
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Remote detection and localization of explosive volcanic eruptions, mass wasting, and 
ambient noise sources using infrasound: Applications in Alaska and Washington, USA

Permalink
https://escholarship.org/uc/item/2f7034qk

Author
Sanderson, Richard

Publication Date
2021

Supplemental Material
https://escholarship.org/uc/item/2f7034qk#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2f7034qk
https://escholarship.org/uc/item/2f7034qk#supplemental
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Santa Barbara 

 

 

Remote Detection and Localization of Explosive Volcanic Eruptions, Mass Wasting, and 

Ambient Noise Sources Using Infrasound: Applications in Alaska and Washington, USA 

 

 

A dissertation submitted in partial satisfaction of the 

requirements for the degree Doctor of Philosophy 

in Earth Science 

 

by 

 

Richard W. Sanderson 

 

Committee in charge: 

Professor Robin Matoza, Chair 

Professor Toshiro Tanimoto 

Professor Chen Ji 

 

December 2021



 

The dissertation of Richard W. Sanderson is approved. 

 

 ___________________________________________________ 
 Toshiro Tanimoto 

 

 ___________________________________________________ 
 Chen Ji 

 

 ___________________________________________________ 
 Robin Matoza, Committee Chair 

 

 

December 2021



 

 iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remote Detection and Localization of Explosive Volcanic Eruptions, Mass Wasting, and 

Ambient Noise Sources Using Infrasound: Applications in Alaska and Washington, USA 

 

Copyright © 2021 

by 

Richard W. Sanderson 



 

 iv 

ACKNOWLEDGEMENTS 

 

I would first like to thank my academic advisor, Professor Robin Matoza, for his 

guidance, research support, and encouragement during my time at UC Santa Barbara. Thanks 

must also go to my other committee members, Professor Toshiro Tanimoto, and Professor 

Chen Ji, for their time, and helpful discussions. My appreciation further goes to friends, 

staff, and faculty at the Department of Earth Science, and the Earth Research Institute. These 

departments provided valuable financial support for my attendance at conferences and when 

conducting fieldwork, as did the Coast Geological Society, and National Science Foundation 

(EAR–1614855 and EAR–1847736). An Academic Senate Faculty Research Grant provided 

additional funding. Each of the three principal chapters in this dissertation represents 

coauthored work, with details supplied on the respective title pages. For these works, I am 

the first author, and conducted the majority of the research, data analysis, interpretation, and 

writing. Coauthors contributed to proposals, data collection, code writing, and manuscript 

feedback. Additional acknowledgments are given at the end of each chapter. 



 

 v 

VITA OF RICHARD W. SANDERSON 
 

December 2021 
 

 
EDUCATION 
Bachelor of Science in Geophysical Sciences, University of East Anglia, UK, July 2005 
Master of Science in Geophysics, New Mexico Institute of Mining and Technology, May 2010 

(after transferring from the University of New Hampshire) 
Doctor of Philosophy in Earth Science, University of California, Santa Barbara, December 2021  

(expected) 
PROFESSIONAL EMPLOYMENT 
2016–2021: Research, lab, field, and teaching assistant, University of California, Santa Barbara 
2014–2015: Senior project scientist, International Earth Science IESE Ltd., Auckland 
2012–2014: Seismology technician, Institute of Earth Science and Engineering, Auckland 
2007–2011: Research, field, and teaching assistant, New Mexico Institute of Mining and Tech. 
2006–2007: Research, field, and teaching assistant, University of New Hampshire 
2005–2006: Research and field assistant, Universidad de Colima  
 
PUBLICATIONS 
ORCID: https://orcid.org/0000-0003-3772-4144 
 
IN REVIEW 
Sanderson, R. W., Matoza, R. S., Fee, D., Haney, M. M., and Lyons, J. J. (2021). Improving 

detection and localization of explosive volcanism in Alaska via infrasound noise reduction: 
backprojection and array processing applications. Submitted to Geophysical Journal 
International. 

 
JOURNAL ARTICLES 
Mendo-Pérez, G., Arciniega-Ceballos, A., Matoza, R. S., Rosado-Fuentes, A., Sanderson,  

R. W., and Chouet, B. A. (2021). Ground-coupled airwaves template match detection using 
broadband seismic records of explosive eruptions at Popocatépetl volcano, Mexico. Journal 
of Volcanology and Geothermal Research, 419, 107378. https://doi.org/10.1016/ 
j.jvolgeores.2021.107378 

Sanderson, R. W., Matoza, R. S., Haymon, R. M., and Steidl, J. H. (2021). A pilot experiment 
on infrasonic lahar detection at Mount Adams, Cascades: Ambient infrasound and wind-noise 
characterization at a quiescent stratovolcano. Seismological Research Letters, 92(5), 3065–
3086. https://doi.org/10.1785/0220200361 

Fee, D., Toney, L., Kim, K., Sanderson, R. W., Iezzi, A. M., Matoza, R. S., De Angelis, S., 
Jolly, A. D., Lyons, J. J., and Haney, M. M. (2021). Local explosion detection and infrasound 
localization by reverse time migration using 3-D finite-difference wave propagation. 
Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.620813 



 

 vi 

Sanderson, R. W., Matoza, R. S., Fee, D., Haney, M. M., and Lyons, J. J. (2020). Remote 
detection and location of explosive volcanism in Alaska with the EarthScope Transportable 
Array. Journal of Geophysical Research: Solid Earth, 125(4), e2019JB018347. 
https://doi.org/10.1029/2019JB018347  

Matoza, R. S., Arciniega-Ceballos, A., Sanderson, R. W., Mendo-Pérez, G., Rosado-Fuentes, 
A., and Chouet, B. A. (2019). High-broadband seismo-acoustic signature of Vulcanian 
explosions at Popocatépetl volcano, Mexico. Geophysical Research Letters, 46, 148–157. 
https://doi.org/10.1029/2018GL080802 

Sanderson, R. W., Johnson, J. B., and Lees, J. M. (2010). Ultra-long period seismic signals 
indicate cyclic deflation coincident with eruptions at Santiaguito volcano, Guatemala. Journal 
of Volcanology and Geothermal Research, 198, 1–2. http://dx.doi.org/10.1016/ 
j.jvolgeores.2010.08.007 

Varley, N., Arambula-Mendoza, R., Reyes-Davila, G., Sanderson, R., and Stevenson, J. (2010). 
Generation of Vulcanian activity and long-period seismicity at Volcán de Colima, Mexico. 
Journal of Volcanology and Geothermal Research, 198, 1–2. http://dx.doi.org/10.1016/ 
j.jvolgeores.2010.08.009 

Johnson, J. B., Sanderson, R., Lyons, J., Escobar-Wolf, R., Waite, G., and Lees, J. M. (2009). 
Dissection of a composite volcanic earthquake at Santiaguito, Guatemala. Geophysical 
Research Letters, 36, L16308. http://dx.doi.org/10.1029/2009GL039370 

 
CONFERENCES  
 
ORAL PRESENTATIONS 
Sanderson, R. W., Matoza, R. S., Fee, D., Haney, M. M., and Lyons, J. J. (2019). Remote 

detection and location of explosive volcanism in Alaska with the EarthScope Transportable 
Array. American Geophysical Union (AGU) Fall Meeting, San Francisco, CA. 

Sanderson, R. W., and Lyons, J. J. (2019). Deployment and data collection: Permanent 
deployments (INVITED). Community Network for Volcanic Eruption Response 
(CONVERSE) Infrasound Workshop, Fairbanks, AK. 

Neilsen, T. B., Matoza, R. S., Maher, S., McKay, M. G., Sanderson, R. W., Valentine, G. A., 
Sonder, I., and Harp, A. G. (2019). Preliminary analyses of seismo-acoustic wave 
propagation in outdoor field-scale analog volcanic explosions (INVITED). 177th Meeting of 
the Acoustical Society of America (ASA), Louisville, KY. 

Sanderson, R. W., Matoza, R. S., Fee, D., Haney, M. M., and Lyons, J. J. (2018). Remote 
monitoring of explosive volcanism in Alaska with the EarthScope Transportable Array 
(INVITED). American Geophysical Union (AGU) Fall Meeting, Washington, DC.  

Sanderson, R. W., Matoza, R. S., Fee, D., Haney, M. M., and Lyons, J. J. (2018). Remote 
explosive volcanic eruption detection, location, and characterization using the EarthScope 
Transportable Array in Alaska (INVITED). Seismology of the Americas: Joint conference of 
the Seismological Society of America (SSA) and Latin American and Caribbean 
Seismological Commission (LACSC), Miami, FL. 

Johnson, J. B., Anderson, J., Sanderson, R. W., Goto, A., Waite, G. P., and Palma, J. (2011). 
Intense monotonic infrasound at Volcan Villarrica: Insights from an Integrated seismo-
acousto-optico-thermo-UV imager field approach (INVITED). American Geophysical Union 
(AGU) Fall Meeting, San Francisco, CA.  



 

 vii 

Johnson, J., Anderson, J., Sanderson, R., Waite, G., and Palma, J. L. (2011). Into the vent – 
probing the basaltic lava lake at Volcan Villarrica (Chile). 25th International Union of 
Geodesy and Geophysics (IUGG) General Assembly, Melbourne, Australia. 

Johnson, J. B., Sanderson, R., Lyons, J. J., Escobar-Wolf, R. P., Waite, G. P., and Lees, J. M. 
(2009). Dissection of a composite volcanic earthquake at Santiaguito, Guatemala (INVITED). 
American Geophysical Union (AGU) Fall Meeting, San Francisco, CA. 

Sanderson, R. W., West. M., Shuler, A., and Lopez, T. (2009). Explosive seismic signals at 
Karymsky volcano 2008 (INVITED). 6th Biennial Workshop on Japan-Kamchatka-Alaska 
Subduction Processes (JKASP), Fairbanks, AK.  

Johnson, J. B, Sanderson, R., Lees, J. M., Ruiz, M., Gerst, A., Hort, M., Scharff, L., Varley, N., 
and Sahagian, D. (2008). Lava dome soufflé: Long period earthquakes and co-eruptive 
volcano respirations captured with seismometers, video camera, and a Doppler radar. 
International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) 
Scientific Assembly, Reykjavík, Iceland.  

Johnson, J. B., Lees, J. M., and Sanderson, R. (2008). Co-eruptive earthquakes and lava dome 
respiration captured with seismometers and a video camera. Seismological Society of America 
(SSA) Annual Meeting, Santa Fe, NM. 

Johnson, J. B., Varley, N., Sanderson, R., Gerst, A., Lees, J., Dalton, M., Marcillo, O., Every, 
S., Normand, J., and Ruiz, M. (2007). Eruption dynamics at the active Santiaguito dome 
inferred from a multidisciplinary geophysical experiment. American Geophysical Union 
(AGU) Fall Meeting, San Francisco, CA. 

Johnson, J. B., Lees, J. M., Sanderson, R., Sahagian, D., and Normand, J. A. (2007). Dome 
surges, long period earthquake generation, and pyroclastic eruptions at Santiaguito dome, 
Guatemala. American Geophysical Union (AGU) Fall Meeting, San Francisco, CA. 

Johnson, J. B., Sanderson, R., Every, S., Normand, J., and Marcillo, O. (2007). Eruption 
dynamics at the active Santiaguito dome inferred from a multidisciplinary geophysical 
experiment. Geological Society of America Northeastern Section Meeting, Durham, NH.  

Varley, N., Stevenson, J., Johnson, J. B., Colvin, A., Weber, K., Sanderson, R., Hébert, M.-C., 
and Reyes, G. (2006). Modeling conduit processes at Volcán de Colima, Mexico: 
interpretation of monitoring data. Reunión Anual Unión Geofísica Mexicana (UGM), Puerto 
Vallarta, Mexico. 

Varley, N., Stevenson, J., Johnson, J. B., Reyes, G., Sword-Daniels, V., Colvin, A., Weber, K., 
Sanderson, R., and Harwood, R. (2006). Modeling conduit processes at Volcán de Colima, 
Mexico. Physics of Fluid Oscillations in Volcanic Systems Workshop, Lancaster, UK.  

 
POSTER PRESENTATIONS 
Mendo-Pérez, G. M., Arciniega-Ceballos, A., Matoza, R. S., Rosado-Fuentes, A., Sanderson,  

R. W., and Chouet, B. A. (2021). Automatic detection of seismic signals associated with 
infrasound airwaves in broadband seismic records from Popocatépetl Volcano, Mexico. 
American Geophysical Union (AGU) Fall Meeting, New Orleans, LA. 

Sanderson, R. W., Matoza, R. S., Fee, D., Haney, M. M., and Lyons, J. J. (2020). Infrasonic 
backprojection with the EarthScope Transportable Array in Alaska: Improving detection and 
localization of explosive volcanism via noise reduction. American Geophysical Union (AGU) 
Fall Meeting, Online. 



 

 viii 

Maher, S. P., Matoza, R. S., Gee, K. L., de Groot-Hedlin, C., Fee, D., Jolly, A. D., Yokoo, A., 
Arciniega, A., Sanderson, R. W., and Ortiz, H. D. (2020). Nonlinear acoustic propagation 
single-point spectral indicator: Comparative performance analyses for Sakurajima, Yasur, 
Popocatépetl, Augustine, Nabro, Reventador, Tungurahua, Villarrica, Cotopaxi, and Calbuco 
explosion waveforms. American Geophysical Union (AGU) Fall Meeting, Online. 

Fee, D., Toney, L. D., Matoza, R. S., Sanderson, R. W., Haney, M. M., Lyons, J. J., Iezzi,  
A. M., Kim, K., De Angelis, S., Diaz Moreno, A., and Jolly, A. D. (2019). A framework for 
improved infrasound back-projection on local and regional scales. American Geophysical 
Union (AGU) Fall Meeting, San Francisco, CA. 

Mendo-Pérez, G. M., Matoza, R. S., Arciniega-Ceballos, A., Rosado-Fuentes, A., Sanderson,  
R. W., Castaneda, E., and Chouet, B. A. (2019). Automated detection of air-ground coupled 
waves at Popocatépetl Volcano, Mexico. American Geophysical Union (AGU) Fall Meeting, 
San Francisco, CA. 

Mendo-Pérez, G. M., Matoza, R. S., Arciniega-Ceballos, A., Rosado-Fuentes, A., Castaneda, E., 
Sanderson, R. W., and Chouet, B. A. (2019). Automated explosion detection using ground-
coupled air-waves at Popocatépetl volcano, Mexico. 27th International Union of Geodesy and 
Geophysics (IUGG) General Assembly, Montreal, Canada. 

Sanderson, R. W., Matoza, R. S., Haymon, R. M., Steidl, J. H., and Hegarty, P. (2018). Lahar 
detection using infrasound: Pilot experiment at Mount Adams, WA. American Geophysical 
Union (AGU) Fall Meeting, Washington, DC. 

Neilsen, T. B., Matoza, R. S., Waite, G. P., Medici, E. F., Valentine, G., Sonder, I., Harp, A., 
Maher, S., Sanderson, R. W., Butts, C., Escobedo, J. A., Hawkes, M. R., Lopez, C. A., 
Lysenko, E., and McKay, M. G. (2018). Seismo-acoustic measurements of an outdoor, field-
scale, explosive “volcano”. American Geophysical Union Fall Meeting, Washington, DC. 

Sanderson R. W., Matoza, R. S., Haymon, R. M., Steidl, J. H., and Hegarty, P. (2018). 
Investigating the utility of infrasound arrays for lahar detection: Pilot experiment at Mount 
Adams, WA. Incorporated Research Institutions for Seismology (IRIS) Workshop: 
Foundations, Frontiers, and Future Facilities for Seismology, Albuquerque, NM. 

Sanderson, R. W., Matoza, R. S., Fee, D., Haney, M. M., and Lyons, J. J. (2018). Remote 
explosive volcanic eruption detection, location, and characterization using the EarthScope 
Transportable Array in Alaska. Incorporated Research Institutions for Seismology (IRIS) 
Workshop: Foundations, Frontiers, and Future Facilities for Seismology, Albuquerque, NM. 

Arciniega-Ceballos, A., Matoza, R., Sanderson, R., Mendo-Pérez, G., Rosado-Fuentes, A., and 
Chouet, B. (2018). Infrasound array study at Popocatépetl. European Geosciences Union 
(EGU) General Assembly, Vienna, Austria. 

Sanderson, R. W., Matoza, R. S., Fee, D., Haney, M. M., and Lyons, J. J. (2017). Remote 
explosive volcanic eruption detection, location, and characterization using the EarthScope 
Transportable Array in Alaska. International Association of Volcanology and Chemistry of 
the Earth’s Interior (IAVCEI) Scientific Assembly, Portland, OR. 

Sanderson, R. W., Matoza, R. S., Fee, D., Haney, M. M., and Lyons, J. J. (2017). Remote 
explosive volcanic eruption detection, location, and characterization using the EarthScope 
Transportable Array in Alaska. EarthScope National Meeting, Anchorage, AK. 

Sanderson, R. W., Johnson, J. B., Waite, G. P., Lees, J. M. (2009). Ultra-long period seismic 
signals indicate cyclic deflation coincident with eruptions at Santiaguito volcano, Guatemala. 
American Geophysical Union (AGU) Fall Meeting, San Francisco, CA. 



 

 ix 

Goto, A., Johnson, J. B., Sanderson, R. W., Anderson, J., and Varley, N. R. (2010). Vent 
geometry detected from infrasound observation on Villarrica volcano, Chile. American 
Geophysical Union (AGU) Fall Meeting, San Francisco, CA.  

Sanderson, R. W., Johnson, J. B., and Lees, J. M. (2008). Seismic precursors to episodic 
eruptive events at Santiaguito volcano. Seismological Society of America (SSA) Annual 
Meeting, Santa Fe, NM. 

Sanderson, R. W., and Johnson, J. B. (2007). Pre-eruptive seismicity associated with explosive 
events at Santiaguito volcano, Guatemala. American Geophysical Union (AGU) Fall Meeting, 
San Francisco, CA. 

Varley, N., Stevenson, J., Johnson, J. B., Reyes, G., Weber, K., and Sanderson, R. (2006). 
Vulcanian explosions at Volcán de Colima, Mexico: Modelling the conduit processes. 
American Geophysical Union (AGU) Fall Meeting, San Francisco, CA. 

Sanderson, R., Varley, N., Reyes-Davila, G., Johnson, J. B., and Murphy, C. (2005). The 
relationships between explosive plumes generated and the corresponding seismic and acoustic 
waveforms received at Volcán de Colima, Mexico. Reunión Anual Unión Geofísica Mexicana 
(UGM), Puerto Vallarta, Mexico. 

  
FIELD EXPERIENCE 
Broadband seismic and/or infrasound station deployments and/or maintenance (volcanoes): 

Mount Adams, Washington, USA (2017, 2018, 2021) 
Popocatépetl, Mexico (2017) 
Villarrica, Chile (2010, 2011) 
Chaitén, Chile (2010) 
Karymsky, Kamchatka, Russia (2008) 
Bezymianny, Kamchatka, Russia (2008) 
Santa Maria/Santiaguito, Guatemala (2007, 2009) 
Tungurahua, Ecuador (2007) 
Volcán de Colima, Mexico (2005, 2006) 

Borehole seismic station deployments and/or maintenance (geothermal fields, tectonic settings): 
Okuaizu, Japan (2015) 
Hyderabad, India (2014) 
Latrobe, Australia (2014) 
Rangitoto, New Zealand (2014) 
Whataroa, New Zealand (2013) 
Wairakei, New Zealand (2012–2015) 

 
AWARDS 
Through the Department of Earth Science, University of California, Santa Barbara:  

Harry Glicken Memorial Graduate Fellowship (2021) 
Coast Geological Society Scholarship (2020) 
Richard V. Fisher Scholarship in Volcanology (2019) 
Preston Cloud Memorial Award (2019) 
Geophysics Award (2018) 
Graduate Opportunity Award (2017, 2018) 
Global Field Travel Award (2017)  



 

 x 

ABSTRACT 

 

Remote Detection and Localization of Explosive Volcanic Eruptions, Mass Wasting, and 

Ambient Noise Sources Using Infrasound: Applications in Alaska and Washington, USA 

 

by 

 

Richard W. Sanderson 

 

The majority of potentially active volcanoes worldwide are not well monitored. 

Eruptions and surficial mass wasting activity can go entirely undetected. Low-frequency 

acoustic waves known as infrasound can provide valuable information for remotely 

detecting, locating, and modeling these hazardous volcanic processes. Infrasound is produced 

by sources coupled to the atmosphere, with signals often able to propagate further than 

seismicity in the solid earth, and without need for line of sight (e.g., cloud cover). 

The overall aim and contribution of this dissertation is toward improving volcanic 

event detection and localization workflows at local (< 15 km), regional (15–250 km), and 

remote (> 250 km) distances from the source, using a variety of sensor network 

configurations. These topics include effective use of dense regional infrasound networks, the 

impact of pre- and post-recording data noise-reduction, and the role of local infrasound 

monitoring in surficial mass wasting observations. Together, three principal projects 

demonstrate some of the benefits and limitations of various signal processing and detection 

techniques, site selections, and station hardware designs.  
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Dense infrasound sensor deployments on a regional scale, such as the EarthScope 

Transportable Array (TA) in Alaska, can fill the observational gap between local and global 

scale volcano monitoring. The rolling TA uses ~80 km spaced single-sensor stations. In 

comparison, several small infrasound arrays (< 1 km), each with multiple sensors, already 

populate the area. Volcanic explosion detection and location using a backprojection (delay 

and stack) scheme achieves relatively limited success solely using TA-type sensors. 

Backprojection with the small arrays offers greater performance in terms of the number of 

events detected, and location accuracy. This is due to their shorter source-station distances, 

lower interstation spacing, higher azimuthal coverage, and more efficient wind-noise 

reduction hardware. Traditional array processing with the small arrays typically offers higher 

event detection rates than backprojection. 

Improvements can be made to the aforementioned detection and location schemes by 

using signal processing techniques to first isolate volcanic events from background noise 

sources. Such sources include incoherent wind noise, and pervasive ambient infrasound, 

primarily microbaroms (ocean wave-wave interaction source). Microbarom reduction 

typically improves array processing and enhances detection of weak events. Wind-noise 

reduction does not affect such detection rates, indicating sufficient turbulence can make 

coherent signal information unrecoverable. This approach does, however, improve the 

signal-to-noise ratios of isolated or stacked waveforms.  

At local infrasound monitoring scales relevant to relatively low-amplitude mass 

wasting signal detection, an additional ambient infrasound noise source with critical 

influence on detection capability arises from waterfalls, and other fluvial turbulence (river 

noise). At structurally unstable locations such as Mount Adams, Washington, large mass 

wasting events (e.g., lahars) are expected to propagate down the same fluvial channels 



 

 xii 

responsible for this clutter. In addition to wind and microbaroms, this temporally and 

spatially varying fluvial infrasound can significantly affect detection thresholds. Wind noise 

precluded detection of several witnessed small debris flows below the summit. Conversely, 

such flows were not visually observed for a range of signals that are characteristic of mass 

wasting. A well-constrained glacial avalanche provides an exception, permitting assessment 

of detection and location schemes, and other techniques. 
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Chapter 1. Introduction 

1. Overview 

Volcanoes exist in a range of states, from extinct, to dormant, to actively erupting 

(e.g., Carn et al., 2009). Tracking and understanding the transition between such states is a 

key objective in volcanology (e.g., Gottsmann et al., 2019). Monitoring for activity inside 

and outside the edifice ideally involves adding different kinds of sensors directly on and 

nearby the volcano, and then analyzing the data in close to real time (e.g., McNutt, 2015). 

Many volcanoes worldwide have limited to no on-ground monitoring stations, however, 

despite potential hazards to local populations and air traffic (National Academies of 

Sciences, Engineering, and Medicine, 2017). Detection of volcanic activity at such locations 

from remote stations provides a means to identify hazards sooner, and so potentially provide 

useful warnings (e.g., Coombs et al., 2018). This research aims to identify and evaluate data 

processing algorithms which can improve the current state of remote detection and location 

systems. Infrasound, i.e., far-reaching, low frequency sound waves, provides the main data 

source in this work (e.g., Evers and Haak, 2010; Matoza et al., 2019). This chapter will 

provide an introduction to the study by first providing the broader context and identifying 

knowledge gaps, then developing research aims and objectives, and finally, laying out the 

key contributions to the field. 

 
2. Background 

2.1. What is Infrasound? 

Physical perturbations of the atmosphere generate acoustic waves, which consist of 

compressions (high pressure), and rarefactions (low pressure). Oscillations of the medium 

are in the same direction as that of propagation. Such waves traveling through the ground are 
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termed seismic P-waves, and those in water as hydro-acoustic. Liquids and gases are unable 

to support the shear motions comprising other elastic wave types. The frequency of a wave, 

measured in Hz, not only reflects how quickly the source was vibrating, but also the 

dimensions of that source. Low frequency waves are more easily produced by phenomena 

with larger length scales. Humans are typically able to hear frequencies between 20 Hz, and 

20,000 Hz, with many animals able to hear outside of this range. Infrasound is the name 

given to sub-20 Hz frequencies, with those above 20 kHz referred to as ultrasound. 

 

Figure 1. Generation and recording of elastic waves by natural processes. Depending on the medium of 
travel, these vibrations are termed acoustic (atmosphere), seismic (ground, ice), or hydro-acoustic waves 
(water). Compressional waves can travel through all materials, whereas shear waves are only supported by 
solids. At interfaces, waves may be transmitted (coupled), refracted, or reflected, sometimes involving a 
change of wave type, e.g., from shear to compressional. Figure reprinted from Murayama et al. (2015), with 
permission from Elsevier. 



2.1. What is Infrasound?  Chapter 1 

 3 

There are many natural and artificial sources of infrasound worldwide (e.g., Campus 

and Christie, 2010, and references therein). Natural causes include nonlinear wave-wave 

interactions in the ocean (microbaroms), volcanoes, earthquakes, aurorae, lightning, bolides, 

tornadoes, and mass movements. Common anthropogenic sources include mine and military 

blasts, aircraft, rocket launches, and wind turbines. Figure 1 illustrates some examples of 

these processes, and how the resulting vibrations can travel through different media. 

Coupling between the ground and air means that not all infrasound is necessarily 

directly radiated into the atmosphere at an original source (i.e., primary, or epicentral 

infrasound). For instance, in the case of earthquakes, much of the energy travels through the 

ground as seismic waves before arriving back at the surface, a fraction of which is then 

coupled into the atmosphere as secondary/indirect infrasound. Such coupling is typically 

observed in regions of topography (e.g., Arrowsmith et al., 2010; Shani-Kadmiel et al., 

2018b). Similarly, air-to-ground coupling may also occur, where infrasound is recorded on 

seismic sensors (e.g., Braun and Ripepe, 1983; Chunchuzov et al., 2013).  

Infrasound propagation is largely controlled by changes in temperature with 

elevation, as well as wind speed, and wind direction. In an ideal gas, the speed of sound is 

proportional to the square-root of temperature (Pierce, 1981). At sea level, 338 m/s is typical 

speed for temperatures of 10 °C, for example. As elevation increases through the 

troposphere, the temperature decreases, before increasing again through the stratosphere 

(e.g., Evers and Haak, 2010). This temperature structure causes infrasound to refract 

upwards from sources close to the ground. Once the infrasound waves reach an elevation 

where the sound speed is greater than that at their origin, the waves will refract downward. 

Tropospheric and stratospheric winds in particular can affect this refraction by either 

positively contributing to the wind speed, or detracting from it (e.g., Georges and Beasley, 
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1977). Sources are generally more detectable downwind due more refraction toward the 

ground, but shadow zones may still exist between predicted atmospheric returns (e.g., Hedlin 

and Walker, 2013). Reflections at the surface, and again in the upper atmosphere, set up 

waveguides that lead to long-range infrasound ducting. Relatively little energy is lost from 

the resulting cylindrical, rather than spherical, wave-front spreading (Pierce, 1981). Energy 

absorption is still an attenuating factor, however, particularly at higher frequencies 

(Sutherland and Bass, 2004). Spatially and temporally varying atmospheric properties mean 

that records of infrasound vary with azimuth, as well as distance from the source (e.g., 

Schwaiger et al., 2020). Repeating sources of infrasound can be used to help model 

atmospheric structures, just as earthquakes provide information on the interior of the earth 

(e.g., Haney, 2009). 

Infrasound is predominantly detected by microphones that measure pressure 

fluctuations relative to ambient atmospheric levels (e.g., Johnson and Ripepe, 2011; Nief et 

al., 2019). These sensors are typically arranged in configurations known as an array such that 

there are multiple sensors detecting each passing wavelength (e.g., Marty et al., 2019). These 

waves are considered to be coherent across the different sensors, and wavefield parameters 

can be calculated, including the back azimuth, and apparent velocity. If sensors are further 

apart, and coherence is not present, then the configuration is known as a network. Different 

sets of processing techniques are used to locate events with arrays or networks to take 

advantage of each geometry (e.g., Fee et al., 2016; Park et al., 2017). 

 Recorded infrasound signals will be a mixture of those of interest, and those that are 

not. This latter group is sometimes described as “clutter” in the sense that such features 

clutter up the data landscape (e.g., Matoza et al., 2007). The most common clutter source 

tends to be microbaroms, as these low frequency signals (~0.1–0.5 Hz) have sources 
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globally, and also can propagate great distances (e.g., Willis et al., 2004). Amplitudes tend to 

be low, however, typically < 0.5 Pa. Turbulent waters in the form of rapids and waterfalls 

can also be ongoing clutter sources (e.g., Johnson et al., 2006; Schmandt et al., 2013). Wind 

is the primary noise source in infrasound data, and is not an acoustic wave, but rather reflects 

air masses moving due to spatial differences in atmospheric pressure (e.g., Raspet et al., 

2006). Wind noise may mask signals of interest, unless care is taken in station design, site 

location, and other approaches detailed in later sections (e.g., Raspet et al., 2019). 

 
2.2. Volcano Infrasound 

 Shallow and subaerial volcanic processes such as eruptions are able to efficiently 

perturbate the atmosphere, making volcanoes excellent sources of sound at a range of 

frequencies. Whereas those living around volcanoes would typically have been able to hear 

any eruptive activity, it is only since the invention of pressure recording technologies that the 

full frequency spectrum has been documented. The following is a brief summary of a 

historical review of volcano infrasound by Fee and Matoza (2013): Barometers were able to 

capture < 1 Hz information from several major eruptions between the late 19th and mid-20th 

centuries, including Krakatau Volcano, Indonesia (1883), Mount Pelée, Martinique (1902), 

and Bezymianny, Russia, (1956) (e.g., Strachey, 1888; Tempest and Flett, 1903; Gorshkov, 

1960). These types of large events are able to generate signal frequencies of only a few mHz, 

enabling waves to circle the earth multiple times. Developments in sensor and recording 

technology, particularly since the 1980s (e.g., Dibble et al., 1984), have facilitated 

recordings of eruptions across wider parts of the acoustic spectrum, with most volcanic 

activity observed in the infrasound range from 0.1 to 20 Hz (e.g., Johnson, 2003). 

Just as infrasound technology has advanced, so has the range of investigations being 

conducted. From distinguishing between eruptions and seismic-only sources (e.g., Omori, 
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1912, at Mount Asama, Japan), to early atmospheric propagation studies (e.g., Wilson et al., 

1966), the aim of many recent works has been a combination of event detection, location, 

characterization, and modeling. Common measurements extracted from infrasound records 

are arrival times, waveform shape, cumulative energy, frequency content, peak pressures, 

and coda durations (e.g., Johnson and Ripepe, 2011). Such metrics are comparable over time 

at the same location, as well as between volcanoes (Figure 2). These basic measures can help 

infer useful information about eruption style, the flux of gas, solids, and energy (e.g., 

Vergniolle et al., 2004; Delle Donne et al., 2016), which of several craters are active (e.g., 

Ripepe and Marchetti, 2002; Fee et al., 2021), geometries of craters and conduits (e.g., 

Buckingham and Garcés, 1996; Watson et al., 2019), source directivity (e.g., Kim et al., 

2012; Jolly et al., 2017), plume height (e.g., Caplan-Auerbach et al., 2010; Fee et al., 2017a), 

and explosion source depths (e.g., Ruiz et al., 2006; Iezzi et al., 2020). Infrasound is thereby 

also able to help validate observations in multi-disciplinary studies (and vice-versa), by 

providing an independent estimate of source parameters (e.g., Fee et al., 2017b). The ratio 

between acoustic and seismic amplitudes (e.g., Johnson and Aster, 2005), energy (Hibert et 

al., 2015), or frequencies (e.g., Fee et al., 2020), can also offer some insight into volcanic 

conditions, as partitioning of eruption energy between the ground and atmosphere can 

depend on magma composition, conduit geometry, and plume density, among other factors.  

Infrasound studies will be tailored to the behavior at a specific volcano, with different 

source processes leading to variable observable activity and acoustic characteristics. 

Following is a brief summary of this spectrum, with the reader referred to e.g., reviews by 

Johnson and Ripepe (2011), and Fee and Matoza (2013), for more comprehensive 

information. Hawaiian-style activity typically features lava fountaining, degassing, and 

gentle, if rapid, effusions, rather than explosions. Resonance and oscillations in materials and 
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cavities during these processes generate sustained tremor signals that may be broadband 

(containing a wide range of frequencies), or harmonic (exhibiting one or more spectral 

peaks) (e.g., Garcés et al., 2003). Strombolian and Vulcanian styles are more explosive, 

often producing short-duration N-waves (a compression then rarefaction), followed by 

variable length and style of tremor. The underlying mechanisms differ, however. 

Strombolian activity is characterized by bursting gas slugs at a relatively low-viscosity 

magma surface (e.g., Hagerty et al., 2000). In contrast, Vulcanian explosions occur following 

the pressure-induced failure of a solidified magma cap or plug (e.g., Peterson et al., 2006). 

Subplinian, and Plinian, are names given to the largest and most explosive eruption styles. 

Such events may last from minutes to hours, with high-amplitude broadband infrasound 

principally generated by turbulence-inducing jets of rapidly rising material (e.g., Fee et al., 

2010b). A secondary source of infrasound, particularly for larger eruptions, are pyroclastic 

density currents (PDCs). These are hot mixtures of gas and fragmented magma that flow 

down volcanoes following the collapse of lava fountains or eruption columns. Moving, 

broadband acoustic sources, are the result (e.g., Ripepe et al., 2010). 

Volcanoes can produce other hazardous activity than eruptions, and such events are 

also critical to monitor closely for mitigation and scientific purposes. Examples include mass 

movements in the form of lava dome rock falls, edifice collapse, and remobilization of 

existing loose material by rain or glacial melt (e.g., Allstadt et al., 2018). These latter cases 

may generate fluidized debris flows known as lahars, which can travel 10s of kilometers and 

bury towns in mud (e.g., Pierson et al., 1990). As with PDCs, such flows can produce 

infrasound, as well as seismic signals, as air is displaced and made turbulent though flow 

surface interactions (e.g., Johnson and Palma, 2015; Bosa et al., 2020). Large avalanches 

may be detected more than 100 km away (e.g., Toney et al., 2021). 
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Local distances (< 15 km) are usually optimal for quantifying and interpreting 

volcanic processes, where atmospheric heterogeneities are reduced, and attenuation due to 

geometric spreading is limited. In this region, acoustic waves are often assumed or found to 

behave linearly (e.g., Fee et al., 2017b). Under these conditions, amplitudes decay as 1/r, 

where r is the radius from the vent. Such a decay rate allows computation of “reduced 

amplitudes”, i.e., what the pressure would be at a specific recording distance (Figure 2). This 

enables measurement comparisons between volcanoes which often have different network 

geometries. However, some scenarios preclude source processes being clearly preserved in 

infrasound waveforms. For large, and/or supersonic eruptions recorded at close range, 

nonlinear behavior and wave distortion may be observed, resulting from highly compressed 

air (Hamilton and Blackstock, 2008). In addition, the effects of volcanic topography can 

manifest in proximal measurements, given that craters, and sometimes multiple cones, can 

reflect and refract waves, as well as create shadow zones (e.g., Matoza et al., 2009). These 

effects offer exciting research opportunities in their own right, with advances facilitated by 

modern computer power, digital elevation models, and suites of propagation modeling codes 

(e.g., Kim and Lees, 2014; Waxler et al., 2017). Being aware of, and potentially 

compensating for any such distortions, is important for valid infrasound data interpretation. 

 
2.3. Remote Detection of Volcanic Processes – an Overview 

Many volcanoes worldwide are directly or indirectly monitored at remote distances 

(> 15 km), potentially in complement to having a sparse or dense network of telemetered 

instruments on the volcano itself (e.g., Fee et al., 2010b; Le Pichon et al., 2021). For 

volcanoes where there is little concern about potential eruptions or activity, remote 

observations may be the only eventual insight. Such remote data types may include 
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Figure 2. Volcanoes can produce a wide range of infrasound signals during eruptions in terms of duration, 
frequency, amplitude, and other characteristics. Here are six examples of waveforms (top panels), cumulative 
energy (red line and text), spectrograms, (bottom left panels), and mean power spectra (bottom right panels) 
from a variety of volcanoes in Hawaiʻi, Central America, and South America. Data are filtered 0.5–50 Hz. 
Waveform amplitudes in units of Pa are the equivalent values at 1 km from the respective volcanic vents. 
Figure reprinted from Johnson and Ripepe (2011), with permission from Elsevier. 
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seismicity, indicative of both pre-eruptive (e.g., Chouet and Matoza, 2013) and eruptive 

process, as well as infrasound, and radio signals from in-plume lightning (e.g., Van Eaton et 

al., 2016). Satellite observations may come in the form of visual records, temperature, gas 

type, ash, and deformation (e.g., Pyle et al., 2013, and references therein).  

The effectiveness of monitoring instruments is often limited by the area of which 

they can provide useful information about, as well as signal to noise ratios (SNR). 

Infrasound signals from eruptions are frequently observed at greater distance from the source 

than seismic waves (overviews by Arrowsmith et al., 2010; Fee and Matoza, 2013). Such 

large distances can be attributed to: 1) relatively low attenuation and scattering of the 

atmosphere vs. the solid earth; 2) atmospheric waveguides that minimize energy loss; and 3) 

efficient eruptive source coupling with the atmosphere via direct injection. Consequently, 

many remote eruptions are detectable through infrasound at distant stations, and in some 

cases, these detections may reflect the only record that an event is occurring (e.g. Matoza et 

al., 2011; De Angelis et al., 2012). Such factors also mean that infrasound can often offer 

greater insights into eruption dynamics than seismicity. Satellite observations, and marine or 

aircraft reports can also contribute to the knowledge on a new or developing situation, but 

these cannot be relied upon as a primary tool due to sporadic, weather affected observation 

(e.g., Webley and Mastin, 2009; Coombs et al., 2019).  

 
3. Research Problem 

3.1. Problem to be Addressed 

Despite recent developments and expansion in volcano monitoring, the vast majority 

of potentially active volcanoes worldwide are not well monitored by ground-based sensors, 

despite the potential hazards (National Academies of Sciences, Engineering, and Medicine, 
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2017). This scenario may be for monetary, logistical, technical, or other reasons. 

Consequently, it is important to be able to devise means to still effectively monitor such 

volcanoes during various stages of volcanic unrest despite these limitations. It is further 

critical to be able to perform the process in close to real time, particularly when hazard to 

aviation can be the most immediate danger, rather than to local populations (e.g., Neal et al., 

1997; Dean et al., 2002). As outlined earlier, infrasound can be an important part of the 

solution, and forms the principal data type in this dissertation. 

 
3.2. Key Facets of the Problem 

Some of the principal aspects of the above posited issue are as follows: (1) designing 

and siting stations to be able to record physical processes of interest; (2) identifying effective 

processing techniques to locate distant and possibly small eruptive or other subaerial events; 

(3) understanding source, path, and site effects on recorded waveforms and, therefore, on 

interpretation/modeling; (4) determining strategies to efficiently use systems in a real time 

and ongoing manner.  

 
3.3. Previous Work 

3.3.1. Network and Array Concepts 

The remote detection capability of infrasound has led to its use in observations of 

large eruptions worldwide (e.g., Modrak et al., 2010; Dabrowa et al., 2011; Matoza et al., 

2011; Matoza et al., 2017) through the use of the International Monitoring System (IMS) – a 

global sensor network (53 of the planned 60 stations have been completed at the time of 

writing; https://www.ctbto.org/map/). The network includes infrasound sensors and is 

designed for nuclear blast detection (e.g., Marty et al., 2019). These infrasound stations have 

an average station spacing of 2,000 km, however, and provide limited resolution in terms of 
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location accuracy and detection sensitivity. For volcanoes, the detection threshold 

corresponds to a volcanic explosivity index (VEI) of ~VEI 4 (Matoza et al., 2017).  

At regional scales, examples of infrasound networks are few, particularly with a 

dense station spacing. From ~2007–2021, the EarthScope Transportable Array (TA) 

provided such a resource. The TA was a set of hundreds of multi-disciplinary stations that 

moved across the US, spaced on the order of tens of kilometers (Busby et al., 2018; Busby 

and Aderhold, 2020). Initially designed primarily around seismic sensors, infrasound sensors 

were included from ~2011. Air-to-ground coupling was recorded on seismometers prior to 

this date, however (e.g., Walker et al., 2010; Nippress et al., 2014). The ubiety of the TA in 

Alaska (~2014–2021) was unprecedented from a volcanological and geophysical standpoint. 

At this outset, the Alaska Volcano Observatory (AVO) had four infrasound arrays covering 

mainland Alaska and the Aleutian Islands (e.g., Dixon et al., 2019), amongst other 

instrumentation. The value of these arrays has been well demonstrated in the years since 

(e.g., Lyons et al., 2019), justifying the number of arrays growing to 9 at the time of writing. 

