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Parallel Beam Dynamics Simulation of Linear Accelerators

Ji Qiang and Robert D. Ryne

MS 71J, Accelerator and Fusion Research Division

Lawrence Berkeley National Laboratory

1 Cyclotron Road

Berkeley, CA 94720

Abstract

In this paper we describe parallel particle-in-cell methods for the large scale simulation

of beam dynamics in linear accelerators. These techniques have been implemented in the

IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used

to study the behavior of intense charged particle beams and as a tool for the design of

next-generation linear accelerators. As examples, we present applications of the code to the

study of emittance exchange in high intensity beams and to the study of beam transport

in a proposed accelerator for the development of accelerator-driven waste transmutation
technologies.

1 Introduction

The emergence of high performance, large memory parallel computers has made large scale simu-
lation an indispensible tool for the design of next-generation accelerators. This is especially true in
regard to high intensity accelerators for applications such as spallation neutron sources, proposed
waste transmutation systems, and accelerator-based �ssion and fusion energy concepts. For all
these systems, the self �elds within the beam (i.e. the space-charge �elds) play an important role
in the beam dynamics. And for all these systems, large scale simulation is essential for feasibility
studies, for design optimization, and for design decisions aimed at evaluating and reducing risk
and cost.

Particle simulation methods are widely used in the accelerator community [1, 2, 3, 4, 5].
However, the self-consistent simulation of high-intensity beams, especially in three-dimensions, is
computationally intensive. For this reason parallel simulation codes are essential. Such codes have
been developed and are now being used in the accelerator community [1, 5]. In this paper we will
describe the methods used to simulate radio frequency (RF) linear accelerators. In Section 2 we
will provide an overview of the mathematical model, numerical methods, and their implementation
on parallel computers. Section 3 presents two applications, one from a beam physics study of
longitudinal/transverse coupling in space-charge dominated beams, and the other from a study
of a novel beamline design for spoke-cavity superconducting linacs.

2 Parallel Particle-In-Cell Methods

The Vlasov-Poisson model is widely used in the study of beam dynamics in RF accelerators. In
this approach, the charged particles are viewed as being subject to externally applied �elds and a
self-�eld (in the mean-�eld approximation) associated with the beam's space charge. Collisional
e�ects are normally negligible in linear accelerators, although they are important in circular



machines. Also, the Poisson equation may be used (as opposed to the full Maxwell equations)
because, in many situations, the motion in the bunch frame is nonrelativistic. The resulting
quasi-static model still includes some relativistic e�ects because it takes account of the reduction
in the space-charge force due to the self-magnetic �eld associated with the beam current.

The design of RF accelerators is normally performed using the arc length, rather than the
time, as the independent variable. (In linear accelerators, this is normally chosen to be the z-axis
of a Cartesian coordinate system.) Futhermore, one is usually interested in motion around some
reference trajectory. Therefore, accelerator simulations are traditionally done using deviations
from the reference trajectory as the dependent variables of the analysis. For the analysis of circu-
lar accelerators, it is essential that the numerical model preserve the symplectic (i.e. Hamiltonian)
nature of the dynamics. For such cases the computer model is based on a solution of Hamilton's
equations where the Hamiltonian includes the electromagnetic potentials associated with the ex-
ternal �elds as well as the mean-�eld potentials associated with the space-charge �elds. For linear
accelerators, and for single-pass systems, the preservation of the symplectic condition is not as
critical. In such cases, the computer model may integrate the Lorentz force equations, where the
electric and magnetic �elds in the equations have contributions from the externally applied �elds
and the space-charge �elds. In the Lorentz force approach, the equations of motion using z as the
independent variable are given by
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the phase relative to the reference particle de�ned by  = !(t� tg), ! is a constant with units of
the angular frequency, tg is the ight time of the reference particle, pt is the normalized energy
deviation with respect to the reference particle, pt = g � , where g is the  of the reference
particle, c is the speed of light, and m0 is the rest mass of the particle. The trajectory of the
reference particle on the axis of the accelerator can be determined from the following:
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where Ez0 is the on-axis external electric �eld (with the on-axis space-charge �eld assumed to be

zero at the location of the reference particle), and �0 =
q
1� 1=2g .



