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Explicit Predictions for Illness Statistics 
Talia Robbins (talia.robbins@rutgers.edu) 

Pernille Hemmer (pernille.hemmer@rutgers.edu) 
Department of Psychology, 152 Frelinghuysen Road 

Piscataway NJ, 08901 USA 
 

Abstract 
People’s predictions for real-world events have been shown to 
be well-calibrated to the true environmental statistics (e.g. 
Griffiths and Tenenbaum 2006). Previous work, however, has 
focused on predictions for these events by aggregating across 
observers, making a single estimate for the total duration 
given a current duration. Here, we focus on assessing 
predictions for both the mean and form of distributions in the 
domain of illness duration prediction at the individual level. 
We assess understanding for both acute illnesses for which 
people might have experience, as well as chronic conditions 
for which people are less likely to have knowledge. Our data 
suggests that for common acute illnesses people can 
accurately estimate both the mean and form of the 
distribution. For less common acute illnesses and chronic 
illnesses, people have a tendency to overestimate the mean 
duration, but still accurately predict the distribution form.  

Keywords: Prediction; Judgment; Health; Cognition 

Introduction 
Imagine that you have the flu and need to decide whether 
you will be better in time to travel to a conference this 
weekend. You are now faced with predicting how long you 
will be sick. For this inference, you will need to use your 
knowledge of real-world statistics, including both the mean 
duration and most likely form of the duration distribution.  

People have been shown to make optimal predictions for 
the duration of many real-world events (Griffiths & 
Tenenbaum, 2006). In these domains, people’s beliefs about 
the underlying distribution of quantities (e.g. cake baking 
times are captured by a bimodal distribution) have been 
shown to be accurate in the aggregate. These findings have 
been extended to people’s ability to make predictions for 
illness duration (Robbins and Hemmer, in revision). People 
were able to make predictions that were consistent with both 
the mean and form of illness distributions for common acute 
illnesses (e.g. common cold and seasonal flu), but 
systematically overestimated the duration of chronic 
illnesses (illnesses with which they had significantly less 
experience). This suggests they had knowledge of the 
correct form of the underlying illness duration distributions. 

One limitation of the procedures used in previous 
experiments (e.g. Griffiths & Tenenbaum, 2006) is that each 
participant made only one prediction about a total duration 
given its current duration. As such, data was aggregated 
over participants to assess the fit of participant data to the 
true duration distributions. As Griffiths and Tenenbaum 
(2006) explain, this gives a guide to peoples’ implicit beliefs 
about the distributions. As such, these experiments do not 
allow for an assessment of whether people have knowledge 
of the correct form of the underlying illness distribution at 

the individual level. Accordingly, these studies could be 
illustrating the wisdom of the crowds effect, whereby 
aggregating over many individual judgments from a group 
of people leads to a response that is closer to the ground 
truth than that of a smaller group (Surowiecki, 2004).  

To our knowledge, no previous work has assessed the 
correspondence between people’s beliefs and the statistics 
of the environment—specifically illness statistics—at the 
individual level. Therefore, in the current study, we assessed 
whether people understood the true statistics for the 
durations of different illnesses by asking them directly what 
they thought the mean and correct form of illness duration 
distributions were. This allowed us to evaluate whether 
people have an internal model for real-world statistics that 
they can consciously access and use to make predictions.  

Understanding illness duration is critical for illness 
identification. For instance, imagine you have a cough and 
high fever, and thinking you have the flu you try to estimate 
how long you will be sick. One thing you will draw on is 
your understanding of the real-world distribution of 
durations for different illnesses. If your symptoms begin to 
fade after three days, this may confirm your suspicion that 
you have the flu, since this is within the normal distribution 
for the flu. However, if you are still sick after 10 days, you 
might begin to believe you have a different illness such as 
the common cold, because you know that 10 days is 
reasonable within the distribution of duration for the 
common cold. This estimation requires an understanding of 
the entire distribution of illness duration, rather than just the 
mean or some conditional duration. With only the mean of 
the distribution, you would not know how much variation in 
duration is normal, or at which point a particular illness is 
unlikely given the duration of your symptoms.  

Illness further provides an interesting example for 
prediction because people have different levels of 
experience for different illnesses—e.g. common illnesses 
such as the cold, or less common illnesses such as bacterial 
meningitis. Experience may also differ between acute (e.g. 
cold) and chronic (e.g. asthma) illnesses. An acute illness is 
defined as one which can be cured with treatment, while a 
chronic illness is defined as one that can be managed but not 
cured. Differing levels of experience between chronic and 
acute illnesses may influence the accuracy of a person’s 
prior beliefs, and different priors might be appropriate for 
different illnesses, given personal experience.  

