CDF of branch losses vs. (1− ηL) is obtained
by sorting all branches in ascending order by inefficiency, and and summing total branch losses
across periods in the same order. The marker shows an example of ηL⋆(rthresh) for rthresh = 0.015.
Bottom: Distribution of the values of ϱ⋆(0.99) and ηL⋆(0.005) across the 100 instances tested.
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5.4 Test system

To test the methodology proposed, a 500-bus test system was constructed based on the South
Carolina ACTIVs test case [7, 8]. That system was complemented with capacity expansion
data as described next.

Power system and geographical data Power system data was downloaded from [7].
The dataset includes coordinates for all substations in the system. All coal power plants
were retired from the test system. This was done to induce a need for expansion in a realistic
way: carbon-intensive technologies are increasingly being retired in North American power
systems.

Availability of solar and wind generation At each of the substation coordinates found
in the dataset, timeseries of relevant hourly parameters (temperature, humidity, solar irra-
diance, etc.) were collected from the ERA5 climate reanalysis model [42], for each day of
the years 2019 and 2020. These timeseries were fed to a data-processing pipeline based on
the System Advisory Model tool [75], which outputs, for each day in the time range, a time-
series with potential availability of solar and wind power, expressed as a fraction of installed
capacity (αb,g,t in model (4.15)) 5.

Wind timeseries post-processing The ERA5 model provides data on a grid with a
resolution of 31km, which can be too coarse for accurate estimation of wind data. As
mentioned in the previous chapter, downscaling that data, i.e. obtaining reliable data with
a finer resolution, is a non-trivial task. A regionally refined model similar to the one used for
California [116] was not readily available for South Carolina, and it was found that the data
obtained had very low wind availability, with average availability below 20%. The purpose
of the present chapter is to test our computational approach, for which we need a range
of plausible generation candidates. So in order to keep wind generation competitive in the
optimization model, all timeseries of wind availability were scaled up uniformly until the
site with highest availability reached an average availability of 35%. In addition, a wind
“super-site” is created by scaling the wind timeseries of substation Saluda until its average
availability reaches 45%.
The postprocessing done to the wind availability timeseries makes the data less realistic, and
may affect the validity of the correlation with solar availability and load. However, the scope
of this chapter is to test the computational performance of the PTDF approach, and not to
draw conclusions on the implementability of the investment plans obtained. Overall, the data
being used is sufficiently realistic for some analysis of the computational performance to be
meaningful. Admittedly, results could vary when tests on more realistic data are conducted,

5ERA5 timeseries were provided by Minda Monteagudo of Lawrence Livermore National Lab. These
timeseries were processed and translated to timeseries of wind and solar generation availability by Matthew
Signorotti of Lawrence Livermore National Lab. I am grateful to both for their invaluable help.
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especially regarding the validity of the heuristics implemented, but we believe that the results
conducted here are still of interest to researchers in the field. An implementation on a more
recent version of the California Test System is foreseen for the near future, but could not be
conducted before the conclusion of this doctoral thesis.

Electricity demand An hourly timeseries of electricity demand for the entire system was
obtained by taking as baseline the publicly available data of the Energy Information Agency
for the two largest utility companies in the area: Dominion and Duke Energy. That baseline,
in conjuction with the ERA5 timeseries mentioned before was then processed following the
methodology in [67] to obtain an estimated timeseries of demand for each day in years 2019
and 2020. The load timeseries was then distributed across buses using the normalized values
in the ACTIVS test system as load distribution factors. 6. The baseline used is for the
aggregate system of the two utilities, which span a larger system than our 500-bus testcase.
Load timeseries were therefore scaled down uniformly so that the peak demand across all
days in the dataset was 1.6 times the installed generation capacity, accounting for 35% of
peak demand growth by 20457 and 25% of capacity reserve margin [23]. Note again that the
mismatch between the target years for climate data and the target demand growth used as
baseline may bring the correlation into question, but in this chapter we are only interested
in the computational aspects of the method, so we are satisfied with this approach.

Generation and storage investment candidates All substations are considered as
candidate sites for solar and battery storage construction. To reduce the number of variables
in the model, within each substation, only the bus with highest incident transmission capacity
is considered as candidate. The 20 sites with highest average availability in the timeseries
are considered as candidates for construction of wind power generation. New natural gas
power plants are only allowed at the substations with existing natural gas power plants. No
construction of nuclear or coal power plants is allowed in this test case.