The contemporary presence of the TA significantly increased azimuthal and spatial coverage 

of infrasound sources, as well as decreasing the average station spacing. 

Studies of volcanic infrasound use analytical techniques applicable to the scale of 

their networks and the spatial configuration of sensors. Such scales have been of a local, 

regional or global dimension, with use of single sensors or dense arrays (e.g., Fee et al., 

2010a, Fee et al., 2016 locally/regionally; Dabrowa et al., 2011, Matoza et al., 2017, 

globally). Array processing is traditionally limited to instances where the wavelengths of 

signals are coherent across multiple stations. Three or more arrays are commonly required 

for source locations from back-azimuth triangulation, with crosswinds affecting source 

estimates (e.g. Le Pichon et al., 2005; Green et al., 2012). IMS operation/design uses a 
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minimum of two station detection, however. Array processing is useful for detecting moving 

infrasound sources such as storm-induced microbaroms (Blom et al., 2014), tornadoes (e.g., 

Frazier et al., 2014), and mass movements (e.g., Allstadt et al., 2018, and references therein). 

Typical sound speeds (300–350 m/s) and infrasound frequencies of interest (~0.1–20 

Hz), provide a limit to how far stations can be from each other before coherence-dependent 

techniques breakdown. For instance, to avoid spatial aliasing, two sensors are required per 

wavelength. One way to deal with this limitation is to create envelopes of the original data (a 

smoothed positive version of the original signal) by taking the magnitude of a Hilbert 

transform of the data (e.g., Walker et al., 2010). This serves to make the wavelength more 

appropriate for the spacing of the available stations as well as emphasizing the main 

variability of the data. Conversely, accurately resolving fine-scale locations is more 

challenging with these low-frequency time-series (Walker et al., 2010; de Groot-Hedlin and 

Hedlin, 2015).  

  
3.3.2. TA-Implemented Detection and Location Algorithms 

The following is a brief review of some example signal detection and location 

methodologies previously applied to TA acoustic data, which serves to provide background 

for TA-related material in the remainder of this chapter, and as general insight into some of 

the range of detection and location schemes available. 

Both Walker et al. (2010), and Walker et al. (2011), describe application of a Reverse 

Time Migration (RTM) method to locate infrasound-generating events recorded on 

seismometers. Briefly, RTM identifies potential locations as those that would lead to the 

largest amplitude stack of waveforms or envelopes, if aggregated using an acoustic velocity 

model. For any particular area, a spatial or volumetric grid is set up so that each grid 

intersection is tested as a likely source position. Further, the origin time of the signal is also 
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assessed using a similar grid of equally spaced trial times. RTM had previously been applied, 

for example, by Shearer (1994) on seismic, rather than infrasound, data. Stacking is an 

approach most effective when large numbers of stations are available, so that constructive 

and deconstructive interference effects are emphasized. Using waveform envelopes helps 

ensure coherence when using acoustic data recorded on TA stations. 

Nippress et al. (2014) also locate events with air-to-ground coupled waves, here using 

an iterative least-squares inversion (Geiger, 1910, 1912). This approach identifies a source 

location and origin time by minimizing the residual between observed arrival times at 

stations, and those predicted by trialed combinations of spatial and velocity parameters. Two 

studies that use both arrival time information for TA stations, and back azimuth information 

from nearby arrays are those by Pinsky et al. (2017) and Vergoz et al. (2019). Probability 

density functions give source location estimates. All three methods mentioned here 

incorporate information about atmospheric propagation to improve location estimates. 

In a another approach, de Groot-Hedlin and Hedlin (2015) subdivided the TA into 

numerous nonoverlapping triangles of three stations and then applied array processing 

methods to determine signal origin directions. Combining similar results from multiple 

subnetwork groups helps define likely events. This approach is similar to array processing 

algorithms which evaluate wavefield parameters from combinations of three-element 

subarrays within larger array configurations (e.g., progressive multi-channel correlation, 

PMCC; Cansi, 1995). Such approaches tend to avoid sensitivity to atmospheric propagation 

complexity, which can affect methods that combine records from wide areas. 

 
3.3.3. Signal Quality 

 Results from data analysis are limited by the quality of the data available. 

Consequently, designing robust stations, and choosing sites which can sample wavefields 
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from sources of interest, while minimizing noise from natural and artificial sources, requires 

considerable research. For high-grade stations like those at the IMS, elaborate spatial 

averaging hardware using pipes significantly reduces the effects of wind (e.g., Marty, 2019). 

For smaller, but still permanent arrays e.g., those operated by AVO, dome structures can 

provide a similar outcome (e.g., Raspet et al., 2019). At the sensor level, different types of 

shrouds around sensors allow for the atmosphere to be sampled from different directions in 

order to achieve the spatial averaging effect. Sites in forested areas, and those with snow 

cover, can also reduce wind noise, but potentially with attenuation of higher frequency 

signals (e.g., Adam et al., 1998).  

Such technical designs may not always have been present when data was recorded, 

however, and data conditioning steps can be used in an attempt to clean the data from 

undesirable elements. This contamination may include wind noise, electrical noise, 

microbarom and fluvial clutter, etc. SNR-enhancing strategies may range from simple 

bandpass filtering (e.g., Arnoult et al., 2010), to combining separate traces into travel-time 

corrected stacks/beams (e.g., Olson and Szuberla, 2008), or comparing traces to identify 

similar elements (e.g., Olson, 1982). The effectiveness of such approaches often depends on 

there being a distinction in the inter- or intrasensor/station characteristics of signals and 

noise, as well as the original SNR. Methods that operate just using a single trace are 

uncommon in seismoacoustics, however, despite having potential widespread use. These data 

processing techniques are more established in engineering fields such as the music and 

telecommunications industries, with algorithms tailored to specific signal and noise 

characteristics (e.g., Boll, 1979). For volcanic infrasound and seismicity, with applications 

only beginning relatively recently (e.g., Cabras et al., 2012; Carniel et al., 2014), formal 

evaluation and developments are still required. 
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3.4. Unanswered Questions 

3.4.1. Remote Explosions 

The TA-based event location methods described thus far each have their strengths 

and weaknesses in terms of what can be resolved, how accurately, the performance in real 

time and, thereby, utility in an active monitoring setup. Such methods have not previously 

been applied to volcanic events, however. The nature of volcanic data is highly variable, but 

at remote distances will tend to present as multi-pathed infrasound arrivals coalescing in 

emergent, complex records at only a subset of available stations. In order to utilize the 

capability of dense regional networks for detecting and locating volcanic eruptions, 

appropriate data techniques will need to be implemented, some well-established, some novel. 

Many other analyses can be undertaken to take advantage of this new densely sampled data. 

For example, volcanic energy partitioning and radiation patterns at the source, radial and 

azimuthal atmospheric propagation effects on waveforms and ray paths, the presence and 

exploitability of air-ground coupling, and detection of nonvolcanic events. 

 
3.4.2. Data Cleaning 

Noise reduction data processing as applied to individual volcanic infrasound traces is 

still in its infancy. To date there has been very limited uptake by authors not involved in tool 

development (e.g., Williams et al., 2020). As such there is a currently an opportunity to 

rapidly enhance the utility of existing and new infrasound data by reducing ocean and wind 

noise components, thereby enhancing remaining signals. Some of the challenges stem from 

how ambient noise variably presents on different station hardware, at different times of day, 

and in different locations, just as signals of interest are recorded differently depending on 

source, site, and path factors. Processing speed can be another issue when many stations are 
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involved (especially in real time), with complex denoising operations adding extra steps to 

existing workflows. Algorithms must be efficient if they are to become widely implemented. 

 
3.4.3. Mass Movements 

For moving sources, remote assessment via infrasound is a rapidly developing area, 

with a limited range of case studies spanning a variety of event types. For mass movements, 

the majority of prior research has gone toward regions that produce relatively predictable 

events such as snow avalanches (e.g., Naugolnykh et al., 2002), and debris flows specific to 

particular mountain valleys (e.g., Schimmel and Hübl, 2016), rather than sporadic events in 

volcanic environments (e.g., Allstadt et al., 2018, and references therein). Consequently, 

there is limited knowledge on topics that include the following: which processing algorithms 

are most effective for tracking potentially multiple moving sources, how flow-atmosphere 

coupling operates under different flow conditions, and how clutter affects detection of 

transient events. Another important research area is low-cost station designs that can offer 

real-time feeds of useful data in harsh environments, such as those with heavy rains, easily 

erodible stream banks, and so forth. 

 
4. Outline 

The structure of the dissertation is as follows, with chapters 2, 3, and 4, consisting of 

three largely self-contained original research works. In chapter 2, an RTM algorithm is 

developed and applied to the nine-month eruption from Bogoslof volcano, Alaska, primarily 

exploiting the temporary presence of a dense network nearby. Chapter 3 follows from the 

findings of chapter 2, where now the same volcanic data is treated using several denoising 

algorithms to identify improvements to detection and location algorithms among other 

analyses. Chapter 4 focuses on infrasound generated by mass wasting as well as other, less 
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hazardous sources at Mount Adams volcano, Washington. In chapter 5, the key findings 

from these works will be summarized, and the overall conclusions drawn. The importance 

and implications of the research will be reviewed, and recommendations given for future 

work. Chapters 2–4 are each followed by supplemental material. Three additional appendices 

following chapter 5 cover further experiments relating to chapters 1 and 2, as well as 

infrasound deployments in Mexico. The remainder of this chapter expands upon the research 

aims and objectives for each of these principal chapters. 

 
4.1. Chapter 2 

 Given the opportunity presented by the recent deployment of the TA in Alaska, a 

major aim of this dissertation is to establish how this kind of dense configuration can be used 

to quickly and accurately locate volcanic eruptions using acoustic data, as well as to resolve 

wavefields on a scale between local networks (e.g., AVO) and those on a global scale (e.g., 

IMS). A core RTM algorithm will be evaluated, with this technique able to provide coarse 

initial locations, even without identifying specific arrivals or knowledge of atmospheric 

structure. Future work would refine these locations using wavefield propagation methods 

(chapter 5). The character of known signal properties can be exploited (for example, long 

duration eruptions) to make a more robust detection system (e.g., Matoza et al., 2017). 

Questions focus on the impact on detection and location results by source-station geometries, 

station hardware, signal to noise ratios, propagation conditions, and processing choices.  

 
4.2. Chapter 3 

The value of seismoacoustic data is potentially not being fully maximized by 

researchers due to ambient noise contamination. Effective wind noise reduction hardware in 

Alaska is restricted to a handful of arrays, leaving the majority of stations (largely the TA) 
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heavily affected by wind noise. The core aim here is to identify if fundamentals like event 

detection and location accuracy established via RTM and array processing can be improved 

via wind noise and microbarom reduction in pre-recorded data. This work surveys a range of 

open source processing methods that can isolate signals of interest from wind and 

microbaroms using data that is already to hand. There is a focus on strategies that can 

operate on single channels, without the need for large training sets in order to promote 

flexibility and ease of use. Important aspects include labeling of data as signal or noise prior 

to separation, and how source-station distances, station hardware, event-noise similarity, and 

original SNR impact results. 

 
4.3. Chapter 4 

Mount Adams, in Washington, USA, is prone to regular failures owing to a 

hydrothermally-weakened summit (e.g., Finn et al., 2007). Local communities are at risk of 

lahar inundation, with some historic flows reaching 27 km downstream from the volcano. 

The aim here is to investigate the potential for detecting and tracking local mass wasting 

events, primarily with infrasound, as well as to establish ambient noise sources, and noise 

levels, over several years. A complex watershed contributes to annually-varying waterfalls 

and other clutter sources, which can impact event detectability. Following the design and 

installation of a long-term infrasound array at a suitable site, the main objective is estimating 

the locations of signal and clutter sources. This effort will be aided by additional temporary 

infrasound arrays, records from an existing seismic station, as well as visual observations. 

Other tasks are to characterize mass wasting events where possible in terms of volume and 

runout, and to examine the influence of wind noise, station hardware, local weather, and 

array geometry on detection capability. 
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Abstract  

The current deployment of the EarthScope Transportable Array (TA) in Alaska 

affords an unprecedented opportunity to study explosive volcanic eruptions using a relatively 

dense regional seismoacoustic network. Infrasound monitoring has demonstrated utility for 

the remote (> 250 km range) detection and characterization of volcanic explosions, but 

previous studies have used relatively sparse regional or global networks. Seventy explosive 

events from the locally unmonitored Bogoslof volcano (2016–2017) provide a unique 

validation data set to examine the ability of the TA and other regional networks to detect and 

locate remote explosive volcanic eruptions in Alaska. With a simple envelope-based reverse 

time migration (RTM) technique, we are able to detect and locate more than 72% of the 61 

Bogoslof infrasound events detected by the Alaska Volcano Observatory. Notably, RTM 

using only sparse regional infrasound arrays produces results similar to when incorporating 

the extensive single-sensor TA network, likely due to favorable signal-to-noise ratios, 

seasonal propagation conditions, and source-receiver geometries. Our implementation also 

detects and locates explosive eruptions from Cleveland volcano, Alaska, and Bezymianny 

volcano, Kamchatka, as well as infrasound from nonvolcanic events such as earthquakes. We 

characterize the success of the RTM algorithm and associated parameter choices using 

receiver operating characteristic curves, event detection rates, and location accuracy. Our 

methods are useful for explosive volcanic and nonvolcanic event detection and localization 

using real-time data and for scanning continuous waveform data archives.  
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1. Introduction 

1.1. Motivation and Background 

The deployment of the EarthScope Transportable Array (TA) in Alaska has brought 

one of the densest ever seismoacoustic networks to one of the world's most active volcanic 

regions (Figure 1a). Alaska is home to 130 potentially active volcanoes, of which more than 

50 have been active in historical times (Cameron et al., 2018). On average, two volcanoes 

are in a state of eruption every year (Figure 1b) and are capable of sudden, explosive, ash 

cloud-forming eruptions, which are potentially hazardous to passenger and freight aircraft 

along this heavily traveled air corridor (Webley and Mastin, 2009). Monitoring of these 

volcanoes is performed at the Alaska Volcano Observatory (AVO) by integrating multiple 

ground-based and satellite monitoring technologies (e.g., Coombs et al., 2018). However, 

Aleutian volcanoes in particular represent a formidable monitoring challenge. Because of 

their remote locations, many volcanoes are not instrumented, which is also the case for the 

majority of potentially active volcanoes worldwide (National Academies of Sciences, 

Engineering, and Medicine, 2017). Eruptions of Okmok and Kasatochi in 2008 exemplify 

these challenges, as each volcano produced large atmospheric ash releases with little 

warning. Despite local instrumentation, precursory indicators at Okmok were few (Haney, 

2010). In contrast, precursors at Kasatochi were more numerous but limited to seismic 

observation from more than 40 km away (Waythomas et al., 2010).  

Volcanic eruptions produce seismic, acoustic, and air-ground coupled wavefields, 

each of which help provide constraints on internal and external volcanic processes (Johnson 

and Ripepe, 2011; Chouet and Matoza, 2013; Fee and Matoza, 2013; Matoza et al., 2019). 

Infrasound (acoustic waves < 20 Hz) is well suited to remote detection (Matoza et al., 2007; 

Garcés et al., 2008; De Angelis et al., 2012; Matoza et al., 2011a, 2011b; Fee et al., 2013; … 
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Figure 1. (a) Locations of historically active volcanoes and available seismic (S) and infrasound (I) data in 
Alaska. Volcanoes and infrasound arrays that are referenced in this study are labeled. (b) Evolution of the 
number of infrasound sensors deployed within 3,000 km of Bogoslof, 2011–2018. The TA has greatly 
increased the infrasound recording capacity in Alaska, with TA capacity outnumbering all other networks 
combined. Orange bars indicate eruptive episodes from volcanoes, some of which are occurring concurrently 
(Alaska Volcano Observatory, 2019).  
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Matoza et al., 2013; Ripepe et al., 2018). Infrasound attenuation is low, and infrasound can 

often be recorded thousands of kilometers from the source (Drob et al., 2003; Le Pichon et 

al., 2009; Waxler, 2017). Further, infrasound data reduces ambiguity in explosive eruption 

detection compared to seismic data alone and thus also provides value in the quantification 

and modeling of subaerial eruptive processes (Marchetti et al., 2004; Johnson and Aster, 

2005; Vergniolle and Caplan-Auerbach, 2006; Marchetti et al., 2013; Harris and Ripepe, 

2007; Matoza et al., 2007; Ripepe et al., 2007). In cloudy weather conditions, satellite 

observations of hot material and plumes are limited, where infrasound is unaffected (Garcés 

et al., 2008; Fee et al., 2010b; Matoza et al., 2011a; Pyle et al., 2013). Lighting detection can 

also serve as a useful proxy for atmospheric injection, but not all ash-producing eruptions 

produce lightning (McNutt and Williams, 2010; Behnke and McNutt, 2014; Van Eaton et al., 

2016; Haney et al., 2020b).  

Global infrasound networks have been shown to be effective at detecting relatively 

violent eruptions, even in remote locations (Liszka and Garcés, 2002; Evers and Haak, 2005; 

Le Pichon et al., 2005; Fee et al., 2010b; Dabrowa et al., 2011; Matoza et al., 2011a, 2011b; 

Fee et al., 2013; Matoza et al., 2017; Matoza et al., 2018). Local infrasound networks 

(sources < 15 km distant), however, are better placed for identifying smaller explosions, 

degassing, or effusive behavior within a limited radius (e.g., Johnson et al., 2003; Petersen 

and McNutt, 2007; Fee et al., 2010b; Matoza et al., 2010; De Angelis et al., 2012; Fee et al., 

2016; Jolly et al., 2017). A dense regional seismoacoustic network such as the TA falls 

between these two endmember network geometries, affording an unprecedented opportunity 

to evaluate explosive volcanic eruptions, wave propagation, coupling, and signal evolution 

for source-sensor ranges out to a few thousand kilometers (e.g., study of the Pavlof March 

2016 eruption by Fee et al., 2017). Regional infrasound coverage on a similar scale to the 
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TA is currently limited to combinations of national networks such as those in the 

Euro-Mediterranean region (Tailpied et al., 2017). Other national infrasound networks 

include those in Iceland (Jónsdóttir et al., 2015), Japan (Batubara et al., 2018), Chile (Matoza 

et al., 2018), and Singapore (Perttu et al., 2018).  

Regional-scale studies using seismoacoustic TA data have previously considered 

nonvolcanic events in the contiguous United States, with signals ranging from short and 

impulsive (e.g., Walker et al., 2011; Edwards et al., 2014; de Groot-Hedlin and Hedlin, 

2015), to long and emergent (e.g., de Groot-Hedlin et al., 2014; Fan et al., 2018). Infrasound 

produced by explosive volcanism can be equally complex, from minutes to days in duration, 

with impulsive or emergent signals of time-varying frequency (e.g., Lees et al., 2004; 

Petersen et al., 2006; Ruiz et al., 2006; Johnson and Ripepe, 2011; Fee and Matoza, 2013; 

Matoza et al., 2017; Matoza et al., 2019). Here we describe how seismoacoustic signals from 

a range of Alaskan and Kamchatkan volcanoes are recorded on regional and seasonal scales 

and present a method derived from those observations for the detection, location, and 

characterization of these eruptions. We use existing volcano catalog information to validate 

our results and determine the capabilities and limitations of the method for this data set.  

 
1.2. Monitoring Networks  

This study incorporates data from regional seismoacoustic networks including the 

TA, those of the AVO and Alaska Earthquake Center (AEC), and local elements of the 

International Monitoring System (IMS) and Global Seismograph Network (Figure 1). 

Telemetered data sampled at 20 Hz and higher are available in real time for public download 

from servers operated by Incorporated Research Institutions for Seismology and the U.S. 

Geological Survey. Stations in these networks include both stand-alone seismic and 
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infrasound sensors (Busby et al., 2018; USArray, 2019), as well as seven infrasound arrays 

(Lyons et al., 2020). AVO arrays are located at Adak, Akutan, Cleveland, Okmok, Sand 

Point, and Dillingham, with the Fairbanks array (IMS IS53) operated by the University of 

Alaska Fairbanks Geophysical Institute (Figure 1a). During the study period, there are up to 

274 infrasound sensors from these networks within 3,000 km of Bogoslof volcano (Figure 

1b). The term “array” is typically used for sensor geometries where signal wavelengths of 

interest (here, 1 km or less) are of the order of the sensor spacing (Havskov and Alguacil, 

2016). To avoid ambiguity, hereafter “arrays” should be interpreted to mean only the AVO 

and IMS arrays, which have sensor spacing of 1 km or less. Stations in the TA will be 

referred to as single-sensor stations, which have typical sensor spacings of 85 km in Alaska. 

  
1.3. Bogoslof Volcano Eruption  

The 2016–2017 eruption sequence of the remote Bogoslof volcano, Alaska, provided 

a unique data set for developing and testing our algorithm. Seventy distinct eruptive events 

were characterized by AVO between 12 December 2016 and 30 August 2017, using a 

combination of geophysical data at local AVO stations (within 900 km), satellite images, 

lightning records, and eyewitness accounts (Coombs et al., 2019). The vast majority of these 

eruptions produced detectable infrasound, which, depending on event size, vent 

exposure/submersion, and atmospheric conditions, is observed at distances of up to 2,000 km 

or more (Figure 2). Infrasound signal durations lasted from minutes to hours, with 

infrasound frequencies extending from below 0.1 Hz to more than 10 Hz (Lyons et al., 2019, 

2020; Fee et al., 2020; Schwaiger et al., 2020). The AVO eruption chronology catalog 

(Coombs et al., 2019) represents the best possible record of Bogoslof activity, and thus 

provides a metric by which to test our trial detection algorithms. Additional seismoacoustic 
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Figure 2. (a) Infrasound record section for Bogoslof eruption on 22 December 2016 using data filtered  
0.35–1.0 Hz. The 14-min event signal is enclosed by diagonal green lines (celerity: 315 m/s). Traces for array 
sensors are colored red, and nonarray sensors colored black. (b) Traces from (a) following all data 
preprocessing stages which increase interstation event coherence (section 2.2). (c and d) Record sections for 8 
March 2017 eruption. Event signal ~2.5 hours; best fit celerity: 280 m/s. Other details per (a) and (b). 
Although both these events are relatively large for the Bogoslof eruption sequence, sensors may not always 
record clear event arrivals due to atmospheric propagation paths and/or wind noise.  
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studies of Bogoslof using proximal stations include those by Tepp et al. (2020), who 

characterize seismic and hydroacoustic data from swarms and eruptive activity; Haney et al. 

(2020b), who describe thunder and electromagnetic signals produced by volcanic lightning 

from Bogoslof; Wech et al. (2018), who incorporate hydroacoustic T phases to model 

magma intrusion and eruption dynamics; Fee et al. (2020), who examine the relation 

between vent submersion and seismoacoustic ratios; and Lyons et al. (2019), who model 

low-frequency infrasound signals as giant, explosion-driven gas bubbles. Details of historical 

eruptions and hazards at Bogoslof are given by Waythomas and Cameron (2018) and 

Waythomas et al. (2020). 

  
2. Methodology  

2.1. Reverse Time Migration Overview  

Reverse time migration (RTM) is a method for acoustic signal source localization; it 

is a time domain backprojection technique that identifies potential locations as those with the 

largest corresponding stack amplitude of waveform envelopes time-aligned with an 

appropriate velocity model. RTM has been used with seismic data (e.g., Shearer, 1994; Xu et 

al., 2009; Arrowsmith et al., 2018), as well as infrasonic ground-coupled airwaves (e.g., 

Walker et al., 2010, 2011, with TA data). Alternatives to RTM have been proposed for 

seismoacoustic event location with TA data; for example, de Groot-Hedlin and Hedlin (2015, 

2018) and Park et al. (2018) employed a mesh of subnetworks in an array processing 

scheme. Other recent methods for locating volcanic infrasound using combinations of single 

sensors are available (e.g., Szuberla et al., 2006; Jones and Johnson, 2011; Kim and Lees, 

2015; Pinsky et al., 2017). Here we choose to evaluate the ability of RTM to provide coarse 

initial locations as starting points for more accurate techniques and for near-real-time 
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operation at remote distances (< 2,000 km) from the source. Our approach builds upon the 

formulation of Walker et al. (2010, 2011), who applied RTM over a large grid (western 

United States) for a range of celerities (defined as the total distance along the Earth's surface, 

or range traveled, divided by the travel time). To develop our algorithm, we use data from 15 

December 2016 to 14 January 2017. This period contains frequent Bogoslof explosions with 

a range of amplitudes and durations. Furthermore, stratospheric wind directions were 

typically toward the bulk of the network, thereby improving signal-to-noise ratios (SNR). 

The same algorithm is subsequently applied to all data from 1 December 2016 to 30 

September 2017. All dates and times in this paper are in Coordinated Universal Time (UTC). 

Additional details about the various stages of our methodology are included in the 

supplemental material.  

 
2.2. Preprocessing of Data  

Significant preprocessing of data is necessary to improve SNR and waveform 

coherency between stations. Our pre-stack processing performs the following steps for each 

sensor trace: (1) demean; (2) taper with a Tukey window (to reduce filtering artifacts); (3) 

filter with a zero-phase order-2 band-pass Butterworth filter 0.35–1.0 Hz (a balance between 

eruption signal and background noise); (4) form envelopes (to increase interstation 

coherence); (5) decimate to one sample per 5 s after applying an anti-alias filter 

(computational efficiency); (6) smooth with a Gaussian window of width 75 s and standard 

deviation 10 s (to further increase interstation coherence and reduce spatial aliasing); (7) 

detrend via subtraction of a running minimum function with a 7-hr low-pass setting, 

hereafter called subtrending and inspired by Blackburn (2015) (to reduce wind noise while 

avoiding filter artifacts); (8) apply automatic gain correction (AGC) using a 3,600 s window 
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(to further suppress wind and emphasize weak signals); (9) demean and set any negative 

values to 0 (to emphasize peaks); (10) normalize on a 0 to 1 scale (to avoid dominance by 

noisy stations and account for attenuation). Figure 3 illustrates the main preprocessing steps 

for a single trace from the 8 March 2017 Bogoslof event (Figures 2c and 2d). 

 
Figure 3. Sequence of the main preprocessing steps (going from top to bottom) for infrasound data recorded 
by station TA. N32M, located 2,210 km from Bogoslof at Quiet Lake, Yukon, Canada, on 8 March 2017.  
  

As the preprocessing steps do not preserve signal shape, the resultant stack cannot be 

directly and quantitatively linked to source process and event size. However, in general, 

larger and more sustained volcanic explosive eruptions will produce higher SNR and 

longer-duration signals across more stations, resulting in higher stack values. Similarly, our 

location approach relies on increasing SNR through stacking rather than relying on the 
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amplitudes of nonnormalized traces. Preprocessing generally improves the SNR of stacked 

data, but the degree of improvement varies with parameter choices and varies from event to 

event. For the example in Figure 3, the smoothing stage provides the clearest signal, but for 

other stations and events, this is typically not the case. Noise emphasized by AGC is less 

coherent across the network than signals from events and does not often stack constructively 

during RTM. The waveform data in this study are processed in nonoverlapping 24-hr 

sections, with additional data padding to accommodate all travel times.  

 
2.3. Stacking of Data  

We search for potential source locations across a 2-D spatial grid covering Alaska at 

1.0° intervals in latitude and longitude. We test each grid node by delaying and linearly 

stacking waveform data from all sensors within 2,000 km of Bogoslof using 11 trial 

celerities, linearly spaced between 250 and 350 m/s (Figures 4a–4d). Rather than repeat the 

spatial grid search at a series of trial origin times, we treat the data samples themselves as a 

time grid, and the intersample spacing (5 s) as time windows. The grid search produces 11 

sets of stacks, one set for each celerity. These 11 sets are then reduced to an adopted final set 

by retaining the highest stack amplitude at each time step (Walker et al., 2010, 2011); this is 

analogous to the beamforming approach of, for example, Green and Nippress (2019). Before 

and after the celerity-set reduction, the stacks for each grid node are subtrended with a 6-hr 

low-pass setting. Applying these detrending steps here produces higher SNR than if applied 

in subsequent steps, and also ensures similar background amplitudes when concatenating 

multiple data sections.  

Although infrasound for some Bogoslof events is detected to more than 2,000 km 

(Figure 2), we limit the station radius for this study to 2,000 km to preserve detectability for 
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small events from Bogoslof, while retaining the bulk of stations. For RTM, including data 

from more sensors in the stack does not necessarily improve SNR and can worsen it as more 

noisy traces are added; this can be exacerbated by coherent noise and certain network 

geometries (Koper et al., 2012). 

We treat the data from each sensor in an array as an individual contribution to the 

stack, rather than beamforming the array elements together to produce a single waveform for 

the array. Furthermore, in contrast to other backprojection studies (e.g., Xu et al., 2009; 

Walker et al., 2010), we do not apply any trace weighting based on sensor spacing. The 

rationale is that the sensors closest to each other (i.e., those at arrays, rather than 

single-sensor stations) are also those with the best wind-noise-reduction systems. Effects of 

different station subsets are explored in section 3.3. 

 
Figure 4. (a) Signal source and stations within a grid of trial source nodes. (b) Envelopes recorded by stations 
when using true source as the trial source. Data sections are extracted according to modeled celerity (diagonal 
blue lines). (c) Data sections from (b) are reverse migrated in time to the projected origin time. (d) The 
migrated data are stacked. (e) Stacks for all grid nodes. The stack for the true source (colored black) has the 
highest amplitude; stacks far from the true origin have small stacks (colored blue). A simple DF is the running 
maxima of all these stacks (colored red). The time of the DF maximum is marked with a green dashed line. (f) 
Contoured map of stack amplitudes at the time of the DF maximum in (e). Hotter colors toward the center are 
associated with stacks with higher amplitudes. Correct source locations are only provided by choosing times 
from (e) when the stack from the true source node is the highest.  
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2.4. Event Detection Method  

Identifying and locating events in the stack requires stack metrics that provide an 

optimal balance between detecting volcanic events while minimizing false positive signals. 

This process begins by using a detector function (DF) in order to identify events (Walker et 

al., 2010, 2011; Arrowsmith et al., 2018). The DF shown in Figure 4e is simply a time series 

made up of the maximum amplitude of stacks. High DF values result from higher SNR 

signals across more sensors. Source locations are defined by regions with spatially coherent 

and high DF values (Figure 4f).  

We refine this DF approach for volcanic eruptions, which can differ significantly in 

signal character from event to event and station to station. Importantly, variability in 

eruption durations (from minutes to hours) means that signals cannot be decimated to single 

impulses (a method employed by Walker et al., 2010, 2011). However, such expected 

properties of volcanic signals can be exploited to enhance detection using a regional-global 

network (Matoza et al., 2017). Here we specifically take advantage of the extended-duration 

signal property by using a summation window to increase SNR and simultaneously reduce 

the prevalence of artifacts and short, nonvolcanic signals. Due to this temporal summation 

process in forming the DF, the DF amplitude can be higher than the number of normalized 

waveform envelopes being stacked. The maximum possible DF value is the product of the 

number of traces and the number of time windows summed. We will continue to use DF 

when referring to this approach, or explicitly as a time-summed DF (TS-DF), to distinguish 

the method from the standard single-time-window DF (STW-DF) approach when needed. 

Similarly, we will use stack to indicate the time-summed stacks from which the DF derives. 

 Event detection is performed on DF time series using a minimum threshold of 12.5 

dB, which is the typical maximum background level for our data. DF samples above this 
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detection threshold are grouped automatically into peaks (requiring a minimum gap of  

1,800 s), which are then located automatically. DFs are converted to an SNR in decibel (dB) 

units using the following equation (adapted from Walker et al., 2010):  

 
where DFfilt is a DF that has been high-pass filtered above a particular period to remove the 

DF background offset. Here, to calculate DFfilt we subtrend with a 48-hr low-pass setting. All 

results in this paper derive from event detection and location on month-long time series, 

except when focusing on individual events. In such cases, we use 24-hr time periods instead.  

 
2.5. Event Localization  

We locate events based on spatial and temporal maxima in the RTM stacks, exploring 

two primary methods. Given that each sample in a DF is tied to a particular grid location, 

simply taking the maximum value of a peak in the DF provides a nominal event location 

(Figures 4e and 4f). We define the resulting distance between the calculated and true location 

as the mislocation. However, in some cases there is no clear maximum to the peak, while the 

derived source location may be offset due to atmospheric propagation artifacts (section 3.6). 

Furthermore, as the shape of the peak is dependent upon network geometry, choosing the 

median DF sample of the peak is not a robust approach. Consequently, we focus on two 

alternate strategies to locate events, each using a windowed section of the peak, rather than 

just one sample. For each peak, k number of DFSNR samples above a location threshold (LT) 

are assessed, where LT is defined as the 75th percentile of the DFSNR samples in the peak. 

The location methods applied to the corresponding time period are as follows: (i) MAX 

(maximum): for DFSNR(k) > LT, the final location is the average of the locations 

corresponding to samples within ±75 s of the maximum amplitude; (ii) COM3 (center of 
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mass in three dimensions): the final location derives from the weighted-mean of all stack 

samples while DFSNR(k) > LT.  

 
3. Results  

3.1. RTM of Bogoslof Eruption Sequence  

For each Bogoslof explosion, detection of infrasound by AVO did not necessarily 

correspond with the start of eruptive activity, nor was infrasound observed for all eruptive 

activity (Coombs et al., 2019; Lyons et al., 2020; Schwaiger et al., 2020). AVO detected 61 

of the 70 Bogoslof events with their infrasound array data (Figure 5, red lines) using 

analyses deriving from least squares beamforming (e.g., Szuberla and Olson, 2004; Lyons et 

al., 2020). When including all available sensors, our RTM method detects 44 of 61 of these 

cataloged infrasound events (72%, Figure 5, green stars), and 46 of 70 of the events as a 

whole (66%, Figure 5, white stars). Notably, our RTM implementation identifies two 

cataloged eruptions that were reported by AVO as having below-detection threshold levels of 

infrasound (22:10 14 December 2016 and 11:17 27 June 2017).  

Monthly DFs for December 2016 to September 2017 are presented in section S3 of 

the supplemental material. These figures include further details on AVO and RTM detections 

for each event. In addition to the confirmed explosions from Bogoslof, the DFs suggest 

additional events that were not cataloged. For example, on 11–12 January 2017, a relatively 

large peak in the Alaska-wide DF is observed, with the corresponding location less than 200 

km from Bogoslof. However, as no AVO monitoring data types showed any volcanic 

activity (Wech et al., 2018; Coombs et al., 2019; Searcy and Power, 2020), we interpret this 

as a nonvolcanic infrasound source. Similar examples occur on, for example, 1, 9, 16, and 24 

February 2017, several in April 2017, and also 24 July 2017. 
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Figure 5. Time series of infrasound detection for the Bogoslof eruption sequence. Eruptions are marked by 
red lines if AVO registered infrasound for the events, and black if AVO did not (eruptions were confirmed 
through other data types). Similarly, events detected by RTM above the 12.5 dB detection threshold are 
marked with green stars, and events below this threshold are marked with white stars. The vertical scale 
represents the maximum amplitude of the DF within 15 min of the cataloged event.  
 

3.2. RTM of 8 March 2017 Bogoslof Event  

To illustrate the event detection and location procedure, we continue to focus on the 8 

March 2017 eruption of Bogoslof. This event is of interest for being one of the largest across 

all of the monitoring categories used by AVO, including plume height, SO2 mass, number of 

lightning strikes, event duration, and geographical range of seismoacoustic observations 

(Coombs et al., 2019). DFs for this event (Figure 6a, top panel) retain the two subpeaks 

broadly seen in Figures 2d and 3. With the chosen detection threshold, only the larger 

subpeak is automatically located. A lower threshold or manual analysis would allow for 

locating both subpeaks separately. Divergence of the Alaska-wide DF (colored) from the 

Bogoslof-specific DF (black) during the eruption is due to the contributions from stacks at 

nonsource grid nodes (as per Figure 4e). Changes in the mislocation value with time (Figure 

6a, bottom panel) reflect the evolving location of these nonsource grid nodes in response to 

Alaska-wide infrasound sources. 
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Figure 6. (a) Top panel: Alaska-wide DF (colored by mislocation) and Bogoslof-specific DF (colored black) 
for the 8 March 2017 Bogoslof explosion. The Bogoslof-specific DF is the stack corresponding to the trial 
source location (grid point) at Bogoslof. Matching amplitudes between the two DFs (marked with bold black 
line segments) indicate zero mislocation. Final location estimates for peaks are performed only on the high 
amplitude values boxed with solid green lines. Data are from all available infrasound sensors within 2,000 km 
of Bogoslof. The vertical dashed line is the AVO cataloged event onset, and the dark gray section the period 
of AVO cataloged infrasound. Dotted lines earmark samples above the 12.5 dB detection threshold. Bottom 
panel: Variation in mislocation from Bogoslof for each DF sample. (b) Time slice of results corresponding to 
larger subpeak in the Alaska-wide DF. The timestamp of the map is that of the DF maximum amplitude, 
marked by a yellow arrow in (a). The color scale represents the amplitude of time-aligned data stacks at each 
grid location. Locations provided by the MAX and COM3 methods are marked. Sensors are shaded red 
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proportional to stack contribution for the corresponding source time. Circles are at 500 km spacing. (c) As per 
(b) but at the time of the maximum in the Bogoslof-specific DF. A purple arrow in (a) is typically used to 
mark the corresponding time; however, in this case the two map times are identical so the purple arrow is not 
distinguishable. (d–f) As for (a–c) but using data from only the infrasound arrays. (g–i) As for (a–c) but using 
data from only the single-sensor stations.  
  

A time slice through the stack information (Figure 6b) also shows the two location 

estimates for the event. The time of the map corresponds to that of the highest Alaska-wide 

DF amplitude (as per Figures 4e and 4f). The color scale represents the amplitude of 

time-aligned data stacks at each grid location. The MAX event location coincides with 

Bogoslof (zero mislocation), and the COM3 method locates the event 341 km SSW of 

Bogoslof. Sensor shading (red) is proportional to relative stack contributions assuming the 

MAX location is the true source. Such sensors comprise those in nearby arrays as well as 

several single-sensor stations to 2,000 km range with no clear distribution pattern. A time 

slice during the Bogoslof-specific DF maximum (Figure 6c) is identical to that of Figure 6b.  

 
3.3. Subnetwork Influence  

Here we assess the relative contributions to stacks from single-sensor stations and 

arrays in order to understand their respective impact. The first influential factor is proximity 

to volcanic sources. With infrasound arrays making up the majority of sensors within 900 km 

of Bogoslof (Lyons et al., 2020), these sites are nominally better placed to have higher SNR 

than stations at greater distance. Mitigating factors, however, include potential shadow zones 

within the first few hundred kilometers (Fee and Matoza, 2013, and references therein) and 

higher local wind noise away from the Alaskan interior. The second factor is mechanical 

noise suppression. Half of the sensors comprising the infrasound arrays in this study use 

physical noise canceling technology, such as wind domes (Walker and Hedlin, 2010; Raspet 

et al., 2019; Lyons et al., 2020). The TA stations in contrast, which make up the bulk of the 
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single-sensor stations, do not use spatial wind filtering devices. The third factor is sensor 

separation. The seven arrays in our study contain between four (AVO OKIF) and eight (IMS 

IS53) sensors. Data recorded by each sensor in an array are typically highly similar because 

of their close proximity (tens of meters to a few kilometers depending on the frequency 

range of interest). Hence, stacked envelope data for a single array will provide a higher SNR 

compared to an equal number of nonarray stations.  

Array and single-sensor station results for the 8 March 2017 event are compared in 

Figure 6. For the array data, the two subpeaks (Figure 6d) are similar to those of the 

combined station data (Figure 6a). The MAX location for the second subpeak here has a 

mislocation of 233 km (Figure 6e), compared to no mislocation when using all sensors. In 

contrast, the single-sensor DF has a low SNR, and does not resolve the first subpeak (Figure 

6g). Further, the location estimates for the second subpeak (Figure 6h) are highly inaccurate. 

This occurs because the relatively high samples in the Alaska-wide DF represent grid nodes 

far from Bogoslof. Accurate automated locations are only obtained if the highest 

Alaska-wide DF amplitudes are from stacks for grid nodes close to Bogoslof (e.g., Figures 

6a–c). The absolute prominence of the Bogoslof- specific DF in Figure 6g, or its similar 

appearance to those in Figures 6a and 6d is therefore not a factor in event localization. 

Rather, the relative amplitudes of the Bogoslof and Alaska-wide DFs are important. More 

accurate locations for the single-sensor station example would be provided by automated or 

manual selection of DF samples when the Alaska and Bogoslof DFs intersect at ~09.45 

(Figure 6i). Animations showing the time-evolution of Figure 6 are provided in the 

supplemental material as Movies S1–S3.  

The relative location accuracy of the three station groupings is in part a consequence 

of the source-station geometry, with the single-sensor stations having the lowest azimuthal 
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coverage of Bogoslof. Hence with the addition of noise, and increased wavefield dispersion 

with source-receiver distance (e.g., Green and Nippress, 2019), stacked data at grid nodes 

other than the true source may have the highest amplitudes (Figures 6h). This scenario is 

reflected by the contrast in mean mislocation for the background/nonevent DF samples in 

Figures 6a, 6d, and 6g (bottom panels). The array-only data (Figure 6d) have a majority of 

location values close to Bogoslof, whereas the single-sensor station data (Figure 6g) have 

typical mislocations of 1,000–2,000 km, reflecting grid nodes in mainland Alaska. 

Therefore, for stations with good azimuthal coverage of the source, or for stations that are 

close to the source, selecting nonoptimal DF samples can still give a reasonable position 

(Figures 6b and 6e). The 15 January 2017 Bogoslof eruption is another event widely 

recorded across Alaska (Figure 7). In contrast to the 8 March 2017 event (Figure 6), here, 

each of the three groups of stations under consideration locate the event more similarly.  

