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ABSTRACT OF THE DISSERTATION

Cooperative motions in supercooled liquids and glasses

by

Jacob D. Stevenson

Doctor of Philosophy in Physics

University of California San Diego, 2009

Professor Peter G. Wolynes, Chair

Why glasses behave like solids in the absence of their having any long range struc-

tural order, is a fundamental problem of statistical physics, one that has been actively re-

searched for more than 80 years. Supported by the mean field theory of supercooled liquids

and a deep connection to mean field spin glasses with one step replica symmetry break-

ing, the random first order transition theory offers a solution to the glass problem based

on assuming proximity to an underlying ideal glass transition. In the deeply supercooled

liquid the free energy landscape is dominated by metastable structural basins separated by

large free energy barriers. The rate of inter-conversion between these structural states is

ultimately driven by the entropic cost of remaining confined to one basin, a cost which is

quantified by the configurational entropy. Both the activation free energy barrier and the

number of cooperatively moving particles required to overcome the barrier diverge as the

ideal glass transition is approached. The cooperative nature of the dynamics in the deeply

supercooled liquid regime has been confirmed by experiments and simulations and has been

the subject of intense study in recent years. In the following we explore the implications

of cooperative dynamics in the random first order transition theory with particular focus

on the expected behavior at the ideal glass transition temperature and at the dynamical

crossover, the temperature where activated motions first become important. We also show

how the general features of secondary relaxation can be recovered by adding local fluctu-

x



ations to the equations describing cooperative reconfiguration. Finally, we describe how

cooperatively rearranging regions modify dynamics near the surface of glasses, reducing the

apparent viscosity by several orders of magnitude.
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Chapter 1

Introduction

The fundamental issue underlying all the questions surrounding the glass transition

is to understand why glasses behave like a solid. The rigidity does not come from an order-

ing of the molecules. Rather the viscosity increases continuously to the point it becomes

unmeasurably long. The increase in viscosity is often so rapid that neither a power law,

nor Arrhenius behavior are sufficient descriptors, and, in fact the increase is so rapid that

it is difficult to describe without acknowledging that it appears to diverge at a finite tem-

perature. The functional form most often used to fit the data, the Vogel-Tammann-Fulcher

(VTF) equation η = η0 exp(B/(T − T0)) reflects this, including an explicit divergence of

the viscosity at temperature T0. This apparent finite temperature divergence motivates

the concept of an underlying ideal glass transition: an ergodicity breaking thermodynamic

phase transition. Strengthening this notion is the impending problem of an entropy crisis

first noticed by Simon[2] and highlighted by Kauzmann[3] in 1948. In the experimentally

accessible regime T > Tg the liquid entropy decreases rapidly. Extrapolating below Tg, the

liquid entropy would appear to become smaller than that of the crystal at a temperature

TK , and even would appear to vanish or become negative at a non-zero temperature in

violation of the third law of thermodynamics. In practice the rapidly increasing relaxation

time means the system always falls out of equilibrium before anything untoward happens.

In principle an experiment conducted with infinite patience must see some resolution to

1
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the entropy crisis, and a candidate theory of glassy behavior must either account for such

a vanishing entropy or show how the crisis is avoided. Subtracting the vibrational entropy

of the crystal from the liquid entropy leaves to a good approximation the configurational

entropy Sc associated with the structural degeneracy of the non-crystalline arrangement of

molecules. One theoretical strategy relates the vanishing of this configurational entropy to

the ideal glass transition, a notion that is strongly supported by the remarkable agreement

between the Kauzmann temperature, where sc vanishes, and the VTF temperature, where

the viscosity diverges. As is demonstrated in figure 1.1 the two agree to within a few percent

for a wide assortment of materials[4]. Adam and Gibbs[5] were among the first to construct

a theory in which the vanishing configurational entropy would drives the increasing viscos-

ity. They proposed that molecular motion occurs cooperatively with an activation barrier

proportional to the volume of the mobile region, and inversely proportional to the config-

urational entropy yielding their eponymous relation η = η0 exp(A/Sc(T )). This relation,

which recovers the VTF equation for TK = T0, along with the concept of cooperatively

rearranging regions (CRR) has had tremendous influence on the field.

Laying the ground work for a more rigorous understanding of glassy behavior were

two intimately connected theories, the mean field theory of structural glasses and mode

coupling theory. Mean field studies of amorphous structural packings have demonstrated

that configurational states first become metastable below some critical temperature[6, 7].

In this picture the free energy landscape breaks up into metastable basins separated by

activation barriers. In mean field all barriers are proportional to the system size and there-

fore infinite in the thermodynamic limit. Mean field predicts the breaking of ergodicity

at this temperature. Of course in real systems metastable states are truly metastable, and

activated hopping between basins smooths the transition and restores ergodicity. The mode

coupling theory (MCT)[8, 9] of the glass transition was an early and partially successful

theory which derived dynamical equations from microscopic arguments. This theory accu-

rately describes the evolution of the density auto-correlation function as it abandons simple

exponential decay and develops a plateau. The resolution involves a separation of time

scales into rapid local decay to the plateau, corresponding to molecules vibrating within

their structural cages, and slow large scale motions corresponding to restructuring of the
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Figure 1.1: The extrapolated temperatures of the vanishing configurational entropy at TK
and diverging viscosity T0 agree for a wide array of materials. Data taken from reference
[4].

cages themselves. Mode coupling theory even predicts a “glass transition” of sorts, as the

long time scale diverges at a temperature TA. However, neither the value of TA (the pre-

dicted divergence occurs far above the laboratory glass transition) nor the prediction of

a power law divergence is realized. Instead it was shown that this mode coupling tem-

perature coincides with the emergence of metastable structural configurations[10] and that

mode coupling theory is itself a mean field theory, the prediction of broken ergodicity being

the mean field artifact of infinite activation barriers. Despite its failings, MCT is generally

seen as correctly describing the onset of glassy behavior and as such is often been used as

a touchstone for theoretical approaches.

These scattered features and theoretical approaches of supercooled liquids began

to coalesce under a single theoretical umbrella when the deep similarities between the phase
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space of the Potts and p-spin glass models and the emerging picture of structural glasses

was pointed out[10]. In mean field the p-spin glass can be solved exactly[11, 12, 13] and

displays a confusing asymmetry between statics and dynamics. The thermodynamic solution

shows a static transition at Ts, while the dynamical equations show that time scales diverge

and ergodicity is broken at Td > Ts. The resolution to this quandary is the existence of

metastable states, which first emerge below the dynamic transition. The broken ergodicity

in the dynamic equations reflect the fact that metastable states are separated by infinite free

energy barriers in mean field. On the other hand for T > Ts metastable states have negligible

thermodynamic weight with respect to the paramagnetic phase and are therefore invisible

in the thermodynamic calculation. The configurational entropy, the log of the number of

metastable states, vanishes at Ts where the number of states becomes sub-exponential. In

mean field systems metastable states have infinite barriers and ergodicity is broken below

Td, in finite range systems the transition at Td becomes merely a dynamic crossover and

the relaxation time remains finite until Ts. The similarities between the p-spin glass and

structural glass are plentiful and obvious. With the identification of TA with Td and TK

and T0 with Ts the following picture emerges

T � TA : The p-spin glass is in the paramagnetic phase and equilibrates rapidly. The

supercooled liquid relaxes rapidly via diffusion.

T & TA : The dynamics of both systems are described by the equations of mode coupling

theory. As the relaxation times increase the the auto-correlation functions of both

systems develop a plateau implying the systems remains in finite regions of phase

space for extended periods of time.

T → T+
A : In mean field the plateaus and therefore the relaxation times diverge, breaking

ergodicity.

TK < T < TA : Metastable states emerge below TA and correspond to locally stable config-

urations of molecules (spins). The number of metastable states is exponentially large

and decreases with decreasing temperature. In finite dimensions transitions between

metastable states have finite barriers, which grow with decreasing temperature and
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increasingly dominate the dynamics.

T → TK : The number of states becomes sub-exponential (the configurational entropy per

particle vanishes), but the lowest energy states achieve statistically significant weight.

Free energy barriers diverge and ergodicity is broken. TK signals a true thermody-

namic phase transition with aspects of a second order transition (continuous in the

volume, energy, and entropy, and discontinuous in the heat capacity and other sus-

ceptibilities), but on the other hand is discontinuous in the relevant order parameter,

a signal of a first order transition. Possible order parameters include the infinite time

limit of the density auto-correlation function or the replica overlap. This unusual

phase transition is called “random first order.”

The mean field dynamic divergence of supercooled liquids at TA described by

mode coupling theory signals the emergence of metastable states, and becomes a dynamic

crossover in finite range systems[10, 14, 6, 7]. Below TA the system can become trapped

in metastable configurations for extended periods of time, and activated barrier hopping

becomes the primary means of transport. The calculation of viscosity is reduced to finding

the free energy barriers to reconfiguration. Consider a liquid prepared in metastable state

α a region of which (of linear extent r) has transitioned to a new metastable state β. As

at an ordinary first order transition there is imperfect energy minimization at the interface

resulting in a free energy penalty σαβrθ, but in contrast to ordinary first order transition the

two states have roughly the same energy. The nucleated region is unstable for all values of

r. Now consider the situation where the destination state β is left unspecified. In this case

the nucleated droplet gains the entropy associated with the number of possible metastable

states. Since the number of available states is exponential in the system size, this term is

proportional to TScr3. The difference in free energy between the final state and the initial

state is

∆F (r, T ) = −4π
3
TScr

3 + 4πσ0r
2
0(r/r0)

θ. (1.1)

The droplet interface energy of disordered systems typically scales with exponent θ less

than the natural value of 2. For supercooled liquids, the correct value of the exponent has
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been much discussed[15, 16, 17, 18], and while it has not been experimentally determined,

renormalization group arguments have suggested that it should be θ = 3/2[19, 20]. The

typical value of the mismatch coefficient is estimated using density functional theory[6, 21]

to be σ0 = 3/4kBTr−2
0 ln[1/(d2

l πe)]. The Lindemann length dl, the magnitude of molecular

vibrations required to break up a frozen crystal structure, is close to dl = 0.1 inter-particle

spacings (r0) for many substances and leads to the remarkable universality of glassy behav-

ior.

The free energy profile of equation 1.1 demonstrates that a system prepared in a

single metastable state is unstable to droplet fluctuations and will be broken up into regions

of size no smaller than

r∗ = r0

(
3σ0

r0TSc

)1/(3−θ)
(1.2)

This activated process of droplet dynamics destroys the quasi-order of a single metastable

state solution and smooths out the mean field divergences of mode coupling theory and

is what dominates the dynamics in the temperature region TK < T < TA. The time

scale of this process has been shown to be dominated by the bottleneck in the droplet

growth[22, 21]. Thus the time scale of droplet dynamics, the primary mechanism of α

relaxation, is τα = τ0 exp(F ‡/kBT ) where the free energy barrier is given by

F ‡ = 4π(1− θ/3)(σ0r
2
0)

3
3−θ

(
θ

r30TSc

) θ
3−θ θ=3/2−−−−→ 3πσ2

0r0
TSc

. (1.3)

The concepts sketched above form the framework of the random first order transi-

tion theory (RFOT) and describe how the dynamics of supercooled liquids, governed by the

mode coupling equations at high temperatures, give way to entropically driven, activated

reconfiguration events below the dynamical crossover temperature. These events are neces-

sarily cooperative and take place on a length scale r∗ given by equation 1.2. This length scale

and the associated relaxation time are universal functions of the configurational entropy.

The length scale is about five inter-particle spacings at the glass transition temperature.

The predictions of both the magnitude and universality of the cooperatively rearranging

regions have recently been validated[23, 16] as is shown in figure 1.2. The length and time
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. The values of ∆CP were found using

the relation m = 20.7∆CP /kB, where ∆CP is given per independently rearranging molec-
ular unit, or “bead”[24]. All data were taken from Böhmer et al.[25]

scales both increase with decreasing temperature and approach a divergence at the ideal

glass transition temperature TK . The foundation having been laid for the understanding

of the dynamics of supercooled liquids, in the following I explore in this thesis some of the

myriad implications of the cooperative nature of activated motion in supercooled liquids. I

pay particular attention to the limits of the theory, the expected behavior at the ideal glass

transition temperature and how the theory is modified near the dynamical crossover, the

temperature where activated motion first becomes important.

Chapter 2 explores in detail the remarkable relationship between dynamics and

thermodynamics of supercooled liquids. It is shown that the purely dynamic quantity

fragility can be very accurately determined by the excess heat capacity, a purely thermo-

dynamic quantity.

It is known that the length scale of cooperativity grows as the glass transition is

approached, but there is conflicting evidence as to whether the cooperativity manifests itself

as stringy, chain-like motion or as compact clusters of mobile particles. Chapter 3 accounts
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for the entropic advantage of stringy clusters (there are many possible paths in construct-

ing a string, but only one way to make a sphere) and show that in the deeply supercooled

regime the dominant cooperative motion is likely to be compact, while at higher temper-

atures stringy chains are the preferred mode of relaxation. Within this model there exists

a temperature where the free energy barrier for stringy motion vanishes. I identified this

temperature as the crossover between the low temperature regime dominated by activated

motion and the high temperature (mode coupling) regime dominated by collisional trans-

port. Our theory for this temperature predicts a previously unnoticed correlation with the

configurational heat capacity that agrees well with the experimentally measured dynamical

crossover (mode coupling) temperatures.

Nearly all glass forming liquids display secondary relaxations, dynamical modes

seemingly distinct from the primary alpha relaxations. It is shown in chapter 4 that account-

ing for driving force fluctuations and the diversity of reconfiguring shapes in the random

first order transition theory yields a low free energy tail on the activation barrier distribu-

tion which shares many of the features ascribed to secondary relaxations. While primary

relaxation takes place through activated events involving compact regions of the liquid,

secondary relaxation corresponding to the tail is governed by more ramified, string-like,

or percolation-like clusters of particles. These secondary relaxations merge with the pri-

mary relaxation peak and become dominant near the dynamical crossover temperature Tc,

smoothing the transition between continuous dynamics described by mode-coupling theory

above Tc and activated events below Tc.

Chapter 5 develops a mapping between the dynamics of supercooled liquids (specif-

ically the process of escape from a free energy minimum corresponding to a locally metastable

structural configuration) and an Ising model on a topologically disordered lattice. The pa-

rameters of the Ising system are determined from the instantaneous static structure of the

glass via density functional theory and the replica overlap approach. This mapping is used

to explore the scaling and fluctuations of droplet dynamics in a sampled Lennard-Jones

glass. Renormalization group results for random magnets, when combined with the statis-

tics for the Lennard-Jones glass, suggest that the ideal glass transition, identified by the

Kauzmann temperature, is actually a true phase transition with diverging length and time
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scales and characterized by discontinuous replica symmetry breaking.