Transmission expansion candidates All existing transmission lines can be reinforced.
The reinforcement considered consists in installing a copy of the existing line (i.e. same
capacity and electric properties). In addition, a new corridor between the wind “super-site”
and one of the main centers of load, the city of Greenville is considered.

Costs All costs are taken from the testcase in Chapter 4, i.e. which will be available for
consult [72].

6The work of obtaining the load baselines, ERA5 timeseries, processing the data and providing the
timeseries of load at each bus in the test system was performed by Minda Monteagudo of LLNL.

7Based on 1%-1.6% annual growth [17, 56]
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5.5 Numerical results and discussion

Tests

To test the performance of the CEP models with the different power flow formulations,
we solve the single-scenario CEP problem for the 365 days of 2019 available in the data,
following the methodology described in Section 5.3. In actual CEPs, models must be solved
over several representative scenarios. In fact, in Chapter 4 we have argued that a large
number of scenarios should be included in climate-resilient CEP. However, in the PHA
framework of chapter 4, the problem is decomposed by scenario, so the actual optimization
problems handled by the solver are single-scenario subproblems. We thus consider these
tests to be the most meaningful for assessing the best formulation to be incorporated into
our framework in the future.

Time performance As in chapter 4, all models are implemented in Pyomo and solved
with Gurobi v10.0.2 on the quartz High Performance Computing (HPC) cluster of LLNL.
Each node of the cluster has 36 2.1GHz Intel Xeon cores and 128GB RAM. Problems were
run in parallel, but note that since we only solve single-scenario instances, there is no com-
munication between scenarios. Each solver instance was assigned 4 CPU cores. We report
here as model creation time the sum of the time required to create the Pyomo model and
the time required to create the plugin to communicate with the Gurobi solver, which is also
a function of model size and complexity. In an iterative algorithm like PHA, this time would
only be incurred once. Gurobi solver time is reported separately, as it gives an idea of the
time that would be incurred each iteration.

Benchmarking solution quality A full evaluation of our loss model should consider as
benchmark an AC power flow formulation, so that the goodness of the approximation of
transmission losses used can be assessed. This is outside of the scope of this thesis, but is
part of the foreseen continuation of this work. Here, we use the lossy bθ model as benchmark.
The CEP models considered differ in the description of the operational problem. Therefore,
full two-stage solutions of one model cannot be directly evaluated in another model to eval-
uate solution quality. However, all models share the same investment variables, and satisfy
the same construction limits. This is only natural since all models are proposed to define an
optimal investment plan. To compare the total cost of different solutions, the lossy bθ for-
mulation for each scenario is solved, fixing the first-stage variables to the values obtained by
each model and solving the operational problem only. Observe that since construction limits
are common for all models and load can be shedded, benchmarking problems are guaranteed
to be feasible.
To make comparisons easier, the resulting total investment and operation costs are normal-
ized with respect to the cost of the solution returned by the lossy bθ model. Normally, this
would imply that all normalized costs should be ≥ 1. However, because solver executions



CHAPTER 5. IMPROVED LINEAR POWER FLOW FOR CEP 144

are time-limited, returned solutions may not be optimal, and thus normalized costs < 1 are
possible, and indeed occur.

Results and discussion

Setup time vs solver execution time Table 5.5.1 confirms what was mentioned in
Section 5.2: the use of the PTDF formulation leads to a more compact problem, with about
half as many rows and columns, but much more dense, with over three times more non-zero
entries in the constraint matrix. This tradeoff translates into a runtime tradeoff between
model creation and solver solution, which is reported in Table 5.5.2. Again, we observe the
expected tradeoff: PTDF formulations necessitate longer setup times, but lead to quicker
solver execution times, about 50% faster. In an iterative method like PHA, this behavior
can lead to significantly better performance.

