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Abstract—We present an algorithm to assign time slots to
nodes in a TDMA network that minimizes the jitter in time
slot assignments. By reducing the jitter in time slots around
the TDMA frame, we can provide more consistent network
access and reduce the overall delay seen by an application with
time-varying traffic patterns, such as normal web traffic. Our
algorithm can reduce the average delay seen by all nodes in a
network by up to 51%, based on our numerical analysis. The
algorithm is designed for TDMA MAC layers where a node has
the potential to reserve some number of time slots out of a larger
selection of available slots, and one wishes to choose the slots
that most evenly distribute them around the TDMA ring. The
algorithm solves the Minimum Variance Placement problem for
the special case of a directed ring. After describing an exact
solution using dynamic programming, we present a much faster
run time heuristic that closely approximates the exact solution.

I. INTRODUCTION

This paper presents methods to reduce the jitter in wireless
TDMA networks. Wireless TDMA networks are used in
cellular systems, military systems, and in wireless backhaul
networks, and in some peer-to-peer systems. We are concerned
primarily with distributed peer-to-peer systems that do not
use a central controller and present a distributed algorithm
to smooth out time slot assignments over a TDMA frame. By
smoothing out the time slot assignments over a frame and not
letting them bunch up, we can reduce the delay for variable
bit rate traffic, such as normal TCP/IP web traffic that arrives
at seemingly random times in a TDMA frame. When traffic
arrives at unpredictable times, the best one can do is to evenly
spread out network access over the frame.

In wireless computer data networks, Medium Access Con-
trol (MAC) protocols can be divided in to contention-based
and schedule-based. Contention protocol, such as IEEE 802.11
CSMA/CA [1], are widely used but have poor support for
real-time data traffic, especially without an access point. They
also suffer poor performance under high load. Prior work
on scheduled MAC protocols can be classified as topology
independent and topology dependent. Topology-independent
scheduled protocols are typically pre-assigned Time Division
Multiple Access (TDMA) schemes where each node is as-
signed one or more unique time slots in a global schedule.
These types of protocols suffer from channel under-utilization
an also require global knowledge of the network. Topology
dependent scheduled protocols, also called dynamic TDMA

protocols, construct local TDMA schedules for small groups of
nodes using neighborhood topology information, thus solving
the under-utilization problem of TDMA protocols. Previous
dynamic TDMA protocols, such as NAMA [2], offer good
performance at high load, but still have problems with real-
time data traffic because their randomized slot assignment
algorithms do not have bounds on inter-slot time intervals. This
paper presents a reservation algorithm to compliment dynamic
election TDMA MAC layers.

Once a node knows from a dynamic TDMA slot assignment
scheme in which time slots it may transmit, a node may
reserve zero or more of those time slots. A reservation means
that a node may continually use the same time slot within a
frame without contending for an election each frame. Because
reservations repeat over multiple frames in the same time slot,
the reservation problem may be visualized as an assignment
problem around a directed ring. Our reservation algorithm,
known as Ring Optimal Assignment Reservations (ROAR),
finds optimal allocations of reservations to optimize some
characteristic of a traffic flow. In this paper, we look at the
problem of finding the reservations that minimize the inter-
slot jitter, which is the same as minimizing the variance of the
slot distances around the ring. The desire of a node to reserve
a time slot, and a reservation conflict resolution mechanism,
are protocol-dependent signaling mechanisms not discussed
here. The Context Aware Scheduling Algorithm (CASA) MAC
protocol [3], is an example of a MAC protocol that implements
topology and reservation signaling sufficient to realize the
ROAR algorithm.

The CASA protocols use a different slot allocation mech-
anism than CASA. It uses a permutation of time slots per
node. The permutation ordering means that some slots get a
high likelihood of being assigned to the node because they
appear towards the front of the permutation and other slots are
unlikely to be assigned because they appear towards the end
of the permutation. This spreads the likelihood of assignment
more evenly over nodes and reduces the high-variance of the
NAMA method.

The paper is organized in the following sections. Section II
describes the scheduling and reservation problems and intro-
duces our notation. Section III describes a reservation scheme
to minimize overall variance of slot reservations around a ring.
Section IV presents the results of numerical analysis of the



ROAR algorithm. Section V concludes the paper.