Experiments over the past few decades have successfully shown that molecules

near the surface of glasses exhibit much higher mobility than do molecules in the bulk

glass. This was recently exploited to create highly stable glasses via vapor deposition in

a series of experiments in the Ediger laboratory at the University of Wisconsin-Madison.

To create glasses of the same structural stability that was achieved by vapor deposition via

traditional cooling methods would require about ten thousand years. Chapter 6 discusses

an idealized model describing how a free surface reduces the pinning field restraining the

particles’ motion. The model shows that activation barriers near a free surface are reduced

by a factor of two with respect to the bulk, leading to the simple relationship between the

relaxation times in the bulk and near the surface, τsurf =
√
τ0τbulk. It is also shown that

this dramatic decrease in the relaxation time sets up a massive gradient in the mobility

field which is spread out by the mechanisms of mode coupling theory. These calculations

allow a prediction of the mobility profile as a function of the distance from the surface.

The theoretical results agree with the available data and may soon be further tested by

experiments currently being conducted to probe mobility as a function of depth.



Chapter 2

Thermodynamic—kinetic

correlations in supercooled liquids:

A critical survey of experimental

data and predictions of the random

first-order transition theory of

glasses

The glass transition, as observed in the laboratory is a kinetic phenomenon. Unlike

crystallization, the definition of the transition to the glassy state depends on experimen-

tal time scales. The change in mechanical response is accompanied by changes in thermal

properties. Most dramatically the heat capacity drops upon cooling through the transition.

This drop is quite measurable and generally appears to approach a discontinuity as the

experimental time scale is increased. A variety of mean field models of disordered spin

systems, electrical materials, and molecular fluids predict a true thermodynamic transition

10
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with such a heat capacity discontinuity. In these models, the thermodynamic transition

occurs at a temperature TK , where the configurational entropy of different mean field so-

lutions vanishes. [10, 14, 26, 19, 27, 28, 29, 30, 31, 32, 33, 34, 35] These mean field frozen

configurations first appear discontinuously at a higher dynamical transition temperature

TA, which coincides with the mode coupling transition for these models. It is natural to

take these mean field theories, even given their status as approximations, as the starting

point to understand the laboratory glass transitions, as much as mean field theories are the

natural starting point to understand critical phenomena [36, 37] and nucleation dynamics

at ordinary first-order transitions. [38, 39] But they are only a starting point. Indeed, just

as mean field theories of ordinary first-order transitions must be supplemented by Maxwells

construction[40, 41] and by a theory of nucleation rates [42, 43] to describe how ordinary

first-order transformations occur in the laboratory, the connection of the existing mean field

theories with real supercooled liquids can be made only by constructing entropic droplets

which smear out the pure dynamical transition at TA and function as the mechanism of the

slow α relaxation, which, when it falls out of equilibrium, characterizes glass formation. If

the underlying entropy crisis at TK remains in finite range systems (a debatable point), [44]

then a dynamical theory based on entropic droplets yields a free energy barrier consistent

with the commonly used Vogel-Fulcher law having a divergence at a temperature T0, which

according to this theory coincides with TK .

τα = τ0e
DT0/(T−T0) (2.1)

While the well-known observed confluence of kinetic divergence at T0 and the en-

tropy crisis at TK is based on extrapolation from the experimentally accessible time scales,

and has thus been questioned, this confluence is naturally explained by random first-order

transition (RFOT) theory. As Angell has often pointed out,[4] the empirical correlation

between thermodynamics and kinetics goes much further than merely this confluence of

T0 and TK . The further connection can be seen in the coefficients D. The coefficient, D,

varies considerably from substance to substance. The key experimental finding is that the

larger the observed heat capacity change, ∆Cp, at Tg, the smaller the D values. This has

led to the concept of fragility of liquids which can be termed either “strong” or “fragile”
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depending on their D values. Within the RFOT framework, understanding the observed

thermodynamic/kinetic correlations over a wide range of substances requires a microscopic

theory of the free energy cost of entropic droplets. This microscopic theory was provided

by Xia and Wolynes,[21] who, using a density functional treatment of a glass transition of a

fluid of spherical particles,[6] argued that near Tg this free energy cost depended both on the

configurational entropy drive to form the droplets and on a free energy cost for mismatched

areas, σ, which the density functional theory relates to the entropy cost of localizing the

particles, σ0 = 3/4r−2
0 kBT log(α/πe). The former terms dependence on temperature is

reflected in Cp. The latter mismatch energy depends only logarithmically on the effective

spring constant, α, characterizing the caging. α is the inverse-square amplitude of vibra-

tional motions in a glassy configuration to the interparticle spacing and is related to the

Lindemann ratio. The Lindemann ratio has been measured via neutron scattering and pre-

dicted by density functional theory. It varies only slightly from substance to substance, and

α is found to be of order 100, the value we will use. Therefore the mismatch energy, which

depends only logarithmically on this ratio, is predicted to be a nearly universal quantity in

units of kBTg. In this way, as discussed in references [21] and [45], if the transition were an

ordinary first-order one, then the free energy of a nucleating droplet would be given as a

function of the radius of the droplet

F (r) = −4
3
πTscr

3 + 4πσr2 (2.2)

The critical value of r from this theory gives a reconfiguration barrier propor-

tional to S−2
c . For a random first-order transition there is a multiplicity of solutions

that can “wet” the droplet. To account for this, RFOT theory uses an idea from Vil-

lain first worked out for the random field Ising model to estimate how much the interface

is wetted by specific solutions that better match the original. This wetting lowers the mis-

match energy, σ(r) = σ0(r0/r)1/2, and leads to the free energy barrier scaling with 1/Sc,

∆F ‡ = 3πσ2
0r0/TSc. This wetting argument also restores the consistency of the critical

exponents at TK with hyperscaling. When the mismatch energy is combined with the Xia-

Wolynes value of σ0, it immediately follows that D and ∆Cp should be inversely related, as

was generally observed.[46] Furthermore, the numerical coefficient of the mismatch energy
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is predicted by the microscopic calculation, crude as it is in some respects, so that the

specific relation D = 32kB/∆Cp follows from the Xia-Wolynes (XW) treatment and can be

tested. It is important that this relation is predicted for spherical particles, and therefore

the ∆Cp must refer to the heat capacity change for each of these spheres which might be

called “beads”. Glasses can be chemically complex. Many glasses are clearly mixtures of

nearly spherical entities, such as KCaNO3. In such cases, counting “beads” is trivial. In

other cases, chemical intuition allows a reasonable mapping of the molecular shapes on to an

aggregate of spherical objects, for example, o-terphenyl involves three fused benzene rings,

so it can be thought of crudely as consisting of three “beads”. With only modest ambiguity,

structural chemical knowledge usually would allow the measured change in heat capacity

per mole of many glassforming substances to be converted to a heat capacity change per

“bead”. In this way, Xia and Wolynes tested the predicted relationship D = 32kB/∆Cp for

five substances, and the microscopically predicted correlation was shown to be reasonably

accurate.

Wang and Angell[47] made a survey of 44 substances with an eye to establishing

quantitative relations between their thermodynamic and kinetic properties on a purely em-

pirical basis without involving any microscopic theory. Their analysis deftly avoids entirely

the question of bead count. They found an excellent correlation between, on the kinetic

side, the so-called m values of the liquids, characterizing their activation energies at Tg and,

on the thermodynamic side, ∆Cp (measured per mole), the glass transition temperature,

Tg, and the latent heat of fusion per mole, ∆Hm. The m value is related to the D value

described above; in fact, m is essentially the activation energy at the laboratory Tg in units

of kBTg.

m =
∂ log10 τ

∂(Tg/T )

∣∣∣∣
T=Tg

(2.3)

The empirical relation found by Wang and Angell is

m = 56
Tg∆Cp
∆Hm

(2.4)

At first sight, it appears strange that this relation should include the latent heat
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of freezing, since, after all, the freezing transition is bypassed, strictly speaking, when a

liquid supercools.

Lubchenko and Wolynes[45] suggested a theoretical route to a correlation of this

form by using the same density functional style argument to characterize crystallization as

was used to characterize vitrification by Xia and Wolynes. If each “bead” of a molecular

fluid becomes fully localized in a three dimensional sense in the crystal, then the entropy of

fusion per mole should be roughly the bead count per mole times the standard entropy of

fusion of a spherical Lennard-Jones system. (Clearly this is an approximate relation since

the small density change on freezing depends on details of the attractive forces which will

vary from substance to substance.) Thus we can write

Nbead =
∆Hm

Tm

1
SLJ

(2.5)

The entropy of fusion of Lennard-Jones spheres, per particle, SLJ is 1.68kB.[45]

When this relation is combined with the microscopic Xia-Wolynes prediction for ∆F ‡, and

the well-known form of Sc, Sc = S∞(1 − TK/T ) with S∞ given by ∆Cp(Tg)Tg/TK , one

obtains the result

m =
Tm

∆Hm
∆Cp

{
32SLJ log10 e

S2
c (Tg)

}
(2.6)

The residual entropy per bead at Tg is predicted by the Xia- Wolynes theory also to

be universal,[45] Sc(Tg) = 0.82kB. Thus, Lubchenko and Wolynes predicted the correlation

m = 34.7
Tm

∆Hm
∆Cp (2.7)

While resembling Wang and Angells correlation, strictly speaking, this prediction

differs in form from the empirical correlation they introduced by containing the melting

temperature in addition to glass transition temperature. Yet, a commonly used empirical

rule for simple substances is that Tm = 3/2Tg. If this empirical relation is deemed to also

hold, then Lubchenko and Wolynes pointed out that the Wang-Angell correlation is to be

expected on the basis of the RFOT theory but with a theoretically predicted slope of 52,

in contrast to the empirical slope of 56.
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Figure 2.1: A plot of the fragility, m, measured from the experimental vs. the theoretical
estimate derived from the random first-order transition theory. The solid line plots the
perfect match, mexp = mtheory; the dotted line, with slope 0.9, gives the best fit. The
experimental data used are in Table 2.1 and are found in reference [47].

In this paper, we check the predicted Lubchenko-Wolynes relation[45] directly

without assuming Tm/Tg = 3/2. Thus no empirical relation between Tm and Tg is invoked

in the present analysis. The melting characteristics come in only as a way of relating the en-

tropy costs of localizing real molecules that are not spherical to their locations in the crystal

and the entropy loss for localizing “beads” which are assumed to be spheres, as envisioned

by Lubchenko and Wolynes. A list of the substances and their properties is provided in

Table 2.1. The data were kindly provided to us by Angell and are supplementary material

to the Wang-Angell paper.[47] Notice the effective bead counts differ from the nearest in-

teger by typically 10 − 20%. This reflects the approximate nature of the mapping. Figure

2.1 plots the measured mexp vs. the result predicted from the Lubchenko and Wolynes

(LW) relation. The LW relation contains neither adjustable nor ambiguous quantities if the

melting transition can be taken to be like that of the Lennard-Jones system. We see there

is excellent agreement for the vast majority of the 44 substances for which we have all the

relevant thermodynamic and kinetic data for the freezing and vitrification transitions. Only

for eight substances is the error greater than 25%, while the dynamic range exhibited by
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m and ∆Cp is a factor of 5 or so. With the eight outliers removed, the current correlation

using Tm rather than Tg shows equally as tight a fit as that obtained by Wang and Angell

with the same outliers missing; the R values of a best fit line are both 0.96.

Several aspects of Figure 2.1 are worthy of more careful attention. First we note

that many of the extreme outliers are systems where the assumptions of the microscopic

analysis are known to be violated in some way. Selenium, for example, is know to undergo

a polymerization transition in the temperature range of the glass transition itselfsclearly a

changing degree of polymerization would violate the fixed, near-spherical unit assumption.

Decalin, TPP, and H2SO4 · 3H2O undergo crystallization transitions to orientationally

disordered, that is, they exist as plastic crystals or “glacial” liquid phases. In either case,

the assumption of complete freezing of degrees of freedom in the crystal or release of degrees

of freedom on melting would be violated. Even if we were to remove these outliers, it is

clear that there are some modest but systematic deviations from the LW prediction. We

must remember, however, that within the context of RFOT theory some such systematic

deviation is to be expected.[45, 93] The XW estimate of the mismatch energy assumed a

maximally sharp interface between the mobilized region and its environment. Two effects

within RFOT theory should broaden this interface, and this would be expected to reduce

the mismatch energy. One effect is that the proximity between TA and Tg allows order

parameter fluctuations to soften the barrier.[45] This is a temperature-dependent effect.

Also, in more elaborate theories, the details of replica symmetry breaking (“wetting”)[93]

in the interface can change the surface cost and introduce another length scale. Only

a modest change of the mismatch energy estimate would be needed to bring any of the

measured substances into perfect agreement with theory. It appears, however, that overall

a small hardening is needed. We should, however, also keep in mind that not all of the

substances surveyed are so well modeled with Lennard-Jones attractions, and thus they

may have different density changes on freezing which would modify their entropy of fusion.

This is a likely contribution to the deviation from theory.

This survey of experimental data on simple molecular substances leads us to con-

clude that the empirical correlations of kinetic and thermodynamic data for glasses and

supercooled liquids summarized in Angells notion of fragility are robust, at least for those
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systems credibly modeled as interacting (fused) spheres. Others have raised concerns about

the earlier empirical correlations for polymeric systems.[94] Yet the necessary information

about crystallization for these polymer systems is hard to monitor, making the present

method of analysis difficult.

While we have observed some molecule-specific deviations from the pattern of

correlation between dynamics and thermodynamics, the observed correlation is extremely

clear. Explaining these correlations, in our view and that of others, should be required of any

microscopic theory of the glass transition in supercooled molecular liquids.[95] As we have

shown here, the microscopic theory of glasses based on random first-order transitions not

only predicts these robust trends but also provides quite accurate quantitative predictions of

kinetic fragility from thermodynamics without the use of any adjustable fitting parameters

for the 44 substances.

Chapter 2, in full, is a reprint of the material as it appears in the Journal of

Physical Chemistry B 109 15093–15097 (2005), J. D. Stevenson and P. G. Wolynes. The

dissertation author was the primary investigator and author of this paper.