The observer’s prior beliefs play an important role, as 
optimal predictions are assumed to follow Bayesian 
principles. Bayes rule gives a principled account of how 
people should update their prior beliefs given evidence from 
the world. Each time a person experiences an illness, they 
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should update their prior probability distributions for the 
duration of that illness. This would result in illnesses that 
are experienced more often having very accurate prior 
distributions. For illnesses that are less commonly 
experienced, people might adjust their prior beliefs to those 
of illnesses for which they have more knowledge of the 
correct form of the distribution, when making inferences. 
While people might use evidence from other sources when 
updating their priors, evidence that is personally 
experienced is better integrated than information acquired in 
other ways (Sallnas, Rassmus-Grohn, & Sjostrom, 2000).  

In this paper, we sought to assess whether the 
correspondence of people’s beliefs to Bayesian optimal 
predictions in the aggregate (e.g. Griffiths & Tenenbaum, 
2006; Robbins & Hemmer, in revision) extended to 
estimations for the mean and correct form of illness duration 
distributions at the individual level. We further sought to 
apply this approach to a domain with direct implications for 
real world problems—specifically patient health. In 
Experiment 1, we simply asked participants to predict the 
mean duration of each of nine illnesses.  

In Experiment 2, we sought to assess whether people 
could make estimations of the correct form of illness 
distributions. To do this, we gave participants four 
distribution options—each fit to the true clinical data for 
that illness—and asked them to select the distribution form 
that best described that illness. Because each of the 
distribution options was fit to the clinical data, consistent 
selection of the correct distribution would clearly illustrate 
that there is a correspondence between people’s internal 
model and the true statistics of the environment. This 
suggests that they have a cognitive representation of the 
form of the distribution of durations that they can 
consciously access.  

Experiment 1: Mean Estimation 
Methods 
Participants Ninety-Nine Mechanical-Turk workers from 
the United States participated in exchange for $1.  
Materials We selected nine illnesses—five acute and four 
chronic (see Table 1)—intended to span a range of durations 
and familiarity. Familiarity was determined based on 
prevalence statistics for the number of people diagnosed 
with that illness each year (see Table 1). Table 1 also 
includes the source of the clinical data used for the illness 
duration distributions. 

 We first needed to determine the mean and correct form 
of the nine illness distributions. Illness durations have been 
found to be well modeled by a type of distribution known as 
a survival function, which includes Gamma, Exponential, 
and Weibull. The Erlang distribution is a special case of the 
Gamma distribution, where 𝛼	must be an integer, which is 
often used to model illness duration and illness stages in 
transmission models of infectious disease, and to infer 
parameters from clinical data (Krylova & Earn, 2013). For 
this reason, we assume Erlang is the correct distribution for 
the nine illnesses. See Figure 1 for the clinical duration 

distributions for the nine illnesses used in this experiment, 
with corresponding Erlang distribution fits. The clinical data 
provides a ground truth for both the mean and form of 
distributions to compare to participant responses (see Table 
1 for clinical data sources).   
Procedure The procedure was identical to that of Griffiths 
and Tenenbaum (2006), with the important difference that 
we did not condition on the current unit of time. As a 
consequence of the units of time available in the 
experiment, there may have been an anchoring effect, which 
is when people are systematically influenced by starting 
points regardless of whether they are informative (e.g. 
Chapman & Johnson, 1999). By not providing the units of 
measure, we eliminate any possible anchoring effect. Our 
current procedure provides a truer picture of people’s ability 
to estimate the mean because they are not given a frame of 
reference. Participants simply made a prediction about the 
total duration of each of the nine illnesses. The question 
read: “Given that you meet someone with illness X, what do 
you think will be the total duration of their illness?” 
Participants responded by typing in a number and selecting 
a unit of time from a dropdown menu presented on the 
computer screen. The experiment was performed using the 
Qualtrics interface. The order of presentation was 
randomized.  