II. SCHEDULING OVERVIEW

In our TDMA model, time is divided in to frames and
frames in to slots. Let there be S slots per frame. Because
TDMA frames are cyclic, we may view time slots as vertices
on a ring each a unit distance apart. Our convention is that on
a ring of integer circumference S, there are nodes labeled in
[1, S] with directed arcs in clockwise rotation. The distance
metric is the arc distance between nodes. Using notation
similar to Manku [5, p.14], we have a distance metric δclk
around the directed arcs of a ring and δabs as the shortest-
path distance around the surface of a circle. The metric δclk
measures distance like a clock, where one may only travel
one direction around the ring. The metric δabs measures the
distance going either way around the circle.

δclk(u, v, n) =

{
v − u v ≥ u
n+ v − u otherwise (1)

δabs(u, v, n) =

{
min{v − u, n+ u− v} v ≥ u
min{u− v, n+ v − u} otherwise(2)

The triangle inequality property of a distance metric affects
the complexity of algorithms. The inequality, for our purposes,
states that given any three points forming a triangle, the sum
of the lengths of any two sides is no less than the the length of
the remaining side. This property holds for δabs but does not
hold for δclk . To see that it does not hold for δclk , imagine a
clock face with hour marks. Take the three hour points 1, 2, 3.
The time-distance from 1 o’clock to 2 o’clock to 3 o’clock is
2 hours. The time-distance from 3 o’clock to 1 o’clock is 10
hours. Therefore, δclk(1, 2, 12)+δclk(2, 3, 12) < δclk(3, 1, 12)
in violation of the triangle inequality.

III. RESERVATION ALGORITHM FOR MINIMUM VARIANCE

The Ring Optimal Assignment Reservations by Variance
(ROAR-V) algorithm allocates reservations over a frame to
smooth out slot assignment by minimizing the variance of
distances between reservation slots. Our problem may be
formulated as follows: For a given frame, the node has an
existing reservation set R and newly assigned set of slots W ,
with V = R∪W . Each slot in V has a maximum capacity of
C, begin the number of load units transmittable during a single
slot. Find the subset V ′ of V , where |V ′| ≤ K, where K is
the maximum reservable slots by the node and V ′ optimizes
the objective. We wish to find V ′ such that inter-reservation
slot variance is minimized. That is, find the K slots in V that
most evenly divide the frame, assuming cyclic reservations.
The algorithms in ROAR-V address this problem. ROAR-V is
particularly suited for random, unpredictable traffic flows. In a
network with some predictable traffic and some unpredictable
traffic, a hybrid algorithm would be called for.

The ROAR-V problem is similar to several previously
studied problems. The k-variance problem is to find a subset
of k points in an n-node graph with minimum variance. The
variance is the sum of squared Euclidean distances between all
pairs of n nodes divided by k. There exists an O(k2n+n log n)

algorithm [6], where n is the total number of nodes from
which one must choose k. The Minimum Variance Placement
(MVP) problem for facility location, which is shown to be
NP-hard [7] for general distance metrics, is also similar to
ROAR-V except it minimizes the all-pairs variance. MVP does
not require that distances satisfy the triangle inequality. The
authors show that not only is MVP NP-hard, even obtaining a
relative time approximation is NP-hard if the distances do not
satisfy the triangle inequality [7, Prop. 1.2].

A. ROAR-V
This section presents an exact solution to the ROAR-V

problem using dynamic programming and a heuristic based
on rotating rings that has much faster run time. Given a set
of V integer positions around a ring of integer circumference
S, find the set V′ ⊆ V of size K that most evenly divides
the ring. This problem may be visulized as in Fig. 1, where
each S positions are as hour marks on a clock, and the set V
are markers on some hours. Let the set DS be the minimum
distances of adjacent elements of set S. We wish to find a
set V′ of cardinality K such that the variance var(DV ′) is
minimum. Note that all solutions will have the same mean
µ = S/K because of the circular structure.