Given the anticipated effects of seasonal stratospheric wind direction on signal 

detection (Le Pichon et al., 2009), Figure 8 explores how the Alaska-wide DF maxima for 

AVO-cataloged infrasound events varied during 2016–2017. We compare results from 

single-sensor stations and arrays, as well as account for the number of sensors in operation. 

DF amplitudes for both data sets are lower for June through August 2017 (Figures 8a and 8b) 

compared to earlier in the year, despite the increase in installed sensors. Figure 8c shows that 

in relative terms, there is a positive relation between sensor contributions to DFs for either 

station category. In absolute terms, the array sensors contribute more to DFs than single 

sensors. For both data sets, the DF contributions per sensor are higher from December to 

March, than June to August. A switch in stratospheric wind direction from eastward to 

westward over the time period does not, however, preferentially affect one set of stations 
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over the other, despite the arrays having better azimuthal coverage of Bogoslof (Figure 1a). 

Schwaiger et al. (2020) provide analysis of atmospheric behavior during events at Bogoslof. 

 
 
Figure 7. As for Figure 6 but using data from the 15 January 2017 Bogoslof eruption. Each map plots the 
location for the first peak, which has AVO cataloged infrasound, whereas the second peak does not have such 
information. In each case, the MAX and COM3 location estimates are collocated. The event locations from 
each sensor grouping are relatively similar compared to those in Figure 6.  
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Accounting for event size in the observations from Figure 8 is challenging as 

independent metrics of volcanic intensity such as plume height, SO2 mass, and number of 

lightning strikes (Coombs et al., 2019), do not robustly correlate with infrasound signal 

characteristics (e.g., Lopez et al., 2020). A particular complication in this regard is 

accounting for the fluctuating vent conditions (submarine to subaerial), dome building 

activity, and any cloud coverage which hampers satellite observations. Given these 

constraints, however, no particular decrease in event magnitude is identified over the course 

of the eruption. Similar event size comparisons exist for precursory seismicity (Tepp and 

Haney, 2019), and eruptive seismicity (Haney et al., 2020a; Tepp et al., 2020). 

 
Figure 8. (a) Single-sensor station DF amplitude (in dB) and sensor number versus time, for 
infrasound-generating events cataloged by AVO (±15 min). Sensor quantity is shown for both total sensors 
(blue line) and sensors within 500 km of Bogoslof (red line). (b) As per (a) but for arrays. (c) Sensor 
contribution to DFs in absolute and relative terms for the arrays and single-sensor stations, shaded by time.  
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3.4. Algorithm Performance for Bogoslof Eruption Sequence  

We use receiving operator characteristic (ROC) curves (Fawcett, 2006) to compare 

the ability of different RTM algorithms to correctly classify events. These ROC curves plot 

the true-positive rate (TP rate) versus false-positive rate (FP rate) of a DF for a range of 

detection thresholds (Figure 9). An algorithm that classifies events perfectly will have a 

threshold that gives a TP rate of 1, and an FP rate of 0. For such an algorithm, the area under 

the curve (AUC) accounts for 100% of the total possible area. AUC values close to 50% are 

equivalent to classifications being a random guess. A ROC curve is equivalent to plotting the 

probability of an eruption versus the probability of a false alarm. We automatically classify 

detections by comparing AVO infrasound catalogs for Bogoslof to DF samples at equivalent 

times, on a sample by sample basis. Other volcanic events such as those from Cleveland are 

not treated as cataloged events, nor are known nonvolcanic events. ROC calculations are 

performed on month-long DFfilt time series.  

ROC curves are also useful for comparing RTM parameter choices, station choices, 

and time of year, all factors which can affect the SNR of DFs (Figures 5 and 8). For instance, 

to further illustrate seasonal weather influences for the three station groups, Figure 10 

compares ROC results for each month using AUC as a classification metric. Figure 10 also 

compares implementation of the TS-DF and STW-DF approaches to assess if there are 

differences in classification performance between the two methods. We find that for both DF 

formats, AUC values are typically at or above 75% for the majority of the year. Only July 

and August 2017 have AUC values close to 50%. The classification performance for the 

single-sensor stations is poorer than the other two station configurations. Overall, TS-DFs 

classify volcanic events marginally better than STW-DFs.  
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Figure 9. ROC curve for December 2016 data. A DF detection threshold of 29.4 gives a moderately high TP 
rate (~0.8) and moderately low FP rate (~0.2). The area under the curve (AUC) is 85%. TP, true positive = 
eruption with DF > threshold T; FP, false positive = no eruption with DF > T; TN, true negative = no eruption 
with DF < T; FN, false negative = eruption with DF < T.  

 

We also evaluate seasonal effects on algorithm performance over the Bogoslof 

eruption sequence by plotting (1) the percentage of AVO cataloged infrasound events 

detected by RTM (allowing a ±15-min margin), and (2) the location accuracy of those 

detected events using monthly averages (Figure 10). As with the ROC classification 

performance, the event detection rates and location accuracy are typically better from 

December 2016 to May 2017, and poorer subsequently. Notable differences between the DF 

methods include STW-DFs being relatively strong for event detection rates (up to 85% 

overall), with the greatest difference being for the single-sensor stations. Similarly, for the 

location methods, STW-DFs perform relatively well for the single-sensor station data, 

though direct comparison is challenging given the contrasting event detection rates.  
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Figure 10. Comparison of detection and location results using TS-DF (left column) and STW-DF (right 
column) approaches. Though broadly similar, the TS-DF method, as used throughout the paper, is relatively 
strong for array-only stations versus single-sensor stations, whereas the STW-DF is particularly advantageous 
for single-sensor station and combined sensor results in terms of event detection. Bogoslof events were 
cataloged by AVO for every month except April 2017. Absence of markers for a particular month here 
indicates no detections by the method. 
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3.5. Algorithm Performance for Non-Bogoslof Events  

Since the beginning of the Bogoslof eruption sequence in December 2016, many 

other volcanoes in the North Pacific have erupted. The volcanoes from Alaska are: 

Cleveland, Great Sitkin, Semisopochnoi, and Veniaminof (Figure 1) (Alaska Volcano 

Observatory, 2019), and from Kamchatka: Bezymianny, Ebeko, Kambalny, Karymsky, 

Khangar, Klyuchevskoy, Koshelev, Sarychev Peak, Sheveluch, Zheltovsky, and 

Zhupanovsky (KVERT, Institute of Volcanology and Seismology FEB RAS, 2019). We 

assessed a subset of these (Table S2 of the supplemental material) based on network 

proximity, event size, and plume direction. Of the Alaska events, only the Cleveland 

explosions are clearly detected by RTM (using the same parameter set for Bogoslof). These 

results are somewhat expected as most of the nondetected eruptions were relatively small. Of 

the five Kamchatka events focused on, only the Bezymianny explosion on 20 December 

2017 is clearly identified. Candidate events from near Koshelev and Zheltovsky are 

suggested by RTM but these do not match events in KVERT catalogs. Unfavorable 

propagation and attenuation conditions may explain the lack of clear observations from 

nondetected Kamchatka events, which were on a similar scale to that of Bogoslof on 8 

March 2017. Detection performance for eruptions in Kamchatka and the western Aleutians 

could increase with inclusion of data from the IMS stations in Kamchatka (IS44) and others 

in the northern Pacific region (Fee et al., 2010b; Matoza et al., 2017), as well as any local 

infrasound networks in those areas (Gordeev et al., 2013; Matoza et al., 2019).  

Additional nonvolcanic events are regularly seen in our DFs (section S3, 

supplemental material). The IMS IS53 array in central Alaska is particularly well positioned 

to record urban noise, industrial and military blasts (Gibbons et al., 2019; Schneider et al., 

2018), and rocket launches (de Groot-Hedlin et al., 2008) from the Poker Flat Research 
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Range. Many of these types of events, and others such as debris flows (IRIS DMC, 2014; 

Toney et al., 2019) and bolides (Walker et al., 2010; Edwards et al., 2014; [appendix 1]), 

were recorded by the TA while it was traversing the continental United States. Such 

observations are detailed in the TA Infrasound Reference Event Database (IRIS DMC, 2012; 

de Groot-Hedlin and Hedlin, 2015). Several M6+ earthquakes in Alaska were also located by 

applying our RTM algorithm to air-coupled ground waves [detailed in appendix 1] (also see 

Shani-Kadmiel et al., 2018a, and a review by Mikumo and Watada, 2010).  

 
3.6. Source Resolvability and Stack Artifacts  

The stacked data here contain significant artifacts, manifesting as event data being 

smeared across space-time in a phenomenon known as swimming (e.g., Meng et al., 2012). 

A correctly tuned RTM algorithm should generate event-based stack maxima only at the 

physical source, rather than earlier or later along a swimming track. Swimming is clearly 

apparent in Figures 6 and 7 by comparing the widths of peaks in the Alaska-wide and 

Bogoslof-specific DFs, as well as by observing the evolving mislocation during the event. 

Movies S1–S3 show this migration particularly well prior to, during, and after the 8 March 

2017 event. Swimming is principally a consequence/function of the network geometry's 

response to a series of impulses (Koper et al., 2012). The artifacts are emphasized where 

sources are complex and outside the majority of the network (due to poor azimuthal 

coverage). Consequently, there are implications for being able to clearly resolve and 

accurately locate a source using stack information even under ideal atmospheric propagation 

and noise conditions.  

To illustrate the impact of network geometry and source type further, Figure 11 

compares synthetic sources (1- and 10-min durations) at 3 locations across the north Pacific. 
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Figure 11. (a) Normalized DFs for a 1-min synthetic Gaussian source pulse, placed at three locations and 
propagated to all marked stations with a 300 m/s celerity. Sharp steps in the Bezymianny and Fairbanks DFs 
are a result of proximity to the grid boundary. (b) As per (a) but with 10-min Gaussian source pulse. (c, d) 
Maps showing time slices through time- summed stack data at times 00:00. Rings are at 500-km intervals. 
(e, f) Maps showing cumulative time-summed stack values at each grid node for the 1- and 10-min pulses.  
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These locations represent sources within the network center (Fairbanks, Alaska), network 

margin (Bogoslof, Alaska) and far outside the network (Bezymianny, Kamchatka). During 

each DF shown, the stack for each true source is only represented briefly at time 00:00. For 

shorter impulse sources (Figure 11a), DFs at all three source locations have larger 

oscillations and generally clearer peaks than for longer, emergent sources (Figure 11b). 

These oscillations are simply the original source information stacking at non–true grid nodes 

with lower amplitudes. As the source duration grows (and/or grid spacing decreased), these 

peaks merge together. Relatively clear DF peaks occur for sources closer to the network 

center due to improved azimuthal coverage. Further, peak sharpness is also celerity 

dependent—the narrower the celerity search range, the narrower the DF (Figure 11 uses a 

single celerity of 300 m/s for simplicity).  

Figures 11c and 11d show the stack information at time 00:00 in map form. Here, 

RTM location estimates are reflected by the intersection of ring features around individual 

sensors. When particular sensors contribute heavily to the location, the rings centered on 

those sensors are more pronounced. Such features are commonly seen around arrays which 

contain multiple equally weighted sensors, for example, Figure 7 and Movies S1–S3. Figures 

11e and 11f plot cumulative stack amplitudes, illustrating the swimming tracks along the 

respective source-station axes. Stacked energy is more concentrated for short events and for 

source proximity to the network center, providing higher location resolution. The azimuthal 

coverage of these sources has parallels to how the groupings of combined, array, and single 

sensors are positioned in relation to Bogoslof.  

The swimming artifact for the 8 March 2017 Bogoslof event is explicitly illustrated 

by Figure 12. The DFs in Figure 12a are the same as those from Figure 6a, but here the time 

slice map (Figure 12b) corresponds to the maximum amplitude of the first, smaller subpeak 
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of the Alaska-wide DF, rather than the second. The location of the highest stack energy is to 

the SW of Bogoslof, rather than at the true source. For subsequent time slices, the region of 

maximum stack energy migrates NE, passing Bogoslof at 07:53 (Figure 12c). A similar 

migration is observed for the second subpeak from 08:30–11:00. Figure 12d shows the 

cumulative stack amplitude at each grid node for the time period covering both DF subpeaks 

(06:00–12:00). Though the highest cumulative amplitude is at Bogoslof, there is significant 

energy distributed elsewhere. In particular, the SW corner of the grid accumulates amplitude 

values that would otherwise locate SW of the grid edge if it were not for this boundary. 

Consequently, the corner node is masked here to avoid dominating the color scale.  

Limiting the grid search (or DF components) to nodes that are on land is a potential 

approach for mitigating swimming artifacts applicable to arc volcanism. Given the direction 

of swimming here is from SW to NE, the initial swimming artifact is entirely over the ocean 

until the Aleutian Islands are reached. By excluding grid nodes over the ocean, this pre-

artifact can be removed from the DF, though post-artifacts remain due to the remaining land 

(Figure 12e). Locations for the first subpeak are now accurate compared to without the mask 

(Figure 12f vs. 12b). The evolution of mislocation with time also becomes unclear (Figure 

12g) and the cumulative stack energy now shows a constrained distribution (Figure 12h). 

More severe masks could be used in order to restrict DFs to particular regions of interest 

(indeed the Bogoslof-specific DFs are an extreme case of this). Notably Landès et al. (2012) 

conversely mask grid values over the continents to avoid locating microbaroms on the 

continents. Arrowsmith et al. (2018) describe a range of related methods.  

Other strategies to minimize or account for swimming include time-frame averaging 

(Koper et al., 2012), reference windows (Meng et al., 2012), as well as combining results 

from azimuthally distinct subnetworks, and exotic stacking techniques (e.g., Xu et al., 2009...  
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Figure 12. (a) DFs for the 8 March 2017 explosion from Bogoslof without a mask. Other details per Figure 
6a. There is no mislocation of the maximum of the larger subpeak. The mislocation of the maximum of the 
smaller subpeak is ~200 km, however. (b) Time slice map corresponding to maximum of smaller subpeak 
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(marked with arrow in Figure 12a). Other details per Figure 6b. (c) RTM locations for each sample in the 
Alaska-wide DF (Figure 12a), color-coded by time. (d) Location data from the Alaska-wide DF is binned by 
grid node and tallied. (e–h) As for (a)–(d) with a mask applied such that the DF is formed only from stacks for 
grid nodes close to land.  
 

and references therein). In evaluating three such stacking methods (Nth root, semblance, and 

F-ratio) we find that though swimming artifacts improve in some cases, in other cases the 

artifacts remain. Use of azimuthally distinct subnetworks for this study is problematic given 

the progressive deployment of the TA during the Bogoslof eruption. The westernmost 

stations (well placed to help constrain events) were only deployed at the end of the eruption 

sequence (Figure 1).  

 
4. Discussion  

Bogoslof was a complex seismoacoustic source, with the vent submerged for most of 

the nine-month eruption, impacting acoustic coupling with the atmosphere (Godin, 2008; 

Ichihara et al., 2009; Lyons et al., 2019, 2020; Fee et al., 2020). Infrasound from some 

explosions is detectable at ranges of 2,000 km or more by regional networks (Figure 2). 

Distant arrivals are sometimes clearer than those more proximal due to refractive shadow 

zones and atmospheric waveguides (Drob et al., 2003). The dense regional network in 

Alaska is, despite poor azimuthal coverage of the Aleutian Arc, capable in principle of 

identifying and locating explosions to subdegree accuracy using RTM. However, detection 

and location capability depends upon the number of arrivals, their azimuthal distribution, 

SNR, and processing methods.  

One demonstrated shortcoming of RTM, though not unique to it, is that for sources 

outside the network, the location estimate has a spatiotemporal error ellipse along the 

source-network axis (Cochran and Shearer, 2006), manifesting as swimming artifacts 

(Figures 6, 7, 11, and 12). These artifacts result in locations for both background and 
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high-amplitude DF samples migrating over the grid space. Thus, having an event trigger 

based only on whether a volcano-specific DF matches the Alaska-wide DF will have many 

false alarms, even during background noise. Without adequate azimuthal coverage of the 

source, a DF amplitude threshold is an insufficient control to resolve this issue (Figure 11). 

The majority of volcanoes of interest in Alaska are outside the margins of the bulk of 

monitoring stations, and consequently incorporation of an independent location estimate 

provided by local infrasound arrays would provide this azimuthal control. These arrays can 

provide individual back azimuths (Gibbons et al., 2005; Le Pichon et al., 2005; Ripepe et al., 

2007; Fee et al., 2010b; Fee et al., 2016; Iezzi et al., 2019), and distances (Szuberla et al., 

2006; Shani-Kadmiel et al., 2018b; Green and Nippress, 2019; Shang et al., 2019), in 

addition to source triangulation through a cross-bearings approach (e.g., Le Pichon et al., 

2008; Matoza et al., 2011a; Matoza et al., 2011b; Mialle et al., 2015; Matoza et al., 2017). 

The relative consistency with which stacked array data characterizes eruption records, when 

compared to a network of single sensors demonstrates the importance of these arrays. 

Similarly, deriving locations by treating the existing network as a mesh of three-station triads 

is another approach (de Groot-Hedlin and Hedlin, 2015).  

The success of the RTM method also depends on the alignment and shape of 

envelopes being stacked. For instance, events tend to locate well if the original waveforms 

have features that are sharp/impulsive enough, or can be processed in such a way that a DF 

reflects that sharp feature (Figure 7). The contrary is also true—broadly topped DFs may not 

locate well, particularly if the DF maximum is taken arbitrarily (Figures 6g and 6h). An 

important related factor is that RTM stacks energy rather than phases, and thus stack 

amplitudes and the ability to locate an event are impacted by the change in wavefield 

between source and receiver. Such changes are typically proportional to source-receiver 
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distance on the order of the scales in this study (Green and Nippress, 2019). In the presence 

of realistic atmospheric multipathing, observing interstation similarity on the order of the 8 

March 2017 Bogoslof eruption (Figure 2) across 2,000+ km is unlikely, particularly for weak 

signals. Short signals can be incorporated into a single envelope, and thus easily stacked 

(e.g., Hedlin and Walker, 2013). However, for signals longer than a few minutes and for 

sources outside the network, stacking is more challenging and thus the true locations become 

difficult to resolve (Figure 11). In such cases, phase association and variable window lengths 

may be advantageous (Park et al., 2018), as well as allowing for multiple celerities at each 

time step between grid nodes and stations.  

Seasonal variability in dominant stratospheric wind direction affects detection 

capability (Le Pichon et al., 2008; Le Pichon et al., 2009; Mutschlecner and Whitaker, 2010; 

Hedlin and Walker, 2013; Tailpied et al., 2017). In the Alaskan winter months, stratospheric 

winds typically blow eastward (from west to east) from the Aleutians toward the network, 

whereas in the summer the case is the opposite (De Angelis et al., 2012). In both cases, 

however, tropospheric and thermospheric ducting may still take place under different 

influences (De Angelis et al., 2012; de Groot-Hedlin, 2017; Iezzi et al., 2019; Schwaiger et 

al., 2019, 2020). Surface winds can also mask signals of interest, though such winds are 

typically weaker inland. Increased snow cover during winter can be beneficial by isolating 

sensors from turbulence and gusts (Woodward et al., 2005). It is reasonable that different 

parameter choices would work better at some times of year than others, for different event 

characteristics, and for different station combinations (Figure 10). For example, the lower 

frequency filter limit of 0.35 Hz is set in order to retain data above the microbarom peak and 

reduce wind noise. However, given the seasonal change in strength of the microbarom in the 
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northern Pacific (Garcés et al., 2010; Walker, 2012), such a lower limit could be made 

flexible to take advantage of this situation.  

The factors discussed above are interpreted here to affect the ROC classification, 

event-detection rates, and location accuracy results presented in section 3.4. The temporal 

features observed in Figure 10 are also reflected in results from other AGC and stacking 

methods (section S4, supplemental material). However, the number of events in any 

particular month and their relative or absolute amplitudes are also important considerations 

when interpreting temporal statistics (including Figures 5 and 8). Given that ROC 

classification is performed with only Bogoslof events, rather than all known volcanic or 

nonvolcanic infrasound-generating signals, a more detailed assessment may produce 

improved results. In a similar vein, it is worth noting that the final AVO catalog was a 

retroactive assessment of data products, with some infrasound detections based on just a 

single array.  

The choice of the DF type also affects the capacity for isolating, detecting, and 

locating explosive events, depending on the station configuration and event duration. 

Synthetic results show clear differences between DF types for the 1-min events (Figure 11a), 

and would be expected for sources up to several minutes. For Bogoslof, AVO cataloged 

infrasound durations vary from 2–409 min (median 14 min), with 17 of the 61 events  

≤ 5 min. For out-of-network sources, STW-DFs have relatively clear peaks compared to 

TS-DFs (Figure 11a). This factor may contribute to the relatively high event detection rates 

for the single-sensor stations using STW-DFs (Figure 10). These implications extend to 

Cleveland, which is more remote than Bogoslof, and typically exhibits brief explosive 

eruptions (De Angelis et al., 2012; Werner et al., 2017; Iezzi et al., 2019; Table S2). 
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However, Figure 10 shows that for combined and array station configurations, TS-DFs have 

a slight advantage for both reducing false positives, and location accuracy of detected events.  

Overall, 72% and 85% of known infrasound-generating events from Bogoslof were 

identified with TS-DF and STW-DF methodologies respectively, when using all sensors. 

Successful detections include the onset of the Bogoslof eruption sequence on 12 December 

2016, and the following three events (section S2, supplemental material), something not 

observed at the time by routine AVO monitoring (Coombs et al., 2018). Had Bogoslof been 

suspected of unrest, however, alarms at AVO arrays would likely have been set and triggered 

by the eruptions (Lyons et al., 2020). Detection of these events with RTM is in addition to 

several other cataloged events not documented as having detectable infrasound by AVO 

(section 3.1). Larger explosive events, such as the 2008 eruptions of Kasatochi and Okmok 

volcanoes, Alaska (Fee et al., 2010b), would likely be detected and located well with the 

RTM algorithm, even in the presence of unfavorable acoustic propagation or other 

conditions. Supplementing the network with strategically placed sensors in quiet locations 

would also likely improve RTM performance (e.g., Tailpied et al., 2017; Biasi and Alvarez, 

2018), as would refined wind noise suppression for TA sensors. Improved algorithm 

performance is expected in areas with less challenging network geometries and weather.  

 
5. Conclusions 

We have shown that simple RTM methods using the TA and other regional network 

infrasound data are capable of detecting and locating relatively small and emergent events 

from remote Alaskan volcanoes such as Bogoslof and Cleveland. Our RTM implementation 

is able to detect and locate more than 72% of the Bogoslof infrasound events cataloged by 

AVO. Such statistics, as well as those for location accuracy and classification success, vary 
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significantly with RTM parameters choices. Identification and location of events with RTM 

is improved by the presence of the TA; however, individually, the TA typically performs 

worse than existing infrasound arrays in the region. This deficit is likely due to a combined 

function of greater source-station distances, lower azimuthal coverage, and lower intersensor 

signal coherence. Our efforts to locate infrasound signals from known eruptions in 

Kamchatka had a low success rate (one of five) due to more extreme cases of the above 

factors. The presence of spatial wind noise filters at most arrays is also a key difference 

versus TA sites. The effectiveness of RTM in the region also varies seasonally, with no 

apparent dependence on event size. Lower event detection rates during the summer, when 

stratospheric winds typically blow away from the network, show that increased azimuthal 

coverage of remote volcanoes is crucial and not compensated for by high sensor quantity 

alone. Opportunities for refining and improving these RTM strategies include data-adaptive 

processing, provision for atmospheric specifications, and incorporating azimuthal 

information from arrays. The frequent eruptions and dense regional network in Alaska 

provide an excellent opportunity to continue assessing the capability of regional-scale 

seismoacoustic networks for remote volcanic monitoring.  
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Supplemental Material 
 

The supplemental material initially provides the methodological details on our 
algorithm, ranging from data pre-processing to event location. We also show monthly time-
series of reverse time migration (RTM) results for the 2016–2017 Bogoslof volcanic eruption 
sequence, as well as the corresponding classification, detection and location statistics. 
Further, we include RTM observations of other volcanic events in Alaska and Kamchatka. 
Finally, we list the software packages utilized for our data processing, data analysis and 
plotting of results. All dates and times provided are in Coordinated Universal Time (UTC). 
 
S1. Algorithm Details  
S1.1. Subtrending 

Multiple stages within the reverse time migration (RTM) algorithm use a special 
detrending process in order to remove prevalent wind noise. This noise, in envelope form, 
manifests as much longer period signals than those of eruptions (section 2, main article). The 
detrending process, which we refer to as subtrending (inspired by Blackburn, 2015) causes 
less distortion in the positive-only signals compared to normal filtering, and is also more 
easily tuned. Subtrending is so called because it operates via subtraction of a filtered running 
minimum function. Specifics of the process follow in three primary stages:  

(1) Finding initial points for detrending the waveform by using a running minimum 
window: (a) at 1-hour intervals, take 30 minutes of data before/after this reference point; (b) 
sort the windowed hour of data by amplitude; (c) store the amplitude value at the 5th 
percentile; (d) of the stored values, only keep those greater than the 2.5th percentile of the 
amplitude range of the full waveform (in order to avoid detrending by using points with very 
small amplitudes); (e) interpolate and extrapolate the kept values to the full length of the data 
to create a minimum time-series; 

(2) Filtering the minimum time-series below frequencies of interest: (a) demean the 
minimum time-series, pad ends by 10% of the time-series’ length with values equal to the 
mean of the edge values (mean determined for a section of edge values equal in length to the 
padded section); (b) filter the padded minimum time-series by desired frequency; (c) remove 
the padding from the result; (d) add the original mean back in; 

(3) Subtract the final trend (determined in stage 2) from the original trace to get the 
final subtrended trace. 
 
S1.2. Automatic Gain Control (AGC) 

As part of the study, two AGC algorithms are tested for efficacy; (1) AGC1 – the 
algorithm included with GISMO (Thompson and Reyes, 2017, reference provided in section 
S5); (2) AGC2 – the algorithm from Walker et al. (2010). Differences in results over the 
Bogoslof eruption sequence are further detailed in sections S1.3 and S4, but broadly, AGC1 
gives overall higher detection rates vs. AGC2, and similarly accurate locations, with AGC2 
being typically better at volcanic signal classification (section 3.4, main article and Figure 
S13). Running simultaneous AGC1 and AGC2 algorithms would take advantage of the 
strengths of both, or if preferential, one can skip using AGC at all. For documenting the 
method in the main article, we choose to use AGC1, with all references there to AGC 
inferring this choice. 
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S1.3. Processing Parameters 
Here we address in more detail the rationale for parameter choices in the RTM 

processing, and their relative importance to signal-to-noise ratios and location accuracy. In 
general, we are aiming for coarse initial locations that can be obtained either in real-time, or 
from an archive, on a reasonably common computer platform. The notes in Table S1 come 
from more than 150 parameter permutations applied to Alaska data from 15 December 2016 
to 14 January 2017, as well as a selection of other days and events from several volcanoes 
(Table S2). An exhaustive statistical treatment of the complex relation between each of the 
parameters and the impact on the full Bogoslof eruption sequence is beyond the scope of this 
study however. Additional: Steps 5 and 6 of pre-processing could be reversed, but lead to a 
decrease in SNR and greater computational expense (also see section S4). Instrument 
responses are flat in the passband of the filter; hence these responses are not removed during 
pre-processing. 
 
S1.4. Detector Function Formation 

Here we elaborate on the two types of detector function (DF) introduced in section 
2.4 (main article). In this study, we specifically exploit the extended duration property of 
volcanic eruptions by forming the DF from not simply the sample-wise maxima of stacks, 
but by applying a running 150 s anticausal window to each stack and taking the maximum 
sum from each window as the DF (Figure S1). The effect on the DF is twofold: (1) there is a 
reduction in the number of very short, i.e., nonvolcanic events in the DF; (2) the DF is 
smoother and thus analyses are less sensitive to fine scale features which may be spurious. 
As noted in the main article, for brevity throughout, we use DF to indicate the time-summed 
DF (TS-DF) method, and stack to indicate time-summed-stacks, unless otherwise implied by 
context. The summation process produces different results to simply smoothing/filtering a 
single-time-window DF (STW-DF). Comparisons using synthetic data are presented in 
section 3.6, main article. 
 
S1.5. Detection and Location Methods 

Sections 2.4 and 2.5 of the main article briefly address automated event detection and 
location. This process is illustrated by Figures 6 and 7 (main article) and detailed below: 
 
(1) A DF is converted to a signal-to-noise ratio in decibel (dB) format using the following 
equation (adapted from Walker et al., 2010): 
 

 
 

where DFfilt is a DF high-pass filtered above a particular period to remove the DF 
background offset. To calculate DFfilt we subtrend (section S1.1) with a 48-hour low-pass 
setting. 
 
(2) DFSNR samples above a detection threshold (12.5 dB) are grouped automatically into 
peaks (requiring a minimum gap of 1,800 seconds) which are then located automatically.  
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(3) For each peak, k number of DFSNR samples above a location threshold (LT) are assessed, 
where LT is defined as the 75th percentile of the DFSNR samples in the peak. The location 
methods applied to the corresponding time period are as follows:  
 

(i) MAX (maximum): for DFSNR(k) > LT, the final location is the average of the 
locations corresponding to samples within ±75 seconds of the maximum amplitude;  

 
(ii) COM (center of mass): as above, but using the weighted-mean instead of the 
maximum value as a reference point;  

 
(iii) COM3 (center of mass in three dimensions): the final location derives from the 
weighted-mean of all stack samples while DFSNR(k) > LT. As COM consistently 
provides less accurate locations than COM3, we proceed with MAX and COM3 only. 

 
Using synthetic data (section 3.6, main article), it is clear that events < 60 s are more 
resolvable using a STW-DF, and such an approach could be taken when looking for short 
signals (the volcanic events in the Bogoslof catalog are all > 150 s however). An alternate 
but not fully explored location strategy is to use the location corresponding to the most 
concentrated stack amplitudes, rather than the center of mass. In the presence of multiple 
regions of varying dimension, determining which option is ideal is challenging, however. 
 
S1.6. Classification Curves and Performance 

Alternative and complementary classification curves to basic receiver operating 
characteristic (ROC) analyses (section 3.4, main article) can be computed once the detector 
function (DF) samples have been classified as true-positives (TP), false-positives (FP), true-
negatives (TN) and false-negatives (FN). For example, ROC analysis can be conducted in 
more than two-dimensions, by making a third axis the true-detection rate, or false-detection 
rate (Ham et al., 2012), thereby offering more insight into algorithm behavior. Detection 
Error Trade-off (DET) curves (FN-rate vs. FP-rate) emphasize differences between 
algorithms that perform almost equally well in ROC space. Another common analysis tool is 
the Precision-Recall (PR) curve (TP/TP+FP vs TP-rate). By ignoring the TN class, PR 
curves focus on the ability of the algorithm to class positive outcomes rather than positive 
and negative outcomes. Using PR curves on a sample by sample basis however suffers from 
biases in the false-positives provided by swimming artifacts. Another approach for 
addressing the class imbalance and potential of missed events in a catalog is using pseudo-
ROC curves, which scale the x-axis by time (Runco Jr. et al., 2014; Bueno et al., 2019). The 
percentage area under our ROC and such pseudo-ROC curves are identical however. In this 
initial study, we limit our scope to the 2D ROC curves described though acknowledge that 
the classes are imbalanced. 
 
S1.7. Wind Masking 

Wind noise is an inescapable feature in the data used in this study, varying by station 
and time of year. Though we partly approach mitigating wind noise through the 
aforementioned subtrending (section S1.1), we also investigate the effectiveness of a wind 
mask. This mask operation works in two steps by:  

 



Supplemental Material  Chapter 2 

 82 

(1) Calculating the mask – for three days before and after the day in question, 
determine the e.g., 50th or 75th percentile of power in the 0.03–0.08 Hz band. (The frequency 
band is chosen as a proxy for wind after studies by Fee and Garcés (2007) and Green et al. 
(2012), where we choose a similar minimum band but a lower maximum band to reduce 
overlap with volcanic events.) The mask calculation is performed in the frequency domain, 
between stages 2 and 3 of pre-processing (section 2.2, main article);  

(2) Applying the mask – for each subdivision of the waveform being masked (e.g., 15 
minute sections), the power in the 0.03–0.08 Hz band is compared to the reference mask 
level from (1), and if above the mask level, the amplitude of this section is down-weighted or 
set to zero. This step takes place prior to step 10 (normalization) in pre-processing. 

We find that though the wind mask reduces the prevalence of detected nonvolcanic 
events (or possibly coherent noise), it also reduces the prevalence of some volcanic events. 
Thus, we do not incorporate this mask here as part of our processing. As a final note, though 
the TA does have wind speed sensors at most sites (~70%), such sensors were not available 
for all sensors on all networks used, so this information was not incorporated for establishing 
accurate wind-speed to infrasound-amplitude relations at each station (e.g., Bowman, 2005; 
Woodward et al., 2005; Le Pichon et al., 2009). For future work, alternative wind-noise 
reduction strategies may include pure-state filters (Olson, 1982; Arnoult et al., 2010), 
envelope frequency ratios (Sit et al., 2012), Non-Negative Matrix Factorization (Carniel et 
al., 2014), and signal decomposition using deep learning techniques (Zhu et al., 2019). 

 
 
S2. Bogoslof Eruption – Onset 12 December 2016 

The Bogoslof eruption sequence began on 12 December 2016, but awareness and 
monitoring by AVO did not begin until the fourth explosion. Notification was prompted by 
automated infrasound alarms for the Dillingham array, and observations from pilots 
(Coombs et al., 2018). Retroactive analysis by AVO found that these events were detected by 
between two or fewer infrasound arrays (e.g., Figure S3). Results summarized in Figure 5 
(main article) and Figures S3–S12 show that these weakly infrasonic events were detected 
with RTM using the presented algorithm. However, as discussed in the main article and 
supplemental material, results vary with parameter choices. To illustrate, Figure S2 shows 
DFs for the only parameter and station combinations from section S4 (4 of 24) that showed 
the 12 December 2016 event. Specifically, these parameter sets involve AGC1 with linear 
and Nth-root stacking (N = 2). 
 
S3. Bogoslof Eruption – Monthly Detector Functions 

Detector functions for December 2016 to September 2017 are provided by Figures 
S3–S12. Information on non-Bogoslof events during this time period, particularly from 
Cleveland volcano, Alaska, are addressed by section 3.5 (main article) and Table S2. 
 
S4. Bogoslof Eruption – Monthly RTM Statistics  

Here we expand upon sections 3.4 and 3.6 of the main article, commenting on 
semblance and F-ratio stacking methods, as well potential impacts on real-time processing. 
We also provide ROC classification, event detection and location accuracy results for all 
combinations of AGC, stacking, and station groups (Figures S13–S16, Tables S3–S10). 
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Compared with linear stacking or Nth-root stacking, semblance and F-ratio generally 
have better ROC classification results for events that were detected using AGC1. For AGC2, 
improvements were only seen for the single sensor stations (Figure S13). For event 
detection, semblance and F-ratio were poorer overall vs. linear and Nth-root stacking  
(Figure S14). Location accuracy for those events that semblance and F-ratio detected 
(Figures S15 and S16) show improvements in some circumstances, though given a lower 
detection rate, this metric is difficult to weigh the significance of. With the importance of 
event detection as a minimum standard, we prefer to weight that consideration at the expense 
of more false positives in this particular case. Thus, we use linear stacking, rather than 
semblance or F-ratio for the approach in the main article. 

Significantly for real-time processing, the stacking methods vary by computational 
cost, with linear stacking requiring the least operations, followed by Nth-root stacking (for 
N = 2), then semblance, with F-ratio the most time consuming. In part this cost comes from 
the explicit need for time windows (tested with 300 s and 600 s durations, with 150 s 
overlap), rather than relying on the inter-sample spacing used by linear and Nth-root 
stacking. Given this computational cost, the time-grid resolution for semblance and F-ratio is 
made poorer to compensate (but does give smaller files). Using variable rather than fixed 
window lengths to reflect atmospheric multipathing may be advantageous for RTM strategies 
in this regard (Park et al., 2018). Further, from a detection perspective, long duration events 
are less sensitive to use of an accurate celerity than short events. Depending on the detection 
objective, a fixed celerity could be used to save the computational cost of incorporating 
celerity into the grid search. This would likely come at the expense of location accuracy, 
though this may not be important if a secondary method is employed which uses the coarse 
location as a starting point. Tepp (2018) addresses similar concerns for a near-real-time 
volcanic seismic swarm detector, including at Bogoslof. 
 
S5. Software Resources  

Our RTM algorithm (v. 7.13) is written in the Python programming language  
(v. 3.6.5, Python Software Foundation, https://www.python.org). We explicitly incorporated 
the following software packages for processing, analysis and plotting: 
 
Circle Draw: Scholtes, J. (2016). Python-custom distance radius with basemap. Available 
from: https://stochasticcoder.com/2016/04/06/python-custom-distance-radius-with-basemap/ 
 
Dill: McKerns, M. M., Strand, L., Sullivan, T., Fang, A., and Aivazis, M. A. G. (2011). 
Building a framework for predictive science. Proceedings of the 10th Python in Science 
Conference. Available from: https://arxiv.org/pdf/1202.1056 

McKerns, M., and Aivazis, M. (2010–). pathos: a framework for heterogeneous 
computing. Available from: 
http://trac.mystic.cacr.caltech.edu/project/pathos/wiki.html 

 
FFmpeg: FFmpeg developers. (2016). FFmpeg tool. Available from: https://ffmpeg.org 
 
GDAL: GDAL/OGR developers. (2018). GDAL/OGR Geospatial Data Abstraction software 
Library. Available from: https://gdal.org 
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GISMO: Thompson, G., and Reyes, C. (2017). GISMO - a seismic data analysis toolbox for 
MATLAB. Available from: https://geoscience-community-codes.github.io/GISMO/ 
 
GMT: Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., and Wobbe, F. (2013). Generic 
Mapping Tools: Improved version released. EOS Transactions, AGU, 94(45), 409–410. 
https://doi.org/10.1002/2013EO450001 
 
IPython: Pérez, F., and Granger, B. E. (2007). IPython: A System for Interactive Scientific 
Computing. Computing in Science & Engineering, 9, 21–29. 
https://doi.org/10.1109/MCSE.2007.53 
 
Matplotlib: Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in 
Science & Engineering, 9, 90–95. https://doi.org/10.1109/MCSE.2007.55  
 
NumPy: Oliphant, T. E. (2006). A guide to NumPy. USA: Trelgol Publishing. 
 
ObsPy: Beyreuther, M., Barsch, R., Krischer, L., and Wassermann, J. (2010). ObsPy: A 
Python toolbox for seismology. Seismological Research Letters, 81(3), 530–533. 
https://doi.org/10.1785/gssrl.81.3.530  
 
openpyxl: openpyxl developers. (2016). openpyxl tool. Available from 
https://openpyxl.readthedocs.io/en/stable/ 
 
SciPy: Jones, E., Oliphant, E., Peterson, P. et al. (2001–). SciPy: Open Source Scientific 
Tools for Python. Available from: https://www.scipy.org 
 
[Our RTM code is not currently publicly available. An alternate RTM infrasound tool, partly 
based on ours, is located here: https://github.com/uafgeotools/rtm] 
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Figure S1. Individual stacks for each grid node in the search area, for the time period covering the 8 March 
2017 Bogoslof eruption, using sensors within a radius of 2,000 km. These data are summarized with a detector 
function (DF) by (left) taking the maximum of all the stacks at each time point (after Walker et al., 2010), 
shown here as a red line (single-time-window-DF, STW-DF), or (right) taking the maximum sum from a 
running 150 s window (time-summed-DF, TS-DF). Each point in the DF can be tied to the original stack/grid 
location that the value came from. 
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Figure S2. Detector functions (DF) for parameter combinations that identify the Bogoslof eruption sequence 
onset on 12 December 2016. (a) All sensors, AGC1, linear stacking. (b) Array sensors, AGC1, linear stacking. 
(c) All sensors, AGC1, Nth-root stacking, N = 2. (d) Array sensors, AGC1, Nth-root stacking, N = 2. Other 
combinations of sensors, AGC methods, and stacking type did not identify this event above 12.5 dB. Alaska-
wide DFs are colored by mislocation and Bogoslof-specific DFs are colored black. The Bogoslof DF is the 
stack corresponding to the specific trial source location (grid point) at Bogoslof. Matching amplitudes 
between the two DFs (marked with bold black line segments) indicate zero mislocation. The vertical dashed 
line is the AVO cataloged event onset, and the dark grey section the period of AVO cataloged infrasound. 
Horizontal dotted lines earmark the 12.5 dB detection threshold. 
 
 
 
 
 
Figures S3–S12. (below.) (a) Alaska-wide detector function (DF) whose variation principally reflects 
eruptions from Bogoslof during the indicated month. DFs use AGC1 and linear stacking (same method as 
main article) and all available infrasound sensors within 2,000 km of Bogoslof. Colored dots on the second y-
axis indicate the number of AVO infrasound arrays were cataloged has having detected infrasound (Lyons et 
al., 2020; Coombs et al., 2019). These dots are colored as follows: red = detected by both AVO and RTM; 
blue = detected by AVO only; orange = detected by RTM only; green: no detection by either AVO or RTM. 
The mislocation to Bogoslof for each DF sample is shaded. The horizontal dashed line is equivalent to 12.5 
dB on the Alaska-wide DF. (b) As per (a), though the DF reflects variation specifically at the grid node 
coincident with the geographic location of Bogoslof (i.e., is equivalent to the stack corresponding to this grid 
node). Due to the summation process in forming the DFs, DF amplitudes can be higher than the number of 
normalized waveform envelopes being stacked. 
 