PTDF vs. bθ The PTDF and bθ models are equivalent in the lossless case (before line-
monitoring and thresholding heuristics), so we expect them to perform nearly identically.
This is indeed what we observe, not just on average (Table 5.5.2) and in distribution (Fig.
5.5.1), but in almost all instances. This can be seen in the two top plots of Fig. 5.5.4. Our
results suggest that the lossless PTDF formulation clearly dominates the bθ formulation:
achieved costs are not significantly different for all instances, but solution times are much
smaller, especially for instances with long solution times.
Adding transmission losses to the model complicates the optimization problem and comes at
a computational cost, but should avoid increased operational costs that lossless formulations
are blind to. Accordingly, we expect lossy models to reach better-quality solutions, but
perform worse in terms of time than their lossless counterparts. This is indeed what we
observe in the results. The tradeoff between time and solution quality is clearly visible in
the bottom plots of Fig. 5.5.4 for the PTDF formulation, and in the boxplots for the bθ
model. In our tests, the additional time required (often 3x increase) seems too high for the
moderate solution quality gained, but availability of computational power and additional
tests on other systems may change this conclusion.

MIP gap reduction In Fig. 4.4.1 we plot the distribution of times taken to reach different
target MIP gaps for the formulations tested. Our results are in line with those of [85]: PTDF
formulations seem to do a better job of reducing the gap during early iterations, hitting the
targets of 3%, 1%, 0.5% and 0.1% consistently sooner than the corresponding bθ versions.
However, if a very tight gap is required, the PTDF formulations time out in over half of the
instances, while most of the bθ versions manage to reach the target within the time limit.
In chapter 4, we showed how having a runtime-dependent target MIP gap can accelerate
the convergence of the PHA algorithm. These results suggest that a PTDF formulation
would behave better in that case, and is thus a better candidate for being used in a PHA
implementation of a stochastic formulation of the CEP problem.



CHAPTER 5. IMPROVED LINEAR POWER FLOW FOR CEP 145

Transportation formulation A somewhat unexpected result of our tests is the compar-
atively good performance of the simple network flow, also called transportation, formulation
of chapter 4. As expected, this model is much quicker than the others considered, both in
setup time and solver execution time. While we expected the investment plans returned by
the model to lead to significant operational overcosts, this does not seem to be the case.
Solution quality performance is actually better on average for the network flow model than
for all other models tested. While median cost performance is marginally better for the lossy
PTDF formulation, a comparison on an instance-by-instance basis (Fig. 5.5.5) shows that
neither formulation consistently outperforms the other one.
The lack of an advantage in considering explicit power flow constraints when compared to
just a network flow model suggests that our test case may not be sufficiently meshed for
power flow constraints to make a difference. Future tests on more meshed networks, like the
CATS test system of chapter 4 may help in determining the value of these formulations.

Table 5.5.1: Comparison of model sizes and densities for different formulations. The model
used for comparison is a single-scenario CEP model for the same day. Note: It may seem
counterintuitive that the lossy bθ formulation necessitates less rows than its lossless counter-
part. This is due to the branch thermal limit constraints. Recall that for lossless branches,
flow is represented by a single, sign-unconstrained variable and thermal limits require a two-
sided constraint (4.9a). For lossy branches, flow is represented by a pair of nonnegative
variables and thermal limits requira single constraint (4.9b).

Model formulation # rows # columns # non-zeros

Lossy transportation 78,412 71,395 227,817

bθ 109,540 69,379 254,913

Lossy bθ 95,524 83,395 296,961

PTDF 54,752 43,051 621,691

Lossy PTDF 54,990 43,051 1,122,273

5.6 Conclusions and future work

In the work presented in this chapter, we considered four new versions of the CEP model
of Chapter 4, adding different representations of power flow constraints. Starting from the
conventional bθ DC power flow neglecting transmission losses, three models were proposed:
a bθ formulation with linear transmission losses, and PTDF formulations with and without
transmission losses. While TEP models with PTDF had been proposed in the literature, the
joint formulation of CEP proposed here, as well as the modeling done to include transmission
losses, are contributions of this work.
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Table 5.5.2: Comparison of time performance of different model formulations. Times shown
are the average across 365 instances. The time to create the model instance, which includes
the time to obtain the PTDF matrix, is larger for the PTDF formulation, but leads to
significant time savings during solver execution.