If one considers δclk , the ROAR-V problem is very hard
because ring distances do not satisfy the triangle inequality.
However, minimizing the variance of nearest neighbor dis-
tances around a circle using δabs yields an equivalent solution
in this special case of minimizing variance on a ring. Solv-
ing ROAR-V using δabs between nearest neighbors may be
solved exactly in time O(n2k) using dynamic programming.
The algorithm PickBest in Alg. 1 first assumes that some
element i in V is in the solution. With this assumption, it
calls the algorithm FillTable in Alg. 2 to determine the set
of K choices that minimize the sum of squared distances
around a circle, ending again at element i. PickBest then
iterates over all n starting positions. FillTable works on the
interval distances δabs between two elements. In the algorithm
FillTable, each row represents the best solution assuming
row elements have been chosen in addition to the implicit
starting element determined by the rotation in PickBest. Each
column represents the best solution assuming that element col
is in the last element in the solution. Because we must close
the circle, we calculate FillTable to K rows, which is actually
a solution with K + 1 elements because the starting element
is counted twice.

In FillTable, row 1 is initialized to the sum of squared
distances from the chosen starting element to the end of
interval col. Because in row 1, we assume exactly 1 element
chosen in the solution in addition to the implicit starting
element, this row may be calculated as the initial condition.
Rows 2 . . .K are filled in by picking the element from row−1
where the sum of squared distances between the row − 1
solution and the current column is minimized. Once we have
filled in the table up to element m[K,n], we may read back
the solution from element m[K,n]. Each element in the matrix
m is an ordered pair (ss, p), where ss is the sum of squared



Fig. 1. Ring Fitting (suboptimal) Fig. 2. Ring Fitting (optimal) Fig. 3. 1-step look ahead

distances and p is the traceback path to allow reading the
solution. The element p will be an ordered set (c1, c2, . . . , cK),
where ci is the column index. Reading back the solution
in PickBest converts from column index to vertex number,
accounting for the rotation of IV.

Algorithm PickBest, while polynomial in time, is not
practical for a scheduling algorithm because of the O(n2k)
time bound. A network node, for example, could expect to
have n >> 100 time slots per frame and k >> 10, which
would be on the order of 10’s of millions of calculations
every few hundred milli seconds, which would require several
GHz of processing speed. Therefore, we present a heuristic
algorithm, called ROAR-VR, that approximates the solutions
found by PickBest by rotating a minimum variance ring
around the possible slots. The heuristic runs in time O(n k).
The above example would be on the order of 10’s of thousands
of calculations every few hundred milli seconds.

B. ROAR-VR Heuristic

The ROAR-VR heuristic operates by fitting a minimum
variance ring to the possible time slots. Fig. 1 shows an
example where n = 6 on a 16-slot frame and K = 3. The
algorithm begins by exactly lining up the ring with one time
slot, such as slot 1. For a minimum variance ring, the mean
inter-slot distance is µ = 5 1

3 , so the ring locations are at
u = (1, 6 1

3 , 11
2
3 ). for each ui, we pick the nearest slot in V .

In this example, the chosen slots would be v = (1, 8, 11). The
variance from the mean would be σ2 = 3.2̄. In the next step
of the algorithm, the ring slots would be at u = (3, 8 1

3 , 13
2
3 ),

which would result in the chosen slots of v = (3, 8, 14). The
variance from the mean would be σ2 = 0.2̄, which in this case
is the minimum possible variance so this is an optimal choice.

In some cases, there is ambiguity as to which slot to pick. It
may be that there are exactly 1 or exactly 2 nearest neighbors
to a fitted ring slot. For example, in Fig. 3, the match for
position 5 is equidistant from slots at positions 4 and 6. The
algorithm then looks to what would be the next match, at
position 9, and picks the slot that minimizes the sum of
squared distance. In this case, picking slot 4 would have a sum
of squared distance of 9 + 16 = 25 and picking slot 6 would
have a sum of squared distance of 25 + 4 = 29. Therefore,

the algorithm would pick slot 4 in this case. It may be that
the one-step look ahead is also ambiguous. In this case, to
avoid combinatorial time complexity, the algorithm picks one
look ahead site at random. If in this example it were to pick
slot 8, it would proceed as above. If it were to pick slot 10,
then then the sum of squared distances would pick slot 6, a
sub-optimal choice in the long-run. The look-ahead slot choice
does not determine the actual slot choice in the next iteration
of the algorithm. One may, of course, extend the one-step look
ahead to multiple steps, each improving the decision made at
the expense of running time.