(a) (c)

(b) (d)
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Figure S3. 
 
 
 
 
 

 
 
Figure S4. 
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Figure S5. 
 
 
 
 
 

 
 
Figure S6. 
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Figure S7. 
 
 
 
 
 

 
 
Figure S8. 
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Figure S9. 
 
 
 
 
 

 
 
Figure S10. 
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Figure S11. 
 
 
 
 
 

 
 
Figure S12. 
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Figure S13. For AVO-cataloged infrasound events from Bogoslof detected by RTM: The area under receiver 
operating characteristic (ROC) curves are shown for each combination of station selection, automatic gain 
correction (AGC) type, and stacking method. Semblance and F-ratio stacking methods use 300 s windows, 
with 150 s overlap. Events were cataloged for every month except April 2017. Absence of markers for a 
particular month here indicates no detections by the approach. Data values are contained in Tables S3–S10. 
The term global refers to Alaska-wide detector functions. The term 2th_root refers to Nth-root stacking with 
N = 2. 
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Figure S14. As for Figure S13 but showing event detection rates. As per section 3.4 of the main article, a 
detection allows for a ±15-minute margin around the AVO cataloged infrasound observation period. 
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Figure S15. As for Figure S13 but showing mean MAX mislocations of detected events. As per section 3.4 of 
the main article, a detection allows for a ±15-minute margin around the AVO cataloged infrasound 
observation period.  

 
 



Supplemental Material  Chapter 2 

 95 

 
 
Figure S16. As for Figure S13 but showing mean COM3 mislocations of detected events. As per section 3.4 
of the main article, a detection allows for a ±15-minute margin around the AVO cataloged infrasound 
observation period. 
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Movie S1. Uploaded separately. 
 
Top panel: Alaska-wide detector function (DF) (colored by mislocation) and Bogoslof-specific DF 
(colored black) for an eruption at Bogoslof on 8 March 2017. The Bogoslof DF is the stack 
corresponding to the specific trial source location (grid point) at Bogoslof. Similar amplitudes 
between the two DFs indicate low mislocation with respect to Bogoslof. Final location estimates for 
events are performed only on the high amplitude values of the peak (process not shown here). See 
section S1.5, supplemental material, and section 2.5 (main article) for further information on location 
methods. Data is from all available infrasound sensors within 2,000 km of Bogoslof. The vertical 
dashed line is the AVO cataloged event onset, and the dark grey section the period of AVO cataloged 
infrasound. The horizontal dotted line earmarks the 12.5 dB detection threshold. 
 
Middle panel: Variation in mislocation from Bogoslof for each DF sample.  
 
Bottom panel: Time-slice through stack information where the color-scale represents the amplitude of 
time-aligned data stacks at each grid location. The corresponding time in each DF is indicated by the 
moving red dashed marker in the top and middle panels. Time stamps are also provided in the map 
title. A yellow star marks the grid node with the highest stack amplitude at each time step. Sensors 
are shaded red proportional to stack contribution for the corresponding source time. Circles are at 500 
km spacing, centered on Bogoslof. 
 
Movie S2. As for Movie S1, but using only infrasound array sensors. 
 
Movie S3. As for Movie S1, but using only single sensor stations. 

 
 
Table S1. Uploaded separately. Notes on Selected RTM Processing Parameters. 
Note: Primarily based on linear stacking with AGC1 (section S1.2), using all available sensors. 
 
Table S2. Uploaded separately. RTM Observations for a Selection of non-Bogoslof Volcanic 
Eruptive Events from December 2016–2018. 
Note: For each event, we test with AGC1 and AGC2 linear stacking methods using all sensors as 
described previously, as well as with array-only configurations. Eruption times, durations, plume 
information, event sizes and other characteristics from are from Alaska Volcano Observatory (2019) 
and KVERT, Institute of Volcanology and Seismology FEB RAS (2019). This table is referred to in 
section 3.5 of the main article. 
 
Tables S3–S10. (below.) Detection and Location Statistics for Bogoslof Eruption Sequence. 
Note 1: Events considered are those cataloged by AVO as having detectable infrasound. 
Note 2: April 2017 had no AVO cataloged events.  
Note 3: As per section 3.4 of the main article, a detection allows for a ±15-minute margin around the 

AVO cataloged duration period. 
Note 4: The term global refers to Alaska-wide detector functions. 
Note 5: The term 2th_root refers to Nth-root stacking with N = 2. 
Note 6: The mean values in the tables do not account for different sample sizes and so should only be 
used as relative rather than absolute measures of performance. 

 
AUC: Area under receiver operating characteristic (ROC) curves. 
EVD: Event detection proportion. 
MAX: Mean mislocation using MAX method. 
COM3: Mean mislocation using COM3 method.  
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Table S3. 
 

 
Table S4. 
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Table S5. 
 

 
Table S6. 
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Table S7. 
 

 
Table S8. 
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Table S9. 
 

 
Table S10. 
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Chapter 3. Improving Detection And Localization Of Explosive 

Volcanism in Alaska via Infrasound Noise Reduction: 

Backprojection and Array Processing Applications 
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Abstract 

The recent deployment of a relatively dense regional infrasound network in Alaska 

offers a novel opportunity to remotely study multiple erupting volcanoes each year, which 

together exhibit a range of sizes, durations, and styles. This network comprises many former 

stations from the EarthScope Transportable Array (2014–2021), those operated by the 

Alaska Volcano Observatory, and others. Such events provide a unique validation data set to 

examine the ability of different network configurations and processing strategies to detect, 

locate, and characterize remote volcanic eruptions. Due to the often long distances between 

stations and the volcanoes in the region, notable limitations to detection and location 

schemes come from anisotropic atmospheric propagation, and low signal-to-noise (SNR) 

conditions, with microbaroms and wind being the dominant contamination sources. Here we 

focus on improving data processing to reduce noise and therefore enhance signal detection 

and source location accuracy using backprojection and array processing approaches. 

Additional evaluation metrics include SNR changes, distortion, need for manual data 

labeling, and computational cost. We compare a range of techniques that separate signals and 

noise in the spectral domain, including within the same frequency band. Examples include 

block thresholding, non-negative matrix factorization, and data-adaptive Wiener filtering. 

Such noise reduction on individual waveforms (i.e., pre-stack) can improve many basic 

analyses, given that SNR enhancements do not rely on combining traces (i.e., co-stack 

strategies) in order to improve coherence and isolate events. We further compare results of 

the pre- and co-stack methods, as well as combinations of both techniques. Denoising effects 

vary significantly between algorithms, with performance typically proportional to the 

original SNR of the data, and inversely proportional to the spectral and temporal overlap of 

signals and noise. Data from the 2016–2017 submarine and subaerial Bogoslof eruption 



1. Introduction  Chapter 3 

 103 

sequence, as well as synthetics, provide a basis for the analysis. Our primary findings are that 

reducing the amplitude of microbaroms, as well as their coherence between sensors, benefits 

array processing by simultaneously limiting background clutter and enhancing the number of 

detected volcanic event arrivals. Wind noise reduction has little effect on these results, but 

does improve waveform and backprojection SNR. 

 
1. Introduction 

Between 2016 and 2021, seven different volcanoes erupted in Alaska, spanning both 

a wide geographical area, and a range of explosive and effusive behaviors (Figure 1). 

Notable among these was the December 2016 to August 2017 eruption of Bogoslof, which 

produced seventy explosive eruptions (e.g., Coombs et al., 2019). With some plumes 

reaching over 10 km in elevation at this isolated island, hazards to passing aircraft were a 

pressing concern. An absence of on-ground instrumentation meant that all observations were 

made remotely, including using seismicity, satellite imagery, lightning detection, and 

infrasound. Infrasound refers to acoustic waves with frequencies below 20 Hz, the typical 

lower threshold of human hearing. Volcanic explosions radiate infrasound through the 

atmosphere, where it can propagate for thousands of kilometers (e.g., Matoza et al., 2011a). 

This makes infrasound a useful tool for remote detection and location of volcanoes such as 

Bogoslof, and others in Alaska. The arrival of the EarthScope Transportable Array (TA) in 

Alaska, beginning in 2014 (Figure 1), was unprecedented in terms of having a large, dense, 

regional seismoacoustic network close to a volcanic arc. The TA complemented sparsely 

spread infrasound stations already in place, operated by the Alaska Volcano Observatory 

(AVO). From 2019–2021, as the TA’s mission wound down, many sites were transferred to 

other operators such as the Alaska Earthquake Center (AEC), with the remaining sites 
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removed entirely. In this paper we continue to refer to the TA, as that was the network in 

place during the eruption being assessed. 

 

 

Figure 1. Locations of volcanoes with eruptions since 2016, and available seismic (S) and infrasound (I) data 
in Alaska during the course of the Bogoslof eruption (2016–2017). Infrasound arrays that are referenced in 
this study are labelled in black, as well as volcanoes that have erupted since 2016 in white (Mount Cleveland 
volcano also has an infrasound array). Since 2020, several additional infrasound arrays have been installed by 
the Alaska Volcano Observatory in the Aleutian Islands. The quantity of TA stations varied through the 
eruption, with installations migrating westward. Some TA stations were removed entirely starting in 2021, 
while others have been adopted by existing regional networks. 
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In previous work we explored using the TA and regional infrasound stations for 

detection and location of explosive eruptions in the Aleutian Arc and Kamchatka, Russia 

(Sanderson et al., 2020a). We found that a simple envelope-based backprojection technique, 

and automated event identification process, was able to capture up to 85% of the infrasound 

generating events from Bogoslof that were catalogued by AVO (Coombs et al., 2019). 

Notable limitations to the scheme come from anisotropic atmospheric propagation, and low 

signal-to-noise (SNR) conditions, with wind being the dominant noise source. Here we focus 

on improving waveform data processing to reduce noise, thereby enhancing signal detection 

and source location accuracy. Signals from Bogoslof often have similar character to 

microbaroms (ocean noise) and wind, providing a strong challenge for signal separation. In 

part this is due to attenuation and remote detection, but also due to the often submarine 

nature of the eruptions (e.g., Lyons et al., 2019). 

In this study we extend our focus from a backprojection location technique (reverse 

time migration, RTM), to include array processing. Both strategies work on the principle of 

beamforming (stacking) signals from different sensors according to an acoustic velocity 

model, such that constructive and destructive interference improves the amplitude of acoustic 

arrivals, and decreases non-acoustic noise sources such as wind. Wind noise is a common 

problem that can make beamforming ineffective for three principal reasons: (1) in array 

processing, local wind turbulence (among other factors) can reduce the coherence of signals 

of interest between the array elements; (2) in RTM, wind affects the amplitude of traces 

which are typically normalized prior to stacking; and (3) again in RTM, a common approach 

is to take envelopes of waveforms before stacking, with this smoothing effect reducing the 

impact of destructive interference. One of our aims, therefore, is to explore how wind noise 
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can be removed from our data prior to beamforming, and whether this removal provides 

benefits to detection and location strategies. [Appendix 1 describes early work on this topic.] 

A second natural phenomena that impacts infrasound records are microbaroms. These 

are acoustic arrivals generated by nonlinear wave-wave, and wave-shore interaction, with a 

spectral peak between 0.1–0.5 Hz (e.g., Bowman et al., 2005). This frequency range overlaps 

with the majority of the Bogoslof events (e.g., Fee et al., 2020; Lyons et al., 2020), more 

noticeably at remote stations where attenuation has reduced higher frequency components. 

Microbaroms are detectable worldwide due to their low frequencies, and there are many 

potential source areas (Landès et al., 2012; Matoza et al., 2013). In Alaska, the primary 

origin and strength of microbaroms varies over the course of the year, such that backazimuth 

of the microbaroms and volcanoes may periodically coincide. Being acoustic arrivals, 

microbaroms often constructively add during beamforming (depending on the algorithm and 

spatial extent of the source region). Such directional interference can cause false alarms and 

missed detections in monitoring applications (e.g., Matoza et al., 2011b). This pervasiveness 

leads to microbaroms being the main source of so-called clutter (Ceranna et al., 2019; Mialle 

et al., 2019). Consequently, we also aim to see if reducing microbaroms improves array 

processing and RTM performance. 

To our knowledge there is limited prior literature on denoising individual infrasound 

traces, as SNR enhancement usually comes through beamforming. These denoising methods 

enable a waveform to be separated into signal and noise components, enabling manipulation 

of either. This contrasts with classification approaches that identify time periods of signals 

and noise, but do not modify the signal. One recent development is a study by Carniel et al. 

(2014), with the supervised approach employing statistical foreground activity detection, 

non-negative matrix factorization (NMF), and Wiener filtering to reduce wind noise 
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affecting volcanic tremor. Another recent study, by Williams et al. (2020), shows how 

denoising infrasound traces could improve the number of volcanic eruption detections made 

during array processing by reducing microbaroms. This approach is based on semi-

supervised adaptive spectral subtraction using non-local means. Finally, Cook et al. (2021) 

combine a wind noise detection and compensation technique based on the characteristic 

spectral shape of wind noise in the presence of a windscreen, using synthetic sources in the 

low-audio range. These approaches do not currently exist as open source tools, and are very 

limited in terms of test cases, factors we aim to improve on. Many contemporary signal 

separation techniques stem from developments more commonly seen in the audio, music, 

and image processing industries going back some decades (e.g., Boll, 1979). Seismology has 

also had some recent developments in denoising single traces, using statistical threshold and 

machine learning based techniques (e.g., Cabras et al., 2012; Langston and Mousavi, 2018; 

Zhu et al., 2019; Jiang et al., 2020). Approaches such as seismoacoustic coherence weighting 

(e.g., Matoza and Fee, 2014; Fee et al., 2017; Ichihara et al., 2021) take advantage of co-

located sensors and air-to-ground coupled signals. Median filters can be effective for 

removing (or keeping) impulsive signals and white Gaussian noise (e.g., Bednar, 1983). 

To remove unwanted wind noise and microbaroms from our data, we examine several 

existing open source data decomposition tools. The approaches span fully supervised 

(training with signals and noise), semi-supervised (training with noise only), and 

unsupervised classes. The methods can be applied to a single trace, however, without need 

for large training data sets. Our analysis covers several kinds of volcanic events, station 

types, and source-station distances. We aim to identify how well these kinds of trace 

denoising approaches are beneficial in terms of detecting and locating events under these 

different but common circumstances. As with any realistic implementation of a processing 
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workflow, there is no one optimal method or set of parameter choices, particularly with such 

a large number of free parameters (e.g., Withers et al., 1998; Mialle et al., 2019). For 

evaluation criteria here, we use metrics like SNR, distortion, and phase changes, which are 

particularly relevant for meeting the goals of the project.  

The organization of the paper is as follows: First we describe the typical 

characteristics of Bogoslof infrasound, wind noise, and microbarom clutter, as well as how 

hardware characteristics can affect these observations. Next, we review the data 

decomposition methods used for isolating signals of interest, and then the array processing 

and RTM schemes used for detecting and locating events. Finally, we present our results 

which show that microbarom reduction primarily improves array processing by not only 

reducing clutter, but also by enhancing event detections, particularly in the band previously 

dominated by microbaroms. Some methods only reduce microbarom amplitude, whereas 

others also reduce residual microbarom inter-sensor similarity and thus detectability. Wind 

noise reduction does not strongly affect array processing performance, but does improve 

SNR for backprojected data, thereby helping improve event identification. 

 
2. Data and Station Characteristics 

The geological, geochemical, and geophysical nature of the Bogoslof eruption 

sequence is presented in a special journal issue (Waythomas et al., 2019), following several 

prior publications (e.g., Coombs et al., 2018, and references therein). Of particular relevance 

here are those studies which address the infrasound character of the eruptions, including 

Haney et al., (2018), Wech et al. (2018), Lyons et al. (2019), Haney et al. (2020), and 

Schwaiger et al. (2020). Infrasound records of the eruptions persist from minutes to hours, 

with the frequency range of the eruptions spanning from below 0.1 Hz, to more than 10 Hz 
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(as recorded at the nearby Okmok array), depending on whether the eruption is at a 

submarine or subaerial stage (Fee et al., 2020; Lyons et al., 2020). Higher frequency 

components are attenuated with distance. For eruption catalog information, we refer to 

Coombs et al. (2019), who include which infrasound arrays made observations, as well as 

detection start and stop times. Lyons et al. (2020) have a differing record of which arrays 

recorded events in some instances. Differences in detection rates between sources may be 

due to different array processing methods and thresholds (section 3.4). We include notes in 

the supplemental material on some of these differences, as well as other potential 

improvements to catalogs. All dates here are in Coordinated Universal Time (UTC). 

Wind noise nominally has a spectrum with amplitude inversely proportional to 

frequency. This slope largely reflects the inertial subrange of the turbulence spectra, 

produced by atmospheric eddies of varying wavenumber and kinetic energy (e.g., Raspet et 

al., 2006). How wind noise presents at, and affects the stations in Alaska, can vary drastically 

due to hardware differences, location, and time of year. In this study, we evaluate data from 

all infrasound sensors within 2,500 km of Bogoslof, including the TA, an array which is part 

of the International Monitoring System (IMS IS53), and six arrays operated by AVO  

(Figure 1). The AVO operated array locations and station codes are as follows: Akutan 

(AKS), Adak (ADKI), Cleveland (CLCO), Dillingham (DLL), Okmok (OKIF), and Sand 

Point (SDPI). Infrasound sensors generally have a flat response from 0.01 or 0.1 Hz to 50 

Hz, and four to 8 elements per array. During the eruption, ADKI, DLL, IS53, and OKIF had 

either domes or pipe systems acting to reduce higher frequency wind noise through spatial 

averaging (Dixon et al., 2019; Lyons et al., 2020). As the remaining majority of stations have 

limited wind noise reduction hardware in the form of basic diffusers (Busby and Aderhold, 

2020), detection capability is particularly affected, and efforts to reduce wind noise must be 
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done post-recording. Snow cover can also act as a lowpass filter (Adam et al., 1998). 

Stations away from coasts, and forested sites are typically less windy. Sources closer to 

stations will have limited path attenuation, and so broader frequency ranges will be recorded. 

Proximal stations without wind noise reduction hardware will often have relatively similar 

eruption and wind noise characteristics. 

 
3. Methods 

 Here we introduce the techniques employed to prepare data, and to separate the 

events of interest from microbaroms and wind noise. We also describe the array processing 

and RTM strategies used to detect and locate events. Figure 2 provides an overview of these 

stages, with parameters and program links given in the supplemental material. The 

processing workflow is similar to those of e.g., Cabras et al. (2012), and Carniel et al. 

(2014), who begin with removal of persistent background sources, and then subdivide the 

remaining data into signals and noise. 

 

 
 
Figure 2. Summary of processing steps in denoising data prior to array processing and backprojection. Stage 
1 is basic data preparation, stage 2 removes the microbarom, and stage 3 removes the wind noise. BC: BCseis; 
HR: Harmonic Regeneration; NMF: Non-negative Matrix Factorization; NN: Nearest-neighbour filtering;  
SG: Spectral gating. 
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3.1. Preprocessing 

We preprocess all traces via the following steps: (1) taper the waveform, (2) filter 

above 0.01 Hz, (3) remove instrument responses using a water level at 35 dB, and (4) down-

sample to 20 Hz after applying an anti-aliasing filter. These parameters are used to limit 

amplification of very low frequency noise, and ensure workable computational processing 

times by limiting the sample rate, while retaining dominant event and noise frequencies (up 

to 10 Hz). This preprocessing is termed stage 1 of the methodology sequence (Figure 2). For 

local networks, where event spectra deviate from background noise at higher frequencies 

than the examples here, use of the full sample rate may be beneficial. 

 
3.2. Microbarom Removal 

Stage 2 of the workflow is to remove microbarom signals from the remaining data, 

which comprises potential events of interest, as well as high amplitude intermittent wind 

noise. In this study we compare five different methods to evaluate some of the advantages 

and disadvantages of each. For all methods except for nearest-neighbor filtering, a section of 

microbarom must be labeled as a reference. It is also possible to use a microbarom profile 

from an archive, or use a synthetic spectral representation. This can be useful in instances 

where a trace does not have a viable microbarom-only section. Brief descriptions of the five 

methods follow, and we refer the reader to the references cited for further details. Several 

methods overlap in procedure, and thus are not wholly independent concepts. Parameter 

choices are those that result in similarly reduced microbarom spectral amplitudes. For each 

method, it is possible to reduce the microbarom amplitude further, but this can be at the 

expense of the event waveform. 

Even when local winds are minimal, infrasound spectra will still typically present 

with a turbulence-induced negative slope, superposed with a microbarom peak. Stage 2 
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methods using a noise reference window will inevitably encompass both aspects of the 

ambient infrasound, unless some prior compensation is applied (e.g., Cook et al., 2021). 

Consequently, while this stage removes the microbarom as primarily intended, persistent 

atmospheric effects are also reduced. In this paper we will refer to both components of this 

lower-noise ambient state as the microbarom to avoid confusion with more prominent wind 

noise. Acronyms for the following methods are included in Table 1 for reference. 

 
 
Table 1. List of acronyms that appear repeatedly in the paper, and what they refer to. Additional acronyms 
are only defined at the time of their introduction in the paper. 

 
Acronym Definition Category 
ADKI Adak infrasound array Stations 
AGC1 Automatic Gain Control method 1 Backprojection 
AGC2 Automatic Gain Control method 2 Backprojection 
AKS Akutan infrasound array Stations 
AVO Alaska Volcano Observatory Stations 
BC / BCseis Block Choice seismic analysis Denoising 
CLCO Cleveland volcano infrasound array Stations 
DF Detector Function Backprojection 
DLL Dillingham infrasound array Stations 
HR / HRNR Harmonic Regeneration Noise Reduction Denoising 
IMS International Monitoring System Stations 
IS53 IMS station IS53 Stations 
NMF Non-negative Matrix Factorization Denoising 
NN Nearest-Neighbor analysis Denoising 
OKIF Okmok infrasound array Stations 
PMCC Progressive Multi-Channel Correlation Array processing 
PSD Power Spectral Density Characteristics 
PWS Phase Weighted Stacking Backprojection 
RTM Reverse Time Migration Backprojection 
SDPI Sand Point infrasound array Stations 
SG Spectral Gating Denoising algorithms 
SI-SDR Scale-Invariant Signal to Distortion Ratio Characteristics 
SNR Signal to Noise Ratio Denoising algorithms 
TA EarthScope Transportable Array Stations 
UTC Coordinated Universal Time Reference time 
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3.2.1. Block choice (BC) 

Block thresholding is the practice of adjusting the power in the time-frequency blocks 

formed via spectral transformation of data. We use the BCseis (Block Choice Seismic 

Analysis) program to implement this technique (Langston and Mousavi, 2018). This method 

incorporates wavelet transforms, making it unique among the tools described here. First, 

higher-order statistical tests are applied to the blocks in order to remove Gaussian noise. 

Next, the spectral representation is sharpened by concentrating energy around instantaneous 

frequencies. Signals and remaining noise are then separated using thresholds derived from 

generalized cross-validation (evaluating models with resampled data) and a Wiener filter. 

The operation of BCseis requires choosing a spectral resolution parameter, which has a 

considerable effect on the computation time (section 5.1). We find little first-order waveform 

difference between the lowest two settings (one and four voices), but that time-frequency 

representations of one voice data are noticeably coarse. Consequently, for analysis here, we 

use four-voice data, which remains practical for large data sets. 

 
3.2.2. Harmonic Regeneration (HR) 

Harmonic regeneration noise reduction (HRNR; Plapous et al., 2006) is the final part 

of this data-adaptive method. For each time step, the current a posteriori SNR (ratio of noisy 

signal power and noise power), and a priori SNR (ratio of clean signal power and noise 

power) from the previous step are used to determine the new a priori SNR and spectral gain 

required for a clean signal. Noise is removed using a Wiener-type filter, and following 

additional gain control, HRNR reduces harmonic distortion in the result. 
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3.2.3. Non-Negative Matrix Factorization (NMF) 

NMF is the process of factorizing a matrix X into two other matrices, W and H. In 

our case, X is a spectrogram. W is composed of basis vectors, also known as dictionary 

elements, representing the spectral amplitude at each frequency. H is a matrix of activations, 

also known as weights or gains, representing when the basis vectors occur. There are many 

popular NMF algorithms that perform this task, and here we use the Kullback-Leibler 

application by Bryan et al. (2013). To ensure the preprocessed trace is split into a foreground 

(components of interest) and background (undesired elements, typically noise), the basis 

vectors in W are pre-grouped into two sets, one set based on the frequency characteristics of 

the microbarom sample, and the other set based on everything else in the trace. The initial 

state of H is randomized. The individual time series are then reconstructed by using a 

masking filter to downweigh the undesired spectral elements. We did not have success when 

keeping W randomized, i.e., exploring whether the data naturally falls into two groups. 

Without pre-grouping, the resulting components of W and H have no ordering, necessitating 

some type of rule-based clustering mechanism. Given the large frequency overlap between 

Bogoslof events, wind noise, and microbaroms, effective clustering rules would be difficult 

to design.  

 
3.2.4. Nearest-Neighbor Filtering (NN) 

For this technique, no noise region needs to be specified, making the method fully 

unsupervised (McFee et al., 2015). The process first filters a time-frequency representation 

of the data by replacing blocks with the median properties of those nearby (i.e., neighbors), 

thereby discarding variable elements, and keeping repetitive ones such as the microbarom. 

This resulting matrix is then used as a background reference in a square-root-based Wiener 

filter, retaining only the event and wind noise elements. One of the key parameters is to 
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specify the number of nearest-neighbors being aggregated. Given that some of the Bogoslof 

events have durations of several hours, it is necessary in these cases to make this particular 

parameter quite large in order to ignore such events. The consequence, however, is that 

processing slows down considerably (section 5.1). Another limitation is that for periods of 

persistently high winds, this method may extract some of the wind noise components, not 

just the microbarom.  

 
3.2.5. Spectral Gating (SG) 

Noise gating is the practice of only passing signals through a system that are above a 

particular amplitude. For this technique, we use the implementation of Sainburg and Amr 

(2019). This method operates by masking trace elements that have lower power frequency 

components than thresholds based on the statistics of the designated noise-only section. A 

filter smooths the mask before being applied to the data. The mask application is via direct 

multiplication with the data spectrogram. This approach potentially leads to more artifacts 

than seen with masking procedures such as a Wiener filter. There are several similarities with 

the BC tool, but here the approach is simpler, and operates with a Fourier transform.  

In prior work (Sanderson et al., 2020b), we explored the impact of several 

unsupervised algorithms on microbarom and wind noise for RTM applications. This included 

spectral gating, but by treating the entire trace as the reference from which to determine the 

average noise from, rather than a manually identified region as here. Other unsupervised 

techniques assessed by Sanderson et al. (2020b) included spectral subtraction, adaptive 

foreground detection, and frequency-sorted NMF. These techniques performed inconsistently 

for the wide range of source-station distances and station hardware, with limited benefit to 

RTM detection and location. Consequently, we have focused more here on semi-supervised 

approaches, which can benefit from the specific nature of each station. 
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3.3. Wind Noise Removal 

 After the preprocessed trace has had the microbarom removed by any of the five 

methods in section 3.2, a second decomposition step separates out the wind noise in stage 3 

(Figure 2). Stage 3 uses NMF, regardless of the stage 2 technique. This selection follows 

from finding that the non-NMF stage 2 methods are relatively ineffective at removing wind 

noise while leaving the events intact. In part this is due to limited training options, but also 

that threshold-based methods that use high wind noise as a reference, will inevitably remove 

relatively low amplitude events. Here we take a fully supervised approach where we label an 

example wind section, as well as the event section using eruption catalogs. This approach is 

appropriate for effective separation as volcanic jetting (i.e., explosions like jet engines) and 

wind noise are often superficially similar in terms of waveforms and spectral content (e.g., 

Matoza et al., 2011a). The effectiveness of the wind noise removal also depends on how 

similar wind characteristics are at different times of day, as the amplitude and frequency 

range can change. Selecting a region of high amplitude wind noise generally ensures higher 

noise reduction levels. Scaling the amplitude of the basis vectors has the effect of adjusting 

the degree to which wind noise is removed. For simplicity, here we do not perform any such 

scaling. Notably, we find that a semi-supervised approach of only labeling the event can 

slightly improve wind noise reduction when compared to when both the event and wind are 

selected, but sometimes this is at the expense of event fidelity. Also, by not including a wind 

label, the option of basis vector scaling is unavailable. A semi-supervised approach of only 

labeling wind performs less well than the fully supervised case, doubling the wind noise 

amplitude in the foreground of stage 3 (results not shown). This latter approach may be 

useful in automated classification systems, where the characteristics of the microbarom and 

wind noise are generally well established, but the nature of events are not. Here, we are 



3.3. Wind Noise Removal  Chapter 3 

 117 

focusing on the benefits of denoising using as much prior knowledge as possible, leaving 

integration into a classification system to future work. 

The full signal separation sequence is illustrated in Figure 3. The 31 January 2017 

Bogoslof event was chosen as an example given the low amplitude activity hidden by the 

microbarom, transition from subaqueous explosions to subaerial jetting behavior (Fee et al., 

2020), and varying spectral overlap between the event and multiple wind bursts. In stage 2, 

the stage 1 preprocessed trace (Figure 3, first row) is operated on using NMF to separate out 

the microbarom background from any remaining arrivals in the foreground (Figure 3, second 

and third rows). The blue-line bracketed region in the top plot is used as a relatively clean 

microbarom sample. Next, we separate the stage 2 foreground into a new foreground-

background pair (stage 3), containing predominantly event and wind noise components 

respectively (Figure 3, fourth and fifth rows). The yellow and green bracket regions on the 

third row of Figure 3 are those designated as representative of event and wind noise 

characteristics for this second NMF process. The decomposition strategies are not perfect, 

however, and desired or undesired components may or may not pass between stages, 

depending on how similar they are to each other. For instance, the example in Figure 3 

shows effective microbarom isolation and removal in stage 2, whereas some wind noise 

remains in the foreground by stage 3. In part this is due to the frequency content of the wind 

at the start, middle, and end of the day varying considerably. Consequently, additional 

processing may be able to remove the very low frequency wind noise components that 

coincide with the event. However, this could be challenging given the similarity between the 

non-jetting parts of the event, which include very low frequencies, and this midday wind 

noise. What is considered to be mid-day wind noise here is somewhat speculative given the 

timing relative to the eruption, and dissimilar frequencies to wind later in the day. However,  
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Figure 3. Denoising stages applied to infrasound records of the Bogoslof eruption on 31 January 2017. Data 
are from OKIF channel 1. In this example we use NMF for both stage 2 and stage 3 separation steps. Data 
segments designated during processing are bracketed on the left-hand side on the appropriate traces as 
follows: microbarom (blue), event (orange), wind (green). The event timing is provided by the infrasound 
statistics in the AVO catalogue (travel time corrected). In the bottom panel, the red trace is the underlying 
black trace filtered >0.1 Hz, removing some very low frequency wind elements. The righthand side shows the 
corresponding spectral content. Here, the brackets are in white only for clarity. Warmer colours in the 
spectrogram indicate relatively high power. The microbarom is effectively removed in stage 2, with much of 
the wind at the beginning and ends of the day removed in stage 3. Wind during the middle of the day largely 
remains as it differs in nature to that used as a reference. 
 

the semi-coherent arrivals have apparent velocities on the order of 10 m/s, with beamforming 

suggesting arrivals are from the northwest and southeast, and so an eruption related 

phenomenon seems unlikely. Although gravity waves may have such velocities, we do not 

further speculate on such a source here. Such a variable wind noise spectra is not 

unprecedented, given that different kinds of turbulence produce different spectral 
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characteristics (e.g., Walker and Hedlin, 2010; Cook et al., 2021). Spectral analysis of the 

infrasound suggests that a volcanic jetting episode occurs during the final mid-day wind 

burst, ending at ~13:09. This would extend the catalogued infrasound activity by an hour, 

aligning more with the seismic end time (13:30) provided by Fee et al. (2020). 

In Figure 4a, we compare the first-order performance of each stage of the signal 

separation methods, using infrasound records of the 31 January 2017 Bogoslof eruption, 

recorded at OKIF. Each individual stage 2 method effectively removes the majority of the 

microbarom, and the common stage 3 (NMF) method significantly reduces the wind noise to 

low levels. The degree of wind noise reduction during stage 2, which aims to only remove 

microbaroms, varies slightly between methods. Minor deviations in the microbarom 

dominated portion of the signal are primarily shown by the grey (stage 2) BC trace, which 

retains some impulsive components. For the event portion, NN performs relatively poorly on 

preserving the initial impulses. To indicate the processing combinations in this paper, where 

only stage 2 is performed, we use the relevant acronym, and if stage 3 is also performed, we 

use “+ NMF” as a suffix. 

As it is not possible to know exactly what this event looks like noise-free, it is 

challenging to say which of the signal separation methods shown in Figure 4a are best at 

preserving the original waveform from this illustration alone. As noted in the section 

introduction, the noisy/original data beam in Figure 4b cannot be used as an indicator of the 

true signal, given that the microbaroms remain after beamforming. For the beam effective 

velocity and backazimuth, we use mean values from array processing results (section 3.4) 

during the eruption (333 m/s and 347°). This backazimuth differs from the true direction 

(352°), likely due to deflection of the arrivals by crosswinds. Such deviations from true are 

common for many Bogoslof explosions, at OKIF, as well as at the other arrays. Figure 4b 
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does illustrate, however, that wind noise is reduced by beamforming without any additional 

denoising steps, but much more so when beamforming denoised traces. In section 5, 

however, for a more impulsive and discrete Bogoslof explosion, we use metrics such as 

cross-correlation, phase changes, and the signal to distortion ratio to more systematically 

measure waveform alteration under different noise conditions. 

 
 
Figure 4. (a) Comparing first order differences between the original non-separated waveform (top), 
and each signal separation method (stage 1 = grey, and stage 2 = black, P = pressure). Data are from 
the 31 January 2017 Bogoslof eruption, recorded at OKIF (channel 1). Dotted lines mark the duration 
of the infrasound from the event in the AVO catalogue (travel time corrected). The mean stage 2 
SNR is 18.6 dB after denoising and 6 dB beforehand, representing a 310% increase in SNR. This 
calculation uses the marked microbarom period in Fig. 3 as a noise estimate, and the event section 
from 09:45-10:30 for the signal component. (b) Array beams for noisy traces, and for denoised (HR + 
NMF) traces. To a first order, resulting waveforms after stage 2, or stage 3, are similar between 
methods. Denoised beams have higher SNR than original beams during the non-windy parts as 
microbaroms do not destructively interfere. 
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Another useful processing evaluation metric is comparing the power spectral density 

(PSD) of each segment of the labeled data section at each stage of the processing. By doing 

this, we are able to establish whether signal separation is occurring as intended under 

different conditions. For example, Figure 5 compares PSDs for two of the stage 2 and 3 

combinations from Figure 4, where we choose two widely contrasting examples for 

illustration. For the microbarom labeled time section (Figures 5a and 5d), both methods 

similarly reduce the microbarom peak from their original levels (stage 1, blue trace) to those 

in the stage 2 foreground (purple), when compared at ~0.2 Hz. This is by design to keep the 

methods generally comparable. However, the shape of the resulting spectra is quite different, 

with the sharper NN peak demonstrating higher attenuation away from the center. Further, 

after applying NMF in stage 3, Figure 5a shows a frequency split in the peak of the residual 

microbarom between the foregrounds (green) and background (yellow), whereas those in 

Figure 5d are more similar. During the wind segment (Figures 5b and 5e), many profiles are 

similar, with differences resulting from the initial stage 2 separation. Here BC has a 

relatively sharp stage 2 background peak (red) compared to NN, meaning that the original 

wind noise (blue) is relatively unaltered in the stage 2 foreground (purple), except around  

0.2 Hz. An ideal case is consistent removal of the microbarom (and other persistent sources) 

through the trace, which neither method does a good job of here. In terms of the event 

portion we see that after stage 2, the BC background (Figure 5c, red) has the desired shape 

(i.e., like that in Figure 5a), indicating that the foreground (purple) has been adjusted 

appropriately. In contrast, for NN (Figure 5f), overcompensation has occurred due to the 

broader profile microbarom extracted (red), particularly at frequencies < 0.1 Hz. Despite 

having removed most of the microbarom in stage 2, stage 3 inadvertently reduces the 

microbarom further, particularly in Figure 5c. To a first-order for this event, the BC, HR, and 
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Figure 5. Examples of contrasting Power Spectral Density (PSD) estimates for labelled data segments at each 
processing stage (S). Fg and bg refer to the foreground and background respectively. Even though denoised 
traces using different methods may appear similar to a first order (Fig. 4), there may be subtler, but important 
differences in the frequency domain. Here we see for instance that microbarom removal in stage 2 is not 
evenly removed in different parts of the traces, and also that residual microbaroms may be re-split during 
stage 3. (a–c) PSDs for BC in stage 2, and NMF in stage 3. (d–f) PSDs for NN in stage 2, and NMF in stage 3.  
 

NMF methods have similar PSDs, with NN contrasting the most to these, and SG sharing 

characteristics of these endmembers. For other events and parameter combinations, however, 

results can vary. PSD analysis showed minimal differences between performing a single 

NMF operation to simultaneously separate microbaroms, wind noise, and events, and the 

two-step NMF + NMF approach described thus far. For consistency and ease of comparison 

with the other stage 2 approaches, we retain use of the two-step process. 

 



3.4. Array Processing  Chapter 3 

 123 

3.4. Array Processing 

For array processing, we use the progressive multi-channel correlation software, 

PMCC (Cansi, 1995; Le Pichon et al., 2010). PMCC searches in time-frequency space for 

coherent plane-wave arrivals that have similar wavefield parameters on multiple three 

element subarrays. As the three element combinations are of varying size, the array is 

sensitive to a wide range of frequencies, which reduces spatial aliasing. Where four element 

arrays such as OKIF have four subarrays and an aperture of ~100 m, the eight-element array, 

IS53, has 56 subarrays, and an aperture of ~2 km. PMCC groups detections of similar 

arrivals into families, for which the corresponding time-frequency blocks are called pixels. 

Output wavefield parameters from the processing include backazimuth, apparent velocity, 

mean frequency, and maximum amplitude (~waveform peak to peak). PMCC configuration 

parameters are supplied in the supplemental material, which includes a threshold to only 

detect acoustic arrivals (apparent velocities 250–500 m/s). Trace denoising occurs prior to 

running PMCC. 

 AVO infrasound array processing for the Bogoslof eruption was performed using a 

least-squares beamforming algorithm (Olson and Szuberla, 2005) incorporating the mean of 

the cross-correlation maximum (MCCM; e.g., Haney et al., 2018; Lyons et al., 2020) as a 

detection metric. Declaration of a detection is based on specific thresholds which cannot be 

directly reproduced with PMCC. As mentioned in section 2, use of variable parameters over 

time have led to slightly different published catalogs on the Bogoslof eruption (e.g., Coombs 

et al., 2019; Lyons et al., 2020). As we show in section 4, given the range of acoustic sources 

around Alaska and often great source-receiver distances, it is possible that some detections 

are coincidental rather than eruption related, and equally that some eruptions can be hidden. 
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3.5. Backprojection 

Backprojection, also known as RTM, describes a delay and stack grid search 

approach for locating events. For each trial source location on a grid, appropriate sections of 

waveform envelopes from the surrounding stations are extracted according to a velocity 

model, then aligned and stacked. To take some account of the different atmospheric paths, 

our simple backprojection scheme performs the spatial grid search for a range of fixed 

celerities (range/time, 250–350 m/s), and then retains the highest amplitude from all stacks at 

each time step to form a detector function (DF). The grid node which gives the highest 

amplitude in the DF is typically assumed to be the event source. Details of the basic data 

preprocessing, detection, and location methodologies can be found in Sanderson et al. 

(2020a), from which we use the “time-summed-DF” approach. This involves applying a 

running summation window to each stack before the DF is calculated. This tends to improve 

location accuracy and event classification rates, at the expense of event detection sensitivity. 

For regional source location, backprojection of direct infrasound is an uncommonly 

applied tool when compared to backazimuth-yielding methods. In part this is due to the rarity 

until recently of sufficiently dense infrasound networks with single stations, such as the TA. 

Backprojection using arrays is also possible however (e.g., Shani-Kadmiel et al., 2018). Air-

to-ground coupling recorded on seismometers has also been used as a proxy for infrasound in 

backprojection schemes (e.g., Walker et al., 2010). 

For RTM, we will address two topics. Firstly, whether denoising traces prior to 

stacking (“pre-stack”) is beneficial to event detection and location. Secondly, we will 

compare linear stacking to three advanced stacking techniques from seismology, namely: (1) 

phase-weighted stacking (PWS; Schimmel and Paulssen, 1997), (2) robust stacking (Pavlis 

and Vernon, 2010), and (3) selective stacking (Yang et al., 2020). We refer to these methods 
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as “co-stack” signal enhancement strategies. Each of these methods, though differing in 

implementation, ultimately penalize traces that do not share common waveform elements, 

and thus noise is reduced. We explored some further stacking-based methods such as pure-

state filtering (e.g., Samson and Olson, 1981), auto-covariance filtering (Nakata et al., 2015), 

and a technique using singular value decomposition-based Wiener filters (Moreau et al., 

2017). The computational time for these approaches, however, was not balanced by the 

performance level for the Bogoslof data set. Nth-root stacking, semblance, and F-statistic 

function stacking were previously found to not be advantageous vs. linear stacking for 

Bogoslof data (Sanderson et al., 2020a). 

 Data is processed in the same way as for array processing, i.e., the workflow in 

Figure 2. For each trace, we label event sections according to catalog onsets and expected 

delay times to each station, based upon a mean celerity derived from record section 

inspection. These steps keep with the intention of focusing on the degree to which trace-

based denoising improves RTM results, rather than incorporating an automated feature 

classification scheme. Sample microbarom and wind noise sections are picked manually. 