Chapter 3

The shapes of cooperatively

rearranging regions in

glass-forming liquids

The cooperative rearrangement of groups of many molecules has long been thought

to underlie the dramatic slowing of liquid dynamics upon cooling toward the glassy state.

Laboratory evidence for cooperatively rearranging regions (CRR’s) on the nanometer length

scale has been obtained near the glass transition. The random first order transition (RFOT)

theory of glasses predicts that, near Tg, these regions are compact, but computer simula-

tions and experiments on colloids suggest CRR’s are string like. We present a microscopic

theory within the framework of RFOT that shows the shapes of cooperatively rearranging

regions in glassy liquids should change from being compact at low temperatures to fractal

or “stringy” as the dynamical crossover temperature from activated to collisional transport

is approached from below. This theory predicts a correlation of the ratio of the dynamical

crossover temperature to the laboratory glass transition temperature, and the heat capacity

discontinuity at the glass transition, ∆Cp. The predicted correlation quantitatively agrees

with experimental results for 21 materials.

The random first order transition (RFOT) theory of glasses, based on a secure sta-

21
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tistical mechanical formulation at the mean field level[6, 10, 14, 26, 28, 96, 97, 15] explains

the dynamics of supercooled liquids through the existence of compact, dynamically reconfig-

uring regions (“entropic droplets”)[19, 21, 98] whose predicted size is very much consistent

with what has been measured (125-200 molecules), using both optical methods[99], scanning

microscopy[100, 101] and NMR techniques[102, 103], at temperatures near to Tg. Com-

puter simulations[104, 105, 106, 107] and light microscopy studies of colloidal glasses[108]

have revealed CRR’s that are not compact, contain fewer particles, and are described as

“fractal[109]” or as being “string” like[105, 106]. In this paper we will show that the fractal

nature of the dynamically reconfiguring regions in the relatively high temperature regime

probed in current computer simulations follows quite naturally from RFOT theory. While

the CRR’s are compact near the laboratory glass transitions, RFOT theory predicts strings

will dominate near the higher dynamical crossover temperature, TA, above which motions

are no longer activated. This morphological transformation is shown in figure 3.1.

Computer simulations are carried out near the dynamical crossover. Likewise,

colloidal glasses are inevitably studied near to the dynamic crossover because the large

size of colloidal particles, in molecular terms, means that their nano-scale constituents

intrinsically move more slowly than small molecules do.

According to our theory, the dynamical crossover from activated motion has a

spinodal character[14, 110]. An analogous change of morphology predicted for nucleation

clusters is thought to occur in ordinary first order transitions[111], so others have already

suggested that the dynamical heterogeneities near TA should be fractal[112]. The RFOT

theory predicts the temperature range where the metamorphosis from compact to fractal

happens for glassy liquids. RFOT theory predicts the gap between the dynamical crossover

temperature and the glass transition temperature for molecular liquids should correlate

inversely with the configurational heat capacity, as is found in experiment.

The mean field theory of RFOT theory starts by constructing aperiodic minima of

a free energy functional[6] based on spatially varying density[7, 6, 113, 114]. These aperi-

odic free energy minima resemble the “inherent structures” that are minima of the potential

energy[115]. At finite temperature, these aperiodic structures represent a compromise be-

tween the cost of localizing a particle TSloc and the free energy gain realized by particles
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Figure 3.1: The shape of CRR’s at Tg and Tc. The schematic appearance of the reconfig-
uring regions predicted by RFOT theory according to the free energy profiles of the fuzzy
sphere model (see text) at the glass transition temperature, Tg, and the crossover transition
temperature T stringc . The shapes are shown for both the rearranged CRR (the final state)
and the partially rearranged transition state.

being able to avoid each other once localized. The latter free energy contribution is rep-

resented by an interaction term in the usual free energy density functional. Any resulting

localized, non-crystalline solution is only metastable. The difference of free energy of the

typical localized solution and the uniform state is the configurational entropy times the

absolute temperature[28].

To estimate the interactions, it was pointed out[21] that, at the Kauzmann temper-

ature TK where the configurational entropy vanishes, their total must equal the localization

cost TKSloc. Therefore, if a typical molecule has z nearest neighbors a local interaction

of pairs must contribute a term vint = (1/z)TKSloc on average. The localization entropy

cost, in the free energy functional, depends logarithmically on the amount of space each

molecule moves in while encaged: Sloc = 3
2kB log(αL/πe) where αL is the inverse square of

the Lindemann ratio of the r.m.s. vibrational amplitude in the glass to the intermolecular
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spacing. The Lindemann ratio is predicted by detailed microscopic calculations[6, 7, 116]

and agrees with neutron scattering measurements of the long-time plateau of the structure

function. The ratio only weakly depends on the intermolecular potential and is of order 1
10

near Tg. Thus vint should be nearly the same in units of kBTK for all molecular glass form-

ers made of spherical particles. This near universality of the interaction per molecular unit

allows RFOT theory to make quantitative predictions of glassy dynamics such as the typical

barriers[21] near Tg, the degree of nonexponentiality[98] and the correlation length[21] near

Tg.

The escape from a given aperiodic minimum resembles the dynamics of a random

field Ising magnet (RFIM) in a biasing field. The free energy difference on a site predicted

by the density functional plays the role of the magnetic field having a magnitude TSc(T ).

This quantity fluctuates, so the “field” fluctuations are of the order
√
kBT∆Cp where ∆Cp

is the configurational heat capacity of the fluctuating region. The interaction between a

pair of sites in the RFIM analogy is vint, which is already computed. Using this quantitative

mapping, RFOT theory can predict the typical escape barrier and it’s fluctuations of the

barriers near TK .

The shape of a reconfiguring region is characterized by the number of contiguous

sites N that are rearranged and the number of surface interactions that are broken, b. Near

to TK , the regions that dynamically reconfigure should be compact because this involves

losing the smallest number of favorable interactions, b, will be lost while gaining the same

configurational entropy proportional to N.

Maximal compactness implies a roughly spherical shape giving a free energy cost

∆F (N) = −TScN + vint
z

2
4π
(

N

4π/3

)2/3

(3.1)

This yields a barrier that diverges in three dimensions like S−2
c . In analogy to the RFIM[20],

near TK the interface of the reconfigured region between any two aperiodic patterns will

actually be wetted by other specific aperiodic minima that better match the two abutting

regions than they do already. This effect lowers the surface energy term to scale like N1/2

rather than N2/3. This form for the mismatch energy restores the scaling relations near
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TK [19], and agrees with additional replica symmetry breaking in the interface found in

replica instanton calculations[93, 97]. Wetting cannot occur at short ranges so the scale of

this mismatch term still follows from vint. In this way the observed Vogel-Fulcher scaling

near TK is predicted, ∆F ‡ ∝ S−1
c with the numerical proportionality coefficient depending

on the microscopic value of vint = 1
z

3
2kBTK log αL

πe . The result is a universal multiple of

kBTK . The resulting predicted absolute activation barriers agree well with experimental

results for 44 substances[24, 45], a typical deviation being less than 20%.

The compact shape of the CRR and Vogel-Fulcher behavior are asymptotically

correct only near TK . Away from TK the CRR need not be compact and deviations from

the VF law occur. Non-spherical shapes have an entropy advantage; although the sphere

(for which b = z
24π

(
N

4π/3

)2/3
) is unique, there are many contiguous structures with other

shapes. Increased temperature favors these more ramified shapes as CRR’s. Contiguous

shapes, called lattice animals[117], have been enumerated and play a role in problems such

as percolation[118] and Yang-Lee zeros[119]. Near a spinodal of an ordinary first order

transition the dominant nuclei should be lattice animals characteristic of clusters at the

percolation threshold[111].

Accounting for the multiplicity of possible shapes, the free energy of moving a

CRR of N sites with b boundary interactions is

∆F (N, b) = −TScN + vintb− kBT log(Ω(N, b)) (3.2)

where Ω(N, b) is the number of lattice animals of given N and b. For a given N the most

numerous shapes are percolation-like. When these shapes dominate we can use enumera-

tions near the percolation limit to evaluate Ω(N, b). In percolation clusters[118], for large

N ,

Ωperc(N, t) ∼

(
(α+ 1)α+1

αα

)N
exp

(
−N

2φ

2B2
(α− αe)

2

)
(3.3)

Here, α = t/N , and t is the number of unoccupied sites bounding the occupied cluster. We

will take φ to have its mean field value of 1/2. B is a lattice dependent constant. B = 1.124

(for the face centered cubic lattice) follows from fitting to numerics calculated[120] for
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clusters with N ≤ 9. The mean value of t/N approaches αe = (1 − pc)/pc for large N at

the percolation threshold, pc (pc = 0.198[120] for the FCC lattice).

To evaluate the needed percolation quantities for random close packed lattices we

must define a “contact.” Spheres need not precisely touch (as in, say, percolation conduc-

tivity experiments), but rather their surfaces may be separated by at most a Lindemann

length in order to be called connected. The parameters for this continuum percolation prob-

lem can be easily estimated since they primarily depend on the near neighbor connectivity.

The number of neighbors in the rcp lattice is roughly the same as the face centered cubic

(FCC); thus it is reasonable to use parameters for an FCC close packed lattice of spheres.

The number of bonds, b, is directly related to t. For the simple cubic lattice,
<b>
<t> = 1.67[121] and the ratio should be linear in coordination number, z. Thus, for the

rcp lattice with z = 12

∆F (N, t) = −TScN + vint1.68
z

zSC
t− kBT log(Ωperc(N, t)) (3.4)

To find the dominant escape route and activation barrier we find the most probable t as a

function of N. Minimizing equation 3.4 with respect to t, the most probable value of t is

t̄ = ᾱN where ᾱ = 3.10. With this most probable value, Ωperc becomes simply Ωperc = λN

where λ = 7.64. Each term in equation 3.4 is now proportional to N.

∆F (N) = kBTN

(
− Sc
kB

+
vint
kBT

1.68
zFCC
zSC

ᾱ− log(λ)
)

(3.5)

Apart from Sc each term in this expression follows from a microscopic calculation.

The free energy profile therefore only depends on the configurational entropy, and either

monotonically increases or decreases with N . If the free energy profile increases with N , a

reconfiguration event via a percolation cluster is impossible, so a more compact structure

will eventually become stable for large N and provides the dominant reconfiguration route.

If F decreases with N for the percolation shape, no barrier at all should be observed. The

change of behavior of ∆F (N), from increasing to decreasing with N , signals a crossover to

non-activated dynamics. Introducing the vint determined by RFOT yields
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∆F (N) = kBTN

(
− Sc
kB

+ (3.20− 1.91)
)

= −kBTN
(
Sc
kB

− 1.28
) (3.6)

Accordingly barrier-less reconfigurations occur at a critical configurational entropy, Spercc =

1.28kB if we neglect the mean field softening effects on vint. Using the thermodynamic rela-

tion, Sc(T ) = ∆Cp(Tg)Tg/TK(1−TK/T ), RFOT theory thus yields the crossover transition

temperature, T percc .

T percc

TK
=
(

1− Spercc

∆Cp
TK
Tg

)−1

(3.7)

The bigger ∆Cp is, the closer T percc will be to TK ; more “fragile” liquids with larger ∆Cp

have a smaller activated range, while a broader range for activated transport applies for

stronger liquids with smaller ∆Cp. A similar trend is predicted for the mean field crossover

based on detailed microscopic calculations for fluids with network network structure[116].

The entropy at the higher mean field crossover is Sc(TA) = 2.0kB. Including the softening

of vint expected as this mean field transition is approached lowers the estimate of the

percolation point. The amount of lowering is uncertain, however, because simultaneous

with the softening a broadening of the interface is expected, thus effectively reducing the

possible entropy gain from shape fluctuations. We see that the transition occurs at the

same configurational entropy level whether the liquid be fragile or strong. As in the RFOT

theory of the non-exponentiality parameter β[98], fluctuations in the driving force depend

on ∆Cp explicitly and should be included in equation 3.1. Thus fast and slow CRR’s would

have somewhat different shapes (faster being more ramified generally since their entropy is

higher).

Counting percolation clusters is not all that different from finding the statistics for

strings. The crossover transition argument can be carried out for purely string-like objects

as follows. The number of broken interactions of a string scales with length, N(z − 2), as

does the shape entropy of a string, log(Ω) = N log(z − 5). (z − 5) represents the number

of directions a string can take that excludes backtracking on top of, or directly next to,
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the previous particle leading to a compact cluster. Using these coefficients we find that

string growth becomes down hill at an entropy of Sstringc = 1.13kB. The predicted crossover

temperature is

T stringc

TK
=

(
1− Sstringc

∆Cp
TK
Tg

)−1

(3.8)

a bit lower than predicted by percolation. In Figure 3.2a we plot the predicted T stringc

and T percc versus 1/∆Cp for various liquids. Crossover temperatures from activated to non-

activated dynamics were determined by using Stickel plot analysis[122]. The experimental

crossover temperatures for 21 substances obtained in this way by Novikov and Sokolov[123]

are plotted in the figure along with the RFOT prediction. Some of the outliers are polymers

for which other slowing effects compound simple RFOT results. Uncertainty in TK for very

strong liquids probably is a source of the discrepancy between the theory and experiment

for these latter substances. We also plot (Tc − Tg)/Tg in figure 3.2b. According to RFOT

theory the entropy at Tg is Sc(Tg) = ∆Cp(Tg − TK)/TK = 0.79kB. Corresponding to a

glass transition at 1010P (see figure 3.4). The quantitative agreement of the experimental

crossover temperatures and the present predictions of the string and percolation transitions

is striking.

To quantify the typical shapes of reconfiguring regions at temperatures between

Tc and TK we must have a suitable analytic form of Ω(N, b) for all relevant values of N

and b. Surface roughening theories give predictions of Ω(N, b) valid for nearly spherical

objects[124], but would be useful only near TK . On the other hand, the percolation theory

gives an explicit form of Ω valid only for the most populous ramified, fractal shapes that

dominate near the crossover.

A reasonably effective, but unabashedly approximate, treatment of the animal

counting problem interpolates smoothly between these limits. We take the reconfiguring

region to be a “fuzzy sphere,” a spherical core of nc particles, surrounded by a ramified,

but connected, halo of nf particles. If we let the core size, nc, vanish we are left with

only an extended object. Conversely, if the halo size vanishes then we have only a sphere.