Participants were also asked to categorize each illness 

Table 1: Sources for Clinical Data (in order of prevalence) 
Illness  
(Prevalence/10,000) 

Source of Clinical Data 

Acute (in order of prevalence) 
Bacterial Meningitis (.14) Kilpi & Anttila (1991) 
Mononucleosis (5)  Cameron et al. (2006) 
Appendicitis (9) Singh et al. (2014) 
Seasonal Flu (1250) Kohno et al. (2010) 
Common Cold (2360) Gwaltney, J. (1967) 
Chronic (in order of prevalence) 
COPD (4.5) Shavelle (2009)  
Asthma (800) American Lung 

Association (2012) 
Type II Diabetes (860) http://www.cdc.gov/diabetes 

/statistics/duration/fig1.htm 
Chronic Heart Disease (1130) Proudfit et al. (1983) 

 

 
Figure 1: Histograms of clinical data for nine illnesses with 
best fitting Erlang distributions. Grey bars show the 
frequency of each illness duration, black lines show the 
Erlang fit to clinical data. µ gives the distribution mean.  
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using one of five labels: “Lasts a short time, will go away 
completely even without treatment”, “Can vary in length, 
requires immediate treatment, but can be cured”, “Is long 
term, requires treatment, but can eventually be cured”, 
“Lasts the rest of a person’s lifetime, treatment can only 
manage symptoms, it cannot be cured, but does not 
necessarily cause death”, “Varies in length, treatment can 
only manage symptoms, cannot be cured, eventually causes 
death”. Participants were also asked several basic 
demographic questions (e.g. age and experience with the 
nine illnesses) which are not analyzed here.  
Results 
Given that participants could respond with any unit of time, 
we first normalized participant responses to the unit of time 
for the clinical distributions. Responses were then filtered 
for outliers. Data was excluded in the following way: 
unreasonably large responses (defined as those 3 standard 
deviations greater than the mean response for a given 
illness) and participants who had more than two data points 
excluded based on the above criteria. The responses 
analyzed were 85 for appendicitis, 90 for the seasonal flu, 
90 for the common cold, 87 for bacterial meningitis, 77 for 
mononucleosis, 90 for COPD, 90 for chronic heart disease, 
90 for type II diabetes, and 90 for asthma. 
  First, we examined people’s ability to characterize the 
durations of acute and chronic illnesses. Chronic illnesses 
are lifelong, which is a critical difference from acute 
illnesses which are curable. To determine whether 
participants had basic knowledge of the illnesses they were 
making estimations about, we examined their responses to 
questions asking to characterize each illness. For the 
common acute illnesses—common cold and seasonal flu—
92% of participants correctly responded that the illnesses 
were short term and curable. For the less common acute 
illnesses—appendicitis and bacterial meningitis—81% and 
66% of participants respectively labeled these illnesses as 
short term.  For the four chronic illnesses 74%-84% of 
participants correctly responded that these illnesses were 
lifelong. This clearly shows that people understand the 
chronicity of the chronic and common acute illnesses. 
 We first evaluated the accuracy of participant’s mean 

responses (see Table 2). A qualitative evaluation of the data 
illustrates that participant responses were close to the true 
mean for more prevalent acute illnesses (i.e. common cold 
and seasonal flu), and that participants overestimated the 
duration of chronic illnesses, similar to the pattern found by 
Robbins & Hemmer (in revision).  

In order to evaluate whether participant responses were 
accurate relative to the true mean of the empirical illness 
distributions, we used a two one-sided t-test approach (e.g. 
Limentani et al., 2005). We used this approach as it allows 
us to test for practical equivalence (e.g. Rogers, Howard, & 
Vessey, 1993). A one-sample t-test might find a significant 
difference between a population mean of seven days and a 
participant response mean of eight days. While this 
difference is significant, it places too rigid a standard for our 
purposes, leading to an inaccurate conclusion that 
participants do not understand the mean of that illness. For 
this reason, we set a criterion considering accuracy to be 
within one standard deviation of the mean of the empirical 
illness distributions (standard deviations for each illness are 
displayed in Figure 2). We then conducted a t-test on either 
end of this threshold to determine if participant responses 
were significantly greater than the lower threshold, and 
significantly less than the upper threshold.  