 
4. Results 

To illustrate some of the capabilities of the denoising processes, we use both array 

processing and RTM detection and location approaches. We focus on the 15 January, 31 

January, and 8 March 2017 Bogoslof eruptions, as well as on a longer period covering a 

series of explosions. 

 
4.1. Array Processing 

  In Figure 6 we show PMCC processing results for the 31 January event, and 

compare the results of the original (noisy) data, and denoised data using BC + NMF.  
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Figure 6a shows 24 hours of beamed data from OKIF and a summary of PMCC detections, 

plotted as backazimuth vs. time vs. frequency. In the original data, the microbarom presents 

as largely continuous detections to the southeast. The BC processing removes the large 

majority of the microbarom detections, particularly the earlier section which had a slightly 

lower amplitude than the reference section (Figure 3). Scaling plotted microbarom detections 

by amplitude would reduce the clutter further. Another persistent signal migrates from ~67° 

to ~62° over the course of the day (the ~5–8 Hz detections in Figure 6a). High-frequency 

arrivals often point to anthropogenic sources. However, at OKIF, the microbarom packets 

typically grade to higher frequencies away from the azimuthal center, with these marginal 

detections having lower quality detection statistics. Consequently, this is likely an artifact 

due to non-optimal processing parameters for the array geometry. Post-processing thresholds 

can filter these lower quality detections. Other arrays variously show fewer or no such 

anomalies. 

Figure 6b shows a close-up of only those detections likely associated with the 

eruption. The denoised data has more PMCC detections, as well as lowering the minimum 

frequency range of those detections into that previously occupied by the microbarom. The 

mean frequency of the families is also lower as a consequence. It should be noted that the 

corner frequency of the OKIF instruments was 0.1 Hz, limiting correct representation of 

< 0.1 Hz arrivals despite deconvolution of the instrument response. The azimuthal 

distribution of the denoised arrivals are slightly more dispersed than in the original data, 

potentially due to distortion during processing rather than reflecting improved accuracy. 

Notable features from results for the other methods include NN + NMF further extending the 

detection frequency range (at times to 0.01 Hz), whereas NMF + NMF doesn’t appear to 

affect the frequency range. 
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Figure 6. PMCC processing results for the 31 January 2017 Bogoslof eruption, for noisy (left) and BC + 
NMF denoised data (right), recorded at OKIF. Denoising methods generally increase the number of event 
detections, and reduce both microbarom detections and microbarom amplitude. (a) 24-hour view of results. 
Beams are aligned according to the means of the backazimuths and velocities from PMCC detections within 
±16° of true (352°). Each point on the backazimuth vs. time plot represents a PMCC family color-coded by 
mean frequency. Vertical dotted lines demark the catalogued infrasound period (travel time corrected). The 
horizontal dashed line indicates the true backazimuth. (b) Close-up view of the eruption period. In the 
frequency vs. time plots, pixels are color-coded by frequency if the detections are ±16° of true. Pixels from 
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other azimuths are grey, and white means no pixels. (c) Histograms showing OKIF PMCC detection statistics 
for the 31 January 2017 Bogoslof eruption for each denoising method combination (stage 2 shaded, stage 3 
outlined). The first peak is for the eruption, the second peak is likely due to a processing artefact, and the 
third peak is for microbaroms. Vertical dashed lines demark ±16° limits around the true backazimuth to 
Bogoslof from OKIF, which are used to calculate frequency totals provided in the subplot titles, and as per 
Fig. 6(b). Values shown are the number of families detected within ±16° of true. 

 

The summary of the PMCC results for the different denoising techniques in Figure 6c 

shows some significant variation in terms of detection of the different activity. As noted for 

Figure 6a, BC effectively removes much of the microbarom (as does SG) and related 

artifacts (which SG preserves). For the other methods, the number of microbaroms detected 

is not greatly reduced, even though the amplitude of the microbaroms are. As the PMCC 

threshold parameters do not include amplitude, the lack of microbaroms detections for BC 

and SG indicate that such arrivals are not simply made sufficiently small, but rather the 

waveforms are made incoherent via denoising. Compared to the results for the noisy data, all 

denoising methods increase the numbers of families for the eruption. NN increases eruption 

detections the most, by ~24.5% vs. the original data.  

In Figure 6a, gaps occurring in the microbarom align with increases in wind noise. 

We find that if stage 3 is performed without stage 2, there is a minimal (4%) uptick in 

detected microbaroms. This is an important result as it suggests limited value for array 

processing by removing wind noise in this way, i.e., few new detections will be found. The 

picture is more complex when combining stage 2 and 3, however, with microbarom families 

decreasing by an additional 20% during stage 3 for BC + NMF, for example, and increasing 

by 7% for SG + NMF (Figure 6c). Equally Figure 6c shows some minor (< 5%) variation for 

event detections between stage 2 and 3. 

To assess denoising performance on event location using multiple arrays, we apply an 

automated cross-bearings approach with the IMS-vASC algorithm (Matoza et al., 2017). 

IMS-vASC uses a grid search to tally the number of intersecting backazimuths over time. 
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There are two output layers which we use here. Firstly, the during layer, which is the map of 

total intersecting pixels for the day of the event in question. Secondly, the cleaned layer, 

which retains only those areas of the during layer that have a specific ratio (here, > 1.5) 

when compared to the average pixel counts in those areas for the days preceding the 

eruption. The idea of the cleaned layer is to remove persistent background sources like 

microbaroms, thereby retaining prominent transient events. In Figure 7, we compare two 

events using original and BC-denoised data. BC provides a compromise between strong 

microbarom reduction and moderate increases in event detection (Figure 6). The 31 January 

event uses two prior days for the cleaned grid calculation, and the 8 March event uses one 

prior day. These short prior durations are not ideal to provide background averages, but are 

constrained by the rapid movement of the dominant microbarom sources. During these prior 

periods, gaps in array detections are common due to wind noise. Consequently, the estimates 

of the background noise sources are not particularly robust here. As the prior days do not 

contain any events, it is not possible to apply stage 3 processing to the data, and so this step 

isn’t applied to the during-layer results either. 

For the 31 January event (Figures 7a–7f), all five AVO arrays have clear PMCC 

detections, with OKIF detecting the most (Figure 6). Consequently, the event location is 

constrained accurately, but a nearby microbarom source dominates the mapped results for the 

unprocessed data in the during layer (Figure 7a), as well as the cleaned layer (Figure 7b). As 

the event and microbarom do not share a common backazimuth at any of the arrays, 

separating these sources in backazimuth-frequency space is straightforward (Figure 7c). For 

the BC data, however, the microbarom is much reduced for the during layer (Figure 7d), and 

further still in the cleaned layer (Figure 7e). Now the Bogoslof eruption is the only 
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Figure 7. Mapping array cross-bearings using IMS-vASC. Reducing microbarom clutter can help isolate 
events of interest. This reduction can be done via data denoising and/or removing longer-term background 
average cross-bearing values. (a) During-grid layer, for the 31 January 2017 Bogoslof event, using 
unprocessed (noisy) data. Warmer colours indicate higher numbers of overlapping backazimuths, normalized 
for each plot. Infrasound arrays are marked with white circles, historically active volcanoes as red triangles, 
with Bogoslof enclosed by a yellow ring. Xs mark source areas of microbaroms. The grid resolution is 0.1°. 
(b) Cleaned-grid layer for data in (a). (c) Amplitude-scaled scatter plot of the frequency and backazimuth for 
each detection at OKIF (the true backazimuth is marked with a dashed line). (d-f) As for (a-c), but using BC 
processed data. (g-l) As for (a-f), but for the 8 March 2017 Bogoslof event. Data in (l) are from AKS. 
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prominent source. This provides an example where the denoising process provides an 

improvement over layer cleaning, useful in cases where there is limited prior data. Results 

for the noisy data can be improved significantly if the minimum number of pixels to count a 

station in intersection is set to 100 instead of 10 (as used in Figure 7), while also requiring 

each station to contribute. Detections by all five arrays is a rare occurrence however, and so 

such a constrained strategy cannot generally be relied upon. As crosswinds variously deviate 

arrivals from their true backazimuth, we use a 5° tolerance. For reference, Coombs et al. 

(2019) report only OKIF and SDPI detecting this event, whereas Lyons et al. (2020) list 

AKS, CLCO, and OKIF. 

 For the 8 March event (Figure 7g–l), only three AVO arrays have clear PMCC 

detections (AKS, DLL, OKIF). SDPI has some detections coincident with Bogoslof during 

the event window, but these are removed during denoising, so it’s uncertain from this 

analysis alone whether these arrivals are event related. As the primary microbarom source in 

this example shares a backazimuth with Bogoslof for most arrays, there is typically an 

overlap in backazimuths between event and microbarom detections. Coupled with less 

detecting arrays, the source location is less precise (e.g., Figure 7g vs. 7a). Following layer 

cleaning, the noisy data provides a narrowed-down source location (Figure 7h). The scatter 

plot in Figure 7i shows the backazimuth overlap for the microbarom and event at the AKS 

array. For the BC data, the microbarom source in the during layer is slightly reduced (Figure 

7j), but otherwise there is not a great change apparent. For the cleaned layer however (Figure 

7k), there is only a modest reduction in background elements. This implies that many areas 

from the during layer had ratios > 1.5 compared to the prior layer for the BC data. 

Incidentally, if the ratio is changed from 1.5 to 3, then no event is detected at Bogoslof for 

the noisy-data clean layer, but still is for BC, suggesting the denoised data is a more robust 
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result. This is also reflected by limiting the during period to the event itself, rather than the 

whole day, where for the denoised data, the maximum overlapping pixel count around 

Bogoslof is ~8% higher than without denoising (when comparing cleaned layers). In terms of 

backazimuth vs. frequency, the event is clearer following denoising, and with an extended 

lower frequency range (Figures 7i and 7l). For this event Coombs et al. (2019) note the same 

detecting arrays as above (including SDPI), while Lyons et al. (2020) list AKS and OKIF. 

 A longer-term example using DLL array data illustrates some of the benefits of 

denoising more explicitly. Figure 8 shows how several Bogoslof eruptions become much 

clearer in the array processing results once microbaroms are reduced. This example uses 

microbarom removal processing only, without any explicit wind noise reduction. Three of 

the eruptions in Figure 8, one on 14 December 2016, and two on 12 January, did not meet 

the published cataloguing criteria for infrasound detection (Coombs et al., 2019; Lyons et al., 

2020). The first two of these events are detectable using PMCC, however, with less 

confidence for the third. Some eruptions, however, become less detectable with processing, 

such as on 16 and 29 December. In terms of the methods compared in Figure 8, SG shows 

the events most clearly by reducing the number of detections as well as amplitude. BC also 

reduces detection numbers, but those have less diminished amplitudes. This is due to BC 

leaving residual microbarom spikes in the foreground, despite having similar time-average 

PSD peak values as the other methods. Although using NMF in stage 3 would reduce these 

spikes (Figure 3), it’s not possible to apply stage 3 consistently to those days where events 

didn’t occur (~40% of Figure 8). Notably, a group of detections at ~18:22 15 December has 

a backazimuth similar to that of an eruption on the day prior. The SDPI array also detected 

these arrivals ~25 minutes earlier, with a backazimuth also coincident with Bogoslof. This 

time delay is reasonable if Bogoslof was the source. Nearer arrays to Bogoslof such as OKIF 
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and AKS (Figure 1) do not show corresponding detections, although shadow zones with high 

transmission loss in the 300 km around Bogoslof were typical of the time (Schwaiger et al., 

2020). There is, however, no other known evidence that this was an eruption. 

 

 
Figure 8. PMCC processing results for the period of 14 December 2016 to 24 January 2017, for noisy, BC, 
NN, and SG denoised data, recorded at DLL. Detections are scaled by amplitude, and coloured by frequency 
on a log axis to help distinguish events from the microbarom. A minimum threshold of 50 pixels per family 
ensure only high-quality detections are displayed. Some small detections may not be visible at the figure 
resolution. AVO catalogued eruption periods are shaded by vertical grey bars and bound by dashed lines, 
using a mean stratospheric celerity of 300 m/s to calculate travel times. In this specific case, eruption end 
times are taken as the latest recorded seismicity, infrasound, or lightning occurrence. Clusters of detections 
likely associated with these catalogued events are marked with arrows. The arrow positions are the same for 
all panels despite small variations in backazimuths. Other plot details as per Fig. 6. The microbarom is 
generally much reduced in the denoised data in terms of detections and amplitude, allowing catalogued and 
potentially uncatalogued eruptions to be seen more easily (highlighted with arrows). 
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4.2. Backprojection 

 We now turn our attention to backprojection, and whether removing the microbarom 

and wind noise elements from traces can improve detection and location capabilities. We 

focus on the 15 January 2017 eruption due to its complex nature with four main pulses, and 

traces typically having poor signal to noise ratios, with clear waveforms only at AV.MSW 

(located 82 km east of Bogoslof) and DLL. This event was entirely submarine, indicated by 

the relatively low mean frequency content compared to that of 31 January (Fee et al., 2020). 

For the base denoising method, we choose the SG approach as it one of the fastest to 

compute (section 5.1). As each technique produces similar envelopes to a first-order (Figure 

4), we anticipate that the following results are representative of the other systems. We also 

assess the effects of changing the lower frequency limit from 0.01 Hz, to 0.1 Hz, 0.2 Hz, and 

0.35 Hz. For this event, we focus on discussing results from the linear and robust stacking 

methods, as PWS and selective stacking performed relatively poorly regardless of several 

parameter and processing combinations. For other events, relative performance may differ 

(Sanderson et al., 2020b).  

 Generally, we find that denoising helps improve the SNR of the 15 January event 

(Figure 9). Removing the microbarom only provides a modest improvement (results not 

shown), whereas incorporating wind noise removal provides a more noticeable effect. For 

this latter case, denoising tends to become less impactful as the lower frequency limit 

increases, indicating that high-pass filtering out wind noise components has a net benefit in 

this case despite removal of some of the event elements. We also tend to find a greater SNR 

improvement from high-pass filtering (i.e., 0.01 Hz noisy vs. 0.35 Hz noisy), than by 

denoising (0.01 Hz noisy vs. 0.01 Hz denoised), as Figure 9 illustrates.  
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Figure 9. Examples of the effects of stacking, denoising, and filtering, using Bogoslof event on 15 January 
2017. Although denoising slightly improves SNR, high-pass filtering has more of an effect. (a) Beams for 
DLL, with differing high-pass filters. Each panel is scaled ± 1.5 Pa. The vertical dotted lines demark 
infrasound activity based on PMCC analysis. Vertical dashed lines demark seismic activity in the AVO 
catalogue, and the grey shaded area spans the catalogued infrasound activity. Infrasound travel times have 
been corrected for using a celerity of 320 m/s. (b) DFs (coloured lines) all using AGC1. Black lines are stacks 
of traces assuming Bogoslof is the source. Mislocation is the distance of the corresponding grid node from 
Bogoslof. Intersections of the Bogoslof stack and DF imply those parts of the DF represent the true source 
location. Data are from 37 stations (53 channels) within 1,250 km of Bogoslof. Grid spacing is 0.2° latitude, 
0.4° longitude. Arrows indicate the times of the maps in (c). (c) Time slices through stacks at the times of 
arrows shown in (b). The colour scale represents the amplitude of time-aligned data stacks at each grid 
location. Sensors are shaded red proportional to stack contribution. Circles are at 500 km spacing. 
 

these assessments are based on overall trends when also evaluating three different RTM 

preprocessing strategies, two of which involve different kinds of automatic gain control 

(referred to as AGC1, and AGC2; Sanderson et al., 2020a). AGC has the effect of 
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regularizing signal amplitudes, and so can enhance weak event arrivals, but can also increase 

weak windy sections instead. Consequently, DF shapes may not directly reflect those of the 

original waveforms recorded. There are some parameter combinations that go against the 

general trends, such as AGC2 performing best when the lower frequency limit is 0.1 Hz. 

AGC2 is also the only method that resolves the second event pulse, although the overall SNR 

is poorer than the examples in Figure 9.  

Evaluating the sharpness of the DF peaks is also important, as location estimates are 

performed on the samples making up the tops of each peak. If the samples happen to 

represent grid nodes far from the source, then the mislocation value (source distance error) 

will be high. In this respect, the ≥ 0.35 Hz results are better than those for ≥ 0.01 Hz data, 

and with mixed results for the noisy vs. denoised data. Location accuracy and peak sharpness 

is also affected by the azimuthal coverage of detecting stations. Map slices of the stack 

results in Figure 9c show the distribution of the stations within a 1,250 km radius around 

Bogoslof, which are biased to the east. Only a subset of these stations contributes positively 

to the stacks, as indicated by the shading of each station (fewer arrivals occur beyond 1,250 

km). These map slices correspond to the first pulse in the eruption, marked by arrows in 

Figure 9b. This pulse varies in amplitude and shape between parameter configurations, 

similarly reflected in map form. The smallest and least prominent pulse does locate in the 

Bogoslof area, but the energy is more distributed than the other cases. For the noisy vs. 

denoised maps at ≥ 0.35 Hz, the former case is less sharp overall, but there is less smearing 

of the highest values. Ring features in these maps indicate a dominant impact by the SDPI 

array at the center of the ring. 

 Our evaluation of the 15 January event suggests that the eruption onset occurred 13 

minutes prior to that listed in the catalog, i.e., at 06:27, rather than 06:40 This stems from 
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aligning SG-denoised DLL infrasound waveforms and PMCC results with travel-time 

corrected seismic data (Figure 10). The seismic stations, AV.OKER and AV.MAPS are ~55 

km southwest, and ~75 km southeast of Bogoslof respectively. Although the catalog eruption 

start time is based on multiple types of data, this time matches that given by the catalog 

infrasound origin, which itself assumes a 340 m/s celerity (used for all events).  

 

 
Figure 10. Comparing indicators of the eruption onset for the 15 January Bogoslof event using seismic data 
from AV.OKER and AV.MAPS (1–20 Hz waveforms), and infrasound data from AV.DLL (>0.35 Hz 
waveforms, and PMCC results). Data have been travel-time corrected, and clipped to emphases smaller 
features. For waveforms, grey traces are instrument corrected and filtered, with black traces the SG-denoised 
versions. Denoising helps show waveform features previously buried in background noise, as well as reducing 
microbarom presence in the PMCC results. Vertical dotted magenta lines indicate the following, and which 
include some conflicts: 1) 05:41: precursory seismic swarm onset (Tepp and Haney, 2019); 2) 06:27: 
explosion seismic onset at AV.OKER (Searcy and Power, 2020), with our analysis of the corresponding onset 
at AV.MAPS, and our estimate of the explosions and infrasound onset; 3) 06:32: end of precursory seismic 
swarm (Tepp and Haney, 2019), and catalogued explosion seismic onset (Coombs et al., 2019); 4) 06:33: 
explosion seismic onset at AV.MAPS (Searcy and Power, 2020); 5) 06:40: catalogued onsets for explosion 
and infrasound (Coombs et al., 2019).  
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Adjusting this celerity to 320 m/s, a best-fit value from the RTM results, would change the 

eruption onset by less than three minutes when also assuming a surface travel path, meaning 

that celerity alone cannot explain the onset time discrepancy. Our suggested revised eruption 

onset of 06:27 matches the reported explosion seismic onset at AV.OKER of ~06:27 (Searcy 

and Power, 2020), and slightly prior to that at AV.MAPS of ~06:33. Our assessment of the 

AV.MAPS data indicates an earlier onset similar to that of AV.OKER (Figure 10). Prior to 

the eruption, precursory seismicity occurs (from 05:41), with discrete events merging intro 

low amplitude tremor. Tepp and Haney (2019) mark the end of this precursory activity at 

06:32, the same time used as the eruption seismic onset by Coombs et al. (2019) for the 

AVO catalog. Thus, there is some uncertainty regarding the transition from precursory to 

eruptive behavior using the seismicity alone, but integration of the infrasound analyzed here 

points toward an eruption nearer to 06:27 than 06:40. Separately, as the catalogued 

infrasound duration is based on OKIF, which didn’t record the eruption well, the listed 

duration is only 76 minutes. At DLL however, PMCC shows the eruption continued until at 

least 12:11 (accounting for travel time), approaching six hours from the onset (but still prior 

to the catalogued seismic end time of 12:48). Given the low amplitude of the start and end of 

the eruption, as well as azimuthally coincident microbaroms, denoising helps with accurately 

identifying these features in the data. 

 
5. Discussion 

Infrasound is becoming an increasingly popular tool for volcano monitoring, at local, 

regional, and global scales. Microbaroms are largely an inescapable aspect of such 

recordings (e.g., Matoza et al., 2013; Matoza et al., 2019), and such clutter may inhibit clear 

detection of eruptions when viewed as waveforms, spectrograms, or in array processing 
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results. This extends to other events like chemical blasts, where expected frequency spectra 

for yields of ~0.1–10 kT overlap with the microbarom band (e.g., Green and Bowers, 2010). 

This is a potential issue for the IMS infrasound network, which is designed with such activity 

in mind. Wind noise also manifests in infrasound recordings, and may disrupt coherent 

records of signals of interest, depending on the wind speed. In this paper we present a 

preliminary investigation of several open source denoising tools and techniques as applied to 

the Bogoslof shallow-submarine eruption sequence, which produced dominant frequencies 

that overlapped both wind noise and the microbarom. Although these styles of eruption are 

uncommon, remote monitoring involves attenuation of higher frequencies with distance, and 

that such denoising techniques have wide applicability. In the following, we review our main 

findings, and explore some subtleties which may affect denoising performance. 

 
5.1. Microbarom Clutter 

We find that all the stage 2 methods increase the number of PMCC detections 

associated with eruptions, particularly where the mean family frequency overlaps the 

microbarom (Figure 6). PMCC results also show that even where the amplitude of the 

microbarom is reduced to similar levels by the different methods (Figure 4), that there can be 

along-trace variability during the event and wind sections (Figure 5). Additionally, the 

microbarom detectability in PMCC can be quite variable. For instance, whereas all methods 

affect the amplitude of detections, BC and SB perform best in terms of reducing microbarom 

detections entirely (Figure 6c), allowing events of interest to be more easily distinguished for 

arrays where the microbarom shares a backazimuth with the volcano (Figure 8). 

Backazimuth estimates often disperse by a few degrees from the noisy data estimates, but 

given crosswind advection is typical, it is difficult to establish the relative accuracy. During 

the nine-month Bogoslof eruption, AKS, DLL, and IS53 were the only arrays with 
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microbarom backazimuth conflicts. With more infrasound stations added since 2017, such 

conflicts have increased. Incidentally, PMCC does not always resolve similar concurrent 

signals arriving from different directions. Thus, for large, low frequency events like that of 8 

March 2017, the microbarom has the appearance of stopping during the event, and so the 

event appears relatively clearly in time-series at the aforementioned arrays without any 

denoising. Our results also highlight several instances where the current AVO catalog for 

Bogoslof can be improved by: (1) extending the reported infrasound duration of some events, 

with that of 15 January for example appearing to start ~13 minutes earlier than reported, and 

lasting several hours longer; (2) increasing the number of arrays that made detections, with 

e.g., those on 14 December and 12 January detected at DLL despite no catalogued infrasound 

at any array; (3) potentially detecting additional events (e.g., 15 December), though these 

currently lack supporting evidence. Section S2 of the supplemental material provides 

additional examples. Care should be taken with interpretation however, as the array 

processing of microbarom signals can result in artifacts that may be of similar frequency and 

backazimuth to eruptions. Such findings and event vs. microbarom vs. artifact discrimination 

are typically facilitated by denoising processing.  

 We also find that the denoising methods can sometimes decrease the detectability of 

events, along with the microbarom, thus potentially negatively impacting any event catalogs 

and/or duration estimates. Some examples of these events are shown in Figure 8 for SG 

processed data (16 and 29 December). Although these events may appear dubious as 

detectable at all given the dispersed backazimuths, there are distinct groups of detections that 

are separate from the microbarom (centered off figure at ~270°) at the exact travel-time 

adjusted catalog range. From closer inspection, the SG PMCC results show about 1/3 less 

detections vs. the unprocessed data for these events, but more notably, the amplitudes are 
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much smaller. These two events are very weak, and largely indistinguishable from 

background even after denoising. At least here, the BC approach has an advantage. Similar 

behavior may occur for traces used during RTM processing. Other stage 2 approaches may 

also have particular weaknesses, such as those outlined for NN in section 3.2.4. The nature 

of NN makes it more suitable for situations where events are short and wind is sporadic. 

Otherwise the untrained nature of the technique makes it challenging to effectively remove 

only the microbarom in an effective and computationally efficient way. 

 To assess alteration to denoised signals under different noise conditions, we begin by 

taking a high SNR Bogoslof signal from OKIF at ~02:38 20 February 2017 as a reference, 

and bury it in progressively higher amplitude microbaroms, then assess how well that 

contamination is removed. The microbarom sample is taken from ~06:12 the same day, and 

scaled between 1 and 100 times its original amplitude. This type of event has its peak 

frequency in the microbarom range, presenting a strong denoising challenge. The results in 

Figure 11a are based on comparing the reference and the denoised result during the marked 

30 s event section. For methods which require a noise reference, we use a section 15-45 s 

prior to the event. For SNR calculations, we use a section 15-45 s after the event. For some 

metrics such as the correlation coefficient, each method performs relatively similarly, with 

values only dropping below 0.8 where the original SNR was < 2 dB. In terms of maximum 

amplitude, there is more variety, with most deviations occurring where the original SNR is 

< 5 dB. In terms of SNR for denoised traces, NMF provides little advantage for this event 

(unlike that in Figure 4), with NN improving SNR the most. Finally, we present scale-

invariant signal-to-distortion ratio (SI-SDR) values (Le Roux et al., 2018), where the 

distortion is essentially the residual between the original signal and the denoised version. 
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Figure 11. Evaluating the impact of denoising methods, including under different noise conditions. (a) A high 
SNR Bogoslof event trace from ~02:38 20 February 2017 is contaminated by progressively higher noise 
levels. Top panel: Example waveform processing for OKIF channel 1: Black trace – high SNR reference 
waveform; Grey trace – black trace with microbarom added (scaled by a factor of 30), giving an original SNR 
level of ~4 dB; Red trace – denoised grey trace (using BC). Dashed lines mark periods 0–35 s, 70–105 s, 140–
170 s, respectively indicating data sections respectively used for microbarom labelling in denoising methods 
that require this, the event, and noise used in SNR calculations. Panels 2–5: Correlation coefficient, change in 
maximum amplitude, SNR of denoised trace, SI-SDR. Generally, denoising performance degrades as added 
noise increases, but there are wide differences in terms of denoised performance. (b) Example microbarom 
data prior to, and after denoising using BC and SG methods, showing variable noise reduction and phase 
changes. Data also from OKIF. (c) Comparing denoised to original data from (b) for each OKIF channel using 
correlation, SI-SDR, and time delay metrics. The left panels compare each denoised channel to its original 
counterpart, whereas the right panels compare each channel to channel 2 within the same processing scheme. 
Channels are arranged left to right by increasing distance from the microbarom source. This data shows that 
BC and SG methods produce residual microbaroms that will be more difficult to detect due to their more 
distorted and time-shifted signals. 
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Here, results are generally similar, except for SG, and are affected by the aforementioned 

amplitude change. We find that for this short event, particularly at higher noise levels, the 

denoising can be sensitive to spectral windowing parameters, the amount of data before and 

after the event, the microbarom section used as an overlay, and how that overlay aligns with 

the reference waveform. In the supporting material, we repeat the same tests for three 

synthetic event signals that have similar and dissimilar frequency content to the microbarom. 

Denoising performance is enhanced in the latter case, particularly at lower initial SNR. 

 To get an initial insight into why the BC and SG approaches reduce microbarom 

clutter to a much higher degree compared to HR, NMF, and NN (Figure 6), we examine the 

distortion of the microbarom in the stage 2 foreground (Figures 11b and 11c). This is 

relevant as simply reducing the amplitude of the microbarom will not significantly change 

the number of detections. There appear to be three primary factors: (1) SG processed traces 

have relatively high changes to the interchannel delay times, when compared to the noisy 

data. These several sample adjustments can mean that the apparent velocity PMCC calculates 

is no longer in the acceptable acoustic range, and so a pixel is not generated; (2) BC and SG 

processed channels show relatively low correlation and more distorted components vs. the 

noisy data equivalents, suggesting that traces are less likely to meet PMCC wavefield 

parameter thresholds; (3) BC data often has a low correlation between its own traces. Not all 

microbarom packets exhibit this behavior during processing however, with yet to be 

determined factors dictating how microbaroms are split between foreground and background. 

An important aspect of choosing a stage 2 processing method is computational 

efficiency, particularly for real time applications and/or processing large data sets. The 

following run times and memory use values are those required to process 24 hours of 20 

sample per second data with a single core 3.1 GHz processor. For the Fourier transform 
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based methods, here we use 2048 FFT points, and 75% overlap of 2,048 sample windows. 

BC uses four voices as stated previously. BC: 213 s, 12.5 GB; HR: 7.5 s, 0.3 GB;  

NMF: 5.5 s, 0.55 GB; NN: 258 s, 0.9 GB; SG: 2.6 s, 0.1 GB. We use the same parameters 

between methods to allow for direct comparison, but this may not always be ideal. For 

example, NN has a more even along-trace foreground/background separation with 50% 

overlap. As mentioned in section 3.2.4, for NN, speed can be increased by reducing the 

number of nearest-neighbors, appropriate for cases where events and noise are shorter in 

duration than the cases presented here. The five wavelet options included with BCseis can 

also make a noticeable difference to results. For instance, when using a Shannon, rather than 

the Morlet wavelet, ~9% more detections are found for the event in Figure 6, including 

during some of the gaps between pulses. Also, for Figure 8, events on 23 December and 22 

January are noticeably clearer with the Shannon wavelet. However, waveform distortion was 

relatively high for several test events, and so not pursued here. 

 
5.2. Wind Noise 

We find that wind noise reduction has little effect on improving signal or clutter 

detectability in array processing results (Figure 6). Whereas PMCC is capable of detecting 

signals with SNR < 1, at high wind speeds infrasound arrivals become very poorly correlated 

and hard to resolve. For RTM, wind noise removal provides more benefits using robust 

stacking than linear stacking for the 15 January event. For both stacking types, high-pass 

filtering provides a greater net benefit, however. Microbarom removal has a relatively small 

impact here, but may be more important where the majority of stations have very low initial 

SNR. The RTM processing parameters are primarily tuned for noisy linear stacking, whereas 

other parameters may work better depending on the configuration. Similarly, the effects of 

tuning parameters for the stacking methods could be explored. AGC to some extent undoes 
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the wind noise reduction, but results are still better with AGC, than without. As with stage 2 

processing, there is a wide variation on the computation times for stacking methods, with the 

python-based PWS implementation taking 230 times longer than linear for each stacking 

operation. Although PWS performed poorly here, and could not justify the computation 

time, improvements may be seen when using a realistic propagation model to improve the 

alignment of arrivals and thus SNR (e.g., Shani-Kadmiel et al., 2018).  

A potential factor in how well stage 3 denoising works is that as the SNR and 

frequency content of signals typically decrease with distance, event characteristics may 

change relative to noise, depending on propagation conditions, the local site environment 

(vegetation, topography, snow), and station design. We analyze the 8 March Bogoslof 

eruption, which was one of the best spatially recorded, with arrivals evident at 36 different 

stations within a 2,500 km radius. Of these, we use 25 stations which have relatively low 

winds coincident with the event. Figure 12a shows some contrasting arrivals at stations at 

increasing distance from Bogoslof, with progressive attenuation of higher frequencies with 

distance generally evident. OKIF, being the closest array, shows the event frequency range 

extending to at least 0.05 Hz. The wind noise at the start and end of the day is mostly  

< 0.1 Hz, but does extend higher. Wind noise at the DLL array, however, generally does not 

exhibit these higher frequencies, with the TA.TCOL station being similar in this regard. 

These two stations are some of the few sites in this study that are in dense tree cover, with 

the wind noise reduction pipes at DLL also playing a part. Nearby stations retain the higher 

wind noise frequencies seen at OKIF, and to a greater extent at TA.L27K, which is much 

more typical for TA stations. TA.L27K has a relatively poor wind noise reduction levels 

compared to the other stations shown, with relatively similar event and wind spectra.  
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Figure 12. Assessing the effect of the relative frequency content of wind and eruptions on NMF performance. 
Higher SNR improvements are seen where the events have a higher frequency index relative to the wind, 
rather than only requiring a difference between the two. (a) Examples of stage 2 (grey) and stage 3 (black) 
waveforms from the 8 March 2017 Bogoslof eruption, with respective spectrograms shown below. Subplot 
titles include the station number in terms of distance from Bogoslof (not all stations shown), the 
corresponding distance, and the station code. Vertical bars mark the continuous infrasound phase of the 
eruption, according to the AVO catalogue, adjusting for a 280 m/s celerity. For each station, wind occurs 
primarily at the beginning and ends of the day. The upper end of each spectrogram color scale has been 
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adjusted such that the event portions appear to have similar maximum values. This enables more direct 
comparison given the different amplitudes of the signals, particularly regarding attenuation of the higher 
frequencies. TA.TCOL contains some non-wind noise which is not removed. P = Pressure, F = frequency. (b) 
Plots showing how the RR, wFI, and eFI values vary with distance, using blue for array elements, and red for 
non-array stations. RR is also plotted against eFI/wFI. The stations from part (a) are marked.  
 

As NMF depends on the spectral content of the training examples, we hypothesize 

that dissimilar wind noise and event characteristics will produce better wind noise reduction 

in stage 3. As metrics, first, we implement the Frequency Index (FI) concept of Buurman and 

West (2006) as follows: FI = log10(Aupper/Alower), where Alower is the mean spectral amplitude 

from 0.01–0.25 Hz, and Aupper is the same for 0.25–1.0 Hz. This division uses the 

microbarom center as the division point. In the following, eFI refers to the FI value for the 

event sample, and wFI for the wind noise sample. Figure 12b shows that eFI generally 

decreases with distance indicating attenuation of higher frequencies, with wFI displaying 

some of the variation seen in Figure 12a. To measure how well NMF affects SNR, we 

compare changes in event to wind noise amplitude ratios. For this we define a second metric, 

RR = (e3/w3)/(e2/w2), where e and w are the root-mean-square amplitudes of event and wind 

noise samples, and 2 and 3 are stage 2 and 3 of the processing. Higher RR values indicate 

better wind noise reduction. In terms of whether RR depends on eFI/wFI, i.e., how similar 

the event and wind noise spectra are, there isn’t a clear picture. For instance, RR does vary 

for eFI/wFI < 1, but not above. RR values are generally higher for arrays than for non-array 

stations, likely due to the closer source proximity and presence of more sophisticated wind 

noise reduction systems. Some variation for metrics exists within arrays, reflecting slight 

differences between elements, even at 100 m apertures. A caveat to eFI-dependent results in 

Figure 12b, and more generally, is that when using 0.01 Hz as a lower filter bound, many 

stations will have some degree of wind noise during the event (e.g., three of four stations in 

Figure 12a). This could make signal separation harder if there is less difference between the 
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event and wind noise. For the culled events in Figure 12, however, noise reduction is 

generally better if using 0.01 Hz rather than 0.05 Hz, or 0.1 Hz. For these high-passed 

results, there is much less RR differentiation between stations. 

A caveat to the analysis of Figure 12, is that the SNR of the unprocessed data varies 

between stations, which, as Figure 11 shows, is a factor influencing the SNR of denoised 

signals. In the supporting material, we evaluate stage 3 noise reduction for the same synthetic 

event signals as for stage 2, using two sources of wind noise that each do, and do not overlap 

with the events. Briefly, these results indicate improved denoising performance for: (1) non-

overlapping events and wind noise, (2) wind noise samples from an array rather than TA 

station, and (3) events that are relatively high frequency compared to the wind noise. As for 

the stage 2 denoising, in future work we aim to expand the range of events analyzed with 

such methods in order to understand their suitability and best method of application. 

 
6. Conclusions 

By evaluating five different methods, we find that persistent background clutter such 

as the microbarom can be reduced effectively in infrasound data without any training, but 

more consistently with training. The BC and SG methods perform best in this regard. 

Separating wind noise from events on the other hand is more challenging, and good 

separation at most TA stations is only possible by training on both the wind noise and the 

event using NMF. Training solely on the wind noise usually provides only a moderate 

improvement over the original signal. At AVO and IMS arrays, the wind noise character 

typically differs from the events significantly due to hardware and/or source proximity, and 

as such, separating signals from wind noise is easier. It is likely that some training is a 

fundamental aspect of a general wind noise reduction scheme, as unsupervised 
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foreground/background separation techniques are not well suited to this task. Microbarom 

reduction primarily benefits PMCC array processing by enhancing signal detection in the 

microbarom range, and also removing surrounding clutter in cases of a shared backazimuth. 

Wind noise reduction explored here does not appreciably affect array processing results, 

however. In contrast, RTM benefits mainly from wind noise reduction due to significant 

trace amplitude modulation, and less so from microbarom removal. We also find that PMCC 

can be a useful tool for helping to refine existing Bogoslof eruption catalogs in that PMCC 

clearly detects infrasound from several catalogued events previously reported to have no 

infrasound records, or otherwise for specific arrays. The onsets and duration of some events 

also warrant re-evaluation based on our observations, which are enhanced via denoising.  

In this study we focus largely on the extent to which denoising can improve SNR 

when using semi-supervised and fully supervised processing. We implement open source 

denoising methods that can be applied to a single trace. This approach promotes accessibility 

and flexibility, as not all data sets will contain the thousands of records potentially necessary 

to produce reliable dictionaries. Infrasound noise reduction on individual waveforms can 

likely improve results from many analysis types aside from detection and location strategies, 

and should be an area of future study for the community. Even for simply viewing 

waveforms and spectrograms, microbarom (or microseism) removal is generally useful by 

increasing fidelity, but particularly benefits identification and presentation of weakly 

detected events at remote distances. More broadly, trace-based noise reduction can increase 

the value of isolated infrasound sensors in places where an array, or noise reducing hardware 

such as a wind dome, is impractical. 
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7. Future Directions 

Developing a “one scheme fits all data sets” signal enhancement strategy is a 

challenging task due to potentially high variability in signal and noise character, even at the 

same infrasound station over the space of a few hours. Signals will be affected by source 

style and duration, anisotropic radiation, atmospheric structure, wind direction, and the type 

of recording sensor. Due to time-varying multipathing, eruption signals may not be 

consistent between stations, nor even at the same station from a repeating source. Noise 

predominantly comes from wind, which presents differently depending on location, station 

design, as well as wind speed and the types of turbulence produced. Dominant wind noise 

frequencies may change by a few Hz, rather than being confined < 0.1 Hz. Microbaroms are 

often an undesirable element in infrasound data, but are not noise, given they are coherent 

acoustic arrivals. The strength and peak frequency of the microbarom will vary at a station 

over the course of a year with the seasons and stratospheric wind direction. The Bogoslof 

data set, and other active Alaskan volcanoes more generally, provide an excellent 

opportunity to evaluate the relative performance of new denoising schemes, for which here, 

we have only begun. The increasing numbers of infrasound sensors being installed in Alaska 

will facilitate this task. 

Developing dictionaries accounting for the wide range of source, path, and site 

conditions across a diverse region like Alaska is a central issue. Certainly, excluding the 

event aspect reduces the complexity of the objective, in that training only with noise and 

microbarom samples permits the cleaned data to contain both volcanic and nonvolcanic 

signals. Incorporating adaptive data processing (included with e.g., HR) can be an important 

aspect of real-time monitoring, where the data may be in small chunks, aggregated, or 

otherwise not fit existing dictionaries. Such real-time use is affected by processing runtime, 
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and travel-time-latency, which for infrasound can be e.g., 15 mins at a range of 300 km. We 

suggest a combination of stage 2, 3, and 4 type approaches that sufficiently balance speed 

and effectiveness in reducing noise while preserving signals. For RTM, it is computationally 

more efficient to enhance SNR during pre-stack processing than during stacking itself, as 

each denoising operation is only performed once per trace, rather than per grid node. There 

are more grid nodes than traces in a typical scenario. 

Although we describe and present results from several denoising methods here, and 

have evaluated many more (e.g., Sanderson et al., 2020b), this only scratches the surface of 

the field. For instance, Müller (2015) explains how in cases of music, approaches should 

vary for cases of multiple instrument separation, harmonic/percussive separation, and voice 

separation. Though not volcanic acoustic examples, they demonstrate that different 

techniques may be needed depending on the nature of the data, even without any noise 

present. At the geophysics cutting edge, diverse machine learning techniques are helping to 

rapidly advance the fields of signal classification and signal denoising, a combination of 

which will enhance automated volcano event detection and location practices. A popular core 

technique for both areas is the artificial neural network, with implementations using various 

degrees of supervision and training (e.g., Zhu et al., 2019; Jiang et al., 2020; Novoselov et 

al., 2020; Son et al., 2020). Fortunately, open source tools are becoming more available for 

the community to implement and further develop, with some applied to volcanic seismic data 

such as tsfresh (Christ et al., 2018; Dempsey et al., 2020), PICOSS (Bueno et al., 2020), and 

those comprising the VULCAN.ears project (Moreno et al., 2020). 
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Supplemental Material 
 

The following contains information on: (1) adjustments made to the AVO metadata 
available through the IRIS DMC; (2) synthetic noise reduction tests; (3) discrepancies 
between, and within, published Bogoslof eruption catalogs; (4) software resources; and (5) 
software parameters employed. 
 