The mean-�eld Coulomb potential can be obtained from the solution of Poisson's equation
in the beam frame subject to di�erent boundary conditions [6]. In our computer model we have
included six types of boundary conditions. They are: open in all three dimensions, open in the
transverse direction and periodic in the longitudinal direction, conducting walls in the transverse
direction and open in the longitudinal direction, conducting walls in the transverse direction and
periodic in the longitudinal direction. We treat two types of conducting walls, a circular or a
rectangular pipe.

This model, along with a symplectic model based on Hamilton's equations and split-operator
methods, has been implemented in an object-oriented 3D parallel particle-in-cell code called IM-
PACT (Integrated Map and Particle Accelerator Tracking Code) [1]. The following describes the
parallel implementation of the model.

The IMPACT code employs the two-dimensional domain-decomposition approach of Liewer
and Decyk [7]. The physical computational domain is de�ned as a 3-dimensional rectangular
box containing all charged particles within the range xmin � x � xmax, ymin � y � ymax,
and zmin � z � zmax. This domain is decomposed on the y � z plane into a number of small
rectangular blocks. These blocks are mapped to a logical two-dimensional Cartesian processor
grid. Each processor contains one rectangular block domain. The particles with spatial positions
within the local computational boundary are assigned to the processor containing that part of the
physical domain.

The particles generated on each processor are advanced using a second order leap-frog al-
gorithm to solve the equations of motion. If a particle moves outside the local computational
domain, it is sent to the corresponding processor where it is located. A particle manager func-
tion, implemented using the message passing interface (MPI), is de�ned to handle the particle
movement and the inter-processor communication. The particle manager �rst checks the y and z
positions of every particle on each processor. If these positions are outside the local computational
domain, the particle is copied to one of its four bu�ers and sent to one of its four neighboring
processors. After a processor receives particles from its neighbors, it determines whether some of
them need to be further sent out or not. The outgoing particles are counted and copied into four
temporary arrays. The remaining particles are copied into another temporary array. This process
is repeated until there is no outgoing particle found on all processors. Then, the particles in the
temporary storage, along with the particles left in the original particle array, are copied into a
new particle array.

After each particle moves to its local computational domain, a linear cloud-in-cell (CIC)
particle-deposition scheme is done for all processors to obtain the charge density on the grid.
For the particles located between the boundary grid and computational domain boundary, these
particles will also contribute to the charge density on the boundary grids of neighboring proces-
sors. Hence, explicit communication is required to send the charge density on the guard grids,
which is from the local particle deposition, to the boundary grids of neighboring processors to
sum up the total charge density on the boundary grids. With the charge density on the grids, the
Poisson equation is solved subject to di�erent boundary conditions to obtain the potential on the
grid [6]. From the potential on the grid, we calculate the electric �eld on the grid using a central
�nite di�erence scheme. To calculate the electric �eld on a boundary grid, the potential on a
boundary grid of neighboring processors is required. A communication pattern similar to that
employed in the charge density summation on the boundary grids is used to send the potential



from the boundary grids to the guard grids of neighboring processors. After the electric �eld on
the grids is obtained, it has to be interpolated from the grids onto the local particles to advance
the particles. Since we have used the linear CIC scheme, the electric �eld of particles between
the boundary grid and computational domain boundary will also depend on the electric �eld on
the boundary grid of neighboring processors. A similar communication pattern is used to send
the electric �eld from the boundary grids to the guard grids of the neighboring processors. With
the electric �eld on grids local to each processor, the interpolation is done for all processors to
obtain the space-charge force on every particle. The local particles are updated in momentum
space based on the space-charge forces and external forces.