Alg. 3 presents our heuristic for solving the ROAR-V
problem. It returns the subset of slots in V of size K that
minimize the inter-slot variance. The rotating ring method
selects one slot in V as the start position, then adds N/K to it
to find the target position with zero error from the mean. This
is a rational number, not an integer slot number. Alg. 3 then
finds the one or two slots in V that are closest to that target,
as those are the slots that minimize the error from the mean.
The algorithm repeats for all K − 1 target locations equally
spaced N/K apart, and calculates the variance of the solution.
It then picks the next slot in V as the starting position, and
repeats, keeping track of the minimum variance solution

The rotating ring has a starting position i and matching
positions i + kd, where k = 1..K − 1. For a given starting
position, it calls Alg. 5 to determine the best vertex to pair
with the next matching position. FindNext returns a set of
{∅} or {i1} or {i1, i2}, where ij is an index position in V.
If the return set is empty, the configuration under examination
is invalid; this typically happens when there are not enough
vertices remaining to find K of them. If it returns one element,
then that is the unique best match for the target. If it returns
two elements, then there are two equidistant matches from the
target. In the case of two equidistant matches for the target,
if the current target is the last of K, then we pick the choice
with minimum variance around the whole ring. If the current
target is somewhere in the middle of the solution, we pick the
choice that would minimize the sum of squared distances of
the intervals around the current choice. Whenever there are
equidistant choices for the one-step lookahead, we pick one
at random.



Algorithm 1:
PICKBEST(V,K, S)
(1) Convert V to intervals IV on S
(2) IV [i] ← δabs(V [i], V [(i mod d) + 1], S)
(3) n ← |V|
(4) best ← (∞, (∅))
(5) for i = 0 to n− 1
(6) rot ← Rotate V by i
(7) temp ← FILLTABLE(rot,K)
(8) last will be the final element (ss, p) that closes circle
(9) last ← temp[K,n]
(10) if last.ss < best.ss
(11) Dereference path last.p to actual values in V
(12) V out : V ector[1 . . .K]
(13) V out[j] ← V [((last.p[j] + i) mod n) + 1]
(14) best ← (last.ss, V out)
(15) return best.p return best

Algorithm 2:
FILLTABLE(IV,K)
(1) n ← |IV |
(2) m is matrix of ordered pairs (ss, p), p is a path
(3) m : Matrix[1 . . .K, 1..n]
(4) Initialize first row to sum of square distances

(5) m[1, j] ←
([∑j

i=1 IV [i]
]2

, (∅)
)

(6) for row = 2 to K
(7) for col = row to n
(8) e is ordered pair (ss, last) element in m
(9) e ← (∞, {0})
(10) for k = 1 to col − 1
(11) dist ←

∑col−1
i=1 IV [i]

(12) x ← m[row − 1, k].ss+ dist2

(13) if x < e.ss
(14) e ← (x,m[row − 1, k].last ∪ k)
(15) m[row, col] ← e
(16) return m

IV. NUMERICAL ANALYSIS

We analyze ROAR-V via monte carlo simulation, and
compare it against not making any reservations (“NoRes”) and
a greedy reservation scheme (“Greedy”). The NoRes system
uses only the randomly assigned time slots picked by the
slot allocator. The Greedy scheme will reserve a time slot
if the node has a traffic backlog at an assigned slot and will
release a reservation if there is no longer a traffic backlog.
The simulator is a custom C++ program implementing the slot
assignment algorithm, the reservation algorithm, and a FCFS
packet scheduler. The simulator uses a “unit load”, where up to
5 units may be transmitted per time slot. The modeled network
is a fully connected mesh and all traffic is only single hop.