S1. Station Metadata Modifications 

Here we detail changes made to IRIS DMC sourced metadata for use in this paper: 
 
S1.1. Station Names and Locations 
 For simplicity in this paper, we refer to the Okmok infrasound array as OKIF, which 
is the current Okmok infrasound array name at the IRIS DMC. The nature of the Okmok 
metadata is complicated, however. Firstly, at the time of the Bogoslof eruption in 2016/2017, 
the array did not have a particular unifying acronym, with the channels named OK01–OK04 
BDF given there were only four sensors. This remained true until July 2018, when two 
additional channels were added, and the array was designated as OKIF. At this same time, all 
the instruments were changed to another type, and channel codes changed from BDF to 
HDF, without any change in sample rate. This series of events has led to multiple sets of 
overlapping metadata on IRIS, as well as other servers, some of which is currently 
inconsistent. Here we use the following coordinates for Okmok channels 1–4, values which 
come from internal AVO documentation. These values are more precise versions of those 
listed for OKIF 01–04 HDF at the IRIS DMC. Based on PMCC analysis, these coordinates 
are more accurate than those listed for OK01–04 BDF at IRIS. We have not evaluated the 
OKIF 01–04 BDF values in detail as ch.1 is specified to be 130 m from its expected location. 
 
Channel name, latitude, longitude 
    > Okmok channel 1: +53.41083004, -167.914267               
    > Okmok channel 2: +53.41001901, -167.913663               
    > Okmok channel 3: +53.40998297, -167.914996               
    > Okmok channel 4: +53.41029796, -167.914317 
 
For further Okmok metadata details, please refer to, e.g.: 
    > Dixon et al. (2019), Lyons et al. (2020) 
    > http://ds.iris.edu/mda/AV/OK01/ 
    > http://ds.iris.edu/mda/AV/OKIF/01/BDF/ and /HDF/ 
    > http://130.118.181.39:16023/menu (USGS server from which most AVO array data was 
obtained) 
 
For the Cleveland array metadata, we take IRIS DMC information from /AV/CLCO1/ etc., 
rather than /AV/CLCO/. 
 
S1.2. Instrument Responses 
 At the time of writing, we find that the several of the instrument responses available 
from the IRIS DMC for the AV network during the Bogoslof eruption period (12 December 
2016 to 30 August 2017) are not internally consistent and/or consistent with other records of 
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what these responses should be and/or data inspection. Consequently, we make the following 
adjustments here, where (1) ‘gain’ indicates the datalogger gain, S(d), in SEED Stage 2 is 
changed from 30 (IRIS DMC) to 1 (here), and (2) ‘frequency’ indicates the frequency of 
sensitivity, fs, in SEED Stage 0 is changed from 0.05 Hz (IRIS DMC) to 1 Hz (here). 
 
ADAK: Metadata not available on IRIS, but has the same sensor and datalogger 
configuration as at OK01-4 BDF. 
 
ADKI: Frequency 
 
AKS: Gain, frequency 
 
CLCO: Frequency. Poles and zeros in the IRIS DMC instrument specifications are for a 
Chaparral 25X. The instrument type is, however, a VDP-5 (Lyons et al., 2020). 
Consequently, we use the appropriate poles and zeros given by Thelen and Cooper (2015) 
(specified for the VDP-10, but are the same for the VDP-5). We set the A0 normalization 
factor to 157.2165 to appropriately scale the response. Poles and zeros are provided by 
Thelen and Cooper (2015) in units of Hz, whereas considering these values to be in rad/s 
(without conversion) gives the reported flat response of 0.0125 to 25 Hz. This flat response 
is also demonstrated by Slad and Merchant (2016). Consequently, we take the reported units 
of the poles and zeros to be rad/s rather than Hz in this case. 
 
DLL: From 5 May 2017 to at least 30 August 2017 (the end of the eruption sequence), 
channels 2 and 5 have amplitudes half those of other channels, without a mitigating factor in 
the instrument response information. Consequently, these data are scaled to match the other 
traces. From the start of the eruption on 12 December 2016, to 5 May 2017, channel 3 was 
not functioning, and consequently unused. 
 
DFR: Metadata not available on IRIS. As the data is poor quality throughout the Bogoslof 
eruption sequence, and the data only used for RTM which includes normalization, we do not 
remove the instrument response for DFR. 
 
MSW: Gain, frequency 
 
OKIF: Gain, frequency. Response information taken from OK01–4 BDF, see section S1.1. 
 
PN7A, PS1A, PS4A, PV6A: Frequency  
 
SDPI: Frequency. The IRIS DMC specification given for the VDP-10 instrument contains an 
extra zero, so this is removed to match the specifications given by Thelen and Cooper 
(2015). We also set the A0 normalization factor to 157.2165, rather than 1.56115, to 
appropriately scale the response. Poles and zeros from Thelen and Cooper (2015) are taken 
to have been reported in rad/s rather than Hz, as outlined for CLCO. 
 
SSLN: Metadata not available on IRIS. As with DFR, we do not remove the instrument 
response, and the data is normalized during RTM pre-processing. 
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S2. Synthetic Noise Reduction Tests 
This section follows from Figure 11, which explores how well different denoising 

schemes perform depending on the signal to noise ratio of the original data. Details of the 
methodology are provided in section 5.1. Here we combine synthetic signals with scaled 
microbaroms, as well as with scaled wind noise. The synthetic waveforms are: 1) a shocked 
pressure pulse (Friedlander, 1946), with a broad spectra that peaks at 1 Hz; 2) a 0.2 Hz 
exponentially decaying signal; and 3) a 2.0 Hz exponentially decaying signal (Figure S1). 
Amplitudes are scaled to ~7.9 Pa, similar to the event in Figure 11. These signals are chosen 
to be similar to, and in contrast to the peak frequency of the microbarom (~0.2 Hz). 
Similarly, these signals have varying degrees of spectral overlap with the two wind samples 
borrowed from Figure 12. One wind sample is from AV.DLL, with the station using wind 
noise reduction pipes to reduce higher frequency noise. The other wind sample is from 
TA.L27K, which uses a simple diffuser, and retains more of the higher frequencies (Fig A1). 

  

 

Figure S1. Waveforms and power spectra for synthetic event signals (rows 1–3), microbarom sample (row 4), 
and wind samples (rows 5–6). Wind in row 5 is from AV.L27K, and wind in row 6 is from AV.DLL. Each 
wind waveform shows the continuous sample in black, and a version where the center is zeroed out in order to 
create a discontinuous version (grey). Differences at the edges are due to applied tapering. Red vertical 
dashed lines show the time limits used for calculations. The microbarom sample is the same as that from 
Figure 11. Wind traces have already undergone stage 2 processing with the SG (spectral gating) method. 
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These wind samples are both scaled to have an initially similar amplitude to the 
microbarom sample, before all of the noise samples are scaled from 1 to 100 times in order 
to change the SNR. Two wind data formats are assessed: 1) continuous wind samples that 
overlap with the synthetic events, and 2) wind samples that are zeroed in the middle so that 
there is no noise overlap with the event, where wind only occurs at the end of the traces. For 
the wind noise reduction, the event labelling window is set to start prior to the actual event 
onset (here by 13 s). This approach produces improved results when compared to having the 
window start right at the onset. This may relate to reduced tapering of the impulsive onsets 
of the events during processing. The expanded window does, however enable calculations to 
incorporate any acausal distortion prior to event onsets. Due to the lower frequency of the 
wind compared to the microbarom, longer time windows are used for calculations. 

 

 
Figure S2. Evaluating the impact of denoising methods on removing the microbarom component from data, 
under different initial signal to noise conditions. Panels show the correlation coefficient, change in maximum 
amplitude, SNR of the denoised trace, and SI-SDR.  
 

For the microbarom removal evaluation in Figure S2, we find generally similar 
results between the Friedlander pulse, and the 2 Hz signal. Both show decreasing statistical 
parameters as the original SNR decreases. The relative performances between methods are 
also similar for each event type. For the 0.2 Hz signal, which has a very similar frequency 
content to the microbarom, denoising performance is consistently worse than the other two 
cases, particularly where the original signal is below ~7–8 dB SNR. The results for the  
0.2 Hz event are similar to those in Figure 11, where the Bogoslof explosion was also 
predominantly low in frequency. 
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For the wind removal results in Figure S3, there is a more complex picture than for 
the microbaroms. In terms of correlation, the discontinuous wind samples do not drop off, 
even at very low SNR. At 0.2 Hz and 2 Hz, the DLL continuous wind results decay at 
relatively high SNR compared to L27K. These results are also reflected in the maximum 
amplitude plots, where the original amplitude is maintained in the discontinuous wind noise 
case. For the overlapping wind however, the maximum amplitude diverges with lower 
original SNR. In terms of the SNR of the denoised data, the DLL results are better than those 
for L27K, with the greatest difference at 0.2 Hz, though with all data sets having a net SNR 
improvement. This suggests that the wind-noise spectral differences between the two stations 
is impactful, with the lower frequency noise at DLL easier to remove. This type of result was 
also presented in Figure 12. For the SI-SDR metrics, again we find better performance for 
the discontinuous wind samples, with little drop off even at low original SNR. The different 
synthetic events here produce somewhat similar results, but the 0.2 Hz signal has noticeably 
lower SI-SDR than in the other two cases, indicating higher distortion. This may be due to 
the dominant frequency being closest to the frequencies contained by the wind. 
 

 

Figure S3. As for Figure S2, but for wind. In this case, NMF is the only method applied, however. The four 
data sets plotted are for combinations of stations TA.L27K, and AV.DLL, and whether the wind noise is 
continuous through the synthetic events, or only at the ends of the traces (discontinuous). 
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S3. Catalog Discrepancies 
 Here we mainly provide some comments on differences in reported infrasound 
observations between publications detailing infrasound records from Bogoslof, as well as 
potential conflicts within those reports. We anticipate that these comments can provide a 
useful reference when working with Bogoslof infrasound data. In the following, T1 refers to 
Table 1 from Coombs et al. (2019), ESM1 refers to Electronic Supplementary Material 1 
from Coombs et al. (2019), F3 refers to Figure 3 from Lyons et al. (2020), and DS2 to Data 
Set 2 from the supporting information by Wech et al. (2018). Comments on known 
differences between infrasound observations in this study and the above references are 
provided within the main article, and not reiterated here.  

ESM1 states that infrasound results are based on processing parameters used by 
Lyons et al. (2019), whereas T1 (also from Coombs et al., 2019) refers to parameters by 
Lyons et al. (2020). Table S1 below shows differences in array detections, including between 
T1 and F3, which should be identical for OKIF (see events 15 and 47). 

In ESM1, events 21, 22, 27, 30, 31, 34, 41, 46, and 70 are listed as ‘nd’ (no 
detection) for ‘Infrasound detection duration’ (at OKIF), even though OKIF is listed as a 
detecting array. In relation to S1.1, ESM1 refers to the Okmok array as OK0 and OKO, 
rather than OKIF. 

ESM1 determines several eruption onsets based on back-propagated infrasound 
arrivals, using a fixed celerity of 340 m/s. This celerity may not be accurate for all events, 
depending on factors like atmospheric temperature, ray paths, wind speed and direction etc. 
The impact on eruption start times would be more pronounced where timing is based on 
DLL (21/70 events), rather than OKIF, with differences of up to 10 minutes possible from 
those reported. 

There are eight instances in ESM1 of infrasound being registered prior to the given 
eruption onset times (which are based on multiple types of data) listed in Table S2. It’s 
uncertain if this infrasound represents some kind of pre-eruptive degassing, or whether the 
eruption onset times need re-evaluation. E.g., for 10 June, ESM1 gives an infrasound onset 
of 08:27, and an eruption onset of 09:58. ESM2 from Coombs et al. (2019), notes “This 
event started with discrete explosions detected on the Okmok infrasound array as early as 
8:27, but intensifying from 11:18 to 11:38”. PMCC suggests an infrasound start time of 
07:33, approximately an hour earlier than the above source. 

For event 29, the seismic activity time period is given by ESM1 as 05:20 to 07:23, 
whereas Fee et al. (2020) describe seismic activity continuing to ~13.30. 

At DLL, F3 notes there is ‘no data’ for several events (#s 37, 38, 57–59, 63–65). Full 
data is available, however, for events 37, 38, and 63–65. This data is recently available from 
IRIS, but previously also from the Wilson Alaska Technical Center. We do not intend here to 
reassess all events for all arrays with PMCC, but do note that events 37, 38, 63, and 64 are 
clearly detectable at DLL with PMCC. ESM1 also logs event 37 and 38 at DLL. 
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Table S1. Comparing reported detections for arrays in Wech et al. (2018) (DS2), Coombs et al. (2019) (T1, 
ESM1), and Lyons et al. (2020) (F3). Arrays are ordered within each group by distance from Bogoslof from 
left to right. Not all arrays were operating at all times (see Lyons et al., 2020, and comments above regarding 
DLL data availability). 
 

  DS2  T1  ESM1  F3 
Event  OKIF  OKIF  OKIF AKS CLCO SDPI ADKI DLL  OKIF AKS CLCO SDPI ADKI DLL 

1 

 

 

 

X 

 

X      

 

X      
2 X X X      X      
3     X X         
4  X X   X   X      
5      X  X       
6      X  X      X 
7 X X X  X   X X     X 
8        X       
9      X  X      X 

10      X  X      X 
11      X  X       
12      X  X      X 
13      X  X    X  X 
14     X   X       
15  X    X  X      X 
16 X X X  X X  X X     X 
17 X X X  X X  X X     X 
18               
19               
20  X X  X X  X X     X 
21   X   X  X      X 
22   X   X  X      X 
23      X  X    X   
24 X X X     X X     X 
25        X      X 
26  X X     X X     X 
27   X     X       
28 X X X      X      
29 X X X   X   X X X    
30   X     X       
31   X     X       
32               
33 X X X X  X  X X X X   X 
34   X X    X  X    X 
35    X    X      X 
36 X X X X  X  X X X     
37 X X X X  X  X X X     
38  X X     X? X      
39 X X X X X X  X X X X    
40 X X X X  X  X X X     
41   X  X   X       
42  X X      X      
43               
44  X X  X    X      
45 X X X X X    X  X    
46   X  X      X    
47  X  X      X     
48 X X X X X  X  X X   X  
49 X X X X X X   X X X  X X 
50  X X      X X     
51 X X X X X X   X    X X 
52 X X X X X X   X X    X 
53              X 
54           X    
55 X X X X     X X     
56  X X X X    X X     
57 X X X      X      
58 X X X    X  X      
59               
60 X X X X     X      
61 X X X X     X      
62               
63 X X X  X    X X X    
64    X      X     
65  X X      X X     
66 X X X      X X    X 
67 X X X      X      
68 X X X X X    X X    X 
69 X     X    X     
70   X  X      X   X 
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Table S2. Entries from ESM1 where the infrasound onset is given as prior to the eruption onset (UTC times). 
 

Event Infrasound onset Eruption onset 
15 06:16 06:19 
26 13:48 13:51 
28 17:22 17:25 
34 00:32 00:34 
35 13:57 14:00 
41 02:43 02:44 
48 08:27 09:58 
63 17:39 18:21 

 
 
S4. Principal Software Resources 

We explicitly incorporated the following software packages for processing, analysis 
and plotting: 
 
BCSeis: A GUI and set of inline functions for performing various non-linear thresholding 
operations using the Continuous Wavelet Transform 
(http://www.ceri.memphis.edu/people/clangstn/software.html).  

Langston, C. A., and Mousavi, S. M. (2018). Adaptive seismic denoising based on 
the synchrosqueezed-continuous wavelet transform and block-thresholding, Air Force 
Research Laboratory final technical report AFRL-RV-PS-TR-2018-0074. Available 
at: https://apps.dtic.mil/dtic/tr/fulltext/u2/1061053.pdf 

 
BSSEval: Stöter, F.-R., and Liutkus, A. (2019). Audio source separation evaluation metrics 
(https://github.com/sigsep/bsseval) 

Vincent, E., Gribonval, R., and Févotte, C. (2006). Performance measurement in 
blind audio source separation, IEEE Transactions on Audio, Speech and Language 
Processing, 14, 4, 1462–1469. 

 
Circle Draw: Scholtes, J. (2016). Python-custom distance radius with basemap 
(https://stochasticcoder.com/2016/04/06/python-custom-distance-radius-with-basemap/). 
 
Dill: Serialization and deserialization of built-in python types 
  (https://github.com/uqfoundation/dill) 

McKerns, M., and Aivazis, M. (2010–). pathos: a framework for heterogeneous 
computing. (https://uqfoundation.github.io/project/pathos). 
McKerns, M. M., Strand, L., Sullivan, T., Fang, A., and Aivazis, M. A. G. (2011). 
Building a framework for predictive science. Proceedings of the 10th Python in 
Science Conference (https://arxiv.org/pdf/1202.1056). 
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IPython: A rich architecture for interactive computing in multiple programming languages 
(https://ipython.org/).  

Pérez, F., and Granger, B. E. (2007). IPython: A System for Interactive Scientific 
Computing. Computing in Science & Engineering, 9, 21–29. 
https://doi.org/10.1109/MCSE.2007.53 

 
GDAL: GDAL/OGR developers (2018). GDAL/OGR Geospatial Data Abstraction software 
Library (https://gdal.org) 
 
GISMO: Thompson, G., and Reyes, C. (2017). GISMO - a seismic data analysis toolbox for 
MATLAB (https://geoscience-community-codes.github.io/GISMO/). 
 
GMT: Generic Mapping Tools (https://www.generic-mapping-tools.org/).  

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., and Wobbe, F. (2013). Generic 
Mapping Tools: Improved version released. EOS Transactions, AGU, 94, 45, 409–
410. https://doi.org/10.1002/2013EO450001 

 
IMS-vASC: Combined infrasound signal association and source location using a brute-force, 
grid- search, cross-bearings approach (https://github.com/rmatoza/ims_vasc). 

Matoza, R. S., Green, D. N., Le Pichon, A., Shearer, P. M., Fee, D., Mialle, P., and 
Ceranna, L. (2017). Automated detection and cataloguing of global explosive 
volcanism using the International Monitoring System infrasound network. Journal of 
Geophysical Research: Solid Earth, 122, 2946–2971. 
https://doi.org/10.1002/2016JB013356 

 
Librosa: Music and audio analysis, music retrieval systems 
(https://librosa.org/doc/latest/auto_examples/plot_vocal_separation.html)  

McFee, B., Raffel, C., Liang, D., Ellis, D. P. W., McVicar, M., Battenberg, E., and 
Nieto, O. (2015). librosa: Audio and music signal analysis in python. Proceedings of 
the 14th Python in Science Conference, 18–25. https://doi.org/10.25080/Majora-
7b98e3ed-003 

 
Matplotlib: A comprehensive library for creating static, animated, and interactive 
visualizations in Python (https://matplotlib.org/).  

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science 
& Engineering, 9, 90–95. https://doi.org/10.1109/MCSE.2007.55 

 
NMF: Bryan, N. J., Sun, D., and Cho, E. (2013). Single-Channel Source Separation Tutorial 
Mini-Series (https://ccrma.stanford.edu/~njb/teaching/sstutorial/) 
 
NoisePy: A high-performance python tool for ambient-noise seismology 
(https://github.com/mdenolle/NoisePy). 

Jiang, C., and Denolle, M. NoisePy: a new high-performance python tool for seismic 
ambient noise seismology. Seismological Research Letters, 91, 3, 1853–1866. 
https://doi.org/10.1785/0220190364 
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NoiseReduce: Sainburg, T., and Amr, K. (2019): Noise reduction in python using spectral 
gating (speech, bioacoustics, time-domain signals). (https://github.com/timsainb/noisereduce) 
 
NumPy: Oliphant, T. E. (2006). A guide to NumPy. USA: Trelgol Publishing 
(https://numpy.org/). 
 
ObsPy: A Python Toolbox for seismology/seismological observatories 
  (https://docs.obspy.org/).  

Beyreuther, M., Barsch, R., Krischer, L., and Wassermann, J. (2010). ObsPy: A 
Python toolbox for seismology. Seismological Research Letters, 81, 3, 530–533. 
https://doi.org/10.1785/gssrl.81.3.430 

 
Openpyxl: Openpyxl developers. (2016). A Python library to read/write Excel 2010 
xlsx/xlsm/xltx/xltm files (https://openpyxl.readthedocs.io/en/stable/). 
 
Pisces: Pisces: A practical seismological database library in Python 
(https://github.com/LANL-Seismoacoustics/pisces). 

MacCarthy, J. K., and Rowe, C. A. (2014). Pisces: A Practical Seismological 
Database Library in Python, Seismological Research Letters, 85, 4, 905–911. 
https://doi.org/10.1785/0220140013 

 
PMCC: Progressive Multichannel Correlation (PMCC) software. Access is administered by 
CEA/DASE/LDG, France, and not publicly available.  

Cansi, Y. (1995). An automatic seismic event processing for detection and location: 
The P.M.C.C. method. Geophysical Research Letters, 22, 9, 1021–1024. 
https://doi.org/10.1029/95GL00468 

 
RTM: Our Reverse Time Migration (RTM) code (v. 7.13+) is not currently publicly 
available, but we include supporting software resources in this list. An alternate RTM 
infrasound tool, partly based on ours, is located here: https://github.com/uafgeotools/rtm 
 
SciPy: Jones, E., Oliphant, E., Peterson, P., et al. (2001–). SciPy: Open Source Scientific 
Tools for Python (https://www.scipy.org). 
 
Subaxis - Subplot: Grinsted, A. (2020). Create axes in tiled positions  
(https://www.mathworks.com/matlabcentral/fileexchange/3696-subaxis-subplot). 
 
WienerNoiseReduction: Scalart, P. (2020). Wiener filter for noise reduction and speech 
enhancement (https://www.mathworks.com/matlabcentral/fileexchange/24462-wiener-filter-
for-noise-reduction-and-speech-enhancement). 

Plapous, C., Marro, C., and Scalart, P. (2006). Improved signal-to-noise ratio 
estimation for speech enhancement. IEEE Transactions on Speech and Audio 
Processing, 14, 6, 2098–2108. https://doi.org/10.1109/TASL .2006.872621 
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S5. Software Parameters 
Details on parameter choices for each processing method are provided below to 

enable reproducibility. These parameters were determined from tests using multiple stations 
and events. Some codes were modified to be able to output extracted noise, as well as 
extracted signals. We use the stated Fourier transform parameters for all processing except 
for Figure 11, where due to the short event and poorer results for some methods with the 
standard parameters, we use 512 FFT points, a window length of 512 samples, and a hop size 
of 32. This suggests that some of the shorter events in Figure 8 may benefit from non-default 
Fourier parameters. 
 
S5.1. Block Choice (BC) 
The following are parameters for the BCseis_process function in BCseis v.1.2: 
 
% Wavelet parameters 
    params.wavelet_type = "morlet"; 
    params.nvoices = 4; 
 
% Band pass/block parameters 
    params.nbpblck = 0; 
    params.scale_min = 1; 
    params.scale_max = 1000; 
    params.bthresh = 0.0; 
 
% Noise Determination parameters 
    params.nnbnd = 1; 
    params.tstrn = round((t1)/FS); % Seconds 
    params.tfinn = round((t2)/FS); % Seconds 
 
% Noise and/or Signal Threshold parameters 
    params.noisethresh = 1; % 1 to retain signal, 0 to retain noise 
    params.signalthresh = 0; % 0 to retain signal, 1 to retain noise 
    params.nsig = 2.25; 
 
% Signal to Noise function parameters 
    params.nsnr = 0; 
    params.nsnrlb = 1.0; 
 
For voices = 4, we chose the Morlet wavelet based on the balance of the following 
observations: 

1. morlet: Event and extracted noise amplitude OK, correct polarity, uneven + gappy 
spectrograms 

2. mhat: Event and extracted noise amplitude too big, correct polarity, clipped 
spectrograms at high frequencies 

3. shannon: Event amplitude too big, extracted noise amplitude OK, partly correct 
polarity, OK spectrograms 

4. hhat: Event and extracted noise amplitude OK, correct polarity, uneven + clipped + 
vertically gappy spectrograms 
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S5.2. Harmonic Regeneration (HR) 
The following are parameters for the WienerNoiseReduction.m file (version October 2020): 
 
    NFFT = 2048; % FFT points 
    SP = 0.25; % shift percentage 
    wl = 2048; % window length, samples 
    alpha = 0; % parameter in a priori SNR calculation 
 
The WienerNoiseReduction code by default scales the output trace to be the same amplitude 
as the input trace. There are instances where this result may not be desirable however, e.g., if 
the highest amplitude of the input trace is an element that is being removed. We find that 
instead, scaling the output by a factor of 2 produces an improved result. 
 
 
S5.3. Non-Negative Matrix Factorization (NMF) 
The following are parameters for the scriptcomplete.m file in NMF code III: 
 
    K = [25 25]; % number of basis vectors 
    supervised = [1 1]; % binary vector specifying what is supervised 
    MAXITER = 30; % total number of iterations to run 
 
    FFTSIZE = 2048; % FFT points 
    HOPSIZE = 512; % hop length, samples 
    WINDOWSIZE = 2048; % window length, samples 

 
S5.4. Nearest-Neighbor Filtering (NN) 
The following are parameters for the plot_vocal_separation.py file: 
 
    n_fft = 2048 # FFT points 
    hop_length = 512 # hop length, samples 
    win_length = 512 # window length, samples 
    nn_filter width = 2 # frame comparison parameter 
 
    margin_i = 0.75 # mask parameter 
    margin_v = 1.75 # mask parameter 
    power = 2 # mask parameter 
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S5.5. Spectral Gating (SG) 
The following are parameters for the noisereduce.py file, also see example at 
https://timsainburg.com/noise-reduction-python.html: 
 
    n_grad_freq = 10 # how many frequency channels to smooth over with the mask 
    n_grad_time = 1 # how many time channels to smooth over with the mask 
 
    n_fft = 2048 # FFT points 
    win_length = 2048 # window length, samples 
    hop_length = 512 # hop length, samples 
 
    n_std_thresh = 1.5 # how many sdevs > than the mean dB of the noise (at each freq. level) 

to be considered signal 
    prop_decrease = 0.7 # to what extent should you decrease noise (1 = all, 0 = none) 
 
 
S5.6. Progressive Multi-Channel Correlation (PMCC) 
The PMCC (Cansi, 1995; version 4.3.c1) initialization files for each array are uploaded 
separately. For each station, a unique configuration file and a common filter-bands file are 
required. Full descriptions of the file formats are included in PMCC software documentation 
(not included here). Configuration files: <array_name>.ini. Filter file: filters.ini (applies to 
all stations, assumes 20 Hz sample rate). DLL has two configuration files: One is for five 
channels, covering 12 December 2016 to 5 May 2017, and one is for six channels, covering 
May 2017 to 30 August 2017. The difference is indicated in the respective file names. 
 
 
S5.7. Reverse Time Migration (RTM) 
Parameters are the same as those described in Sanderson et al. (2020a). 
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Abstract  

Erosion, hydrothermal activity, and magmatism at volcanoes can cause large and 

unexpected mass wasting events. Large fluidized debris flows have occurred within the past 

6,000 years at Mount Adams, Washington, and present a hazard to communities 

downstream. In August 2017, we began a pilot experiment to investigate the potential of 

infrasound arrays for detecting and tracking debris flows at Mount Adams. We deployed a 

telemetered four-element infrasound array (BEAR, 85 m aperture), ~11 km from a 

geologically unstable area where mass wasting has repeatedly originated. We present a 

preliminary analysis of BEAR data, representing a survey of the ambient infrasound and 

noise environment at this quiescent stratovolcano. Array processing reveals near continuous 

and persistent infrasound signals arriving from the direction of Mount Adams, which we 

hypothesize are fluvial sounds from the steep drainages on the southwest flank. We interpret 

observed fluctuations in the detectability of these signals as resulting from a combination of 

(1) wind-noise variations at the array, (2) changes in local infrasound propagation conditions 

associated with atmospheric boundary layer variability, and (3) changing water flow speeds 

and volumes in the channels due to freezing, thawing, and precipitation events. Suspected 

mass movement events during the study period are small (volumes < 105 m3 and durations 

< 2 min), with one of five visually confirmed events detected infrasonically at BEAR. We 

locate this small event, which satellite imagery suggests was a glacial avalanche, using three 

additional temporary arrays operating for five days in August 2018. Events large enough to 

threaten downstream communities would likely produce stronger infrasonic signals 

detectable at BEAR. In complement to recent literature demonstrating the potential for 

infrasonic detection of volcano mass movements (Allstadt et al., 2018), this study highlights 

the practical and computational challenges involved in identifying signals of interest in the 

expected noisy background environment of volcanic topography and drainages.  
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1. Introduction  

Massive fluidized debris flows (lahars) originating from the upper slopes of 

volcanoes can occur without warning. Historically and recently, lahars have buried entire 

villages near volcanoes, with great loss of life (e.g., Pierson et al., 1990; Major et al., 2018). 

These potentially devastating, fast-moving flows pose an ongoing threat to people living in 

low-lying areas along drainages emanating from volcanoes. The study presented here is sited 

on Mount Adams in the Cascade Range of the Pacific Northwest, where large lahars have 

occurred within the past 6,000 years and are a significant ongoing hazard to communities 

downstream (Griswold et al., 2018).  

It is possible to detect the early stages of catastrophic lahars, and so potentially warn 

people to seek higher ground before the lahar arrives, but most endangered populations do 

not have lahar detection systems. Reviews of monitoring strategies for lahar and debris flows 

are provided by Arattano and Marchi (2008), Pierson et al. (2014), Stähli et al. (2015), 

Allstadt et al. (2018), and Hürlimann et al. (2019). Infrasound sensor arrays record acoustic 

waves propagating through the atmosphere at frequencies below the threshold of human 

hearing (< 20 Hz) (Fee and Matoza, 2013; De Angelis et al., 2019; Matoza et al., 2019). 

Many kinds of surface mass movements at volcanoes (e.g., rockfalls, pyroclastic flows, and 

lahars) are known to produce distinctive infrasound signals (e.g., Allstadt et al., 2018, and 

references therein).  

To investigate the potential of infrasound for detecting and tracking lahars at Mount 

Adams, we conducted a pilot experiment. Since August 2017, we have operated a four-

element telemetered infrasound array (SB.BEAR), located ∼11 km from a hydrothermally 

weakened and unstable zone above the White Salmon and Avalanche Glaciers, where 

historical mass wasting has originated and future events are expected (Finn et al., 2007; 
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Figures 1a and 1b). In August 2018, we temporarily deployed three additional three-element 

arrays (PHAB, CHIP, and RAIN), to help corroborate and locate signals recorded at BEAR. 

BEAR is scheduled for removal in August 2021. 

This article is organized as follows: First, we outline some of the relevant geological 

hazards at Mount Adams and the nature of the stations used in the study. Next, we describe 

our data-processing methods and the anticipated acoustic character of mass movement 

signals. Analysis of the ambient infrasound (e.g., Matoza et al., 2013) and noise environment 

(e.g., Brown et al., 2014) follows, including wind–noise impacts and arrivals likely of fluvial 

origin. This analysis focuses first on the long-term records from BEAR and then on insights 

contributed by the temporary infrasound arrays. We identify several event types in the data 

and isolate events that are candidates for mass movements. The timing, location, and 

character of a glacial avalanche is assessed in detail. 

 
1.1. Study Area  

Mount Adams, one of the largest Cascade volcanoes, last erupted 540–2,500 years 

ago (Hildreth and Fierstein, 1995; Scott et al., 1995) and has since continued to have active 

fumaroles near its summit (Hildreth and Fierstein, 1995; Vallance, 1999). Explosive 

eruptions that fragmented the core of the mountain, and hydrothermal activity that has 

altered the volcanic material to soft, low-strength hydrous minerals, together have produced 

1.8 km3 of weak, unstable material in a bowl-shaped volume centered under the summit 

(Finn et al., 2007). Water saturation within this rotten core volume increases potential for 

slope failure and generation of hazardous lahars (Finn et al., 2007). Additional nonmagmatic 

forcing factors are snow loading, fracturing due to ice formation, pore pressure changes, 

erosion, and earthquakes (Vallance, 1999). 
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Figure 1. Important features in the Mount Adams study area. (a) The main panel gives an overview of the 
stations, glaciers, drainages, and wilderness boundary (black line). Insets are regional maps, showing nearby 
volcanoes and urban areas. (b) Modeled lahar inundation extents in the White Salmon River Valley (modified 
from Griswold et al., 2018). BKRW1 is a U.S. Forest Service weather station. (c) Geometry of the four 
subarrays at BEAR. (d) Geometry of PHAB (no subarrays). CC, Cascade Creek; HR, Hood River; MA, Mount 
Adams; MC, Morrison Creek; MH, Mount Hood; MR, Mount Rainier; MSH, Mount St. Helens; P, Portland; 
S, Seattle; SC, Salt Creek; T, Tacoma; TL, Trout Lake; V, Vancouver; WSR, White Salmon River. 
 

A large lahar, associated with eruptions ∼6,000 years ago, flowed more than 40 km 

down the White Salmon River drainage (Vallance, 1999). At the current location of Trout 

Lake, Washington, 27 km south of Mount Adams, the lahar left deposits up to 20 m thick 

and spread out to form the present floor of the Trout Lake Valley. Figure 1b gives an 

indication of the path of the 6.6 × 107 m3 flow. Another smaller lahar, ∼250 years ago, 

reached the location of the town and formed a deposit up to 4 m thick (Vallance, 1999; 
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Griswold et al., 2018). There is currently no evidence to suggest that this recent lahar was 

triggered by an eruption or unrest.  

Continued instability of the Mount Adams summit region is demonstrated by 

recurring debris flows and lahars, with lengths of up to 3 km on subdecadal timescales 

(Norris, 1994; Scott, 2010; Allstadt et al., 2017; Lloyd, 2018) and up to 8 km during the past 

100 years (Vallance, 1999). Ultimately, it would be desirable to detect these small-to-

moderate-sized events, because larger slope failures are expected to initiate similarly.  

 
2. Methodology  

The equipment, data processing, and anticipated event characteristics for this study 

are described in the following. Infrasound arrays typically consist of at least three 

microbarometer pressure-sensing elements arranged spatially on the ground with an aperture 

of ~50–100 m, connected to a single digitizer and telemetry system (e.g., Garcés et al., 2003; 

Matoza et al., 2007). Siting arrays close to volcanoes with direct line of sight to the upper 

slopes facilitates rapid detection and localization of acoustic signals from surface events, but 

this must be balanced with other logistics, including site-noise (e.g., Matoza et al., 2007).  

Mass wasting infrasound may be identified based on multiple signal features, but this 

is still an active area of research (Allstadt et al., 2018). Array processing helps significantly 

by providing direction-of-arrival information from one or more arrays, with changes in back 

azimuth and inclination angle (a measure of altitude) over time indicating a moving source 

(Ulivieri et al., 2011; Johnson and Palma, 2015; Marchetti et al., 2015; Thüring et al., 2015; 

Bosa et al., 2020). Array processing is also critical in identifying these coherent infrasonic 

signals within incoherent wind noise, because wind-noise waveforms can superficially 

resemble mass movement signals (Matoza et al., 2019). Similar methods have been 
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investigated for mass movement events in nonvolcanic settings (e.g., Adam et al., 1998; 

Yount et al., 2008; Leng et al., 2017; Moore et al., 2017; Johnson et al., 2019; Marchetti et 

al., 2019). We build on these studies to investigate the potential for real-time lahar detection 

at Mount Adams, considering realistic ambient infrasound and noise conditions near the 

drainages of this quiescent stratovolcano. 

 
2.1. BEAR Array  

BEAR is our long-term infrasound array at Mount Adams. Siting an array close to the 

primary drainages from the unstable southwest flank presumably enhances the potential for 

mass movement detection. The Gifford Pinchot National Forest covers the broader region, 

however, with much of Mount Adams itself designated a wilderness zone (Figure 1a). Long-

term installations inside the wilderness boundary are heavily restricted; consequently, site 

locations close to likely source zones on the upper slopes are limited. The resulting design 

and location of the BEAR array still allows for real-time data acquisition, and minimization 

of permit issues.  

Four Hyperion IFS-3111 infrasound sensors comprise the BEAR array, which has an 

aperture of 85 m (Figure 1c). Each sensor has a high-frequency shroud for wind-noise 

reduction. These sensors provide a frequency response within 3 dB from 0.01 to 100 Hz, low 

self-noise floor (≤ 0.1 mPa), and high dynamic range (120 dB). Valve boxes cover the 

sensors to provide basic protection from animals and snow accumulation. Wind-noise 

attenuation domes (e.g., Raspet et al., 2019) were not deployed due to the potential for 

crushing by the winter snowpack. A technical issue led to limited sensor sensitivity through 

28 September 2017, after which performance was nominal. All dates and times provided are 

in Coordinated Universal Time (UTC). Further information on station siting and design is 

provided in the supplemental material available to this article.  
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2.2. Temporary Infrasound Arrays  

The temporary infrasound arrays at PHAB (Figure 1d), CHIP, and RAIN were 

deployed between 26 and 31 August 2018, to provide azimuthal coverage of anticipated 

signal sources on the southwest side of Mount Adams as well as other noise sources in the 

area. Data from these temporary arrays were recorded locally with no telemetry link. 

Respective array apertures are ∼80, ∼75, and ∼70 m. PHAB and CHIP were located on 

ridgetops on either side of the main drainage within the Mount Adams Wilderness (Figure 

1), with RAIN located at a lower altitude, and in denser forest to the west of Mount Adams.  

At each temporary array, the Chaparral Model 60-UHP infrasound sensors sit within 

foam wind filters, but are otherwise exposed to the atmosphere. Sensor performance 

specifications are comparable to those at BEAR, except for the greater self-noise floor here 

(∼25 mPa), and lower dynamic range (109 dB). 

 
2.3. Seismic Data  

To detect seismicity at Mount Adams, the Pacific Northwest Seismic Network 

(PNSN) maintains a single-component short-period seismic station UW.ASR on Stagman 

Ridge (Moran, 2005), 2.5 km from our infrasound array (Figures 1a and 1b). As debris-laden 

rivers are also strong generators of seismicity (e.g., Hsu et al., 2011; Tsai et al., 2012; Roth 

et al., 2016; Walsh et al., 2020), seismic data can help corroborate ambiguous infrasound 

signals or otherwise clarify when our stations are not detecting known events. Unfortunately, 

station ASR had impaired sensitivity for ∼75% of 2017–2019 (Natalie Chow, Designer and 

Program Coordinator, PNSN, written comm., 2020). Many time intervals contain only 

electronic noise or have the sensor response focused between 10 and 30 Hz. Observations of 

five seismogenic mass movement events at Mount Adams between 1983 and 2012 are 
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presented by Norris (1994) and Allstadt et al. (2017). These events were recorded on 

regional stations to distances of 183 km.  

 
2.4. Data Processing  

The array processing scheme is described in the following, as are expected event 

characteristics. We use the progressive multi-channel correlation (PMCC) array processing 

algorithm (Cansi, 1995; Le Pichon et al., 2010; Matoza et al., 2013) as a first step to analyze 

the infrasound waveform data. PMCC estimates parameters of coherent plane waves at the 

array, including back azimuth, apparent velocity, signal frequency, and F-statistic (akin to 

the signal-to-noise ratio [SNR]). The PMCC maximum amplitude estimates are 

approximately equal to the peak-to-peak amplitude values of the corresponding time series. 

Apparent velocity (vapp) values from PMCC can be used to infer wavefront incidence angles 

above the horizontal, θH = cos-1(vint/vapp), by assuming an intrinsic adiabatic velocity,  

vint ≈ √ (403·T). T is the temperature in Kelvin.  

PMCC searches in time–frequency space for plane-wave arrivals consistent across 

multiple subarrays with similar wavefront properties. This approach helps reduce uncertainty 

in cases of spatial aliasing (Cansi and Le Pichon, 2009; Marty, 2019). The four-element 

BEAR array has four possible subarrays (three-sensor triads that are subsets of the full array) 

(Figure 1c). An array bandwidth of ∼0.3–8 Hz balances wavefield estimation accuracy and 

spatial aliasing ambiguity (Garcés, 2013). Higher-frequency events may be well resolved if 

signals are clear, short, and broadband (Garcés, 2013; de Groot-Hedlin et al., 2014). We 

include data up to 50 Hz in this study (i.e., low audio), a range that is important for 

identifying small acoustic sources. For simplicity here, the term infrasound is used to include 

this extended frequency band.  
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Wavefront similarity is indicated by a low consistency value, that is, the sum of the 

time delays between array elements. A successful search will result in a record of the 

wavefield parameters for that time window and frequency-band combination—termed a 

pixel. Related pixels are then grouped into families, with higher pixel counts indicating more 

robust results. PMCC is an efficient array processing method, making it suitable for real-time 

applications. One day of typical BEAR data (100 samples per second) requires ∼2.5 hours to 

process on a 3.1 GHz processor. 

 
2.4.1. Signal Characteristics 

To identify potential events at Mount Adams, we look for transient signals in the raw 

waveform data, together with coherent array processing results that arrive from an 

appropriate azimuth range with an acoustic velocity. We also examine signal amplitude, 

robustness of the detection family, and changes in back azimuth indicative of moving 

sources. Anticipated lahar signal properties include emergent, broadband seismoacoustic 

waveforms, which last from tens of minutes to hours in duration. For lahars capable of 

reaching up to 20 km, amplitudes of 2.5 Pa may be expected at a distance of 4 km during the 

peak of the event (equivalent to 10 Pa at 1 km), although, this is a value based on limited 

observations (Johnson and Palma, 2015). Waveform durations from the collapse, fall, and 

flow of consolidated or unconsolidated material would likely be from tens of seconds to 

several minutes (Allstadt et al., 2018, and references therein). Onsets could be emergent or 

impulsive according to the mode of initiation, with most energy concentrated from  

1 to 10 Hz, depending on volume and composition. Amplitudes for such events can vary 

considerably, with reduced pressure observations of 1 Pa at 1 km for small rockfalls and ice 

avalanches (e.g., Havens et al., 2014; Johnson and Ronan, 2015), to 110 Pa at 1 km for very 

large avalanches (Allstadt et al., 2017). Machine-learning-based classification and location 
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schemes are increasingly being applied to mass wasting monitoring applications  

(e.g., Allstadt et al., 2018; Ye et al., 2019; Liu et al., 2020; Wenner et al., 2020).  