The halo resembles a percolation cluster, but we will describe it as a set of strings of
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Figure 3.2: Predictions for the crossover temperatures. a. Predictions for (T stringc −TK)/TK
(dashed line) and (T percc − TK)/TK (solid line). The experimentally derived crossover tem-
peratures, (T expc − TK)/TK , from Novikov and Sokolov[123], are shown as circles with
the dark circles referring to polymers. In all cases the values for the Kauzmann tem-
perature, TK , were taken from the correlation[125] TK = Tg(1 − 16/m). b. Same as
for a. except a plot of (Tc − Tg)/Tg.. The conversion ratio TK/Tg was set through
Sc(Tg) = ∆Cp(Tg − TK)/TK = 0.79kB. For both plots the ∆Cp values for the materi-
als were determined from their m values through the correlation m = 20.7∆Cp discussed in
Stevenson and Wolynes[24].
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Figure 3.3: Free energy contours for the fuzzy sphere model. Two dimensional free energy
profiles as functions of the number of particles in the core, nc, and the number in the fuzzy
halo, nf , a. near T stringc and b. near Tg. The sidebar is in units of kBT with the contours
lines corresponding to intervals of 1kBT . The circles indicate the location of the typical
transition state. The squares indicate a fully reconfigured region.
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Figure 3.4: Predicted and experimental viscosity. A comparison of experimental viscosity
with the barriers predicted from the fuzzy sphere model (solid line). Data for Salol[122],
Propylene Carbonate[122] O-Terphenyl[126, 127], and alpha-Phenyl-O-Cresol[126, 127] are
represented as circles, crosses, stars and triangles respectively. An experimental mode
coupling fit to salol[128] is shown with a dot-dashed line. Experimentally derived values
of the entropy at the crossover transitions[123] are shown with arrows. The free energy
barriers were placed on the log10(viscosity) curve by setting ∆F ‡ = 0 to correspond with
the large T experimental value of 1 centipoise for the viscosity. A viscosity of 1010P was
used to determine the theoretical value Sc(Tg) = 0.79kB.
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Figure 3.5: Shape Characteristics for the fuzzy sphere. The characteristics are shown as
functions of the configurational entropy for the final state and the transition state. nc
(dashed-dotted line) is the number of particles in the core, ns (solid line) is the number of
strings and ls (dashed line) is the typical length of a string. a. The final state: nc uses the
axes on the right while ns and ls use the axes on the left. b. The transition state: here ns
uses the axes on the right while nc and ls (dashed line) use the axes on the left. The sizes
and lengths are given in terms of the number of particles.



33

0.6 0.8 1
0

2

4

6

8

10

S
c

0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S
ur

fa
ce

 to
 V

ol
um

e 
R

at
io

S
c

Figure 3.6: Radial dimensions of the fuzzy sphere. The radius of the core, Rc, at the
transition state (solid line) and at the final state (dashed-dotted line). Also, the radius of
the stringy halo, Rs, at the transition state (dashed line) and the final state (dotted line).
The radii are given in terms of the number of particles. The inset gives the surface to
volume ratio of the fuzzy sphere normalized to that of an infinite string. The solid line is
the final state while the dashed line is the transition state. Both plots are shown vs. the
configurational entropy, Sc.
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particles extending from the surface of the central core, since we can determine the entropic

contribution of a halo of ns strings.

Using the resulting fuzzy sphere entropy we can find the full activation free energy

profile.

∆F (nc, nf , ns) =vint
z

2

(
4π/3
nc

)1/6
(

4π
(

nc
4π/3

)2/3

− ns

)
+ vint(z − 2)nf

− TSc(nc + nf )− kBT log(Ω(nc, nf , ns))

(3.9)

∆F (nc, nf ) = −log

(∑
ns

exp(−∆F (nc, nf , ns))

)
(3.10)

In the supplementary material you can find the full expression for the fuzzy sphere

entropy, Ω, accounting for the excluded volume between the strings[129]. Figures 3.3a and

3.3b show contour plots of the free energy at a configurational entropy value near the dy-

namic crossover and near the glass transition respectively. The saddle points on these free

energy surfaces describe transition state ensembles for reconfiguration. The predicted bar-

rier still depends universally on the configurational entropy as shown in figure 3.4. We also

show the experimental barriers for liquids of varying fragility. The universal dependence on

configurational entropy is clearly confirmed (In these plots the calorimetrically determined

Tg’s were used for calibration, not the viscometric values!). At low T the barrier clearly

depends linearly on 1/Sc for Sc < Sstringc consistent with the asymptotic RFOT analysis,

but as the critical value of the configurational entropy, Sstringc , is approached the activation

barrier rapidly decreases, dropping to zero at Sstringc . The experimental mode coupling fit

to the viscosity[128] shows a striking symmetry. The mode coupling theory fits the dynamic

transition from above, while the current argument predicts its emergence from below.

The shapes of CRR’s are broadly distributed as shown via the broad 1kBT contour

in the plots. Examples of the final shape expected near Tg and near the crossover tempera-

ture are shown in figure 3.1. To quantify specifically the characteristic final shape, we take

it to be the one with the smallest core. Figures 3.5 and 3.6 show how the resulting scales of

the transition states and CRR’s change with configurational entropy. Near Tg the shapes
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are mostly spherical with just a small fraction of the particles in the stringy halo. This size

agrees with the previous XW estimate. They consist of around 125 particles (beads) near

Tg, and are thus bigger than the CRR’s invoked in the venerable Adam-Gibbs approach[5].

This prediction of RFOT theory received dramatic confirmation in an experimental study

by Berthier. et al[23]. They show that multi-point correlations near Tg correspond to a

correlation length of about 5 units, independent of fragility. A typical protuberance on the

compact core near Tg contains only 2 particles. Near T stringc , however, the core size becomes

very small while the strings lengthen dramatically. This growth occurs for both the tran-

sition state and the final state. A powerful probe that should be able determine the shape

of the cooperatively rearranging regions is a version of the spin diffusion NMR experiment

of Tracht et. al.[130] The spin diffusion between neighboring slow and fast regions directly

measures the surface to volume ratio which changes as the CRR’s change from compact to

stringy. We show our prediction of this ratio in the inset of figure 3.6.

The string lengths near T stringc are larger than those usually reported in simulations

or in microscopy. This apparent discrepancy arises from a kinetic effect as follows: Though

the free energy barrier for creating a string approaches zero at T stringc , the actual time to

construct a string grows with the length of the string. The barrier to create a new string is

somewhat larger than to extend an old one. Because of this, the growth/death of a string

takes place particle by particle on the microscopic time scale, and should be diffusive, with

growth time τs = τ0
microl

2
s . Here, τ0

micro is a typical vibrational time scale, i.e.the time for a

particle to explore its cage. When τs becomes comparable to the time for another activated

event to occur in the immediate vicinity of the string, τα/ls, the growth of the original string

will be interrupted. Here, τα = τ0
microe

F ‡/kBT . This finite growth time gives a maximum

limit for the length of strings:

l3s,max = eF
‡/kBT . (3.11)

Larger strings will be interrupted, or “incoherent,” since an activated event occurs along

the string. This phenomenon of “incoherent” strings is seen in simulations[105]. Using the

fuzzy sphere model, the minimum barrier corresponds to a core region with 7 particles. This

gives an F ‡ consistent with what Novikov and Sokolov[123] call the “magic” relaxation time
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for the crossover and a length ls.max ∼= e14/3 ∼= 108. While larger than the lengths usually

quoted from simulations, the rapid variation of F ‡ and ls near the string transition makes

this result rather sensitive to modeling details. The key is that there is a natural cut off of

kinetic origin that causes T stringc to be a crossover and not a sharp transition.

We see that the random first order transition theory predicts CRR’s are com-

pact, nearly spherical objects in the deep supercooled region, but that in the moderately

supercooled region, near the mode coupling transition, the CRR’s become non-compact, ex-

tended string-like objects. The crossover temperature is entropically controlled allowing the

prediction of the dynamic crossover temperature. This result is confirmed by experiment.

Chapter 3, in full, is a reprint of the material as it appears in Nature Physics 2

268–274 (2006), J. D. Stevenson, J. Schmalian, and P. G. Wolynes. The dissertation author

was the primary investigator and author of this paper.



Chapter 4

Theory of secondary relaxations in

supercooled liquids and structural

glasses

Diversity, a key feature of glassy systems, is most apparent in their relaxation

properties. Dielectric, mechanical and calorimetric responses of supercooled liquids to per-

turbations are not single, simple exponentials in time, but manifest a distribution of re-

laxation times. The typical relaxation time grows upon cooling the liquid until it exceeds

the preparation time, yielding a non-equilibrium glass, which can still relax but in an age

dependent fashion. In addition to the main relaxations that are responsible for the glass

transition, supercooled liquids and structural glasses exhibit faster motions, some of which

are distinct enough in time scale from the typical relaxation to be called “secondary” relax-

ation processes[131, 132, 133, 134, 135]. These faster motions account for only a fraction of

the relaxation amplitude in the liquid but can become the dominant features in the relax-

ation of otherwise frozen glass, being then of central importance to the glass’s mechanical

properties. These secondary relaxation processes in the solvation shell of proteins are also

prominent in the study of protein dynamics[136].

The phenomenology of secondary relaxation in glassy systems has been much dis-

37
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cussed but it is perhaps not a surprise that, owing especially to the problem of how to

subtract the main peak, the patterns observed seem to be more complex and system spe-

cific than those found for the main glassy relaxation. Nevertheless while some of the sec-

ondary relaxation motions are, doubtless, chemically specific, occurring on the shortest

length scales, the presence of secondary relaxation in glassy systems seems to be nearly

universal[137]. In this paper we will show how secondary relaxations naturally arise in the

random first order transition (RFOT) theory of glasses[138] and that these universally ex-

pected relaxations are predicted to scale in intensity and frequency in a manner consistent

with experimental observations.

The random first order transition theory of glasses is based on the notion that

there is a diversity of locally frozen free energy minima that can inter-convert via activated

transitions. The inter-conversions are ultimately driven by an extensive configurational en-

tropy. RFOT theory, which can be formulated at the microscopic level, accounts for the

well known correlations between the primary relaxation time scale in supercooled liquids

and thermodynamics[21, 24] as well as the aging behavior in the glassy state[22]. By taking

account of local fluctuations in the driving force, RFOT theory also gives a good account

of the breadth of the rate distribution of the main relaxation[98, 139]. In this paper we will

argue that, universally, a secondary relaxation also will appear in the relaxation of glass

forming liquids and that its intensity and shape depends on the configurational thermo-

dynamics of the liquid. This relaxation corresponds with the low free energy tail of the

activation barrier distribution. The distinct character of this tail from the main relaxation,

however, comes about because the geometry of the reconfiguring regions for low barrier

transitions is different from that of those rearranging regions responsible for the main relax-

ation. In RFOT theory, near to the laboratory Tg, the primary relaxation process involves

reconfiguring a rather compact cluster. The reconfiguring clusters become more ramified as

the temperature is raised and eventually begin to resemble percolation clusters or strings

near the dynamical crossover to mode coupling behavior, which can be identified with the

onset of non-activated motions[140]. Reconfiguration events of the more extended type are

considerably more susceptible to fluctuations in the local driving force, even away from the

crossover. Owing to this, as we will show these ramified or “stringy” reconfiguration events
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generally dominate the low barrier tail of the activation energy distribution.

In this paper we will examine the effect of driving force fluctuations on reconfig-

uration barriers when the shape distribution of reconfiguration processes is accounted for.

A simple statistical computation shows that a two peaked distribution of barriers can arise

from this shape distribution. This calculation motivates a more explicit but approximate

theory that gives analytical expressions for the distribution of relaxation times in the tail.

In keeping with experiment, the theory predicts the secondary relaxation motions are ac-

tually most numerous near the crossover, but of course, merge in frequency with the main

relaxation peak in time scale also at that crossover. Furthermore the relaxation time distri-

bution for secondary relaxations is predicted to be described by an asymptotic power law.

The theory is easily extended to the aging regime where these secondary relaxations can

dominate the rearranging motions.

In random first order transition theory, above the glass transition temperature, the

entropic advantage of exploring phase space manifests itself as a driving force for reconfigu-

ration balanced by a mismatch energy at the interface between adjacent metastable states.

For a flat interface in the deeply supercooled regime the mismatch energy can be described

as a surface tension that can be estimated from the entropy cost of localizing a bead[19, 21].

This estimate gives for the surface tension σ0 = (3/4)kBTr−2
0 ln[1/(d2

Lπe)] where dL is the

Lindemann length, the magnitude of particle fluctuations necessary to break up a solid

structure, and is nearly universally a tenth of the inter-particle spacing, (dL = 0.1r0). The

mismatch energy cost is therefore about the same for all substances. The free energy profile

for reconfiguration events can be described by equations that resemble nucleation theory at

first order transitions but are conceptually quite distinct. Following Stevenson-Schmalian-

Wolynes[140] the free energy cost of an N particle cluster with surface area Σ making a

structural transition to a new metastable state may be written

F (N,Σ) = Σσ0 −NkBTsc − kBT lnΩ(N,Σ)−
∑

particles

δf̃ (4.1)

For an arbitrarily shaped reconfigured region there is no simple relationship between Σ

and N . A key element of the reconfiguration free energy profile is the shape entropy
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kB log Ω(N,Σ) which accounts for the number of distinct ways to construct a cluster of

N particles having surface area Σ. At one extreme are compact, nearly spherical objects

with shape entropy close to zero. At the other extreme are objects such as percolation

clusters or stringy chains whose surface area and shape entropy grow linearly with size N .

The last term of equation 4.1 accounts for the inherent spatial fluctuations in the disordered

glassy system manifesting themselves as fluctuations in the driving force. Local fluctuations

in the surface mismatch free energy are ignored in this calculation[18, 17, 139], but their

inclusion would not qualitatively alter the results. We simplify by assuming uncorrelated

disorder, i.e. for each particle joining the reconfiguration event a random energy, δf̃ , drawn

from a distribution of width δf is added to the free energy profile. The root mean square

magnitude of the driving force fluctuations above Tg is derived from the configurational

entropy fluctuations which follow from the configurational heat capacity through the relation

δf ≈ T
√

∆CpkB, a result expected for large enough regions. We will assume no correlations

for simplicity, but they can be included.