Model formulation Model creation time (sec) Gurobi solver time (sec) Normalized cost

Lossy transportation 16.60 13.22 1.012

bθ 15.38 60.03 1.028

Lossy bθ 15.80 118.75 1.0

PTDF 21.37 27.51 1.028

Lossy PTDF 33.71 68.52 1.024

Computational tests were performed solving single-scenario instances to assess the perfor-
mance of the different formulations in terms of solution quality and computing time required
to reach certain MIP gap targets. Our results suggest that in the lossless case, the PTDF
formulation dominates the bθ formulation, obtaining nearly identical solution quality in a
fraction of the time, and should thus be favored for scenario decomposition techniques. In
the lossy cases, the PTDF formulation also performs better than bθ in terms of time, but
cannot match its solution quality.

The tradeoff found in our tests between time and solution quality comparing lossy and
lossless formulations does not seem to justify the inclusion of transmission losses in the
model. We do qualify this statement with two caveats: First, although different loading
and generation conditions were used, all tests were conducted on the same network. Tests
on larger systems could modify this conclusion. Second, the MIP gap behavior of the lossy
PTDF formulation is significantly better than its bθ counterpart, so the conclusion might
again change when considering the iterative solution to the stochastic version of the problem.

In fact, and somewhat unexpectedly, the tradeoff between time and quality found in our
tests does not seem to justify the inclusion of any power flow formulation on top of a simple
network flow formulation. Again, this statement comes with the caveat that all tests were
conducted on the same network; tests on the realistic CATS system, which could not be
included in this thesis, might change this conclusion. This is interesting future work that we
intend to pursue.
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Figure 5.5.1: Box and whisker plotsa showing distribution of solver execution times for different
power flow formulations, over the 365 instances solved. The time limit was set at 600 sec.

a The box plot uses matplotlib’s default options: “The box extends from the first quartile (Q1) to the
third quartile (Q3) of the data, with a line at the median. The whiskers extend from the box to the
farthest data point lying within 1.5x the inter-quartile range from the box. Flier points are those past the
end of the whiskers.”
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Figure 5.5.2: Box and whisker plotsb showing distribution of achieved cost for different power flow
formulations, over the 365 instances solved, benchmarking against the lossy bθ formulation. The
lossy bθ formulation is also used for normalizing results, so its achieved cost is 1 for all instances
and is omitted from the plot. Note that some instances of the lossy bθ formulation time out at 600
sec before reaching optimality, so in those cases, it is possible to reach a better objective than the
benchmark, i.e. a normalized cost < 1

b See footnote a in Fig. 5.5.1, page 147.
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Figure 5.5.3: Box and whisker plotsc showing distribution of time to reach certain target MIP
gaps for different model formulations. In general, PTDF formulations seem to reduce the MIP gap
quicker than the bθ versions, but take longer for the final stretch of gap reduction. 600 sec was the
runtime limit, so target gaps may not have been reached at that time.

c See footnote a in Fig. 5.5.1, page 147.
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Figure 5.5.4: Scatter plots comparing solution time and solution quality performance of different
formulations for each of the 365 instances tested. Top: Lossless PTDF vs. bθ. Bottom: Lossy
PTDF vs lossless PTDF. With nearly identical costs and significantly shorter times, the PTDF
clearly dominates the bθ formulation in the lossless case. A tradeoff appears in the lossy case.
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Figure 5.5.5: Scatter plot comparing the time performance and solution quality of lossy transporta-
tion and lossy PTDF formulations. These results do not seem to invalidate the simpler transporta-
tion formulation as a usable model. Solution time, as expected, are much shorter, but this does
not systematically come at the cost of solution quality: neither lossy ptdf nor lossy transportation
consistently outperforms the other in terms of solution quality.
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Chapter 6

Future avenues of research

Abstract

In each of the three topics studied in this dissertation, interesting avenues of research were
identified but could not be pursued because they were out of the timeframe and scope of the
project, or interests changed. We devote this chapter to a brief discussion of a few of them.