When analyzing waveforms alongside PMCC results, denoising steps help to isolate 

signals of interest. Here, we apply two denoising tools on a case-by-case basis to time-

delayed beams during postprocessing. First, BCseis (Langston and Mousavi, 2018), which 

uses an adaptive block thresholding approach in the frequency domain, and (2) an iterative 

Wiener filter (Plapous et al., 2006), which minimizes the difference between noise-

contaminated signals and a designated noise-only section to isolate the signals of interest. 

  
3. Results  

Our results include characteristics of background infrasound from the long-term 

BEAR infrasound array, and records of mass wasting and other activity. Data from both the 

temporary infrasound arrays and BEAR are used to isolate some of the sources of the 

coherent background arrivals and to locate and model a glacial avalanche. 

  
3.1. BEAR Array 

3.1.1. Background Signals 

Array processing results from BEAR reveal near-continuous and persistent 

infrasound signals arriving from the direction of Mount Adams (back azimuths 30°–65°; 

Figure 2a), which we hypothesize result from turbulent fluvial processes, such as rapids and 

waterfalls (e.g., Johnson et al., 2006; Huang et al., 2008; Schmandt et al., 2013; Feng et al., 

2014; Ronan et al., 2017; Anderson et al., 2019) in the steeper upper portions of the Cascade 

Creek and Salt Creek drainages. Observed fluctuations in the detectability of these signals 

over time likely result from a combination of: (1) variation in wind-noise levels at the array 

(e.g., Woodward et al., 2005; Matoza et al., 2011), (2) changes in local infrasound 
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propagation conditions associated with atmospheric boundary layer variability (e.g., Fee and 

Garcés, 2007; Matoza et al., 2009; Wilson et al., 2015; Kim et al., 2018), and (3) changing 

flow speeds in the channels (assuming the infrasound is fluvial in origin). By covering the 

infrasound sensors, higher snowpacks are expected to reduce wind noise, as well as increase 

the attenuation of signals of interest, particularly, at higher frequencies (Adam et al., 1998). 

The number of detections from the 30° to 65° azimuth range is highest during the summer 

(May–August; Figures 2b and 2c), consistent with an increase in glacial meltwater flow. 

Winter (November–February) detections for this direction may relate to increased flow from 

rainfall and rain-on-snow melting during storms (Figures 2d and 2e). Corresponding mean 

signal frequencies are typically 3–20 Hz throughout the year—a similar range to whitewater 

features described by Anderson et al. (2019). In the 30°–65° azimuth range, apparent 

velocities are 330–360 m/s, indicating low incident angles and local signal sources. The time 

periods designated as summer and winter are derived from Figure 2a, being equal length and 

equally spaced periods that exhibit distinct characteristics.  

The BEAR array also records seasonally dependent 3–20 Hz signals in almost all 

directions disjoint from Mount Adams (Figure 2). It is likely that this wide distribution of 

detections is also tied to high-gradient streams and waterfalls, which cover the region. An 

initial analysis (presented in the supplemental material) shows similar temporal trends for 

PMCC detection quantities and regional river discharge. The story is complex, given the 

variable input of rainfall and snow melt in the disparate watersheds, as well as fluctuating 

atmospheric conditions. In addition, waterfalls each have their own seismoacoustic signature 

based on height, plunge style, topographic directivity, and flow volume (Burtin et al., 2008; 

Díaz et al., 2014; Anderson et al., 2019). Future work with additional weather and 

hydrological sensors would help untangle the factors directing this fluvial infrasound. 
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Figure 2. Seasonal trends in infrasound detections, illustrating distinct source types and locations. (a) 
Progressive multi-channel correlation (PMCC) results at BEAR, plotted as back azimuth versus time. The top 
panel is color coded by family mean frequency, and the bottom panel is color coded by the log number of 
detections in the top panel. Bin sizes are one day in time and 0.1 Hz in frequency. Gray indicates < 10 
detections. White-dashed lines bracket the back-azimuth range to the upper Cascade Creek and Salt Creek 
basins (colored black in panels b,d). (b) 2D histogram of summer detections (May–August). Bin sizes are 1.0° 
in azimuth and 0.1 Hz in frequency. Absence of color indicates < 10 detections. (c) Polar 2D histogram for 
summer detections, with higher frequencies at increasing radius. The positions of waterfalls 5–10 m and > 10 
m in total height are marked with small and large circles, with selected high-gradient streams as diamonds. 
Panels (d,e) are the same as panels (b,c), but for winter detections (November–February).  
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The most dominant feature of the PMCC processing results is the coherent 

background infrasound from the Pacific Ocean (microbaroms) during the winter. Wave–

wave interaction primarily generates such signals, typically resulting in a peak between 0.1 

and 0.5 Hz (Bowman et al., 2005). Wave–shore interaction may contribute frequencies up to 

20 Hz (Garcés et al., 2006), although, significant attenuation would be expected at this 

distance. During the summer, microbarom signals are infrequently observed (Figure 2c) due 

to the change in dominant stratospheric wind direction from eastward blowing to westward 

blowing (Le Pichon et al., 2009), as well as a decrease in storm activity.  

Another dominant feature in the PMCC results is persistent year-round higher-

frequency signal content in the low-audio range (20–50 Hz), likely of anthropogenic origin 

from passing aircraft and surrounding urban areas (Matoza et al., 2007; Campus and Christie, 

2010, and references therein; Pilger et al., 2018). The corresponding source directions are 

predominantly from south to southwest (a range covering Hood River, Portland, and 

Vancouver) (Figure 1a).  

Figure 3 shows probabilistic power spectral density (PSD) plots (McNamara and 

Buland, 2004) for the time periods covered by Figure 2. The principal differences between 

the summer and winter periods are in the 0.1–10 Hz band, with a much wider range in noise 

level during the summer and a prominent microbarom peak in the winter. These spectra span 

the full range of global noise models (Bowman et al., 2007; Brown et al., 2014). 

 
3.1.2. Mass Wasting and Other Activity 

Having characterized the background infrasound at BEAR, we next examine records 

from BEAR (and ASR), at times of reported or imaged mass movements at Mount Adams. 

We then filter the PMCC results to isolate additional mass wasting candidates and other 

event types.  
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Figure 3. Seasonal trends in ambient infrasound, reflecting stronger microbaroms in winter and higher wind 
noise in summer. (a) Probabilistic power spectral density (PSD) estimates of BEAR (channel 1) infrasound 
data for (1) the whole study period, (2) summers, and (3) winters. These time periods correspond to those in 
Figure 2. All parameters follow those by McNamara and Buland (2004). Time windows used to estimate the 
PSDs are 1 hr long with 50% overlap and a 10% cosine taper. The color scheme indicates the percentage of 
counts in each amplitude–frequency bin out of the total count at that frequency. Bins are 1 dB by 1/8 of an 
octave, with powers averaged over a full octave. Black lines are the 5th, 50th, and 95th percentiles for the 
data in each plot. Red arrows indicate the range of the microbarom peak (0.1–0.5 Hz). (b) The temporal 
evolution of the PSD for the whole study period.  

 
3.1.2.1. Search for Signals Associated with Witnessed Small Events 

Table 1 lists notable events at Mount Adams between June 2017 and August 2020, as 

witnessed by local observers or identified in available satellite imagery. Satellite images are 

four-band PlanetScope Scenes (3 m resolution, see Data and Resources), which were visually 

inspected only during time frames indicated to be of interest by local witness reports or 

seismoacoustic data. The table includes debris flows, glacial movements, and changes in 

river character, which may indicate potential upstream debris flows in the preceding hours. 

Since the installation of BEAR, there have been five visually confirmed mass movements: 

two in 2017, and one each in 2018, 2019, and 2020. This number is likely an underestimate. 
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Table 1. Witnessed accounts of physical processes at Mount Adams from 2017 to 2020 which may have 
produced seismoacoustic signals, and brief notes on any corresponding geophysical data. The “timing” 
column gives a window during which the event may have occurred (or did) given the observations in the 
“time constraints” column. All times are UTC. Seismometer response was impaired < 10 Hz during events 
from 2017–2018, and impaired at all freqs for the 2019 event. PMCC, Progressive Multi-Channel Correlation. 
 

Timing Location Description Infrasound (BEAR) Seismic (ASR) Time constraints 

18:12:07 
3 June 2017 – 

18:12:40 
4 June 2017. 

Battlement 
Ridge to 
Klickitat 

Glacier, SE 
Mount Adams. 

Debris flow 
~1.6 km long, 
400,000 m3 

(Darryl Lloyd, 
written comm., 

2017). 

Not installed. 
Most likely candidate 
a broadband envelope 

at 21:01 3 June, 
duration 5 minutes. 

Satellite images on 3 (not 
seen) and 4 June (seen). 
In-person observation on 

6 June (Darryl Lloyd, 
written comm., 2017). 

~5–11 Sep. 
2017. 

Below summit 
onto White 
Salmon and 
Avalanche 
Glaciers. 

Debris flow from 
~3,350 to 2,750 

m elevation. 
Not fully operating. No 

clear signals. 

Frequent emergent 
and impulsive events. 

Sustained signal  
4 Sep. 13:00–22:00. 

White Salmon River 
muddy on 6 Sep. In-person 
view on 11 Sep. Unclear 

in satellite images. 

19:30–20:00  
15 Sep. 2017. 

Above 
Horseshoe 

Meadows, SW 
Mount Adams. 

"Rockslide” 
sounds. 

Not fully operating. No 
clear signals. 

Elevated seismic 
signals from 19:35 to 

20:35. 
Noises reported by hikers. 

~10–11 July 
2018. 

White Salmon 
River in Trout 

Lake. 
Muddy flow. 

 
No strong candidate 

signals. Persistent noise. 
Sustained noise. 

Several prominent 
impulsive events. 

In-person observation on 
11 July. Satellite images 
show minor snow melt. 

20–27 July 
2018, possibly 
earlier, or as 

late as 5 Aug. 
2018. 

White Salmon 
Glacier 

headwall onto 
Avalanche 

Glacier. 

Small debris flow 
from ~3,600 to 

2,700 m 
elevation, 1.4 km 
distance (Darryl 
Lloyd, written 
comm., 2018). 

Strong diurnal wind 
noise. Few robust 
candidate signals. 

Broadband impulses 
from ~22:00 4 Aug. to 

~03:00 5 Aug. during an 
intense storm are 

consistent with thunder. 
Some back azimuths 

during the storm 
coincide with nearby 

water turbulence. 

Frequent impulsive 
events amidst diurnal 

noise. Candidate 
signals at 16:37 

21 July, and 14:36 
27 July. Clear 

broadband signals 
during storm ~22:00  

4 Aug. to ~03:00 
5 Aug. 

In-person observations on 
20 July (potentially not 

seen), 27 July (potentially 
seen) and 5 Aug. (seen). 

Unclear in satellite 
images. 

~28–30 July 
2018. 

White Salmon 
River in Trout 

Lake. 
Muddy flow. 

Few clear events with no 
strong candidate signals, 

noisy background. 

Long noisy periods 
(only some diurnal), 
frequent events, no 
standout candidates. 

In-person observation on 
29 and 30 July. Satellite 
images show some snow 

melt. 

8–9 Aug. 
2018. 

White Salmon 
Glacier. Noises heard. 

Prominent event at 20:22 
9 Aug., but PMCC 

metrics inconsistent with 
a local origin. Otherwise 

few clear events. 

Frequent impulsive 
events, more 

commonly during 
daytime when hot. 

Includes remote event 
at 20:22 9 Aug. 

Noises reported by hikers. 
Satellite images show 

widening crevasses on the 
upper White Salmon 
Glacier 8–10 Aug. 

21:34:54 
24 Aug. – 

18:29:25 28 
Aug. 2018. 

White Salmon 
Glacier. 

Ice/snow 
avalanche (not 
witnessed in 

person). 

Clear impulsive 
broadband arrivals on all 

four infrasound arrays 
~16:01 28 Aug. 

~16:01 28 Aug. 2018 
event is just above 

background 
seismically. 

Satellite images on 24 (not 
seen) and 28 Aug. (seen). 

22:48–23:08 
28 Aug. 2018. 

White Salmon 
Glacier. Noises heard. 

Strong background 
noise, no clear signals, 

but several viable PMCC 
detections. 

Impulsive signals 
22:37–22:45 (earlier 
than observations). 

In-person observation. 
Satellite images show no 

significant glacier 
changes. 

8–15 June 
2019. 

Below summit 
onto Avalanche 

Glacier. 

Debris flow from 
~3,400 to 2,800 
m elevation, 900 

m distance. 

Strong diurnal wind 
noise. PMCC shows two 

potential detections at 
~03:28 12 June, but 
metrics aren’t robust. 

Potentially a series of 
four pulses at 17:49 
11 June, duration 

1.5 mins. 

In-person view on 8 June 
(not seen) and  

15 June (seen). Satellite 
images on 11 June (not 

seen) and 15 June (seen). 

~22:30 
4 July 2020. 

Above Stagman 
Ridge, SW 

Mount Adams 
“Avalanche” 

sounds. 
No distinct waveforms or 

potential PMCC 
detections. 

No distinct 
waveforms. 

Noises reported by hikers. 
Unclear in satellite 

images. 
~01:45 

31 Aug. 2020. 
May extend 

before/after by 
a few hours. 

Above tree line 
on SW Mount 
Adams, toward 
Williams Mine 

Rockslide 
No distinct waveforms or 

potential PMCC 
detections during +/- 2 

hours. 

Few distinct 
waveforms during +/- 

2 hours. Large 
impulsive glitch-like 

signal at 01:08. 

In person view during 
event. Unclear in satellite 

images. 
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In cold months in particular, the mountain often is hidden by clouds, and human access is 

limited, making visual observations of events difficult. All observed events took place from 

June to September, when temperatures are relatively warm, snow is melting, and the greatest 

potential for instability occurs (e.g., Mills, 1991). The 28 August 2018 event is the only 

entry from Table 1 for which we could find clearly attributable seismoacoustic signals. The 

main complications are: (1) relatively small amplitude events; (2) poor knowledge of the 

timing of the events; (3) coherent array detections (clutter) regularly coming from the 

expected azimuths; (4) waveform characteristics are likely weak and emergent, and 

superficially similar to wind noise; (5) unknown local propagation conditions; and (6) 

limited numbers of stations and data types. In conclusion, few obvious waveforms 

correspond to the events of Table 1, because these events likely are at or below station 

detection thresholds.  

To illustrate the previous issues, Figure 4 shows selected processing results for the 

speculated time period of the July 2018 debris flow event. Data types include PMCC 

processing results (back azimuth, cross-correlation, maximum amplitude, each color coded 

by family mean frequency), filtered beamformed data, and spectral content over time. 

Diurnal winds are expected to present with power inversely proportional to frequency, but, 

notably here, the relative power in each band is inconsistent over time. The wind bursts 

interrupt the higher-frequency background PMCC detections in Figure 4 (with similar 

observations by Matoza et al., 2009; Green et al., 2012; the time series in Figures 2 and 3 

also show a similar relation between PMCC detection gaps and wind bursts). Lower-

frequency detections are more continuous, particularly, on 20 and 21 July. The next section 

shows that there are no clear detection candidates for the July 2018 debris flow when 

considering appropriate PMCC wave parameter combinations.  
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Figure 4. BEAR infrasound analysis for period spanning speculated occurrence of a debris flow at Mount 
Adams (as per eye witness details in Table 1), showing how wind noise can affect event detectability. (a–c) 
PMCC results limited to those detections with back azimuths from 30°–65°, which covers the majority of 
Mount Adams. Horizontal dashed lines cover the expected event back-azimuth range. Detections are color 
coded by family mean frequency. Incoherent wind noise from 0.2 to 1.0 Hz correlates well with gaps in high-
frequency PMCC detections, with background shading applied if the PSD sum from 0.2 to 1.0 Hz exceeds 0.6 
Pa2/Hz (5.5 min bins). d) Beamformed infrasound for a back azimuth of 48° and apparent velocity of 350 
m=s, values appropriate to sources traversing the Avalanche Glacier. Waveforms are filtered before 
beamforming as follows: 0.01–0.2 Hz (black trace) and 0.2–1.0 Hz (purple trace). (e) A spectrogram of 
unfiltered beamformed infrasound, with dashed lines at 0.2 and 1.0 Hz. PSD is plotted on a log scale. Mean 
wind speed (solid black line) and maximum wind speed (solid white line) are from the U.S. Forest Service 
station at BKRW1 (Fig. 1b). Characteristics of signals from debris flows are either absent (no events 
occurred) or cannot be easily identified with such analysis.  
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3.1.2.2. Distilling and classifying automatically detected signals  

Following our search for signals associated with known mass movements, we now 

aim to identify instances of such events on the upper slopes of Mount Adams for which we 

do not have first-hand accounts. We isolate possibly associated PMCC detections by 

requiring positive SNRs (F-statistic ≥ 1.5, peak-to-peak amplitude ≥ 0.1 Pa), appropriate 

locations (back azimuth 40°–55°, apparent velocity 330–360 m/s), with reasonable 

thresholds (number of pixels ≥ 35, cross-correlation ≥ 0.6). We also limit results to those 

with mean frequency ≥ 5 Hz to avoid some fluvial detections. Since August 2017, there have 

been 36 events matching these criteria. PMCC processing results for these events are 

included in the supplemental material. Such events do not, however, coincide with those in 

Table 1, other than that on 28 August 2018. This remains the case with no minimum 

amplitude (which gives 444 detections).  

Using the presumed waveform characteristics (the Data Processing section; Allstadt 

et al., 2018) as well as weather data (from Ventusky, see Data and Resources), we classify 12 

of the 36 events as mass wasting candidates. Durations range from 20 to 90 s, with 

amplitudes up to ∼0.22 Pa. In the example in Figure 5a, ASR first registers the direct seismic 

arrival at 7 s and then an acoustic component as a ground-coupled airwave (GCA) at 37 s. 

BEAR records the direct airwave ∼5.4 s later. The acoustic arrival times and PMCC back 

azimuth (44.3°) indicate a source region at ∼2,000 m elevation (assuming a velocity of 333 

m/s, appropriate for a mean path temperature of 2 °C). The corresponding origin time would 

be ∼14 s and may relate to the broadband seismic component. Eleven of the twelve mass 

movement candidates have similar back azimuths (42°–46°), spanning the White Salmon 

Glacier. The remaining event aligns with the Avalanche Glacier headwall (46°–49°), from 

which multiple debris fans indicate minor ongoing rockfall. In the next section, we more 
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fully analyze the 28 August 2018 event, which was detected by the three temporary 

infrasound arrays, in addition to BEAR, and is the only one of these mass movement 

candidate events to clearly appear in satellite imagery. 

 

Figure 5. Examples of several event types that have back azimuths coincident with Mount Adams. (a) 
Potential mass wasting event from 10 October 2018 recorded at BEAR and ASR. A ground- coupled airwave 
(GCA) arrives at ASR at ∼37 s. (b) A potential mass wasting event from 7 November 2018. Any GCAs at 
ASR are unclear in this case. (c) Thunder events at BEAR. Yellow-highlighted signals are those that 
coincidentally met the PMCC event parsing criteria. (d) Impulsive event example from 21 March 2019, 
possibly caused by an icequake or tree fall. In all figure parts, gray traces are > 0.5 Hz, black traces are 
denoised using BCseis, and red traces are black traces > 4 Hz. Infrasound traces have been beamformed using 
back azimuth and apparent velocity values from PMCC. The spectrogram plots PSD on a log scale, with 
warm colors indicating relatively high values and cold colors indicating relatively low values. 
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We interpret 18 of the 36 events as thunder (e.g., Farges and Blanc, 2010), occurring 

as part of sequences. Each instance typically has an erratic waveform 10–30 s in duration 

with an amplitude < 1 Pa (Figure 5c), although, events of up to 4 Pa and > 60 s have been 

recorded. Spectra tend to be even and broadband, though some spectra peak < 10 Hz, 

perhaps indicating relatively distant sources (Bass, 1980; Assink et al., 2008). When ASR is 

operational, thunder is typically registered via weak GCAs, with arrival times relative to 

BEAR dictated by the back azimuth. The absence of direct seismic arrivals for these events 

reduces the probability of these events being mass movements. Few of the hundreds of these 

thunder signals remain after parsing the PMCC detections; thus, our simple PMCC bulletin 

selection criteria are useful for an initial basic data screening. A more robust set of 

discriminators may be required, however, because the character of thunder can vary widely 

(e.g., Johnson et al., 2011; Liu et al., 2015; Marchetti et al., 2019; Haney et al., 2020), and 

repeated surges of fluidized debris flows may produce similar sets of signals (e.g., Kogelnig 

et al., 2014; Liu et al., 2015).  

The remaining six events are impulsive with short codas, lasting 0.5–3 s, and 

spanning 3–30+ Hz in frequency. Four of the examples have negative first motions (Figure 

5d). These events may be icequakes (comparable to those described by Lombardi et al., 

2019, with Richardson et al., 2012, and Allstadt and Malone, 2014, being other useful 

references) or possibly large tree-fall events. We rule out electromagnetic interference, given 

the acoustic travel times, general absence of thunderstorms, and similar amplitudes on each 

sensor (vs. Haney et al., 2020). Gun shots are also unlikely, as such signals are typically ≪ 

0.5 s in duration (e.g., Maher and Shaw, 2008).  
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Figure 6. PMCC results from (a) PHAB, (b) CHIP, (c) RAIN, and (d) BEAR for 26–31 August 2018, showing 
highly variable detection sensitivity. Detections ≥ 2 Hz are scaled according to the maximum amplitude for 
each family and colored according to mean family frequency. Detections <2 Hz are shaded black and not 
scaled. Back azimuths are clockwise from north. Darker gray bars encompass the azimuth range of the upper 
basins of Cascade Creek and Salt Creek for each station (Fig. 1a). Vertical dotted lines indicate the respective 
recording periods. At CHIP, a technical issue affected the data quality for the first 3.5 hours, resulting in a 
gap in the PMCC detections. All these detections are coherent infrasound arrivals, rather than noise, with the 
majority likely deriving from the numerous turbulent streams and waterfalls in the region. White arrows point 
to a glacial avalanche (Table 1).  
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3.2. PHAB, CHIP, and RAIN Arrays  

As with the BEAR results earlier, we first address the origins of the background 

signals recorded by these temporary arrays and then proceed to an example of mass wasting. 

These results help illustrate the challenges relating to site selection and source 

characterization.  

 
3.2.1. Background Signals 

PMCC detection results for each station are presented in Figure 6, with a focus on 

identifying any arrivals from the waterfalls located in the upper Cascade Creek and Salt 

Creek basins (Figures 1 and 2). We retain detections > 2 Hz to limit inclusion of 

microbaroms. Of the temporary stations, CHIP has the most detections within the back-

azimuth band, with PHAB not indicating any sustained signal sources. At RAIN, some 

sustained detections occur, though in a back-azimuth range of 82–96°, corresponding to the 

sources either nearby RAIN, or higher up Mount Adams, in the region of the White Salmon 

and Avalanche Glaciers.  

To constrain source locations, we apply an automated cross-bearings approach with 

the IMS-vASC algorithm (Matoza et al., 2017). IMS-vASC uses a grid search to tally the 

number of intersecting back azimuths over time. Here, we use a grid resolution of 0.005°. 

Figure 7 shows sample results, highlighting intersections of ≥ 20 pixels between the nearest 

station and at least one other station. Other requirements are family frequency ranges of  

2–35 Hz and an azimuth tolerance of 2°, to limit results to the principal local sources within 

∼20 km. Figure 7 also shows the location of waterfalls as well as selected high-gradient 

streams, each of which may be potential signal sources. Waterfall data are primarily via the 

Northwest Waterfall Survey (see Data and Resources). We find a general coincidence 

between these fluvial features and the back azimuths where topography and propagation 
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conditions allow. Line of sight is particularly limited around RAIN, where several falls are 

behind ridges or in deep canyons. More sources are detected when use of the closest station 

to the intersection is not required, but the configuration in Figure 7 more clearly outlines the 

effects of acoustic and topographic features. Drainages on Mount Adams coincide with the 

most dominant detections as anticipated. Falls with low discharge, such as Swampy Meadow 

Falls (∼0.1 m3/s), may not be detected, despite being ∼15 m in total height. Conversely, 

unidentified waterfalls may exist beneath the widespread dense tree coverage. Some 

intersection areas may be coincidental overlaps from temporally distinct events or derive 

from multiple arrays having similar back azimuths for the same event. An IMS-vASC video 

in the supplemental material illustrates the episodic directionality of the detections. 

 

Figure 7. Back-azimuth intersections for 26–31 August 2018 (grid-during layer from IMS-vASC) showing a 
high coincidence between infrasound arrival directions and turbulent waters. Total pixel counts (> 275) are 
displayed for a grid square only if the nearest station detects a signal from the appropriate back azimuth, as 
well as any one other station. The positions of known waterfalls are indicated, along with selected high 
gradient (H-g) streams that align with IMS-vASC features. Some well-known waterfalls are labeled: BF, 
Babyshoe Falls; BSCF, Big Spring Creek Falls; LF, Langfield Falls; LGCF, Little Goose Creek Falls; LNF, 
Little Niagra Falls; RCF, Riley Creek Falls; SMF, Swampy Meadow Falls; Sn.F, Snagtooth Falls; St.F, 
Steamboat Falls; TF, Twin Falls; UPCF, Upper Pin Creek Falls.  
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In general, PHAB and CHIP had noticeably few detections, despite proximity to 

potential signal sources on Mount Adams (Figure 7). We attribute this, in part, to their 

ridgetop locations, where widespread wildfires had led to sparse vegetation (Figure 1) and 

relatively high wind noise (Hedlin et al., 2002; Webster and Raspet, 2015). The wildfires 

meant that more forested sites in proximal areas were unavailable. Gaps in detections, as 

with BEAR, coincide with increases in wind noise (Figure S3). Variation in proximity to 

sources, propagation conditions, and station hardware noise floors may also be relevant. The 

station geometry is also likely to contribute to the detection discrepancy, because BEAR 

detections fall by ∼50% when using only the outer three sensors. Global Positioning System 

(GPS) positional accuracy due to tree density (i.e., sensor location error of ∼2–3 m) may 

also have affected array processing results. Due to the relatively poor detection rates for the 

temporary stations, we used lower signal association thresholds in PMCC.  

 
3.2.2. Glacial Avalanche 

An avalanche occurred on the White Salmon Glacier on 28 August 2018 at ~16:01, as 

determined using infrasound and satellite imagery. Analyzing such events in detail helps 

constrain the detection, location, and modeling capabilities of the arrays. All four infrasound 

arrays clearly recorded the event for 25 s, despite amplitudes below 0.3 Pa (Figures 6 and 8a 

and Table 1). The mean frequency of PMCC families ranged from 4 Hz (RAIN) to 12 Hz 

(CHIP), with the full-frequency range between all sites 0.4–40 Hz. Such results depend on 

attenuation and SNR for each station. Waveforms begin emergently, are briefly dominated 

by two low-frequency (0.3–2.5 Hz) impulses, and then decay slowly. The event is preceded 

by 15 s by two broadband precursory signals (Figure 8a) on all arrays except RAIN. The 

consistent time delay between precursory and main phases indicates a co-located source.  
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Figure 8. Glacial avalanche signal characteristics, array processing results, and derived location. (a) 
Beamformed infrasound waveforms from event on 28 August 2018 at ~16:01, for frequencies > 0.5 Hz (gray) 
and subsequent denoising with a Wiener filter (black). Apparent velocities (vapp) and back azimuths used in 
the beamforming are the means from PMCC families whose maximum frequency is 5 Hz. The spectrogram 
plots PSD at BEAR using the same scale as that in panel (b). Arrows point to weak precursory infrasound. (b) 
Expanded timeframe for same event from panel (a), focusing on BEAR data. Back azimuth, vapp, and 
correlation values derive from PMCC statistics. Gray pixels are off-scale; white means no pixels. Waveform 
clipping helps illustrate the precursory signals prior to 20 s. (c) Triangulation of PMCC back-azimuth values 
used in panel (a). The marked area around the intersection of back azimuths is expanded in panels (d, e), 
which also show the mean location provided by the inversion of sensor arrival times as a green dot, and the 
95% confidence interval. The images in panels (c, d) are from 28 August 2018 at ∼18:29.  
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Back azimuth and apparent velocity statistics for BEAR show sustained values during the 

precursory signals and main event (Figure 8b). This consistency extends ∼40 s earlier at 

BEAR, with additional impulsive signals detected (−32 to −18 s in Figure 8b), though these 

features are not observed at the other arrays. Back-azimuth triangulation places the event at a 

steep (45°) bluff at the front of the upper White Salmon Glacier (Figure 8c). Back azimuths 

are determined by averaging PMCC families with maximum frequencies up to 5 Hz. We find 

that incident angle estimates from each station do not converge on a specific elevation for a 

source, regardless of modeled mean path temperature or the family frequency range 

considered. RAIN tends to underestimate the angle, with BEAR overestimating (as is also 

the case for mass wasting events in Figure 5). Without further calibration, the method has 

limited application at BEAR, given that errors of a few degrees will give high-elevation 

uncertainties at remote source-station distances. We also perform an iterative least-squares 

inversion of the 13 arrival times for the event using the location method of Geiger (1910, 

1912), more recently addressed by, for example, Ge (2003), Stein and Wysession (2003), 

and Havskov and Ottemöller (2010). Altitude is allowed to vary in 10 m steps from 2,500 to 

3,800 m, and velocity from 300 to 400 m/s in 2.5 m/s increments. One hundred inversions 

are performed, randomly perturbing the collective arrival times at each array by 0.15 s, while 

necessitating the adjustments of PHAB and CHIP be within 0.15 s of each other, given their 

similar locations. The resulting 95% confidence interval ellipsoid centers at the bluff within 

the triangulation mesh, spanning 540 m × 400 m horizontally, 934 m vertically (Figure 8d). 

The mean altitude is ∼85 m above the corresponding elevation. Attempting to locate the 

event with just arrival times from BEAR provides a poor location estimate. Better results 

may be obtained using alternate location methods for single arrays, for example, Szuberla et 

al. (2006), Shani-Kadmiel et al. (2018), Green and Nippress (2019), and Shang et al. (2019). 
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Satellite photographs taken 2.5 hours after the located event show an ∼20,000 m2 area of 

glacial avalanche debris from the front of the upper White Salmon Glacier (Figure 8d). Prior 

to the event, the closest images with clear views are four days prior, without evidence of 

debris (Figure 8e). Ongoing instability is implied by rockfall debris in the same area at other 

times of year.  

The infrasound signals themselves suggest a mixture of falling and flowing processes 

(Allstadt et al., 2018, and references therein). The precursory components and emergent 

onset may reflect the initial detachment and failure stages (Zimmer et al., 2012; Havens et 

al., 2014; Schimmel et al., 2017). Given the absence of real-time visual observations of the 

event, a detailed attribution of the infrasound source time function to a specific mass 

movement sequence is not possible. To a first order, however, we model the source time 

history as a hemispherical monopole in terms of the mass (M) of air displaced:  

 
in which P is the pressure time series and r is the source-station distance (e.g., Lighthill, 

2001; Oshima and Maekawa, 2001; Moran et al., 2008). Figure 9 shows that the highest 

mass values are ∼100 kg, equivalent to a sphere of ∼6 m diameter (d), assuming an air 

density of 1 kg/m3. A monopole is applicable when the source is acoustically compact 

(d ≪ λ/2π, λ is the wavelength) and recorded in the far field (r ≫ λ/2π). Here, d = 6 m, 

λ = 337.5m at 1 Hz, and r > 7,700 m, thereby reasonably approximating a monopole.  

Multiple peaks during the source time function in Figure 9 may indicate repeat 

collapses from the glacier front. Given the size of the debris fan is much larger than that 

implied by the mass values in the source time function, we speculate that contributing factors 

to the discrepancy may be (1) additional events occurred in the preceding four days that went 
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undetected, (2) low turbulence of the flow front was inefficient in generating infrasound 

(e.g., Naugolnykh and Bedard, 2002; Mayer et al., 2020), (3) little momentum was built up 

by the avalanche during the short (∼300 m) unconstrained runout on a rough surface, with, 

for example, Kogelnig et al. (2011) showing a strong correlation between velocity and 

infrasound pressure for moving sources. Seismically, the event is barely above the 

background noise, due to an impaired sensor response. 

 
Figure 9. Glacial avalanche infrasound records and their equivalent mass source time functions. (a) 
Infrasound amplitudes at each array (0.5–3 Hz). Black traces have been denoised with a Wiener filter, gray 
traces have not. For CHIP, we remove remaining noise from 16 to 19 s by manually editing the spectral 
content with BCseis. The timescale matches that from Figure 8a. Distances are those between arrays and the 
mean source location provided by the travel-time inversion. (b) Mass equivalent source time functions for 
black and gray traces.  

 
4. Discussion  

Our study is motivated by the potential of using infrasound to quickly detect, 

progressively locate, and swiftly alert people about oncoming large lahars, which are both 

hazardous and relatively infrequent at Mount Adams. To the extent that smaller mass 

movement events may be precursors or triggers to large events, we are initially aiming in this 
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study to characterize sources of background noise, and identify thresholds and best methods 

for event detection using infrasound arrays. During our three-year study, several small debris 

flows or flow candidates were reported by local observers; however, we did not find 

signatures of these events in our data (Table 1). In contrast, we identified 12 events at BEAR 

that are possible candidates for mass movements based upon expected seismoacoustic signal 

characteristics. With one exception, none of these signals had local reports or other visual 

data to illuminate associated physical processes. Using additional temporary arrays, in 

addition to the main BEAR array, we were successful in locating and characterizing a glacial 

avalanche on the upper White Salmon Glacier. This event was confirmed using before and 

after satellite images. The corresponding local time for the event was early morning, with 

low wind typical of the time period improving potential SNR. In general, our results of mass 

movement observation are primarily limited by (1) infrequent events above the detection 

threshold of our arrays, (2) a lack of visual observations of activity for those candidate 

detections we do have, and (3) year-round background sound clutter from the direction of 

Mount Adams that is unrelated to mass wasting.  

To quickly and accurately locate the incipient stages of hazardous lahars from the 

summit area of Mount Adams with infrasound, it may be beneficial to add permanent arrays 

nearer to source zones. The limited detection of known mass movements to date implies that 

improved SNR equipment design (e.g., Albert and Pankow, 2019, 2020) and preprocessing 

noise reduction strategies (e.g., Williams et al., 2020) would be of use for deployments in 

these more exposed areas, and where source amplitudes could be relatively low. Given 

permitting issues, however, potentially desirous solutions like low-cost and low-power 

telemetered systems that reduce preparation and installation time (e.g., Schimmel et al., 

2018; Ye et al., 2019), may prove challenging to implement. We find that when ASR is 
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correctly operating, some small mass movement events are clearly detectable seismically 

(Figure 5). Seismic propagation velocities mean that low alarm latency can be achieved at 

ASR, despite its location outside the wilderness boundary. A sole seismic station, however, 

has limited effectiveness in a monitoring capacity.  

Notably, lahars can grow in volume as they propagate down drainages, which we 

have shown to be sources of (presumably) fluvial infrasound with many similar signal 

characteristics. Obvious changes in back azimuth with time can be indicative of flow fronts 

(e.g., Bosa et al., 2020), but static sound sources can develop during flows at waterfalls, 

check dams, and due to propagation effects caused by topography (e.g., Johnson and Palma, 

2015; Marchetti et al., 2019). For a single array such as BEAR, these scenarios provide a 

strong challenge for automated signal detection, location, and modeling procedures. For one 

or more arrays, probabilistic analyses and modeling could potentially help establish 

confidence levels for detection thresholds for a range of network configurations (e.g., Le 

Pichon et al., 2009; Green and Bowers, 2010; Tailpied et al., 2013), given a priori assumed 

lahar source signal properties of amplitude, frequency content, duration, likely locations, and 

so forth (e.g., George and Iverson, 2014; Johnson and Palma, 2015; Allstadt et al., 2018; 

Watson et al., 2020). Such models should also account for (1) statistically characterized 

variations in site noise (wind noise) (e.g., Le Pichon et al., 2009; Green and Bowers, 2010; 

Brown et al., 2014), (2) local propagation (wind strength and direction, topography, 

temperature, and attenuation), and (3) variability in background clutter.  

A more comprehensive monitoring strategy of Mount Adams could involve focused 

seismoacoustic and video surveillance of multiple key drainages (Figure 1b) as well as 

weather sensors, flow gauges, and trip wires, in line with designs for areas of similar concern 

(e.g., Kogelnig et al., 2014; Liu et al., 2015; Chen et al., 2016; Schimmel and Hübl, 2016; 
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Moran, 2018; Marchetti et al., 2019). Such diverse instrumentation would likely benefit 

detection sensitivity, flow-front location accuracy, avoiding false alarms, interpreting 

physical properties, and also tailoring any alerts to events of particular magnitude.  

 
5. Conclusions  

The BEAR infrasound array is the first at Mount Adams and lays groundwork for a 

system which could potentially detect and track lahars rumbling down the southwest flank. 

To date, BEAR, as well as three additional temporary arrays in August 2018, have helped 

meet initial goals by establishing ambient background wind-noise characteristics and likely 

sources of clutter, as well as successfully locating a small glacial avalanche that was also 

visible in satellite imagery. This event was one of 12 suspected mass movements detected by 

BEAR during the study period. Other transient signals recorded include thunder and, 

possibly, icequakes. SNR, the primary factor controlling lahar detection, is presumably 

dictated mainly by source proximity, source size, and wind levels. Wind noise precluded 

detection of several witnessed small debris flows below the summit; however, it is more 

likely that large events of a hazardous nature would be detectable with the current 

instrumentation at BEAR and ASR. The drainages themselves appear to create abundant 

seasonal clutter from fluvial and waterfall infrasound, although, further confirmation of these 

sources (e.g., using flow-gauge or time-lapse video data) is needed. Characterizing this 

clutter is imperative for any future robust infrasonic lahar monitoring system, which should 

be supplemented by additional data types to reduce ambiguity. Novel real-time station 

designs may be required to meet environmental, budgetary, and logistical challenges in this 

remote region. Future work with more advanced processing methods may better characterize 

multiple clutter sources and wind noise, and could enhance signal detectability.  
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Data and Resources  

Infrasound and seismic data are available from the Incorporated Research Institutions 

for Seismology (IRIS) Data Management Center (DMC) via links in the following citations: 

BEAR (UC Santa Barbara, 1989); PHAB, CHIP, and RAIN (Matoza and Haymon, 2018); 

ASR (University of Washington, 1963). Time-lapse camera images from BEAR 

documenting weather and equipment conditions are available at 

https://doi.org/10.25349/D9903G. Sensor specifications are published manufacturer values. 

Waterfall names and sizes derive from Northwest Waterfall Survey 

(https://www.waterfallsnorthwest.com) and Google Earth. BKRW1 wind and rainfall data 

are provided by MesoWest (https://mesowest.utah.edu), snow and temperature data by the 

National Oceanic and Atmospheric Administration (NOAA; https://www.ncdc.noaa.gov), 

river discharge data by the U.S. Geological Survey (USGS; https://waterdata.usgs.gov/nwis), 

and event-coincident weather data by Ventusky (https://www.ventusky.com). Satellite 

images are via Planet Labs (https://www.planet.com). All websites were last accessed in 

August 2020. The supplemental material for this article includes extended information on 

detected events, system hardware, weather and hydrology data, as well as tools used for data 

processing, analysis, and plotting.  
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Supplemental Material 
 

Here we provide additional information on station hardware, relative signal and noise 
levels, processing parameters, and processing results. Figures are referred to in the main 
article. The relation between hydrological, weather, and PMCC detections is illustrated. We 
also summarize recent debris flow events and infrasound capability at nearby volcanoes, and 
list software tools used for processing, analysis, and plotting. 

  
S1. Debris Flow Infrasound from Nearby Volcanoes 

In 1980, Mount St. Helens (MSH), located approximately 53 km west by north of 
Mount Adams, and 84 km northeast of Portland, Oregon, erupted explosively, and generated 
large lahars along several of its drainages. Fortunately, there were no towns in the paths of 
the lahars. MSH has since remained magmatically active, with episodic construction of a 
lava dome on the floor of its caldera (Dzsurisin et al., 2005; Matoza et al., 2007). In 2006, a 
large rockfall from the dome produced infrasound detected 0.6 km and 13.4 km away at 
Cascade Volcano Observatory (CVO) stations (Moran et al., 2008). The steep interior walls 
of the Mount St. Helens crater also provide a source of rockfall unrelated to volcanic activity 
(Mills, 1991; Norris, 1994). The crater station (CC SEP) continues to operate, currently 
comprising a single sensor. A new infrasound array operating since November 2018 (CC 
GUAC) is located in the main drainage, 2.4 km north of the dome. At Mount Rainier, 75 km 
north-northwest of Mount Adams, a five-station infrasound network comprising two single 
sensors (CC PR01/2), and three 3-sensor arrays (CC PR03/4/5) form part of the lahar 
monitoring system (Thelen et al., 2019).  