We use two time slot allocators: one similar to NAMA
and one similar to CASA [3]. The NAMA allocator uses a
uniformly random choice of node per time slot, so the inter-
slot allocations for a node are geometrically distributed. The
CASA allocator randomly permutes a time slot vector for each
node and assigns time slots based on the permutation order,
so it has a much tighter inter-slot distribution than geometric.

There are two traffic loads. The Clustered traffic load picks
random nodes and random time slots to allocate load, and
those choices are fixed for all frames in a simulation run. This
models CBR traffic. The Bursty traffic load is like Clustered,
but the allocation changes from frame to frame, which results
in an unpredictable pattern. It models random bulk traffic. We
run the network at 70% utilization, so there are always 0.7 ·
slots ∗ 5 units of load in the network. Our hypothesis going
in to the experiment was that Greedy would do best with the
Clustered traffic and ROAR-V would do best with the Bursty
traffic.

The reservation algorithms work as follows. The NoRes
algorithm does not make any reservations. The Greedy algo-
rithm operates slot-by-slot reserving or releasing slots based
on the instantaneous backlog at that slot time. The ROAR-
V algorithm operates frame-by-frame reserving or releas-
ing slots based on backlog from the previous frame and
the expected traffic arrivals from the previous frame. The

Greedy and ROAR-V algorithms allows a node to have up
to maxResPerNode = (slots/2) + 1 maximum reser-
vations, allocating no more than maxResPerFrame =
(maxResPerNode/5)+1 reservations per frame. For exam-
ple, with 100 nodes and 300 slots, maxResPerNode = 151
and maxResPerFrame = 31. A given node may thus have,
at most 31 reservations the first frame, then an additional 31
in the second frame. If the node only reserved, say 10 slots
in the first frame, it may have up to 41 in the second frame.
To reserve a slot, a node must both have the capacity via
maxResPerFrame and maxResPerNode and be assigned
unreserved slots by the slot allocator. A node may only choose
reservations from the slots allocated in a frame. The idea
behind maxResPerFrame is to prevent a few nodes from
grabbing all the reservable time slots at once. For the Greedy
algorithm, if a node has a backlog and an available reservation,
it will reserve a timeslot. If there is no backlog at a reserved
time slot, it will release the reservation. For the ROAR-
V algorithm, the same maximums apply, maxResPerNode
and maxResPerFrame, but the way slots are allocated and
released is different than Greedy. If there is no backlog at
the start of a frame, the maximum reservations does not
increase. If there is no backlog and no new work to do (new
arrivals), the maximum number of reservations decreases by
maxResPerFrame, down to zero. Reservations are allocated
in a block, via the ROAR-V algorithm, up to the maximum
permissible in the frame. Once the ROAR-V algorithm is
run, if the variance of the allocation is less than the current
allocation, a node will modify its reservations by releasing
previously reserved slots not in the result set and reserving
new slots in the result set.

Simulations are run with 50, 100, and 200 fully-connected
nodes with 300 time slots/frame. The experiment is run for
100 frames, and repeated for 10 trials with different random
number seeds and traffic loads. The figures present the average
delay over all 10 trials. The 95% confidence interval, while not
shown, is typically under between 3% - 5% of the mean for the
Bursty traffic and 12% - 20% of the mean for Clustered traffic.



In Figs 7 – 8, all but one result are statistically significant
(there are no overlapping 95% confidence intervals) within
each group (i.e. 50-node, 100-node, or 200-node). The one
result with overlapping intervals is Fig 8, 200 nodes between
ResNone and Greedy. In Figs 9 – 10, all but one result
are statistically equivalent (the 95% confidence intervals all
overlap) within each group. The one exception is Fig 10,
50-node between Greedy and ROAR-V, where Greedy is
significantly better than ROAR-V.