We found that for mononucleosis and the common cold, 
Table 2:  True and estimated illness durations 
Illness True Duration Participant Response % using unit of time (correct unit is bolded) 
   Hours Days Weeks Months Years 
Acute        
Appendicitis 39 hours 471.6(SD=969.5) hours 8.4 32.6 39.0 12.6 7.4 
Seasonal Flu 3.9 days 8.9(SD=4.5) days 2.1 37.9 56.8 3.2 0 
Common Cold 5.1 days 6.3(SD=3.2) days 1 65.3 33.6 0 0 
Bacterial Meningitis 5.5 days 37.3(SD=44.0) days 2 10.5 45.3 36.8 5.3 
Mononucleosis 10 weeks 9.3(SD=13.0) weeks 1 9.5 35.8 32.6 21.1 
Chronic        
COPD* 6 years 36.6(SD=22.0) years 0 1 0 5.3 93.7 
Type II Diabetes 12 years 36.0(SD=22.5) years 0 1 0 5.3 93.7 
Chronic Heart Disease 13 years 26.4(SD=20.0) years 0 1 2.1 2.1 94.7 
Asthma 15 years 42.5(SD=25.7) years 4.2 1.1 0 2.1 92.6 
* COPD stands for Chronic Obstructive Pulmonary Disease   

 
 

 
Figure 2: Red bars show the percentage of participants that 
were X number of standard deviations from the mean. 
Positive numbers indicate estimations above the mean, and 
negative numbers indicate estimations below the mean. 
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responses were within the one standard deviation of the true 
mean—meaning the estimates were practically equivalent to 
the true mean (upper threshold: Mononucleosis: t(76)=-6.1 
p<.01, Common cold: t(89)=-6.9. p<.0; lower threshold: 
Mononucleosis: t(76)=5.1. p<.01, Common cold: 
t(89)=13.4. p<.01). For the other seven illnesses, responses 
were found to be greater than the lower end of the threshold, 
but not less than the higher end of the threshold, suggesting 
a pattern of overestimation, (Appendicitis: t(84)=4.3. p<.01, 
Seasonal flu: t(89)=13.0, p<.01, Bacterial meningitis: 
t(86)=7.1, p<.01, COPD: t(89)=14.9, p<.01, Type II 
diabetes: t(89)=20.4, p<.01, Chronic heart disease: 
t(89)=20.0. p<.01, Asthma: t(89)=13.2. p<.01). 

Given that participants were not within the one standard 
deviation threshold for seven illnesses, we wanted to further 
examine how misaligned they were for each illness. 
Therefore, we calculated the percentage of participants at 
each standard deviation from the mean (see Figure 2). For 
the common cold and mononucleosis, the majority of 
participants (approx. 80%) were within one standard 
deviation, as illustrated in the TOST. For the seasonal flu 
more than 70% of participants were within four standard 
deviations of the mean, which may seem like a large 
deviation from the correct response, however it is also 
important to note that the standard deviations varied greatly 
between illnesses. For the seasonal flu, the standard 
deviation was only 1.73 days, meaning that more than 70% 
of participants responded within 6.8 days of the true mean. 
Conversely, for the least prevalent acute illnesses, 
appendicitis and bacterial meningitis, only 34% and 38% of 
participants respectively were within four standard 
deviations of the true mean, with some participants being up 
to 80 standard deviations away (for appendicitis this 
corresponded to 1416 hours or 59 days). This illustrates that 
participants had lower agreement, and less accurate mean 
estimations for these illnesses.  

For the chronic conditions, fewer participants were within 
four standard deviations of the mean, with 31% for COPD, 
100% for type II diabetes, 61% for chronic heart disease, 
and 47% for asthma. Participant responses were all within 
four standard deviations of the mean for type II diabetes 
because the standard deviation is 24 years. 

We then examined whether the absence of a time anchor 
influenced the unit of time participants used to respond (see 
Table 2). For the acute illnesses, multiple units of time can 
be used to express the same value; i.e., a one week long 
illness can be characterized as seven days or one week. For 
seasonal flu and common cold, more than 80% of 
participants responded with either the clinical (days) or the 
adjacent and reasonable (weeks) unit of time. For 
mononucleosis, approximately 66% of participants used the 
clinical or adjacent unit of time. For the least prevalent acute 
illnesses—appendicitis and bacterial meningitis—
participants used the clinical or adjacent unit of time only 
40% and 55% of the time. For the four chronic illnesses, 
92% to 95% of participants chose the clinical unit of time. 
The results suggest that participants could reliably use the 

clinical unit of time when estimating durations of prevalent 
acute illnesses and chronic illnesses. 