For reconfiguring regions forming compact, nearly spherical clusters the shape en-

tropy is very small and the mismatch free energy is σ04π(3N/(4πρ0))θ/3 with θ = 2 if

fluctuations are small. In disordered systems the mismatch free energies grow with expo-

nent θ generally less than 2 reflecting preferred growth in regions of favorable energetics

and the large number of metastable states which can wet the interface and reduce the effec-

tive surface tension. A renormalization group treatment of the wetting effect[19] suggests

that θ = 3/2 in the vicinity of an ideal glass transition. Incomplete wetting giving strictly

θ = 2 asymptotically would not change the numerics of the present theory much. Whether

complete wetting occurs for supercooled liquids under laboratory conditions is still open to

debate[16, 141, 17]. The free energy profile describing reconfiguration events restricted to

compact clusters becomes, then, Fcompact(N) = σ04π(3N/(4πρ0))θ/3 − NTsc. The mini-

mum number of particles participating in a stable reconfiguration event is determined by

finding where the free energy profile crosses zero. The activation free energy barrier results

from the maximum of the free energy profile and is inversely proportional to the configura-

tional entropy, leading to the form suggested by Adam and Gibbs[5] for the most probable

relaxation time F ‡/kBT ∼ ln τα/τ0 ∼ s−1
c . Adding driving force fluctuations to the profile
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of compact reconfiguration events yields an approximate Gaussian distribution of barriers

with width scaling as
√
N ‡δf . Xia and Wolynes[98] have shown that, with the inclusion of

facilitation effects, the resulting distribution of barriers accounts for the stretching of the

main relaxation process and yields good estimates for how the stretching exponent varies

with liquid fragility[142].

In the other extreme of shape, restricting the reconfiguration events to stringy

clusters (using percolation clusters gives very similar results), the free energy profile is

linear in the number of particles reconfigured, save for the minimum cost Fin to begin to

reconfigure a region:

Fstring(N) = −NT (sc − sstring
c ) + Fin. (4.2)

The critical “entropy” is given by Tsstring
c = vint(z − 2) − kBT ln(z − 5) ≈ 1.13kBT . This

is the difference between the surface energy written in terms of the coordination number of

the random close packed lattice z ≈ 12 (vint is the surface tension per nearest neighbor) and

the shape entropy including Flory excluded volume effects[129]. If a single bead can recon-

figure then the cost to begin to reconfigure a region is Fin = zvint − Tsc ≈ 2.5− 2.9kBT . If

two must be moved then Fin ≈ 6.1kBT . Some uncertainty in this estimate is noted in that

the continuous form of the surface mismatch energy gives a somewhat higher value when

applied to these small regions, giving F continuous
in = r20σ04π(3/(4π))θ/3 − Tsc ≈ 10.5kBT for

a one particle reconfiguration. The remarkably simple free energy profile of equation 4.2

indicates that below Tstring (defined by sc(Tstring) = sstring
c ) the free energy monotonically

increases and so reconfiguration via pure stringy objects is impossible, while above Tstring

the same process can occur with very small free energy barrier, having only to overcome Fin.

Thus Tstring signals the crossover from dynamics dominated by activated events to dynamics

dominated by non-activated processes. Interestingly, this crossover is mathematically anal-

ogous to the Hagedorn transition of particle theory[143]. The predicted constant value of

sstring
c agrees well with the crossover for the 21 materials for which data are available[140].

In contrast to the situation for compact reconfiguration, including driving force fluctuations

dramatically affects the picture of stringy relaxation. Without fluctuations, stringy recon-

figuration is impossible below the string transition Tstring. With driving force fluctuations a
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lucky sequence of fluctuations can easily push the nominally linearly increasing free energy

profile to cross zero, the situation needed for a stable reconfiguration.

Stevenson-Schmalian-Wolynes[140] introduced a crude model to estimate the shape

entropy and surface area of the wide range of shapes between the two extremes. This “fuzzy

sphere” model, consists of a compact center of Nc particles with a stringy halo of Nf par-

ticles. With this interpolative model it was shown that near Tg the preferred shape of a

reconfiguring region is largely compact, while the relevant regions become more ramified

close to the dynamic crossover temperature. Fluctuations, aggregated cumulatively in the

compact core yielding a variance proportional to Nc, and cumulatively in the stringy halo

yielding a variance proportional to Nf , modify the local two dimensional free energy land-

scape. The local free energy plots for several realizations of these accumulated fluctuations,

assumed to have Gaussian statistics, are given in figure 4.1. They show the paths available

for the liquid to undergo a stable reconfiguration event. For some realizations compact

reconfiguration will be required to overcome the free energy barrier. For other realizations

the fluctuations are such that the free energy cost for reconfiguration crosses zero along

the Nf axis (shown in the figure in yellow) signifying that the region is able to relax via a

string-like reconfiguration event. These stringy rearranging clusters, stabilized by disorder,

we argue are main contributors to the secondary relaxation process. The statistics of the

stable reconfiguration paths with lowest free energy barrier gives rise to distributions of

activation barriers as illustrated in figure 4.2 for two different values of δf corresponding to

a strong and a fragile liquid. We can dissagregate these distributions into the parts due,

separately, to the compact events (“primary”) and to the string-like fluctuation induced

events (“secondary”). These distributions are shown in figures 4.3 and 4.4 for a strong and

fragile liquid respectively. At low temperatures primary relaxation is the dominant mode of

reconfiguration, but as the temperature increases, fluctuations are able to stabilize string-

like reconfiguration more easily and the secondary relaxation peak increases in prominence,

apparently dominating at and above the string transition. At the same time, with increas-

ing temperature, the primary relaxation peak shifts to lower free energy barriers making it

difficult to distinguish between the two peaks in the overall distribution. As the dynam-

ical crossover temperature is approached and crossed, the primary and secondary peaks



43

N
 s

tr
in

g 
(N

f)

20

40

60

80

100

120

140

N compact (N
c
)

20 40 60 80
N compact (N

c
)

N
 s

tr
in

g 
(N

f)

20 40 60 80

20

40

60

80

100

120

140

5

10

15

20

25

30

35

40

F/k
B
T

Figure 4.1: The two dimensional free energy profile describing cooperative relaxation as
a function of the number of compact particles Nc and the number of stringy particles
Nf in the reconfiguring region. The transition state separating the unreconfigured state
(Nc = Nf = 0) with the final stable state (colored yellow in the figure) determines the
free energy barrier to reconfiguration. The upper left panel gives the profile (sc = 1.0kB)
in the absence of fluctuations while the others demonstrate three possible realizations of
fluctuations for a relatively strong liquid, a liquid having ∆CP ≈ 1kB per bead. The
fluctuations for the two dimensional profile are implemented as cumulative sums of local
fluctuations in both Nc and Nf . For the situation described in the bottom right panel
compact reconfiguration is required to overcome the free energy barrier. For the two other
realizations the fluctuations are such that stable (yellow) regions exist along the vertical
axis, meaning string-like reconfiguration is possible. These stringy clusters, stabilized by
fluctuations, account for the secondary relaxation.
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Figure 4.2: Probability distribution of free energy barriers governing relaxation events in
supercooled liquids. Different curves represent different temperatures, increasing from near
the glass transition temperature to near the dynamical crossover temperature. The arrows
indicate the typical relaxation time predicted from the fuzzy sphere model without fluctu-
ations. The dashed line gives the distribution of free energy barriers for a liquid just above
the dynamical crossover temperature where primary relaxations disappear leaving only the
secondary process. The top panel corresponds to a rather strong liquid with small fluctua-
tions, ∆CP ≈ 1kB per bead — a material similar to GeO2. The bottom panel corresponds
to a fragile liquid with larger fluctuations, ∆CP = 3kB per bead — a material similar to
ortho-terphenyl. Secondary relaxations, i.e. relaxation events using string-like rearranging
regions, increase in prominence as the temperature is increased, becoming the dominant
process near the dynamical crossover temperature where the two peaks merge. The units
of the activation energy are given in kBT , which assumes a mismatch penalty primarily
entropic in nature, σ0 ∼ kBT . An energetic mismatch penalty, σ0 ∼ kBTK , would lead
to Arrhenius behavior for the secondary relaxation process, as the distribution is peaked
around the minimum free energy to initiate a stringy reconfiguration, Fin. In this calcula-
tion we have used the continuous approximation of Fin shown in the text. The facilitation
phenomenon, as described by Xia and Wolynes[98] and by Bhattacharya et al.[142] but not
accounted for here, would shift weight from the largest free energies to the center of the
primary peak, raising the overall height of the primary peak relative to the secondary peak.
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Figure 4.3: Distribution of free energy barriers for a strong liquid (∆CP ≈ 1kB per bead)
separated into the contribution from secondary relaxations (red curves), corresponding to
string-like reconfiguration as in panels b and c of figure 4.1, and primary relaxations (black
curves), corresponding to compact reconfigurations. The full distributions are given for
comparison (blue curves). The separation of the curves makes clear that as the dynamical
crossover temperature is approached the primary relaxation becomes subordinate to the
secondary relaxation.
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Figure 4.4: The corresponding results to those of figure 4.3 but for a fragile liquid, one with
∆CP ≈ 3kB per bead.

merge with string-like reconfiguration clusters becoming the dominant mode of relaxation.

For fragile liquids, i.e. liquids with larger configurational entropy fluctuations[24], the sec-

ondary relaxation peak is generally more important than for strong liquids. Both peaks

are broader and begin to merge at lower temperatures for the more fragile liquids. Because

facilitation effects are not explicitly accounted for (these would mostly affect the higher

barriers) it is not easy to directly compare these distributions with quantitative precision

to experiment. In addition, the number of reconfiguring particles in the two peaks is differ-

ent, so their contribution to the measured dissipation is different as well. Nevertheless, the

relative magnitude of the secondary relaxation peak predicted by this calculation as com-

pared to the primary peak seems to be somewhat larger than experiments apparently show.

This disparity is more pronounced for fragile materials that have larger fluctuations. The

assumptions in the fuzzy sphere model, and especially the assumption of uncorrelated dis-

order, apparently overestimate the influence of the fluctuations, which are probably (anti-)

correlated for the most fragile systems.

The distribution of free energy barriers for reconfiguration events that take an
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Figure 4.5: Distribution of free energy barriers for the secondary relaxation process from
the statistical sampling of the fuzzy sphere model with fluctuations. The data correspond
to a strong liquid (∆CP ≈ 1) and show that at higher temperatures (larger configura-
tional entropies) the distribution decays more slowly. This leads to wider activation energy
distributions, matching the expectations of the analytical calculations.

ideal stringy form can be explicitly calculated. A similar analysis to the string case can be

applied to reconfiguration via percolation clusters but with somewhat different numerical

constants in the relation of the free energy profile to N. This analytic calculation resembles

that of Plotkin and Wolynes for the “buffing” of protein folding energy landscapes[144].

The key to the calculation of Γ(F ‡), the distribution of free energy barriers governing

reconfiguration events with less than Nmax displaced atoms, lies in mapping the problem

onto a random walk, or a diffusion process in free energy space. Going to the limit of

continuous number of particles we may write a stochastic differential equation for the free

energy profile dF/dN = dFstring/dN + δf̃ . The principal quantity to compute is the Greens

function, G(N,F ‡;Fin) the probability that a reconfiguration path of N particles has free

energy F if the cost to initiate the reconfiguration event is Fin. The evolution of G, that

follows from the stochastic profile, may be described by a diffusion equation with drift

subject to absorbing boundary conditions at both F = 0 and F = F ‡. These boundary

conditions permit the calculation of the distribution of free energy barriers by keeping track

of the maximum excursion of the random walk.

∂G

∂N
+ φ

∂G

∂F
=

1
2
δf2∂

2G

∂F 2
, (4.3)

The slope of the mean free energy profile φ = T (sstring
c −sc) depends simply on the proximity

to the string transition. φ is a string tension reflecting the free energy cost of lengthening a
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string. The probability density for the maximum excursion of F , i.e. the free energy barrier

is then

Γ(F ‡) = − ∂

∂F ‡

∫ Nmax

0
dN

〈
δf2

2
∂G

∂F

∣∣∣∣
F=0

〉
0<Fin<F ‡

. (4.4)

In the above equation the average 〈·〉0<Fin<F ‡ is present to integrate over the fluctuations in

the free energy cost of initiating a string — essentially capturing the statistics of the smallest

possible activation barriers. The derivative with respect to F ‡ converts from the cumulative

probability that the free energy barrier is below F ‡ to the probability the free energy barrier

is between F ‡ and F ‡ + dF ‡. The Green’s function can be calculated explicitly by solving

the diffusion equation using the method of images. The result may be represented in closed

form in terms of the Jacobi theta function, however we leave the sum explicit to more easily

examine the asymptotics

G =
e

φ

δf2 (F−Fin−φN/2)√
2πδf2N

×
∞∑

n=−∞

[
e
− (2nF‡+F−Fin)2

2δf2N − e
− (2nF‡+F+Fin)2

2δf2N

] (4.5)

In the integral of equation 4.4 the cutoff Nmax reflects the maximum size to

which a stringy reconfiguration event would typically grow before compact rearrangements

dominate. We estimate this maximum length as Nmax ≈ F ‡
α/φ, since certainly by that

length the most important reconfiguration events would be compact and would contribute

to the primary relaxation peak. A useful and accurate simplification of equation 4.4

can be made by smoothing the cutoff so that the finite integral
∫ Nmax

0 dN · is replaced by∫∞
0 dN exp(−N/Nmax)·. The smoothed probability distribution of free energy barriers fol-

lows directly from equations 4.4 and 4.5
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Γ =
∂

∂F ‡

〈
exp

(
−Finφ

δf2
− 1

2
Finq

)

×
(

1− exp(Finq)− 1
exp(F ‡q)− 1

)〉
0<Fin<F ‡

where, q ≡ 2
δf

√
2φ

F ‡
α

+
φ2

δf2

(4.6)

Although the result of the Gaussian average and the derivative is too long to show here, it

involves nothing more complicated then exponentials and error functions.

The total magnitude of the secondary relaxation peak is estimated by calculating

the probability that fluctuations can stabilize a stringy reconfiguration for any size barrier

less than F ‡
α. Integrating Γ over F ‡ we get

ψ ≈ exp
{
−2φ (Fin − φ)

δf2

}
(4.7)

The relative weight of the secondary relaxation peak increases with temperature as the dy-

namical crossover at Tstring is approached, a trend that is validated experimentally[145]. At

the crossover temperature and above, this secondary relaxation becomes the only remain-

ing mode of activated relaxation. The sharp transition from activated to non-activated

motions at Tc that is predicted by the non-fluctuating RFOT theory, as well as by mode

coupling theory[9, 8] and the mean field theory of supercooled liquids[6, 97, 146], is therefore

smoothed out by the string-like activated events made possible by fluctuations and exhibits

no divergent critical behavior. This suggests that string-like secondary relaxations provide a

mechanism for smoothly bridging the transition between mode coupling theory, valid above

Tc and activated events described by RFOT theory, valid in the deeply supercooled regime

below Tc[142]. In this temperature regime the secondary beta relaxations of mode coupling

theory would be present and overlap in frequency with the string-like activated secondary

relaxations, perhaps making the differentiation of the processes difficult.