Looking at the results, and considering the statistical sig-
nificance of the 95% confidence intervals, we see there is
only a significant difference between reservation algorithms
for Bursty traffic. For Clustered traffic, the means are all
fairly close and the 95% confidence intervals overlap. At
times, Greedy performs better, on average, than no reservations
(e.g. Fig 10), but sometimes no reservations works better
than Greedy (e.g. Fig 9, 100 nodes), when Greedy makes a
sub-optimal allocation. Sometimes ROAR-V performs better
on clustered traffic, even though its reservation scheme does
not depend on the traffic arrival times. We would conclude
form this that none of the schemes sufficiently optimize for
clustered traffic beyond the randomization of the slot allocator.
For Bursty traffic, there is a significant difference between
reservation algorithms. The Greedy algorithm reserves slots
when there is a burst, so a node with a backlog gets more
transmission opportunities and clears its backlog sooner than
without reservations (NoRes). However, these reservation may
be bunched up in one part of the frame, so overall the delay
is not optimized. The ROAR-V reservation scheme, because it
evenly spreads reservation slots over a frame, greatly reduces
delay compared to Greedy.

Numerically, Table I shows the percentage improvement of
ROAR-V over Greeding and NoRes for the 6 cases of Bursty
traffic using the data presented in Figs 7 – 10. Compared to
not using reservations, ROAR-V has between 44% and 51%
lower delay and compared to a Greedy reservation scheme,
ROAR-V has between 29% and 51% lower delay.

TABLE I
PERFORMANCE IMPROVEMENT OF ROAR-V

Scenario vs. Greedy vs. NoRes
CASA Bursty 50-node 29.7% 45.4%
NAMA Bursty 50-node 30.6% 44.8&
CASA Bursty 100-node 46.0% 50.1%
NAMA Bursty 100-node 46.4% 50.8%
CASA Bursty 200-node 51.3% 44.3%
NAMA Bursty 200-node 51.3% 51.8%

Fig. 5 shows the standard deviation of the inter-slot times
for NAMA and CASA in executions with 300 slots, averaged
over 200 frames with 10 independent trails. The results shown
are for NoRes, but this aspect of the system is independent
of the reservation scheme. As described in [3], the CASA
scheduler has a significantly tighter schedule generation than
NAMA, with the difference becoming more pronounced as the
node to slot ratio grows (as the number of nodes to the number
of slots becomes larger). All the differences in the figure are

significant, the 95% confidence interval is under 1.0 in all
cases. The improvement in inter-slot jitter ranges between 8%
for 50-nodes to 18% for 200 nodes.

In terms of average traffic delay, there are a few specific
cases where the CASA scheduler is significantly better than
the NAMA scheduler, then all other cases are statistically
equivalent. Fig. 6 shows all 6 comparisons between NAMA
and CASA for Clustered and Bursty traffic, with Greedy,
NoRes, and ROAR-V reservation techniques. The X-axis is a
category label, such as “G-50” meaning “Greedy 50-node”.
The abbreviation “NR” is for NoRes and “V” for ROAR-
V. For Bursty traffic with ROAR-V, the NAMA and CASA
lines overlap, so there is only one line visible. CASA has
a statistically significant lower total delay in the 100-node
and 200-node runs with Bursty traffic NoRes (the top middle
pair of lines in the figure). In all other direct comparisons,
CASA and NAMA have similar delays, due to large confidence
intervals for the Clustered data and very close results for the
Bursty data. The standard deviation of the average delay is
generally slightly lower for CASA, the largest difference being
for NoRes and Bursty traffic (about 2x to 3x less).

Fig. 4 compares the performance of the heuristic ROAR-
VR to the dynamic programming solution ROAR-V in terms
of running time. The tests were run on a 3.2 GHz Quad-Core
MacPro using the same C++ code as the simulator. We ran
experiments with 5,10, 20, 40, 80, and 160 nodes with 1000
time slots for 20 frames. This resulted in, on average, 6.25,
12.5, 25, 50, 100, and 200 time slots being assigned to each
node. The figure shows the total execution time divided by
the number of slots divided by the number of nodes. The
ROAR-VR line grows at a rate between 2.6x and 4.2x for
each doubling of the number of slots. On average it grows
around n1.56, where n is the number of slots (the size of the
V vector). The ROAR-V series grows between 6.5x and 12.7x
for each doubling of n, scaling on average like n4.46.