Experiment 2:  Distribution Form Estimation 
Methods 
Participants Forty Mechanical-Turk workers from the 
United States participated in exchange for $2. The 
participants had not participated in Experiment 1.  
Materials The same nine illnesses from Experiment 1 were 
used. We selected four distributions as response options in 
the distributional form task: Erlang, Gaussian (a.k.a. 
Normal), Uniform, and Bimodal. These distributions were 
chosen as they can reasonably describe illness durations. 
The Erlang, which was always the correct answer, was 
chosen because illness distributions have been found to be 
well modeled by this distribution and provide a good fit for 
all the clinical distributions. Normal was chosen because the 
bell-curve is ubiquitous, and in some cases is very close to 
the Erlang distribution. This allows us to evaluate how well 
participants can discriminate very similar distributions.  
Bimodal was chosen because for chronic illnesses it might 
be reasonable to assume that there is one group of people 
who die immediately, and another group that lives with the 
illness for a longer time. Lastly, uniform was chosen 
because simple Bayesian prediction models assume a single 
uninformative (or uniform) prior (e.g. Gott, 1993). Selecting 
the uniform form of the distribution might suggest observers 
using a heuristic insensitive to prior beliefs. 

Distributions were presented to participants as histograms 
of the average total duration of an illness. For each illness, 
the presented histograms were created by producing the best 
fit to the true clinical data for that illness for each of the four 
distributions. In this way, participants’ choice of distribution 

 
 

Figure 3: Screenshot of experimental interface for sample 
question (seasonal flu). Distribution types, top left to bottom 
right, are: Uniform, Normal, Erlang, and Bimodal. 
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would be based solely on distribution form. The histograms 
were presented with descriptive captions. The captions for 
each distribution form were consistent for all illnesses. 
Captions described several critical points on the graph using 
frequencies out of 100 (see Figure 3). The descriptions for 
each distribution form were matched to illustrate the same 
number of points on the histogram. Four naïve raters 
evaluated the relationship between the descriptors and the 
histograms and in all cases found them to be well-matched 
and easily understood. The experiment was presented using 
the Qualtrics interface. 
Procedure Participants were first shown instructions on 
how to read graphs in our task. They then completed a 
training task, with two training sessions of four trials each. 
For each trial, participants were shown one histogram 
(illustrating one of the four distributions types used 
throughout this experiment) and asked to match it to one of 
four captions. The training trials were designed to illustrate 
duration without referencing illnesses. One set depicted the 
amount of time it takes for a person to turn into a zombie 
after being bitten, and the second set depicted the number of 
licks it takes to get to the center of a tootsie pop.  
 After the training task, participants were asked to choose 
the appropriate histogram from the four distribution options 
for each of the nine illnesses (presented one at a time) by 
selecting it with a radio button. Both question and choice 
order were randomized.  
 

Results 
Data were excluded if participants answered two or more 
questions incorrectly in each of the two four trial training-
sets. This removed two participants’ data from analysis.   
 First, we assessed the proportion of trials for which 
participants chose the clinical distribution (Erlang). 
Participants chose Erlang 42% of the time, which was 
significantly greater than chance (25%), based on a one-
sided Binomial test (p<.01). It was also chosen significantly 
more often than any of the other distributions: Normal 
X2(1,N=342)=11.8, p<.01, Uniform X2(1,N=342)=93.9, 
p<.01, and Bimodal X2(1,N=342)=48.0, p<.01.  
 While participants selected Erlang with the greatest 
frequency overall, we were further interested in how 
frequently they chose the correct response for each 
individual illness. We performed a one-sided Binomial test 
and found that for six of nine illnesses, participants 
performed better than chance (i.e. significantly more than 
25% of   participants chose the Erlang distribution): 
seasonal flu (53%, p<.01), common cold (50%, p<.01), 
bacterial meningitis (42%, p=.016), mononucleosis (42%, 
p=.016), COPD (45%, p<.01), type II diabetes (47%, 
p<.01). Participants did not select any of the other 
distributions at a level higher than chance.  See Figure 4 for 
the proportion of participants that chose each distribution 
option for the nine illnesses.  
 Lastly, we performed a chi squared test to determine 
whether participants selected the Erlang distribution 
significantly more often than the other distribution choices. 