The distribution of secondary relaxation free energy barriers Γ of equation 4.6 can

be approximated by the Gumbel extreme value distribution function[147]. For F ‡ > Fin

the barrier distribution decays exponentially as
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Γ(F ‡ > Fin) ∼ exp(−F ‡q) ≈ exp
(
−2

F ‡φ

δf2

)
(4.8)

The results agree with the sampled distribution of barriers for the string-like reconfigura-

tion events alone (shown in figure 4.5). Using the fact that τ = τ0 exp(F ‡/kBT ) we see

that equation 4.8 gives a power law distribution of relaxation times P (τ) ∼ τ−γ where

γ ≈ 2(sstring
c −sc)/∆CP +1. Well above Tg the high barrier side of the secondary relaxation

blends in with the primary relaxation peak. Thus the secondary relaxation from ramified

reconfiguration events often appears as only a “wing” on the main distribution[148, 149].

However, when the decay exponent is large (i.e. near Tg or below) we expect the primary

and secondary relaxation peaks to be sensibly distinct. As the temperature increases and

approaches the string transition the decay exponent becomes small. In this limit the sec-

ondary relaxation peak, while growing in magnitude, will be seen to merge with the primary

relaxation.

In the aging glass, the picture of secondary relaxation is slightly modified. If

the liquid fell out of equilibrium at Tf then the frozen-in structure has an average excess

energy per particle ε(Tf ) = ε(TK) +
∫ Tf

TK
dT∆CP (T ). At temperatures T < Tf a region

of the liquid undergoing reconfiguration would relax to a structure with average energy

ε(T ) < ε(Tf ). Thus the driving force for reconfiguration gains an energetic contribution

and the configuration entropy in equation 4.1 is replaced by Tsc → (Tsc + ∆ε) where

∆ε = ε(Tf ) − ε(T ) =
∫ Tf

T dT ′∆CP (T ′). Lubchenko and Wolynes[22] have shown that this

additional driving force results in a change in slope of the typical relaxation time as a

function of temperature, and a transition to nearly Arrhenius behavior as the system falls

out of equilibrium. Correspondingly, falling out of equilibrium causes the string tension to

be reduced by an amount ∆ε, giving φ = Tsstring
c − Tsc − ∆ε and effectively makes the

system appear closer to the dynamical crossover than an equilibrated system at the same

temperature. Furthermore, the driving force fluctuations are frozen in as the aging glass falls

out of equilibrium and become largely independent of temperature. These changes result

in a broadening and flattening of the distribution of free energy barriers as the temperature

is lowered, with the large free energy barrier decay given by
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Γ(F ‡ > Fin) ∼ exp

(
−2

F ‡(Tsstring
c − Tsc −∆ε)

T 2
f kB∆CP (Tf )

)
. (4.9)

The strength of the secondary relaxation in the aging regime becomes

ψ ≈ exp
{
− 2(Tsstring

c − Tsc −∆ε)
T 2
f kB∆CP (Tf )

×
(
Fin − (Tsstring

c − Tsc −∆ε)
)}
.

(4.10)

In the limit T → 0 the distribution of barriers becomes largely independent of temperature

with Γ(F ‡ > Fin) ∼ exp(−αF ‡) and α ≈ ((z − 2)vint(Tf ) − ∆ε)/(TfkB∆CP (Tf )). For a

broad enough distribution of free energy barriers the dielectric absorption spectrum is de-

termined through the simple relation, ε′′(ω) ∼ P (F ‡ = −kBT lnω/ω0) ∼ ωαT , and becomes

essentially flat for low temperatures, resembling the so called constant loss spectrum. In a

rejuvenating glass, an aged system that is heated to a temperature above Tf , the energetic

contribution to the driving force is negative, ∆ε < 0. In this situation the system appears

as if it is be further from the dynamical crossover temperature than an equilibrated system

at the same temperature and secondary relaxations are relatively suppressed.

Nearly all glass forming liquids display secondary relaxations, dynamical modes

seemingly distinct from the primary alpha relaxations. We have shown that by adding

fluctuations to the existing structure of random first order transition theory a tail develops

on the low free energy side of the activation barrier distribution which shares many of the

features of the secondary relaxations observed in the laboratory. The relaxation process

responsible for the tail differs from the primary relaxation mechanism in the geometry of

the region undergoing cooperative reconfiguration. While primary relaxation takes place

through activated events involving compact regions of the liquid, secondary relaxation is

governed by more ramified string-like, or percolation-like clusters of particles. While the

existence of secondary relaxation is nearly universal, the relevant motions are of shorter

length scales than those for primary relaxation, allowing additional material dependent

effects and, perhaps, less universal quantitative description than the main relaxation. The

present theory, however, does suggests a universal mechanism for secondary relaxation. The
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theory points out some important general trends about how these relaxations vary with

temperature and substance which conform to observation. Fragile materials have larger

fluctuations and should be more strongly affected by secondary relaxation than strong

materials. Secondary relaxations grow in prominence with increasing temperature, merging

with the primary relaxation peak and becoming dominant near the dynamical crossover

temperature Tc. Finally the theory suggests that secondary relaxation can be viewed as a key

component of the mechanism for smoothing what would otherwise be a very sharp transition

between mode-coupling theory above Tc and activated events described by random first

order transition theory below Tc.



Chapter 5

Constructing explicit magnetic

analogies for the dynamics of glass

forming liquids

The commonalities and contrasts between the glassy behavior of supercooled liq-

uids and quenched disordered magnetic systems have been long studied. Both exhibit a

diversity of long lived states with no apparent structural long range order. These states

challenge the paradigms of standard many body physics. Starting in the 1980’s, the dis-

ordered magnetic systems came under control, but only in mean field limit, through the

concept of broken ergodicity using replica methods which allowed averaging over quenched

disorder. Despite the absence of quenched disorder there is an analogy between the first

order breaking of ergodicity predicted by mode coupling theory for structural glasses and

the phase transition predicted for spin glasses that lack up-down symmetry (Potts spin

glasses)[10, 26]. In mean field theory, the asymmetric spin glasses exhibit a Kauzmann

entropy crisis[14] like that for supercooled liquids.

The analogy between glass forming liquids and mean field spin glasses is however

incomplete. The observed dynamics of supercooled liquids fits the mean field mode coupling

paradigm only modestly well[150]. The main problem with the mean field theory is its

53
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neglect of important activated motions that allow a supercooled liquid to re-configure locally.

The most convincing evidence for this is the near Arrhenius dynamics with large activation

energy seen in structural glasses in the aging regime[138].

Activated motions have infinite barriers in mean field limit. Describing activated

motions requires accounting for the finite interaction range. Accompanying a paucity of

exact results[151], even the empirical situation remains controversial for finite range random

magnetic systems[152, 153]. For the random field Ising magnet (RFIM), arguments based

on renormalization group theory and droplet arguments do work well[154, 155, 20], but

controversy remains as to the extent Ising spin glasses partake of mean field versus droplet

features[156]. Nevertheless, useful analogies between glass forming liquids and disordered

magnets have been drawn showing how droplet arguments give the Vogel-Fulcher law[19].

Similar arguments have also been adduced using replicas[14, 93, 157].

By applying density functional theory to determine the parameters in these droplet

arguments[21] one predicts a large number of confirmed quantitative results for liquids[138].

The resulting random first order transition (RFOT) theory bears some resemblance to the

nucleation picture of ordinary first order phase transitions. The theory’s core is an analogy

to the random field Ising magnet in a field. The average field in the magnet is related to

the configurational entropy density of the liquid[19, 21]. Tarzia and Moore[158] suggest

that supercooled liquids are related to Ising spin glasses in a field. When an average field

is present, corresponding to a finite configurational entropy in the liquid, both the random

field magnet and the spin glass have the same symmetry: neither model is expected to have

a phase transition although this is still somewhat controversial[159]. While both magnetic

analogies agree on this point, the activated dynamics in the two different analogical magnets

differ because the interface energies in spin glass droplets have weaker scaling than the

random field ferromagnet. To quantify this distinction in this paper we construct explicitly

the analogy between a structural glass forming liquid and the corresponding short range

disordered ferromagnet.

Replica methods along with liquid state theory allow an explicit mapping of the free

energy landscape of a glass forming liquid onto a disordered Ising magnet. Using this explicit

construction we may eschew droplet arguments entirely. Simulating the analogous magnet
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shows the mapping reproduces, however, the main features of the RFOT analysis. The mean

activation barrier and its fluctuations which give rise to non-exponential relaxation can be

computed using importance sampling methods for the analog. Approximate arguments can

place the analog system onto a phase diagram previously deduced for disordered magnets

using renormalization group (RG). This construction suggests that under thermodynamic

conditions when the mean field estimate for the configurational entropy would vanish, the

liquid would still undergo a phase transition having one step replica symmetry breaking,

despite the exact configurational entropy remaining non-zero[44, 160].

5.1 Theory

The analogy yields a description of a structural glass in terms of discrete spin-

like variables tied to the liquid structure equilibrated at one time. A structural glass is

statistically homogeneous but nonuniform with a density ρ(x) that is not translationally

invariant. Liquid state theory provides a free energy as a functional of such a density

F [ρ(x)]. While the complete equilibrium free energy F = −kBT lnZ assumes all phase

space can be sampled, close to the glass transition there is trapping in locally metastable

states which manifests itself as extensively many local minima described by a configurational

entropy density Sc = lnNms . This non-ergodic behavior can be captured by a construction

due to Monasson[161] in which an external random constraining pinning field couples m

replicas of the system through an attractive potential. Each replica’s density field is ρk(x).

The free energy of the m replica system is

F (m,β) = lim
g→0+

[
− 1
βm

ln
∫ m∏

k=1

Dρk(x) exp

{

− β
∑
k

F [ρk(x)]− g

2m

∑
k,j,k<j

∫
dx[ρk(x)− ρj(x)]2

}] (5.1)

The typical free energy of a metastable frozen state, F̃ = ∂mF (m,β)
∂m

∣∣
m=1

, differs

from the complete equilibrium free energy by an amount δF = F̃ − F = ∂F (m,β)
∂m

∣∣
m=1

= TSc .

In contrast to Monasson’s thoroughly field theoretic formulation, we separate the m replicas
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into one fiducial probe copy of particles interacting through the Hamiltonian H({xfi }) =∑
i<j u(x

f
i − xfj ) and m − 1 others described by density fields. Here u is the microscopic

inter-particle potential. The pinning field on the other replicas is ρf (x) =
∑

i δ(x − xfi ).

We can write:

F (m,β) =− lim
g→0

1
βm

ln
∫
D{xfi }e

−βH
“
{xf

i }
” ∫ m−1∏

k=1

Dρk(x) exp

{
− β

m−1∑
k=1

F [ρk(x)]

− g

2m

m−1∑
k=1

∫
dx[ρk(x)− ρf (x)]2 − g

2m

m−1∑
k=1

m−1∑
j=1,k<j

∫
dx[ρk(x)− ρj(x)]2

}
(5.2)

In calculating the free energy with respect to the probe replica we ignore peripheral

interactions not involving the probe, thus decoupling the partition function

F (m,β) = − lim
g→0

1
βm

ln
∫
D{xfi }e

−βH
“
{xf

i }
”
[Zq]m−1 (5.3)

such that each replica is constrained by a potential to the vicinity of the fiducial copy:

Zq =
∫
Dρ(x) exp

{
− βF [ρ(x)]

− g

2m

∫
dx[ρ(x)− ρf (x)]2

} (5.4)

For a glassy system, when TSc = ∂F (m,β)
∂m |m=1 is finite, in the limit m → 1, the

replicated free energy is dominated by a saddle point corresponding to the spontaneous

ordering of replicas in phase space. The saddle point solution to the free energy is found by

minimizing the exponential’s argument.

δ

δρ(x)

[
βF [ρ(x)] +

g

2m

∫
dx[ρ(x)− ρf (x)]2

]
ρ=ρ̃

= 0 (5.5)

The free energy functional can be written, à la density functional theory, as the sum of an

entropic cost to localize the density and an interaction term.
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βF [ρ(x)] ≈
∫
dxρ(x) ln ρ(x) + βFint[ρ(x)]. (5.6)

While the free energy functional F [ρ] is globally minimized by a uniform equilibrium so-

lution with mean density ρ0, F [ρ] also has local minima corresponding to frozen aperiodic

densities. The g coupling, even as g vanishes, picks out one particular minimum around

the structural state ρf . Thus F [ρ] can be analyzed in terms of the similarity, or overlap

q =
∫
dx(ρ(x)− ρ0)(ρf (x)− ρ0), between ρ(x) and ρf (x) =

∑
i δ(x − xfi ). A schematic of

the free energy as a function of the order parameter q as computed in references [6] and [93]

is shown in figure 5.1a. The free energy difference between the large overlap solution and

the small overlap solution is the excess free energy of the frozen glass over the equilibrium

free energy and is determined by TSc.

The large overlap state is well approximated by a density distribution of a sum

of Gaussians centered around the particle locations of the fiducial (probe) copy ρ(x) =∑
i ρi(x) =

∑
i

(
αi
π

)3/2
e−αi(x−xf

i )2 . The localization parameters, {αi}, determine the local

overlap. Near the large overlap minimum, q
(
αi � ρ

2/3
0

)
=
∑

i

(
(αi/π)3/2 − ρ0

)
. In the

opposite limit, near the global free energy minimum, the density ansatz reduces to the

mean density and q({αi} → 0) = 0.

For large values of {αi} the particles are localized very near the fiducial locations

{xfi } and F can be evaluated by using the independent oscillator approximation[162, 7]

which decouples the particles at the individual site level. Within this approximation Fint

can be expressed as a sum of effective potentials between the interacting density clouds,

βVeff

(
|xfi − xfj |;αj

)
≡ − ln

∫
dxjρj(xj)e−

1
2
βu(xf

i −xj).

βFglass

(
{xfi },{αi}

)
=
∑
i

3
2

ln
αiΛ2

πe

+
∑
ij

βVeff

(
|xfi − xfj |;αj

)
.