Dynamic load balancing is employed with adjustable frequency to keep the number of par-
ticles on each processor approximately equal. A density function is de�ned to �nd the local
computational domain boundary so that the number of particles on each processor is roughly
balanced. This number depends on the local integration of the charge density on each processor.
To determine the local boundary, �rst, the three-dimensional charge density is summed up along
the x direction on each processor to obtain a two-dimensional density function. This function is
distributed locally among all processors. Then, the two-dimensional density function is summed
up along the y direction to get the local one-dimensional charge density function along z. This
density function is broadcast to the processors along the y direction. The local charge density
function is gathered along z and broadcast to processors along the z direction to get a global
z direction charge density distribution function on each processor. Using this global z direction
density distribution, the local computational boundary in the z dimension can be determined
assuming that each processor contains a fraction of the total number of particles about equal to
1=nprocz. Here, nprocz is the number of processors along the z direction in the two-dimensional
Cartesian processor grid. A similar process is used to determine the local computational boundary
in the y direction. Strictly speaking, the above algorithm will work correctly for a two-dimensional
density distribution function which can be separated as a product of two one-dimensional func-
tions along each direction. However, this algorithm works reasonably well for the distributions
generally produced in beam dynamics simulations in linear accelerators. Fig. 1 shows the max-
imum and minimum number of particles per processor with and without dynamic load balance.
With dynamic load balancing, the di�erence between the maximum number of particles and the
minimum number of particles has been drastically reduced. Fig. 2 shows the excution time as
a function of the processor number on the Cray T3E-900 and on the SGI Origin 2000. Good
scalability of the parallel PIC code is evident.

3 Applications

An important issue for future high intensity linacs is that there may be emittance transfer betweeen
the longitudinal and transverse dimensions of the beam phase space that would degrade the beam
quality and possibly lead to particle loss. We have studied this issue using IMPACT. Fig. 3 shows
the relative emittance growth factor (��=�0) in both directions as a function of longitudinal to
transverse tune ratio in a three-dimensional constant focusing channel with initial longitudinal to
transverse emittance ratio 2:0 and transverse tune depression 0:5. There are three pronounced
resonance stop bands near tune ratios 2:1, 2:2, and 5:2. Within each stop band, there is signi�cant
emittance transfer from the longitudinal plane to the transverse plane. Outside the stop band, the
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Figure 1: The maximum and minimum number of particles per processor with and without
dynamic load balance.
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Figure 3: Emittance growth as a function of tune ratio.
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Figure 4: Kinetic energy of beam as a function of distance.

coupling between the two directions is weak, and the beam can remain non-equipartitioned for a
long time. The stop bands obsevered in Fig. 3 are caused by nonlinear space-charge forces which
drive collective oscillations of charge density that lead to the longitudinal/transverse coupling
when the resonance condition is satis�ed. These stop bands can be related to the instability of
non-oscillatory modes from theoretical studies [8] and are identi�ed as a third order mode, fourth
order mode and seventh order mode, respectively.

We have also used IMPACT to study novel designs for future accelerators. As an example,
we have studied longitudinal alternating phase focusing in the proposed Accelerator-Driven Test
Facility. One period of the accelerator consists of a superconducting solenoid for transverse fo-
cusing and two superconducting spoke RF cavities for acceleration and longitudinal focusing. By
adjusting the drive phase of the two cavities, we can achieve the same acceleration but with one
cavity focusing and the other cavity defocusing. This will reduce the total zero current phase
advance in one period and will potentially avoid the envelope instability occuring at large zero
current phase advance. The use of longitudinal alternating phase focusing also reduces the trans-
verse focusing required of the solenoid. Fig. 4 shows the kinetic energy as a function of distance
within 20 periods of accelerator structure from the simulation. The average acceleration gradient
used here ramps up from 3 MV/m to 8.32 MV/m, and the solenoid magnetic �eld is 2.3 Tesla.
We see that after 45 meters, the kinetic energy has reached 20 MeV. Fig. 5 shows the fractional
loss at the end of the simulation as a function of input current. Beyond 50 mA, the particle
loss increases signi�cantly. This sets the upper boundary for the beam intensity in this design.
Numerical simulations such as this are being used to explore new concepts that will enable future
superconducting linacs to operate with high �elds without encountering beam instabilities.
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