6.1 Markovian model for battery sizing

Data-driven methods to address variable prices

The most direct continuation of the work on our Markovian model is the implementation of
a solution method for the case with variable prices. While we provide initial steps in a path
to develop a method for the variable price case in Section 3.5, the challenges identified may
lead to a roadblock. An alternative to overcome that obstacle could be to incorporate data-
driven methods into the model. One way to do that could be to propose a machine learning
model that determines the optimal charging policy for the battery as a function of the state
of the continuous-time Markov chain and the long-term commitment, leaving the rest of the
model, i.e. finding a limiting distribution and numerically optimizing the resulting function,
unchanged. A second option could be to pursue a pure reinforcement learning model instead
of attempting to determine the limiting distribution of the state of charge of the battery
like we do in the model presented here. Both would significantly extend the usability of our
model and hence its interest to researchers and users.
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6.2 Community Choice Aggregation

Critical size of the aggregation

The results of Owen [78] predict that asymptotically, all core allocations are dual allocations,
which in our setting we have called shadow price allocations. Owen also finds that in the
case without degeneracy, the convergence happens with a large enough but finite number of
participants. In the tests that were conducted in our work, the number of participants was
only increased to 50, but the shrinking of the uniform price core was already apparent.

If the uniform price core is a singleton set, the question of finding the most fair allocation
therein becomes moot, so identifying if the core has collapsed is an important point. An
interesting open question is thus a characterization of the critical size of the aggregation
before the collapse of the uniform price core into the dual core. It is conceivable that
the structure of the set of participants, i.e. how many agents have local generation and
storage and of which sizes, as well as the degree of correlation between their generation and
consumption, will affect the outcome. If this characterization can be obtained, interesting
models and questions ensue, for instance: should a cap be put on the size of aggregations?
Given a cap, large Community Choice Aggregations (CCAs) need to be broken down; how
should tentative participants be clustered into CCAs? Can there be a market for CCA
memberships? Would such a market promote efficiency? unfairness?

Trading stability for fairness

Throughout the work of Chapter 2, we treat the stability of the imputation returned by the
mechanism as a hard constraint. We are only willing to relax it to a concept of approxi-
mate, highly-probable stability to recover the otherwise lost computational tractability. An
interesting alternative would be to consider a model in which stability is explicitly traded
for fairness. This can be achieved for example through a least-core formulation similar to
that of [54, 106]. Again, numerous interesting questions follow: what would be the tradeoff
between fairness and stability? Can we characterize the coalitions that would need to be
“subsidized” to gain insights about implementability challenges?

6.3 Parallel computing for Capacity Expansion

Planning (CEP)

Power flow representations and scenario selection

This work was conducted in collaboration with Lawrence Livermore National Laboratory
(LLNL), as part of an ongoing project there, so some immediate extensions of the work
performed as part of this thesis are already foreseen within that project. This includes im-
plementing the power flow formulations of Chapter 5 on the California Test System (CATS)
test case, as well as testing the computational limits reached when using more accurate,
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convex formulations of AC power flow. Similarly, work on scenario selection and reduction
is an ongoing branch of that project. Numerous interesting questions arise regarding that
topic, since assigning probabilities to outlier scenarios with particularly high costs (extreme
weather events) is not a trivial task. Is Robust Optimization the only option, or can the
stochastic programming version of the problem still make sense in that case? Or perhaps a
combination thereof, as in [68]?

Asynchronous Progressive Hedging Algorithm (PHA)

During our tests of solving the problem with the PHA, it was observed that in most iterations,
only a handful of complicating scenarios were holding back the execution of the algorithm on
all cores. We addressed this issue by proposing a runtime-dependent target Mixed Integer
Program (MIP) gap, with satisfactory results. An alternative which we did not explore in
this work is implementing the Asynchronous PHA instead [30], or variants thereof, which
may lead to better time and quality performance, and an overall better usage of the available
resources.

Extensions to mpi-sppy

During the implementation of our solution method in software using mpi-sppy, a couple of
useful extensions to the tool have been identified, which if implemented could positively
impact the CEP software developed. The first one is the possibility of assigning processes
(ranks in Message Passing Interface (MPI) jargon) to cylinders asymmetrically. In the cur-
rent implementation, each cylinder gets the same number of ranks, regardless of its nature.
However, in problems like ours, where second-stage subproblems are pure Linear Programs
(LPs), the subproblems solved by inner-bounder spokes represent a significantly lighter com-
putational load than those of outer-bounder spokes. A second extension that could be of
interest is a spoke that is given a different model, known to the modeler to be a relaxation
(or otherwise valid outer-bounder) of the actual model. It is conceivable that it is easier
to provide tight outer bounds on certain model relaxations than on the original model, and
thus such a spoke could lead to better bounds in early iterations.
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Mass: MIT Press, 2003. isbn: 0-262-13423-3.
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