(5.7)

The localization parameters corresponding to the large overlap solution, {α↑i }, can

be found by applying a self consistency condition[162, 7]. The existence of the free energy

minimum at large overlap reflects the cage effect where the motion of a particle is restricted
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Figure 5.1: (a) Schematic mean field free energy profiles for supercooled liquids at the
dynamical crossover temperature (dashed line), the Kauzmann temperature (solid line),
and an intermediate temperature (dot-dashed line). In mean field the particle localization,
α, and the structural overlap, q, are equivalent reaction coordinates. The secondary free
energy minimum at TK < T < Tc demonstrates the existence of metastable structural states
in supercooled liquids. (b) Free energy profiles calculated for the finite range Ising magnet
analogous to the LJ liquid. The minimum size needed to escape the free energy minimum
and thus reconfigure the liquid at sc = 1.10 is N∗ = 148 particles.
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by its neighbors. To first order one may compute the potential βVe
(
xi − xfi , {αj}

)
≡∑

j βVeff

(
|xi − xfj |;αj

)
and expand around small displacements of particle i, wi = |xi −

xfi |.

βVe

(
wi, {α↑j}

)
≈ βVe|wi=0 + w2

i

1
6
∇2β Ve|wi=0 (5.8)

βVe

(
wi, {α↑j}

)
≈ β Ve|wi=0 + α↑iw

2
i (5.9)

The linear term gives no contribution because the fiducial replica becomes centered on a sta-

tionary location with all forces canceling. The localization parameter of particle i thus can

be computed from the curvature of the effective potential, α↑i = 1
6∇

2βVe

(
|xi − xfi | = 0, {α↑j}

)
,

giving a self-consistent solution for α↑i [28, 7].

Near the uniformly low overlap state the interaction free energy Fint follows from

the equilibrium liquid equation of state, ZEoS(η), where η is the packing fraction[163]:

F ↓
liq = N ln ρ0Λ3 −N +N

∫ η

0
(ZEoS − 1)

dη′

η′
. (5.10)

To characterize the reconfiguration events and develop the magnetic analogy one

must also examine non-uniform solutions. At the interface between the two solutions

there must be some energetic penalty due to the patching together of distinct config-

urational states. At an interface, one particle is in the large overlap state while it’s

neighbor has small overlap, so the pair interaction becomes βV eff
2

(
|xfi − xfj |;α

↓
i , α

↑
j

)
=

− ln
∫
dxidxjρ

↓
i (xi)ρ

↑
j (xj)e

− 1
2
βu(xi−xj). The small overlap parameters {α↓i } determine ρ↓i

and are obtained in the self-consistent phonon theory by matching the entropy of the low

overlap state calculated within the Gaussian density ansatz with the entropic term of the

equilibrated liquid:

∑
i

3
2

ln
α↓iΛ

2

πe
= N ln ρ0Λ3. (5.11)

For any combination of the discrete values of {α↓i } and {α↑i }, the free energy of

the supercooled liquid is equivalent to a pairwise interacting model with spins located at
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the fiducial locations, {xfi }.

βH = −
∑
i

hi(1− si) +
∑
i<j

Jij [si(1− sj) + sj(1− si)] , (5.12)

where the spin, si = 1, corresponds with large overlap and si = 0 small overlap at a

site. The average field is found from the bulk free energy difference between the states,∑
i hi = βFglass − βFliq = Nsc/kB, with a heterogeneous local configurational entropy re-

sulting from the alpha variations.

hi =
3
2

ln
α↑i
π

+ β
∑
j

Veff (|xfi − xfj |;α
↑
j )−

1
N
Fliq (5.13)

The interactions defined through the effective potential give the surface energies of droplets

within the RFOT picture and are explicitly

Jij = V eff
2

(
|xfi − xfj |;α

↓
i , α

↑
j

)
+ V eff

2

(
|xfi − xfj |;α

↑
i , α

↓
j

)
. (5.14)

5.2 Application to a simulated glass

The mapping to the disordered Ising model should be carried out for each fiducial

equilibrium liquid structure. We sample fiducial structures of the Kob-Andersen 80-20

mixture of two types of Lennard-Jones (LJ) particles at density 1.2 (in LJ reduced units).

The pairs have interaction parameters[165, 163], σAA = 1.0, σBB = 0.8, σAB = 0.88,

εAA = 1.0, εBB = 1.5, εAB = 0.5. The fiducial structures were obtained by simulated

annealing runs to the temperature TMD = 0.45. The equilibration time for these simulations

reaches a tenth of a microsecond when referenced to argon.

The parameters {α↑i } ({q↑i }) and {α↓i } ({q↓i }) are calculated for every particle. The

mean RMS deviation determined from {αi} is about 0.12 particle spacings, rather close to

the Lindemann parameter expected for periodic crystals dL ≈ 0.1 independent of the force

law. The RMS actually observed during the MD run at TMD = 0.45 is consistent with this

estimate dL = 0.113.
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The distribution of calculated interactions is shown in figure 5.2a. The interaction

free energy per neighbor is Ji ≡ 1
zi

∑
j Jij where zi is the number of neighbors of particle

i. The typical interaction J̄ ≡ 1
N

∑
i Ji is directly related to σ, the mismatch free energy

penalty in RFOT theory for a particle at a flat interface between regions of high and low

overlap. In the Ising mapping βσI = nbbJ̄ where nbb = 3.2 is the typical number of bonds

broken by the interface. The direct calculation yields J̄ = 0.55 giving βσI = 1.77 not

very different from the RFOT theory estimate usually used[98] σRFOT = 3
4kBT ln 1

d2Lπe
=

1.85kBT .

In RFOT theory the configurational entropy parametrizes a liquid’s descent into

the glassy regime. In harmony with many experimental observations[140, 22, 123], the

dynamic crossover and the laboratory glass transition occur at universal critical entropies

of sc(Tc) = 1.12kB and sc(Tg) = 0.82kB, respectively.

Because of the rapidly increasing equilibration time scales it is impossible presently

to obtain proper fiducial structures directly at very low temperatures via molecular dynam-

ics. We can, however, treat the configurational entropy, and therefore the average field, as

variable in order to extrapolate to find the magnetic system analogous to a liquid equili-

brated at a much lower temperature, eventually extrapolating all the way to the ideal glass

transition by taking h̄ = 1
N

∑
i hi → 0. The presence of even a small average field is thought

to destroy the phase transitions of both spin glasses and the random field Ising magnets,

but at zero field a transition to a phase with long range correlations can still occur. Would

a transition occur for the liquid analog when h̄ = 0, i.e. when the mean field configura-

tional entropy vanishes? We answer this by appealing to an RG analysis of Migliorini and

Berker[164] for the phase diagram for an Ising system in which both the fields and the

interactions fluctuate randomly and independently, encompassing both the RFIM and the

short range spin glasses. Their model is on a cubic lattice. We present their phase diagram

in figure 5.3 in terms of the mean field theory based normalization where both the field

fluctuations, δh, and the fluctuations of the interaction strength, δJz1/2, are normalized

by the total interaction energy per site J̄z. This parametrization should eliminate trivial

near neighbor lattice dependence. This zero average field phase diagram is shown at a

temperature T = 1 coinciding with the established temperature of the analogous magnet.
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The results for the simulated Kob-Andersen liquid are indicated by the dot suggesting the

disorder in both the fields and the interactions is sufficiently modest so that the system

would undergo a phase transition to a state with infinite correlation lengths and divergent

relaxation times when the field vanishes. This extrapolation implies the Kob-Andersen LJ

liquid should possess a true phase transition to a state with one step replica symmetry

breaking (RSB), even though the re-normalized configurational entropy, which would in-

clude small scale droplet excitations, strictly speaking remains finite. For such a broken

replica symmetry state the free energy landscape has divergent barriers between a finite

number of collective free energy basins each one of which still has finite configurational

entropy due to local defects.

According to Landau, the excess heat capacity[166] yields δsc =
√

∆CpkB/Ncorr,

where Ncorr is the volume within which the disorder is correlated. The explicit mapping

for the LJ system gives entropy fluctuations δh = δsc/kB = 0.38, smaller than a typical

fragile glass forming liquid such as ortho-terphenyl (OTP). Assuming a similar distribution

of interactions but rescaling the field fluctuations to that calculated for ortho-terphenyl

yields the triangular position on the RG phase diagram of figure 5.3 while the square mark

indicates where the strong glass forming liquid GeO2 would lie. Even though OTP is rather

fragile, we see it would still be expected to obey one step RSB.

Our extrapolations neglect any structural changes that occur in an actual fluid

upon cooling yet we can test how well the direct dynamics of the extrapolated analog model

correspond to droplet analysis. Escape from the metastable (s = 1) large overlap state

corresponds with a large scale activated, structural rearrangement of the liquid. Directly

simulated escape times are shown as circles in figure 5.4a. The relaxation time grows

rapidly at the dynamical crossover temperature appearing to diverge as sc, h̄ → 0. Below

the dynamic crossover the growth in relaxation time is well fit by ln τ/τ0 ∼ s−ψc . The

proportionality constant for the inverse linear fit (ψ = 1) is 22kB, while droplet arguments

in RFOT theory predict a slightly larger value ln τ/τ0 = 32kB/sc. ψ = 2, corresponding

to the unwetted result from RFOT theory[21], actually gives a closer fit to the relaxation

time curve. This is consistent with what we have already seen in figure 5.3, that the analog

magnet underestimates the disorder in the field moving the system away from the critical
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line where wetting is dominant.

The average overlap of the liquid frozen density fields maps onto the magnetization

in the analog magnet, q = 1
N

∑
i si. This coordinate can be used to monitor escape from

local minima. We create free energy profiles for this local collective reaction coordinate

using the weighted histogram analysis method[167, 168, 169] (WHAM). The resulting free

energy profile, calculated with h̄ = sc/kB = 1.1, is shown as a thick solid line in figure

5.1b. The metastable minimum at large overlap is separated from the global minimum at

small overlap by a free energy barrier that accounts for the relaxation time according to

τ = τ0e
βF ‡ .

The global overlap is not an ideal reaction coordinate for reconfiguration, as it

averages over reconfiguration events occurring at spatially distinct regions. By selecting

a spherical region at random and only permitting motion within that region, the overlap

becomes a good reaction coordinate. This is the magnetic analogy of the landscape “library

construction”[22] and is similar to a technique recently used to calculate the surface tension

near a first order transition[170]. By varying the region size, the minimum size to irre-

versibly escape a minimum and reconfigure the liquid, N∗, can be determined. Free energy

profiles for several region sizes around N∗ are shown in figure 5.1b. The free energy barriers

computed for regions of size N∗, converted to relaxation time, are shown in figure 5.4a. Us-

ing WHAM and the library construction allows descent much further into the glassy regime

than is possible via direct simulation. The predicted minimum reconfiguration size is shown

in figure 5.4b. At high temperatures, sc > 1, the growth of region size with decreasing sc is

consistent with N∗ ∝ s−2
c expected from RFOT theory, but at low temperatures the growth

falls off as the result of finite size effects since the cluster size approaches the simulated

system size itself. The free energy barrier is also underestimated for the low temperature

range.

Not all cooperatively rearranging regions are created equal. The resulting dynamic

heterogeneity of the liquid is seen in figure 5.5 showing a collection of free energy profiles for

different regions at h̄ = sc/kB = 1.1. There is clearly a spread of relaxation times which can

give rise to the stretched exponential relaxation behavior φ(t) = e−(t/τ)βKWW common to

glassy systems. If the relaxation is entirely heterogeneous the stretching exponent, βKWW ,



64

was shown in reference [98] to be related to the spread of free energy barriers, δF ‡, through

the relation βKWW ≈
(
1 + (δF ‡/kBT )2

)−1/2. Xia and Wolynes argued that regions do

not reconfigure completely independently, so free energy barriers larger than the mean are

lowered by facilitation effects of neighboring regions. Using the barrier distribution corrected

in this way for facilitation yields a non-exponentiality parameter nearly independent of

temperature, βKWW ≈ 0.6, a value characteristic for fragile liquids.

5.3 Conclusion

Using a mixed density functional/atomistic replica formalism, the dynamics of

the structural glass forming liquids can be mapped onto a general disordered Ising model.

This mapping allows a computationally inexpensive route to low temperature dynamics

impossible currently by direct simulation. Using this information from the replica density

functional one can guide molecular dynamics simulations carried out at complete atomic

detail to more easily reach low temperature structural states.

Our results suggest the Kob-Andersen liquid should demonstrate one step replica

symmetry breaking at a sufficiently low temperature even though its configurational entropy

including local droplet excitations, strictly speaking, will not vanish. The system is, in this

sense, closer to the random field Ising magnet than it is to the Edwards Anderson short

range spin glass model. The results from the simulation are consistent with droplet based

predictions using the existing random first order transition theory estimates.

Chapter 5, in full, is a reprint of the material as it appears in the Journal of

Chemical Physics 129 194505 (2008), J. D. Stevenson, A. M. Walczak, R. Hall, and P. G.

Wolynes. The dissertation author was the primary investigator and author of this paper.
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Figure 5.2: The distributions of interactions and local fields of the magnet analogous to the
simulated LJ two compound glass. In this mapping h̄ is directly related to the configura-
tional entropy, h̄ = sc/kB. The fields are shown at h̄ = 1.2, close to the dynamical crossover
temperature.
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Figure 5.3: Phase diagram of the Ising model with random bonds and fields adapted from
reference [164]. The parameters calculated for the magnet analogous to the LJ liquid (cir-
cular mark) indicate that the liquid would undergo a true phase transition at the ideal glass
transition. The triangular and square marks indicate estimates of where the glass forming
liquids OTP and GeO2 would fall on the phase diagram.
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Figure 5.4: (color online) (a) Relaxation times of the Ising model analogous to the LJ liquid
(circles). The solid line gives relaxation times calculated from free energy barriers. The
dashed lines show fits using relations derived in RFOT theory (see text). (b) The minimum
region size able to irreversibly reconfigure.
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behavior common to glassy systems.



Chapter 6

On the surface of glasses

Paying attention to the properties of interfaces has, since the time of Van der

Waals, helped to clarify our understanding of bulk phase transitions[171]. Studying the mo-

bility at the surface of glasses and supercooled liquids has the potential to be equally enlight-

ening about the glass transition[172, 173]. Theories of the glass transition predict a growing

length scale of correlated dynamics as the glass transition is approached[138, 174, 175, 110].