Participants chose Erlang more often than Uniform for eight 
out of nine illnesses: seasonal flu X2(1,N=38)=18.0, p<.01, 
common cold X2(1,N=38)=19.0, p<.01), bacterial meningitis 
X2(1,N=38)=9.8, p<.01, mononucleosis X2(1,N=38)=17.0, 
p<.01, COPD X2(1,N=38)=13.3, p<.01, chronic heart 
disease X2(1,N=38)=7.9, p<.01, type II diabetes 
X2(1,N=38)=8.8, p<.01, and asthma X2(1,N=38)=4.7, p=.03.  
 Erlang was chosen significantly more than Bimodal for 
five of nine illnesses: seasonal flu X2(1,N=38)=9.7, p<.01, 
common cold X2(1,N=38)=4.5, p=.03, bacterial meningitis 
X2(1,N=38)=8.0, p<.01, COPD X2(1,N=38)=9.2, p<.01, and 
type II diabetes X2(1,N=38) =23.6, p<.01.  
 Participants chose Erlang significantly more than Normal 
for two out of nine illnesses: seasonal flu X2(1,N=38)=8.1, 
p<.01, and common cold X2(1,N=38)=8.4, p<.01. As shown 
above, Erlang was chosen significantly more often than any 
other distribution for both seasonal flu and common cold.  

General Discussion 
We evaluated people’s ability to estimate the mean and 
correct form of duration distributions at the individual level 
within the domain of health. Examining people’s 
representations of illness duration statistics is important, 
because it allows us to understand the correspondence 
between people’s beliefs and the statistics of the 
environment—in this case—illness statistics. In addition, 
these experiments shed light on people’s internal 
representations of real world statistics.  
 Our most interesting finding is that participants appeared 
to have knowledge of the correct form of the underlying 
illness distribution, choosing the assumed clinical 
distribution (Erlang) more frequently than any other 
distribution. When broken down by illness, they chose the 
clinical distribution more frequently for the most prevalent 
acute illnesses: seasonal flu and common cold.  
 While participants often inferred the form to be the 
normal distribution, this may be explained by the similarity 
of many of the normal fits to the Erlang fits. This occurred 
because the normal distributions were truncated by a lower 
duration bound of zero. We deliberately included the 
Normal distribution because of the potential confusability 
with the clinical distribution. As such, the fact that 
participants still chose the clinical distribution as the correct 
form overall, suggests they have strong beliefs about the 

Figure 4: Red bars show the percentage of participants that 
chose a distribution choice.  
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form of illness duration distributions and that these 
correspond to the environmental statistics. It is important to 
note that research has illustrated that people often fail at 
graphical interpretation (e.g. Gerteis et al., 2007), which 
makes participant performance in this task impressive.   

When examining participants’ estimates for the mean, we 
found that for more prevalent acute illnesses (i.e., common 
cold and seasonal flu), they were able to accurately estimate 
the mean duration. We also found a pattern of 
overestimation for chronic illnesses and less-prevalent acute 
illnesses which was similar to the pattern of overestimation 
found by Robbins and Hemmer (in revision).  

The pattern of overestimation for chronic illnesses might 
be explained by people applying a probabilistic model of 
life expectancy to their understanding of the distribution 
form for illness durations.  Because they have little 
experience with chronic illnesses, and they understand that 
chronic illnesses are life-long, their overestimation might be 
due to a strategy of applying parameters from the true 
distribution of lifespans (adjusted slightly to account for 
decreased life-expectancy with a chronic illness) to their 
knowledge that illnesses follow the form of an Erlang 
distribution. Their ability to select the appropriate 
distribution form for these illnesses suggests that they can 
use knowledge of the form of other illness distributions 
even if they do not have enough experience to set the 
parameters accurately. This overestimation might also be 
adaptive in terms of planning for the future. For chronic 
illnesses, it may be safer to assume a longer duration to plan 
sufficiently for the future, i.e., retirement savings. 
 A logical next step for this work would be to ask 
participants to independently generate distributions, rather 
than asking them to select from a limited number of options. 
Goldstein & Rothschild (2014) have shown that participants 
can generate these distributions when presented with data, 
which suggests that this method could be used to evaluate 
peoples’ internal representations of real-world statistics. 
 Our results illustrate that people hold accurate 
representations for both the form and mean of duration 
distributions of prevalent acute illnesses. Significantly, the 
most prevalent acute illnesses—the com mon cold and 
seasonal flu—are also the ones for which participants 
consistently demonstrate knowledge of the correct 
distribution form, and accurately predict the mean at the 
individual level. This suggests a prior belief that is better 
calibrated to the true environmental statistics for illnesses 
participants have experience with. Taken together, the data 
suggests that people have an internal representation of 
illness statistics that they can consciously access—
indicating that people can not only combine illness 
experiences with rational statistical updating, but also have 
accurate knowledge of these prior distributions.  
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