V. CONCLUSION

We have presented the ROAR-V algorithm solved via dy-
namic programming and as a fast run time heuristic. The
ROAR-V algorithm solves the Minimum Variance Placement
problem for facilities constrained to a ring topology, and is
applicable to dynamic TDMA networks where nodes may
reserve some subset of their assigned slots. The ROAR-V
algorithm has between 29% - 51% lower delay than a Greedy
reservation scheme and between 44% - 51% lower delay than
not using reservations at all. We also compared the NAMA
and CASA slot allocators (election schemes), and found that
in terms of average delay, CASA has a slight improvement
in a few cases where reservations are not used. In terms of
variation of time-slot assignments, CASA has a significant 8%
to 18% improvement in inter-slot jitter over NAMA.

Future work should look at adapting ROAR-V to be aware
of the incurred delay, and pick different rotations of the
minimum variance schedule based on recurrent traffic loads.
We have also worked on a minimum latency algorithm, known
as ROAR-L, which we will present at a later time.



Algorithm 3:
ROTATERING(V,K,N )
(1) d ← |V |
(2) u ← N/K
(3) These track the best solution (lowest variance)
(4) bestv ← ∞
(5) bestsol : V ector[1 . . .K]
(6) for i = 1 to d
(7) This is the solution being tested and its starting slot
(8) sol : V ector[1 . . .K]
(9) start ← V [i]
(10) target is the next ring position at min variance
(11) target ← start+ u
(12) idx is the current index in sol
(13) idx ← 1
(14) sol[idx] ← i
(15) bestidx is the best next index into V
(16) bestidx ← i
(17) while idx < K
(18) pos is the index in to V to test for a fit to target
(19) pos ← (bestidx mod d) + 1
(20) bestidx ← 0
(21) x ← FINDNEXT(V, d, sol, pos, idx, target,K,N)
(22) if x = ∅
(23) This is invalid configuration, stop checking.
(24) break
(25) if |x| = 1
(26) Exactly 1 best match.
(27) bestidx ← x[1]
(28) else
(29) There are 2 best matches.
(30) bestidx ← PICKFROMTWO(V, idx, target, u,K, x)
(31) idx ← idx+ 1
(32) sol[idx] ← bestidx
(33) target ← target+ u
(34) if bestidx = 0
(35) v ← ∞
(36) else
(37) Compute the variance of the current solution
(38) v ← var(sol)
(39) if v < bestv
(40) bestv ← v
(41) bestsol ← sol
(42) return sol

Algorithm 4:
FINDNEXT(V, d, sol, pos, idx, target,K,N )
(1) besterr ← 2N
(2) bestidx ← {∅}
(3) j ← idx
(4) maxidx is the maximum value we may try assigning to

this position and leave room for K − startpos additional
assignments.

(5) maxidx ← ((sol[1] + d− (K − pos)) mod d) + 1
(6) while j &= maxidx
(7) err ← δabs(target, V [j], N)
(8) if err < besterr
(9) besterr ← err
(10) bestidx ← {j}
(11) else if err = besterr
(12) bestidx ← bestidx ∪ {j}
(13) j ← (j mod d) + 1
(14) return bestidx
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Fig. 4. Comparison of heuristic ROAR-VR to ROAR-V run time

Algorithm 5:
PICKFROMTWO(V, idx, target, u,K, x)
(1) if idx = K − 1
(2) We can close the ring
(3) Try sol[idx+ 1] as x[1] and x[2], the one that minimizes

the total variance of the solution over the whole ring.
(4) bestidx ← best choice
(5) else
(6) We cannot close the ring
(7) Try sol[idx + 1] as x[1], x[2], and run FindNext with a

target of target+ u, then pick the answer from FindNext
with minimum δclk from sol[idx+ 1] to target+ u with
random tie break. Call this nextidx.

(8) Pick x[1] or x[2] that minimizes the sum-squared δclk from
V [x[1]] or V [x[2]] to V [nextidx], with random tie break.

(9) bestidx ← best choice
(10) return bestidx
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Fig. 5. Slot Allocator Comparison (inter-slot jitter)
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Fig. 7. CASA Scheduler, Bursty Traffic
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Fig. 8. NAMA Scheduler, Bursty Traffic
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Fig. 9. CASA Scheduler, Clustered Traffic
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Fig. 10. NAMA Scheduler, Clustered Traffic