This growth, according to the most successful theories, is quite modest. It has only in

recent years been widely acknowledged that there is such a slowly growing length scale in

bulk glasses[23, 16]. The dynamics of a glass or supercooled liquid should be perturbed

within a few correlation lengths of its surface. Many experiments do show significant per-

turbations of the glassy dynamics at free surfaces or in confined spaces[176]. The picture

that emerges from these experiments is, at present, still somewhat confused. In general,

mobility seems to be increased at a free surface, although sometimes a diminished mobility

has been observed. At interfaces with solids both increases and decreases in mobility have

been reported[177, 178]. It seems likely that this complex set of behaviors reflects the fact

that the dynamics of the liquid can be strongly influenced by the liquid’s static structure

which also will be perturbed by the interface — in the extremes, partial crystallization can

occur at a free interface while a drying layer may sometimes insulate a confined fluid from

its solid surroundings. While noting these complications, we feel it is nevertheless worth-

69
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while to present a simplified view of glass and supercooled liquid surfaces in the context of

the random first order transition theory of the glass transition.

The random first order transition (RFOT) theory is a constructive approach to

structural glass dynamics that has explained quantitatively numerous bulk glass phenomena[138].

It was recognized very early on that growing length scales should be associated with an ideal

glass transition as envisaged in RFOT theory[19, 14]. Indeed some of the early experiments

on confined supercooled liquids carried out by Jonas[179] were motivated by a desire to

test these expectations. It turns out present day RFOT theory for molecular liquids can

make somewhat more definite predictions than was done in those early days, at least for an

idealized interface which can be taken to have no change in static structure from the bulk.

We show for this idealization that the maximum mobility at a completely free interface is

related in a very simple way to the bulk mobility. In terms of relaxation times, the RFOT

result for the surface relaxation time is simply τsurf =
√
τ0τbulk. We also show that RFOT

theory suggests that as measured by an effective local glass transition temperature T localg

the influence of the interface can appear to be rather far-reaching into the bulk, consistent

with some experiments.

At the smallest length scales the dynamic arrest of glasses results from the cage

effect in which a particle’s motion is constrained by the presence of its neighbors. In

mean field theory this leads to a friction crisis at the mode coupling theory (MCT) critical

temperature and the emergence of an ensemble of aperiodic crystal structures having an

extensive configurational entropy sc per particle. Below the dynamical transition at Tc

any large scale motion that takes place is necessarily collaborative. Near a free surface

this picture is modified. Since surface particles feel a weaker structural cage, essentially

only on the inner side, they would go through a dynamic arrest at a lower temperature

and remain more mobile below the bulk glass transition temperature. The collaborative

dynamics propagates the enhanced mobility at the surface some distance into the bulk.

This depth would be determined by the length scale of cooperativity.

In the mean field limit (made precise in Kac models by Franz[180]) two cooperative

length scales can be defined for random first order transition theory[14]. One scale, ξMCT ,

is directly related to the dynamical transition at Tc which resembles a spinodal[110], the
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other is related to the size of regions that rearrange by activated motions and scales with

the configurational entropy sc[21]. The latter scale diverges at the Kauzmann temperature

with an exponent ξRFOT ∼ as
−2/3
c . Within the sharp, thin wall approximation the RFOT

theory yields a numerical coefficient a that appears consistent with experimental values

for molecular glasses[21]. The scaling exponent used to fit inferred lengths from χ4 is also

not inconsistent with RFOT theory, although a larger value provides a better fit[23, 16].

For molecular liquids governed by short range interactions the dynamical (mode coupling)

length would not actually diverge at Tc because of a dynamical cutoff from the activated

events and will not be too different from ξRFOT .

We first review the theory of bulk activated dynamics[138]. Below the mode cou-

pling theory (MCT) transition, dynamics takes place on a rugged free energy landscape[14,

28, 6]. Particle motion occurs locally through transitional hops between metastable struc-

tural states which resemble, in many ways, nucleation processes between different aperiodic

crystal structures[21, 14]. The magnitude of the free energy barrier can be found by a

competition between the entropic cost of remaining confined to one minimum free energy

structure and a mismatch free energy penalty, σ, for having two mean field solutions ad-

jacent to each other but in distinct structural states. The free energy profile governing

nucleation of a spherical cooperative region of radius r is

Fbulk(r) = 4πr2(r0/r)1/2σ0 −
4
3
πr3n0Tsc (6.1)

The surface penalty σ(r) = (r0/r)1/2σ0 scales with r due to renormalization effects

of wetting by the diverse set of structures[21, 20]. There is some discussion in the community

about the value of the surface scaling exponent[16, 15]. In the absence of wetting or when

it is incomplete, a weaker variation of σ(r) is expected. In any event, at short length scales

σ0 can be obtained from a crude density functional calculation giving σ0 = 3
4kBTr

−2
0 ln 1

d2Lπe

where dL ≈ 0.1 particle spacings is the Lindemann length, and n0 = r−3
0 is the density of the

liquid. The configurational entropy, sc, measures the number of available structural states.

The resulting free energy barrier for reconfiguration events in bulk, assuming wetting, is
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Figure 6.1: (Color online) In the bulk, at low temperatures, activated motion occurs within
roughly spherical regions. Near a free surface a rearranging hemispherical region feels no
mismatch penalty on interface along the free surface leading to much faster dynamics than
the bulk.

F ‡
bulk =

3πσ2
0r

4
0

Tsc(T )
(6.2)

The relaxation time τα = τ0e
F ‡/kBT diverges at the Kauzmann temperature (sc(TK) →

0) and thus follows the Vogel-Fulcher behavior in the deeply supercooled region τα ∼
eB/(T−TK). The length scale of an activated event follows from balancing the terms in

the free energy profile

r∗ = r0

(
3σ0r

2
0

Tsc(T )

)2/3

(6.3)

This length scale increases with decreasing temperature, reaching a universal value of about

5 inter-particle spacings at the glass transition temperature corresponding to a one hour

relaxation time.

The RFOT analysis of bulk activated dynamics can be easily modified (see figure

6.1) to treat motions near a free surface. Near a completely free surface with no structural

modifications, the transition state would rearrange a region of hemispherical shape in order

to minimize the surface area subject to the mismatch penalty1. The flat face of the hemi-

sphere lies along the free surface and is assumed not to contribute to the mismatch penalty.

The free energy profile for the hemispherical rearranging region becomes
1For shapes other than hemispheres the wetting effect would need to be modified to correctly deal with

the curvature, but the hemisphere, or something close to it, would still be the most favored shape.
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Fsurf (r) = 2πr2(r0/r)1/2σ0 −
2
3
πr3n0Tsc. (6.4)

Since both terms in the expression are halved from the equation for bulk dynamics we

see that the size corresponding to the transition state for activated rearrangement remains

unchanged from that for the bulk, but the resulting free energy barrier is reduced by a

factor of 2,

F ‡
surf =

1
2

3πσ2
0r

4
0

Tsc(T )
(6.5)

This seemingly innocuous change leads to dramatically faster relaxation at free surfaces than

occurs in the bulk. Molecular motion near the surface of a glass would still be detectable

even if the bulk were essentially frozen. We see that very near the surface, the relaxation

time is related very simply to the bulk value,

τsurf =
√
τ0τbulk. (6.6)

This result is independent of the wetting.

According to RFOT, on laboratory time scales, the ideal surface layer will be able

to “hike” (using the colorful expression of Ediger[1]) much further down the free energy

landscape than the bulk, reaching lower energy, more stable configurations than the bulk

is likely to find. The surface motion will freeze out, i.e. go through its own glass transition

(T surfg ) only when τsurf becomes larger than the laboratory time scale. For the same

laboratory time scale, according to equation 6.5 this will happen when the configurational

entropy is half the characteristic configurational entropy of the bulk glass transition. The

bulk glass transition entropy is very nearly material independent[45, 24], and likewise the

free surface glass transition will occur at a characteristic bulk entropy value. For a one hour

time scale this characteristic entropy is

sc(T surfg ) =
1
2
sc(T bulkg ) ≈ 0.41kB (6.7)

Ediger and co-workers[1] have recently shown how to construct a macroscopic glass

sample via vapor deposition reaching much lower in the energy landscape than was possible
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by the usual bulk cooling of a liquid. They argue this ultra-stable glass arises from the

free surface’s excess mobility. For slow deposition on a cold substrate the growing glass,

owing to the higher mobility, can more thoroughly rearrange near the free surface to form

exceedingly stable structures. They assign a fictive temperature to their sample, Tf , defined

as the temperature where a glass of similar stability, but created by bulk cooling would fall

out of equilibrium. Tf can be used to measure the sample’s position on the free energy

landscape relative to an ordinary glass through the parameter,

θK =
Tg − Tf
Tg − TK

(6.8)

This parameter increases with the stability of the glass, reaching one for an ideal glass. In

principle if there were in fact no entropy crisis, θK could exceed one. θK can be parametrized

by the configuration entropy, an equivalent measure of structural stability. Using the linear

extrapolation vanishing at TK valid for low temperature (T < Tg) the RFOT free surface

mobility would yield for a rate of deposition equal to one correlation length per hour

θK = 1−
sc(Tf )
sc(Tg)

≤ 1
2

(6.9)

As the enhanced surface mobility freezes out at T surfg , this temperature should be seen as a

limiting value for Tf leading to the inequality above. Ediger’s experiments yielded θK ≈ 0.4

for both liquids studied[1]. It would take about 105 years to to make these highly stable

glasses via traditional bulk cooling, while roughly the age of the universe would be required

for a glass with θK = 1/2. Unless the surface structure is greatly modified leading to a

locally smaller TK , vapor deposition should not yield glasses with stability much greater

than the naive RFOT limiting value.

The linear extrapolation for sc(T ) is valid near TK , but for some liquids at higher

temperatures a better approximation is[60] sc = s∞(1 − TK/T ). Recognizing this feature

does add some material dependence to the limiting stability

θK ≤ Tg
Tg + TK

. (6.10)
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Fragile liquids still have a limit near 1/2, but strong liquids have the possibility of descending

further in terms of temperature (but not in terms of configurational entropy) than fragile

liquids. The fragilities for the two glasses so far studied by Ediger are similar and would

yield θK ≤ 0.57(IMC) and θK ≤ 0.58(TNB) for the nanometer per hour deposition rate.

A key prediction of this analysis is that the fictive temperature is a function of

the logarithm of the deposition rate. More precisely the configurational entropy at the

fictive temperature is a universal function of the logarithmic deposition rate. The limiting

stability given above assumes a deposition rate of one correlation length per hour. More

generally, for a deposition rate k the mobile surface layer of depth ξ will be equilibrated

on a time scale ξ/k, which is related to the fictive temperature through the relationship

ξ/k = τ0e
F ‡(Tf )/kBTf = τ0e

Asurf/sc(Tf ).

sc(Tf ) =
Asurf log e
log (ξ/kτ0)

(6.11)

We compared to Ediger’s experimental results using the linear representation for

the configurational entropy, sc(Tf ) = ∆Cp(T bulkg )(Tf −TK)/TK . Along with Asurf obtained

from equation 6.5, we take ξ ≈ 1nm, τ0 ∼ 10−12s. ∆CP (T bulkg ) ≈ 2.6kB is the heat capacity

jump at the glass transition for IMC in Boltzmann units per bead[24]. The theoretical

results along with the measured values obtained by Ediger et al.[1] are plotted in figure 6.2.

Our results are consistent with the experimental data for the deposition rates tested. The

theory correctly predicts the trend for slower deposition rates. Despite the good agreement

we point out that this is an approximate result in which we have assumed equilibrium

relaxation, strictly true only for Tsubstrate = Tf .

It would seem natural to say that the enhanced mobility at the surface would

penetrate into the bulk at least on the length scales of the bulk cooperative motion, as

indeed it does. This however results in a local relaxation time τlocal(z) which changes by

many orders of magnitude over just a few particle spacings. This mobility gradient would be

relaxed via the dynamics of mode coupling theory, diffusing the excess mobility deeper into

the bulk. In first approximation MCT has been shown to correlate dynamics on the length

scale ξMCT [110], the predicted divergence of which at Tc will be broken by the emergence

of activated events[181, 142]. A simple equation describing this smoothing of the mobility
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Figure 6.2: Fictive temperature vs deposition rate for the glass former IMC. Data for
the deposition experiment was taken from reference [1]. Temperatures are converted into
configurational entropy (right axis) and stability, θK , for comparison.

field, incorporating activated events in the framework of Bhattacharyya et al.[181] emerges

ξ2MCT∇2τ−1(z) = τ−1(z)− τ−1
local(z). (6.12)

If we treat the mobility profile from purely activated dynamics, τ−1
local(z), as a set of boundary

conditions at z = 0 and z = ∞ (equivalent to coarse graining on the length scale of the

cooperative motion), then the mobility, decaying smoothly from τ−1
surf ∝ e−Asurf/sc on the

free surface to τ−1
bulk ∝ e−Abulk/sc � τ−1

surf in the bulk on a length scale ξMCT , would follow

τ−1(z) ≈
(
τ−1
surf − τ−1

bulk

)
e−z/ξMCT + τ−1

bulk. (6.13)

The distance the excess mobility penetrates, z∗, is found by comparing the magnitude of

the two terms.

z∗ = ξMCT
Abulk −Asurf

sc
(6.14)

We have shown that Asurf = 1
2Abulk, and that Abulk/sc(Tg) ≈ 40 at the glass transition.

This gives a length scale z∗ ≈ 20ξMCT which can be much larger than the bare dynamical

correlation length.
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At a depth z < z∗ from the surface the particle motion would freeze out when

τ−1(z) ≈ e−Asurf/sc(T local
g )e−z/ξMCT ≈ τ−1

bulk(Tg), or when

Asurf
sc(T localg )

+
z

ξMCT
=

Abulk
sc(Tg)

(6.15)

We find that for the thinnest films local glass transition temperature will be Tming = T surfg

as expected. T localg will grow with distance from the free surface and be indistinguishable

from the bulk at a depth z∗, on the order of 20nm in IMC.

The surface properties of glasses are important in many technological and biolog-

ical contexts. Enhanced surface mobility is relevant for adhesion, friction, coatings, and

nano-scale fabrication such as etching and lithography. Supercooled water at the surface

of proteins acts to enslave many protein motions[182, 183]. Despite the influence of static

surface perturbations, we feel that the idealized treatment of the surface mobility of glasses

presented here can help in understanding these phenomena. The enhanced mobility at free

surfaces will allow phase transformations to occur at the surface that are kinetically impos-

sible in bulk. De-vitrification often occurs at free glass surfaces, a fact of some importance

in geology[184] and archaeology[185]. This observation is naturally explained by the RFOT

theory.

Chapter 6, in full, is a reprint of the material as it appears in the Journal of

Chemical Physics 129 234514 (2008), J. D. Stevenson and P. G. Wolynes. The dissertation

author was the primary investigator and author of this paper.
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