From 04:00–08:00 28 October 2018 Coordinated Universal Time (UTC), CVO 
identified several debris flows at MSH using seismic and flow/turbidity gauge data during a 
period of heavy rain (Weston Thelen, written communication, 2018). Though BEAR 
detected signals from the direction of MSH and Mount Adams during this period, any debris 
flows occurring at either location are indistinguishable from background data. Analysis is 
complicated by MSH sharing an azimuth with the Pacific Ocean. At Mount Hood, 85 km 
south of BEAR, a debris flow occurred at 1730–1845 22 October 2017 UTC (Seth Moran, 
written communication, 2017). This event produced clear seismicity at station UW.VLL, 10 
km north of Mount Hood. At BEAR, no infrasound signals could be associated with this 
event. The prevailing wind direction was west to east, at 1,000 m altitude reducing the 
probability of clear detection at BEAR. Thus, we conclude, as expected, that such debris 
flow infrasound signals are relatively weak and not readily detectable at regional distances 
(> 15 km). Wind direction information were obtained from Ventusky (see Data and 
Resources in the main article). 

Seismogenic landslides, debris flows, and outburst floods in the western United 
States and Canada from 1977 to 2017 are detailed by Allstadt et al. (2017). 
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S2. BEAR Array Siting and Equipment Design 
We evaluated potential long-term array sites for BEAR using the following measures: 

(1) open sky to the south for solar power; (2) line-of-sight to the nearest cell tower at Flattop 
Mountain, ~7.5 km northwest by west of Trout Lake; (3) abundance of trees for wind-noise 
suppression; (4) minimizing proximity to obvious noise sources such as busy roads, wind 
turbines, and turbulent water; (5) gently sloping topography across the array footprint to 
reduce 3D wavefront and signal distortion effects; (6) minimizing topography between 
source and station; (7) road access for ease of installation; (8) out of sight for security; (9) 
snow level affecting station design and maintenance potential; (10) risk and vulnerability to 
damage from debris flows or flooding.  

We identified the eventual BEAR site during reconnaissance in September 2016 as 
the location that most satisfactorily met the above criteria, while remaining outside the 
wilderness boundary. A key feature of this site was the treeless open area on a southwest 
facing slope created by a recent timber-salvage clear cut in forest that was damaged by 
wildfire in 2012 (Figure S1a). Sensor coordinates are provided in Table S1. 

Below, we describe the equipment comprising the BEAR array, which has an 
aperture of ~85 m. We elaborate on the technical and logistical details to enable future 
reproducibility and to help motivate technical advances that may be necessary to move to a 
more robust real-time system. Much of the equipment design rationale comes from a 
combination of performance required (real-time communication with high data 
completeness, and signal quality), budgetary constraints, environmental conditions, ability to 
hand-carry, and minimized alteration of the Gifford Pinchot National Forest. Other station 
designs used in the region include those operated by the Cascade Volcano Observatory 
(CVO; Kramer et al., 2017) and the EarthScope USArray Transportable Array (Busby et al., 
2014). We include a system diagram as Figure S2. 
 
S2.1. Vault  

The station enclosure is a Pelican-Hardigg two-wheel transport case (Figure S1b), 
which provides an insulated, waterproof, and crush-proof environment for the system 
electronics. All cables enter via four downward facing ports that are filled with steel wool to 
keep out small animals. To deal with condensation or leaks, the vault contains desiccant 
packets, drainage holes, and is elevated slightly off the ground. These existing entries, plus 
small additional holes, permit venting for the battery in case of unexpected overcharging. 
Padlocks secure the vault. A thick silver-colored ultraviolet resistant tarpaulin keeps the 
enclosure cool and provides additional environmental protection. Signs on the vault and 
sensors explain the purpose of the equipment, provide contact details for further information, 
and discourage tampering. 
 
S2.2. Sensors 
 These notes on the sensors at BEAR are supplementary to the main article, where the 
majority of the information is presented. Valve boxes cover the sensors to provide basic 
protection from animals and snow accumulation (Figure S1c). The boxes are acoustically 
open on each end. The power consumption of each sensor is 0.75 W. Sensors are connected 
to a central digitizer by a shielded cable which runs through unburied polyethylene split flex 
tubing. Armored cable and/or conduit, as well as cable/conduit burial, may be preferred if 
budgets and permits allow. 



Supplemental Material  Chapter 4 

 217 

S2.3. Digitizer and Telemetry 
A four-channel Kinemetrics Obsidian 4X digitizer records data at 100 samples per 

second (Figure S1b). State-of-health information are recorded once per second. The data are 
stored locally and also transmitted in real-time via a Digi WR21 cellular modem using a 
virtual private network (VPN). Waveforms are retrieved at the University of California, 
Santa Barbara, with Antelope Environmental Monitoring Software, and then pushed to the 
Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC). 
The Global Positioning System (GPS) clock and cell antennae (Wilson 314411, ~10 dB gain) 
are mounted in trees, 4.5 m above ground due to winter snow levels (Figure S1d). 
Waterproof self-fusing tape covers cable connections. For the cell antenna, high-gauge LMR-
400 cable reduces transmission losses. These components use a total of 9.5 W of power;  
3.5 W for the digitizer, and 6 W for the modem. This setup provides the ability to remotely 
access the modem and storage system on the digitizer, enabling reconfigurations and data 
retrieval following telemetry gaps. 

 
S2.4. Power System 

The power system is designed to incorporate year-round solar power, rather than rely 
on non-rechargeable battery power during the winter. Such a strategy is more cost-effective 
long-term, and reduces vault size. To this end, six 100 W flexible solar panels are mounted in 
trees 4.5 m above ground (Figure S1d and 1e). A series-parallel wiring system provides both 
redundancy and enables use of low-gauge cable runs (10 AWG, UL-4703 rated), while 
minimizing power loss from voltage drop. MC4 connectors provide waterproof cable joins 
and termination. Calculations for the array indicate a minimum ~400 W requirement in mid-
winter, accounting for factors such as temperature, sun exposure, and snow albedo. Thus, 
two of the panels provide redundancy in case of shading, physical damage, or other failure. 
A Victron 100/30 maximum power point tracking (MPPT) solar charge controller regulates 
power to two Sun Xtender 6 Volt PVX-2240T absorbent glass matt (AGM) deep cycle 
batteries connected in series. The battery capacity varies with discharge rate and temperature, 
but can power the system for ~7 days without recharging. To protect the batteries from over-
discharge, a low-voltage disconnect (LVD) device cuts power to the data logger and sensors 
if the battery voltage falls below 11.8 V, and then reconnects once the batteries register 
above 12.8 V during recharging. 

 
S2.5. System Grounding and Protection 

Several features reduce the risk of equipment damage from overloads, lightning, and 
short circuits. A solar combiner box includes both diodes and fuses, as well as a lightning 
arrestor. The GPS and cell antenna cable runs also include lightning arrestors. Between the 
battery and LVD is a fuse, with a breaker between the battery and solar charge controller. 
Three additional fuses are used for the telemetry equipment, data logger, and sensors. Two 
1.2 m ground rods are installed 2.5 m apart. All three lightning arrestors, and all solar panel 
frames, are directly grounded to these posts with 6 AWG THHN/THWN-2 cable. The data 
logger, solar charge controller, and negative battery terminal are also grounded via an 
intermediary busbar. All system components are rated for anticipated current and 
temperature fluctuations. Conductive grease maintains the performance of electrical 
connections. 
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S2.6. Solar Panel Mounting System 
Given anticipated snow accumulation and permit restrictions on ground disturbance, 

solar panels were installed in trees on the edge of the clear cut, with the help of a 
professional tree service. Panels were attached in pairs to an aluminum frame, and angled for 
winter exposure. Cables run through split flex tubing. All equipment is fixed to the mounts 
before winching to ~4.5 m. Ratcheting tie-downs attach the mounts to the trees to avoid 
long-term tree damage. In addition, anti-bird spikes were added to the tops of the mounts to 
maintain panel performance. Use of 316 stainless steel bolts and other fittings minimizes 
corrosion. Part of the rationale for using lightweight flexible solar panels was to facilitate 
mounting the panels in trees, and also to reduce shipping costs. 

 
S2.7. Cameras 

Two cameras monitor BEAR for human and animal activity, snow levels, and icing-
up of solar panels. One is a time-lapse camera (Plotwatcher Pro), and one is both a motion 
and infrared triggered camera (Browning Strike Force HD Pro). The cameras also provide 
temperature measurements that are more accurate of the environment than the data logger 
measurements inside the insulated vault. Lithium AA batteries power the cameras, with data 
written locally to SD cards. 
 

The equipment at BEAR has functioned well and required minimal maintenance 
since installation despite challenging weather conditions. Data completeness is above 99%, 
with only brief gaps occurring when solar panels freeze up, and batteries run down. Use of at 
least one additional battery appears justified. An issue with data quality is the presence of 
one to two second data gaps and/or overlaps that typically occur several times per day. These 
features are flagged in output MSEED files as data values larger than the range of the 
digitizer, and thus easily rectified by the user. We attribute the origin of this timing issue to 
the GPS clock, which has limited sky coverage due to its location on the edge of a tall forest. 
Camera footage shows intermittent visits from elk, deer, a mountain lion, and the eponymous 
local bear. Elk occasionally mark or pull slightly on the tarp covering the station. Only eight 
people (hunters, hikers, and snowmobilers) passed by the site from Aug. 2017 to Oct. 2019, 
and without any interference. During a visit in Aug. 2018, we found that one of the sensor 
covers had been overturned, and that a cable conduit had been slightly damaged, likely 
attributable to animal activity. Tape et al. (2019) provide an informative study of the effects 
of animal interaction with different station designs across Alaska. 
 
S3. PHAB, CHIP, and RAIN  

These notes on the equipment at PHAB, CHIP, and RAIN are supplementary to the 
main article, where the majority of the information is presented. The temporary station 
design (Fig S1f) uses a simple, lightweight setup that can be easily carried. The central 
recording hub incorporates a DiGOS DATA-CUBE3 (Type 2) 24-bit digitizer, GPS, breakout 
box, and 12 V power supply (Figure S1g). Eight D-cell batteries in series provide power. 
Total power consumption for the station is < 0.5 W when the GPS is in cycle mode. A plastic 
container and bag keep the recording equipment dry. The sensors connect to the breakout 
box by means of shielded cables (Figure S1h), although these are ungrounded, along with the 
rest of the system (leading to spectral noise peaks).  
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Figure S1. (a) Geometry of the BEAR station (4-element infrasound array) with PMCC subarrays shown in 
yellow. (b) BEAR Pelican-Hardigg vault containing the data logger, cell modem, solar controller, fuses, and 
lightning arrestors. (c) Hyperion IFS-3111 infrasound sensors (inset) are covered to provide basic protection 
from animals and snow accumulation. (d, e) Six 100 W solar panels, GPS and cell antennae mounted in trees 
on edge of clear-cut. (f) Geometry of PHAB station (3-element array), which has no subarrays. (g) 
PHAB/CHIP/RAIN central recording hub, including digitizer, GPS, power supply and breakout box to 
connect to the infrasound sensors. (h) Chaparral Model 60-UHP infrasound sensor (inset) inside foam wind 
filter, as used at PHAB/CHIP/RAIN. 
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Figure S2. Schematic of BEAR equipment (not to scale or in physical layout). 
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Figure S3. Root-mean-square (RMS) amplitudes of signal and noise periods at infrasound arrays. The left 
axis is for coherent arrivals from Progressive Multi-Channel Correlation (PMCC) processing, with a 10-
minute median marked by a gray line. The right axis is for waveforms filtered in two bands which can be 
indicative of wind noise (0.01–0.5 Hz, blue, Matoza et al., 2011, and 1.2–1.3 Hz, red), again using 10-minute 
bins. The 0.01–0.5 Hz trace has a range that is two orders of magnitude above the other datasets. The 1.2–1.3 
Hz trace provides a much higher anti-correlation between PMCC detections and waveform amplitude at RAIN 
than in the 0.01–0.5 Hz band. The anti-correlation is slightly lower for CHIP, variable for PHAB, and slightly 
higher at BEAR, vs. the 0.01–0.5 Hz band. Vertical dotted lines indicate the recording periods. At CHIP, a 
technical issue affected the data quality for the first 3.5 hours, resulting in a gap in the PMCC detections. 
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Figure S4. (below.) Probabilistic power spectral density (PSD) estimates of BEAR  
(channel 1) infrasound data for each day in Figure S3. All parameters follow those by McNamara and Buland 
(2004). Time-windows used to estimate the PSDs are 1-hour long with 50% overlap and a 10% cosine taper. 
The color scheme indicates the percentage of counts in each amplitude-frequency bin out of the total count at 
that frequency. Bins are 1-dB by 1/8 of an octave, with powers averaged over a full octave. Black lines are 
the 5th, 50th, and 95th percentiles for the data in each plot. Consistent moderate background noise levels are 
detected on 26, 27, and 31 August, whereas 28–30 August is marked by low to high background levels. 

 
Regarding Figure S4: There is some temporal variability as to which frequencies 

change the most in concordance with (assumed) wind speed increase. PSD slopes here 
contrast with those of e.g., Woodward et al. (2005) who observed consistent slopes 
regardless of wind speed, even as PSD amplitude increased. Again in contrast to our results, 
Hedlin et al. (2002) found most variation with wind speed at relatively low frequencies 
(below 0.5 Hz). The bandwidth of the broad spectral features here do not suggest obvious 
vault resonance or other technical issues (e.g., Martysevich, 2017). There may be noise 
amplifying effects > 8 Hz as suggested by Albert and Pankow (2019), however those results 
were for an inequivalent station design, where the station cover was only open at one end 
such that less noise averaging occurs by the sensor shroud. 
 
 
Figure S5. (below.) As for Figure S4, but for the first six days of Fig. 4 in the main article. 
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Figure S4. 
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Figure S5. 
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Figure S6. Comparing daily PMCC detection totals to daily hydrological and weather information (data 
sources listed in Data and Resources in the main article). To constrain PMCC detections to those less likely to 
be associated with microbaroms, mass wasting, and anthropogenic events, we retain detections with mean 
frequencies of 5–10 Hz. We also require apparent velocities ≤ 360 m/s to increase the likelihood of local 
sources. Data have been smoothed by taking a 5-day moving average. The elevation above sea level of each 
station is indicated in the subplot title.  
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Regarding Figure S6: BKRW1 is 10 km southeast by south from BEAR (Figure 1b in 
the main article). A sparsity of suitable environmental sensors in the area mean we use two 
sites close to Mount Rainier (Figure 1b) as analogs for closer stations. The Paradise Ranger 
Station is 8 km south by east of the 4,392 m summit, and the Puyallup River station is 21 km 
west by north of the summit. For instance, the elevation of Paradise (1,654 m) gives a better 
average indication of snow behavior in our study area than such measurements at Trout Lake 
(~600 m). Further, the Puyallup River gauge is in a small and narrow watershed that 
predominantly reflects runoff from Mount Rainier, and so is likely a good indicator of runoff 
from Mount Adams (3,743 m). The Paradise site does record rainfall, but this data, though 
generally similar to BKRW1, is less complete. 

The dominant impacts on river discharge profiles are winter storms and snow melt in 
spring. Glacial melt from Mount Adams in summer and early autumn is a relatively small 
contribution that only appears in specific drainages. Fast rises and falls in river discharge 
typically correlate with sustained rainfall, with snow melt delivering a more gradual rise in 
response to temperature. We also show discharge from the Lewis River gauge, ~18 km 
southwest of the area in the top left of Figure 7 in the main article. This gauge collects the 
cumulative drainage from the waterfalls in this hilly area, with each falls draining a small 
catchment area. Thus this river gauge is not an ideal measure of flow through the waterfalls 
themselves. In addition, the gauge collects some runoff from the west side of Mount Adams. 
The area’s relatively limited melt supply and lower average elevation leads to shorter and 
more pronounced melting periods vs. the Puyallup. 

Infrasound cross-spectral coherence and infrasound amplitude have previously been 
identified as metrics that increase with river discharge so long as there is conversion of 
hydraulic to acoustic power (e.g., Ronan et al., 2017; Anderson et al., 2019). Rather than 
discharge itself being important in terms of acoustic observations, it is the ratio of flow 
speeds (v), to water depth (D) and gravitational acceleration (g), given by the Froude 
number, Fr = v/√(D·g). Energy conversion is particularly efficient for Fr > 1.7, indicating a 
transition from undular to weak hydraulic jumps (e.g., Ronan et al., 2017).  

We use the number of PMCC detections as a proxy for cross-spectral coherence as 
amplitudes are less useful in this context due to variable and unknown source-station 
attenuation. The PMCC detections are split into two azimuthal bands: (1) 20°–90°, and (2) 
90°–20°. Band 1 covers the waterfalls on Mount Adams above 1,500 m elevation, with Band 
2 covering all other azimuths. The PMCC data are compared to the Puyallup River and 
Lewis River gauges given the rationale outlined above. For Band 1, we find similar PMCC 
trends with the Puyallup River discharge, though we do not always see direct or even linear 
proportionality, particularly with rainfall events. (These rainfall events are also recorded at 
the Lewis River site so are not Puyallup specific). Glacial melt will still feed acoustically 
powerful waterfalls even during summer. For Band 2, we find a seasonal correlation with the 
Lewis River discharge, but it is likely that the data still contain many detections that are non-
fluvial in origin despite the constraints on frequency and apparent velocity. Wind noise and 
wind direction can also heavily affect clutter detectability (e.g., Fig. S3), with snow covering 
the sensors having an increasing effect on higher frequencies. 
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Table S1. Location coordinates for each sensor in the SB.BEAR, PHAB, CHIP, and RAIN infrasound arrays 
(latitude, longitude, elevation), as well as for the UW.ASR seismic station. Any revisions of BEAR 
coordinates will be made available here: http://ds.iris.edu/mda/SB/BEAR/0[1234]/HDF/ 
 

 Channel 1 Channel 2 Channel 3 Channel 4 

BEAR 
+046.130838, 
-121.605450, 

1,129 m 

+046.131384, 
-121.605338, 

1,130 m 

+046.130600, 
-121.604757, 

1,135 m 

+046.130701,  
-121.605771, 

1,125 m 

PHAB 
+046.154833, 
-121.584261, 

1,479 m 

+046.154056, 
-121.584247, 

1,478 m 

+046.154496, 
-121.585278, 

1,472 m 
N/A 

CHIP 
+046.140904, 
-121.561821, 

1,581 m 

+046.140590, 
-121.561025, 

1,585 m 

+046.140075, 
-121.561711, 

1,586 m 
N/A 

RAIN 
+046.190610, 
-121.638540, 

1,222 m 

+046.190012, 
-121.638312, 

1,221 m 

+046.190035, 
-121.639050, 

1,218 m 
N/A 

 
ASR 

 

+046.15259, 
-121.60164, 

1,357 m 
N/A N/A N/A 

 

Table S2. Uploaded separately. BEAR event detection summary, with PMCC bulletin results meeting the 
following criteria: back azimuth 40°–55°, mean frequency ≥ 5 Hz, cross-correlation ≥ 0.6, apparent velocity 
330–360 m/s, maximum amplitude ≥ 0.1 Pa, number of pixels ≥ 35, and F-statistic ≥ 1.5. The 52 bulletin lines 
(family summaries) are grouped into 36 individual events based on similar temporal and wave parameter 
characteristics. 
 
Movie S1. Uploaded separately. Back-azimuth intersections by ≥ 2 stations for 26–31 August 2018 UTC 
(grid-during layer from IMS-vASC). The association uses PMCC families with maximum and minimum 
frequencies values between 2 and 40 Hz. The top panel shows intersections within individual one hour time 
slices. Results are only displayed for a grid node if each array contributes ≥ 10 pixels to that node. The 
bottom plot is the cumulative stack of all preceding slices. Filled triangles indicate arrays that were active 
during the entire time window, and unfilled triangles indicate where the arrays were partly active (due to 
being installed/removed). Known waterfalls, and selected high-gradient streams that align with IMS-vASC 
features are marked. 
 
PMCC files. The PMCC (Cansi, 1995; version 4.3.c1) initialization files for BEAR, PHAB, CHIP, and 
RAIN, are uploaded separately. For each station, a configuration file and an additional filter-bands file are 
required. Although we use the same filter bands for all stations, the filter files vary due to the differing 
recording rates (100 samples per second at BEAR, 400 samples per second at PHAB, CHIP, and RAIN). Full 
descriptions of the file formats are included in PMCC software documentation (not included here). 
 
> Configuration files: pmcc_BEAR.txt, pmcc_PHAB.txt, pmcc_CHIP.txt, pmcc_RAIN.txt 
 
> Filter files: filters_BEAR.txt, filters_PHAB_CHIP_RAIN.txt (applies to all three stations) 
 

S4. Software Tools 
S4.1. Data Format Conversion 
S4.1.1. DATA-CUBE to MSEED 
GIPPtools: Software utilities for initial data pre-processing (https://www.gfz-
potsdam.de/en/section/geophysical-deep-sounding/infrastructure/geophysical-instrument-
pool-potsdam-gipp/software/gipptools/). Retrieved 6/2020.  
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S4.1.2. MSEED to CSS 
Pisces: Pisces: A practical seismological database library in Python 
(https://github.com/LANL-Seismoacoustics/pisces). Retrieved 6/2019. 

MacCarthy, J. K., C. A. Rowe (2014). Pisces: A Practical Seismological Database 
Library in Python, Seis. Res. Lett. 85, no. 4, 905–911, doi: 10.1785/0220140013. 
 

S4.1.3. SHP to GMT 
OGR: GDAL/OGR Geospatial Data Abstraction software Library (https://gdal.org). 6/2018. 

 
 

S4.2. Data Analysis and Figures  
S4.2.1. Non-Native Python Packages 
IPython: A rich architecture for interactive computing in multiple programming languages 
(https://ipython.org/). Retrieved 10/2016. 

Pérez, F., and B. E. Granger (2007). IPython: A System for Interactive Scientific 
Computing, Comput. Sci. Eng. 9, 21–29. doi: 10.1109/MCSE.2007.53. 

 
Matplotlib: A comprehensive library for creating static, animated, and interactive 
visualizations in Python (https://matplotlib.org/). Retrieved 10/2016. 

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng. 9, 
90–95, doi: 10.1109/MCSE.2007.55. 

 
ObsPy: A Python Toolbox for seismology/seismological observatories 
(https://docs.obspy.org/). Retrieved 10/2016.  

Beyreuther, M., R. Barsch, L. Krischer, and J. Wassermann (2010). ObsPy: A Python 
toolbox for seismology, Seis. Res. Lett. 81, no. 3, 530–533, doi: 
10.1785/gssrl.81.3.430. 

 
S4.2.2. Non-Native MATLAB Functions 
BCSeis: Langston, C. A., and S. M. Mousavi (2018). A GUI and set of inline functions for 
performing various non-linear thresholding operations using the Continuous Wavelet 
Transform (http://www.ceri.memphis.edu/people/clangstn/software.html). Retrieved 6/ 2020. 
 

Langston, C. A., and S. M. Mousavi (2018). Adaptive seismic denoising based on the 
synchrosqueezed-continuous wavelet transform and block-thresholding, Air Force 
Research Laboratory final technical report AFRL-RV-PS-TR-2018-0074. Available 
at: https://apps.dtic.mil/dtic/tr/fulltext/u2/1061053.pdf. Retrieved 6/2020. 

 
dynamicDateTicks: Deoras, A. (2017). Intelligent dynamic date ticks  
(https://www.mathworks.com/matlabcentral/fileexchange/27075-intelligent-dynamic-date-
ticks). Retrieved 10/2017.  
 
polarPcolor: Cheynet, E. (2020). pcolor in polar coordinates 
(https://www.github.com/ECheynet/polarPcolor), GitHub. Retrieved January 2020. 
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Subaxis - Subplot: Grinsted, A. (2020). Create axes in tiled positions 
(https://www.mathworks.com/matlabcentral/fileexchange/3696-subaxis-subplot). Retrieved 
4/2020.  
 
WienerNoiseReduction: Scalart, P. (2020). Wiener filter for noise reduction and speech 
enhancement (https://www.mathworks.com/matlabcentral/fileexchange/24462-wiener-filter-
for-noise-reduction-and-speech-enhancement). Retrieved 6/2020.  
 
S4.2.3. Other Packages 
Google Earth Pro: 3D Earth representation (https://www.google.com/earth/) with terrain 
map overlays (http://www.mgmaps.com/kml/). Retrieved 10/2016. 
 
GMT: Generic Mapping Tools (https://www.generic-mapping-tools.org/). Retrieved 7/2017. 

Wessel, P., W. H. F. Smith, R. Scharroo, J. F. Luis, and F. Wobbe (2013). Generic 
Mapping Tools: Improved version released, EOS Trans., AGU 94, no. 45, 409–410, 
doi: 10.1002/2013EO450001. 

 
IMS-vASC: Combined infrasound signal association and source location using a brute-force, 
grid-search, cross-bearings approach (https://github.com/rmatoza/ims_vasc). Retrieved 
11/2019. 

Matoza, R. S., D. N. Green, A. Le Pichon, P. M. Shearer, D. Fee, P. Mialle, and L. 
Ceranna (2017). Automated detection and cataloging of global explosive volcanism 
using the International Monitoring System infrasound network, J. Geophys. Res. 
Solid Earth 122, 2946–2971, doi: 10.1002/2016JB013356. 

 
MUSTANG: Data quality metrics (https://service.iris.edu/mustang/). Last accessed 4/2020. 

Casey, R., M. E. Templeton, G. Sharer, L. Keyson, B. R. Weertman, and T. Ahern 
(2018). Assuring the quality of IRIS data with MUSTANG, Seismol. Res. Lett. 89, 
no. 2A, 630–639, doi: 10.1785/0220170191. 

 
PMCC: Progressive Multichannel Correlation (PMCC) software. Access is administered by 
CEA/DASE/LDG, France, and not publicly available. 
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Chapter 5. Conclusions 

This dissertation focuses on the remote detection and location of volcanic processes, 

principally using infrasound. These low frequency acoustic waves enable observation of 

phenomena like eruptions and mass movements that may not be possible through techniques 

such as seismology and satellite imaging, due to attenuation and line of sight issues 

respectively. The relatively recent adoption of infrasound as a tool in volcanology, and more 

significantly, the increase in the distribution of infrasound sensors, means that there is still a 

great scope for improving data collection, signal processing, and analysis techniques. Here, 

three largely independent projects address some of the outstanding questions and challenges 

in these fields, and contributing to the body of knowledge on best practices for remotely 

studying volcanoes with infrasound. In the following, outcomes of the three principal 

chapters of the dissertation are synthesized, with emphasis given to the principal results, 

conclusions, and implications. Some limitations of the research are also presented, along 

with recommendations for future work. 

 
1. Chapter 2 

 Chapter 2 examines how the recent introduction of a dense regional seismoacoustic 

network to Alaska can aid in the detection and location of explosive volcanic eruptions. This 

deployment of the EarthScope Transportable Array (TA) supplements several existing local 

infrasound arrays operated by the Alaska Volcano Observatory (AVO). These local arrays, 

with supporting information from seismicity, satellite imagery, lightning detection, and 

others, were used to catalog 70 explosions during 2016 and 2017 from Bogoslof, a remote 

volcano located in the Aleutian Islands (Coombs et al., 2019). Infrasound from this well-

characterized eruption sequence serves as the primary data set in the development and 
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calibration of a simple envelope-based reverse time migration (RTM) scheme. This method 

uses a grid search approach to identify source locations based upon the relative amplitude of 

stacked data at each grid node. Success of the RTM algorithm and associated parameter 

choices are characterized using receiver operating characteristic curves, detection rates of 

cataloged events, and location accuracy. Up to 85% of the 61 Bogoslof infrasound events 

cataloged by AVO are detectable by RTM, but performance varies significantly depending 

on the implementation, stations used, and time of year. Identification and location of events 

with RTM is improved by combining the TA with other sensors in the region; however, 

individually, the TA typically performs worse than the AVO arrays. For the TA, the high 

inter-sensor spacing, low azimuthal coverage, high source-stations distances, and higher 

wind noise levels likely explain this result. The latter aspect is influenced significantly by the 

use of simpler wind noise reduction systems when compared to the AVO stations. Several 

eruptions from the nearby Mount Cleveland volcano were also recorded several times across 

the region, whereas those from further afield in Kamchatka proved more difficult to detect. 

Ground to air coupling from several earthquakes, as well as a bolide were readily recorded, 

however (appendix 1). Seasonal variability in dominant wind direction affects detection 

capability, with infrasound more clearly recorded by downwind stations. In the winter 

months, winds tend to blow from the Aleutians toward the network, whereas in the summer 

the reverse is true, underpinning the importance and need for high azimuthal coverage of 

potentially active volcanoes. For the remote (> 250 km range) observation of volcanic 

explosions, previous studies have used relatively sparse regional or global networks. This 

study has, for a dense regional network, demonstrated some of the benefits and limitations 

for detecting and locating both explosive volcanic, and nonvolcanic sources. 
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Real time applications can require different implementation considerations than when 

using data archives. Data transmission from stations to servers is relatively quick compared 

to the rate at which elastic waves (infrasound, seismic) propagate. Thus signs that an 

eruption is occurring could be determined from the nearest few stations to the source before 

the elastic waves have travelled to the further stations in the network (i.e. acting as an early 

warning system). With data from these proximal sensors, it may be possible to derive a very 

coarse location and then refine it as the wavefront reaches additional, further stations. This 

would avoid using a spatio-time grid over a wide region, the resolution of which largely 

determines RTM runtime, and less so the number of stations. This iterative location process 

could also be simulated and assessed in advance of implementation using synthetic or pre-

recorded data. Equally, for data archives, fine grids can be applied to only those areas for 

which an initial coarse grid search indicates potential sources. A finer grid spacing, though 

providing a more precise location and higher computation time, does not necessarily increase 

the accuracy of the solution. A key element which contributes to source location accuracy is 

the relative position of stations and sources, such as azimuthal coverage. During the time 

period spanning the Bogoslof eruption, the majority of volcanoes of interest in Alaska were 

outside the margins of the TA and the network run by AVO. This geometry leads to spatio-

temporal error ellipses, and smearing of location estimates along the source-network axis 

(Cochran and Shearer, 2006; Koper et al., 2012; Meng et al., 2012). The complexities of 

atmospheric propagation, changeable stratospheric wind directions, and often high noise 

levels mean that typically only a small subset of stations clearly detect eruptions in Alaska, 

accentuating issues related to the source-station distribution. 

 An averaged (e.g., Morton and Arrowsmith, 2014) or up-to date atmospheric 

propagation model (e.g., AVO-G2S, Schwaiger et al., 2019) that allows for anisotropy and 
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wind conditions can help refine the accuracy of candidate location estimates provided by 

RTM processing. Relatively realistic source-station travel times can then be calculated using 

a forward-model propagation code. The modeled arrival times from points within the 

potential source areas are either then compared with the observed arrival times to identify the 

best fit, or used to adjust waveform alignment in a second round of RTM. Whereas such a 

step can be computationally time consuming for more realistic models, it may be required for 

reasonably accurate location of events, particularly given the high density of volcanoes in 

Alaska. Being able to reasonably account for transmission loss would permit more insight 

into remote source magnitudes (e.g., Marchetti et al., 2019a). Potential alternative methods 

that stem more from the existing workflow include: (1) allowing for different celerities 

between each station and grid node at each time step, rather than using a single value; and (2) 

stacking representative information from windows that increase in duration with distance to 

account for wavefield separation within waveguides (e.g., Green and Nippress, 2019).  

Other methods that can help confirm, or be used in place of RTM, are those that 

identify sources through triangulation of back-azimuth estimates, derived from array-

processing type algorithms (e.g. Olson and Szuberla, 2008). The existing infrasound arrays 

operated by AVO can be used for this purpose, but the infrasound sensors in the TA can also 

be co-opted by treating each group of three sensors as a mini-array (e.g., de Groot-Hedlin 

and Hedlin, 2015). This latter strategy avoids some of the aforementioned atmospheric 

propagation issues that affect methods combining traces recorded across large regions, such 

as RTM. Li et al. (2018) present a somewhat hybrid method that incorporates both stacking 

and local similarity aspects. Since the Bogoslof eruption begun in 2016, several more 

infrasound arrays have been added to the region, significantly improving the azimuthal 

coverage, and thereby improving the capacity for accurate detection and location, with lower 
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warning latency. The wider distribution of sensors also permits strategies that use sub-

network approaches for location estimates (e.g., e.g., Xu et al., 2009). 

 Aside from volcanoes, there are several other sources of infrasound in Alaska which 

can be studied, and used for testing and developing detection algorithms, and establishing 

factors which affect signal detectability. These include rocket launches, earthquakes, bolides, 

storms, mine blasts, and so forth. Many of these types of events, and others, were recorded 

by the Transportable Array while it was traversing the continental US (TA Infrasound 

Reference Event Database, http://ds.iris.edu/ds/products/infrasound-taired/). Comparing 

observations to existing models for source radiation, wavefield propagation, and air-to-

ground coupling are other areas of potential exploration. Using coherence of infrasound and 

air-to-ground coupled waves at stations that incorporate both seismic and infrasound sensors 

can help improve SNR as well as location strategies by appropriately weighting data where 

coherence is high, rather than low (e.g., Fee et al., 2017; appendix 1). 

Potential future work avenues to improve upon the existing RTM scheme include 

stacking other forms of the data than the temporal envelopes used presently, which may 

better exploit characteristics of the data and improve SNR. Such functions might include 

short-term average / long-term average (STA/LTA) ratios (e.g., Grigoli et al., 2014), cross-

correlation, potentially with one-bit signal conversion (e.g., Ruigrok et al., 2017; appendix 

1), envelope frequency ratios (Sit et al., 2012), or kurtosis (e.g., Langet et al., 2014). The 

RTM code architecture itself also has room for improvement, particularly from a run-time 

and file size perspective. Use of alternate coding languages for the  main time sinks, and new 

file formats (e.g., ASDF; Krischer et al., 2016) may improve these particular areas. Finally, 

establishing the interaction of different processing parameters on detector function behavior 

is an important objective, with an aim to make configuration setups more intuitive. 
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2. Chapter 3  

 Chapter 3 explores the question of whether reducing noise and clutter in volcanic 

infrasound data through signal preprocessing can improve event detectability and location 

accuracy. This chapter follows partly from findings in chapter 2 which showed that one of 

the limitations to using TA data were the often low SNR conditions. This chapter continues 

with RTM assessments, and further introduces array processing results from AVO stations. 

Data again come from the Bogoslof eruption sequence, as well as synthetic events. Five 

denoising algorithms are evaluated using metrics for SNR changes, distortion, need for 

manual data labeling, computational cost, and time-varying detection rates. These methods 

can isolate and reduce the amplitude of microbaroms in the data, thereby increasing detection 

of eruption signal components within the corresponding frequency band (~0.1–0.5 Hz). 

Impacts of this are primarily seen in the array processing results. Another benefit is events 

becoming clearer through removal of the microbarom clutter in cases of a shared back 

azimuth. These two factors typically help to improve event identification and location 

capabilities. Algorithm performance varies between methods, with denoised SNR varying by 

as much as 10 dB. Use of the PMCC array-processing algorithm highlights where infrasound 

was detected for several time period or arrays, but had not previously been registered in 

catalogs developed using other processing methods and threshold levels. Establishing robust 

event onsets and durations is critical for such catalogs, which subsequent studies may depend 

on (e.g., chapter 2). Clarity of event limits is typically enhanced via denoising. For wind 

noise, its relative character to events depends on source station-receive distance, station 

hardware, vegetation, snow levels, and local wind conditions. This makes for highly variable 

denoising effectiveness from site to site. Performance is also typically proportional to the 

original SNR of the data, and inversely proportional to the spectral and temporal overlap of 
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signals and noise. These findings also apply to microbaroms. Reducing wind noise does not 

significantly increase the detectability of non-noise elements during such periods, and thus 

has limited applications for array processing. For RTM, microbarom removal has relatively 

little effect on stacked SNR, whereas wind removal either through trace denoising or high-

pass filtering has more of an impact. 

A focus of this study has been exploring the use of open-source denoising methods 

that can be applied to a single trace prior to any analytical scheme. This approach acts as an 

alternative to SNR improvement through beamforming or stacking traces. One advantage is 

computational run-time. For RTM in particular, denoising each trace prior to the grid search 

stage is often more efficient than using elaborate nonlinear stacking operations for each node 

of a fine-mesh grid. Another asset of a single-trace based approach is the flexibility that 

comes with not needing any additional data in order to denoise a waveform. This has 

applicability to experiments with small data sets where constructing extensive training 

schemes is not possible. Deployments that have standalone, or widely dispersed sensors can 

also benefit, as enhancing coherence and event isolation through trace-aggradation is less 

practical. As infrasound arrays and spatial noise reduction systems can have large footprints, 

the range of deployment options for single sensors can increase if these kinds of data 

denoising techniques continue development and become more established in the community. 

Aside from detection and location strategies, denoising can potentially improve many other 

kinds of analyses that rely on waveform fidelity, such as source dynamic characterization 

and quantification, as well as simply viewing and presenting data. Future work expanding 

upon the range of events and scenarios presented in this paper will be important for 

understanding application best practices. 
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There are several additional potential research directions that stem from the work in 

chapter 3. First, ways to improve the effects of wind noise reduction on RTM processing can 

be explored further. As stated in chapter 3, high-pass filtering offered improved results 

compared to wind noise reduction. Automatic gain control (AGC) as part of the processing 

potentially offset the anticipated improvements made by such denoising. Implementation of 

AGC was due to results being better with AGC than without for the RTM parameter 

combinations explored, but there may be an effective configuration for denoised data without 

AGC. Although non-negative matrix factorization (NMF) was the only method extensively 

pursued in chapter 3 for wind noise reduction (with several others rejected prior for poor 

performance), this is an obvious area for development. Particularly, one result was that few 

additional PMCC detections were made following NMF, but other approaches may prove 

more fruitful (e.g., Cook et al., 2021). For microbarom denoising, there is room for 

expansion on making fair comparisons between methods. For instance, parameter choices are 

based on having consistent spectral amplitudes for the microbarom in the stage 2 foregrounds 

(e.g., Figure 5, chapter 3). However, other figures show clear differences in performance 

when using other metrics, such as stage-2 SNR (Figure 11). Although outside of the scope of 

the study, comparisons between the denoising schemes applied here (prior to PMCC array 

processing), and schemes that penalize incoherent elements between several pre-aligned 

traces would be of interest for a few select events (e.g., Samson and Olson, 1981; Nakata et 

al., 2015). An updated Bogoslof eruption catalog (Coombs et al., 2019) could be generated 

based on upon such additional analysis, should the processing indicating adjustable onset 

times, durations, and/or detecting arrays. 

 One of the central challenges for designing a widely applicable denoising scheme is 

the highly variable nature of signals and noise, both between stations, and even at the same 
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station over time. The aforementioned factors dictating wind noise can both affect amplitude, 

as well as frequency, with a typical dominant frequency < 0.1 Hz not always observed. 

Similarly, the strength and peak frequency of the microbarom can vary with seasonal storm 

activity. Signal character may be modulated by source style and duration, anisotropic 

radiation, as well as time-varying path and site effects. Establishing how these individual 

effects can impact denoising performance is important for uptake of such tools, with spectral 

angle (e.g., Ramirez-Lopez et al., 2013) offering an alternative to the frequency-index 

method in Figure 12. These events may in some cases be similar in nature to either the 

microbarom or wind, adding another complexity. Exploiting any unique characteristics for 

each waveform component is therefore critical for successful separation. The methods 

applied here largely use manual labeling of features to aid in effective denoising, with the 

scope aimed toward identifying how effective they can be under such supervision. For 

automated classification and denoising systems, however, the use of dictionaries of a wide 

variety of potential noise characteristics is likely essential given the variability discussed. 

Focusing on identifying and removing only the noise, rather than also identifying signals 

explicitly, may simplify the task, and enable the residual cleaned data to contain a range of 

both volcanic and nonvolcanic events. As with RTM, real time implementations may require 

different approaches to when working with already archived waveforms, due to either need 

for computational efficiency, or the unpredictable and evolving nature of the data. Generally 

speaking, the goal is a combination of denoising and detection/location processing stages that 

sufficiently balance speed and effectiveness for the situation at hand. Advances in a variety 

of machine learning techniques are helping to rapidly develop these kinds of fields. Artificial 

neural networks commonly underpin the software implementations, which use various 

degrees of supervision to classify and denoise data (e.g., Zhu et al., 2019; Jiang et al., 2020). 
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3. Chapter 4 

 Chapter 4 describes a pilot infrasound experiment from 2017 to 2021 at Mount 

Adams, WA, to record mass movements and characterize the ambient environmental noise. 

Hydrothermal alteration and erosion of the summit of this dormant stratovolcano has 

contributed to mass wasting activity, with the potential for large flows posing a risk to 

downstream communities (e.g., Finn et al., 2007). Recording small to moderate events that 

occur on a yearly to decadal scale help establish detection and location capabilities of both 

recording systems and processing algorithms. Twelve mass movements are identified in data 

from the long-term infrasound array, based on array processing results, and spectral analysis. 

Seismic data from an existing nearby station helps to corroborate some of these events, 

which can generate transient ground vibrations, as well as air-to-ground coupled waves. 

These small events (volumes < 105 m3 and durations < 2 min) were generally not observed 

visually by eye witnesses, or by satellite. Similarly, several visually observed events were 

not detected infrasonically. An exception in both cases was a glacial avalanche, which 

occurred during the deployment of three additional temporary infrasound arrays. The 

contemporary presence of four stations enabled a precise source location to be determined 

for the avalanche, which matched visual evidence in satellite imagery. Array processing also 

reveals near-continuous infrasound signals arriving from most back azimuths around the 

array, with source activity varying with the time of year. During summer, the predominant 

direction is toward Mount Adams, coincident with steep drainages and waterfalls on the 

southwest flank. The other back azimuths also largely coincide with identifiable waterfalls. 

Fluctuations in this background clutter appears to largely vary with wind-noise levels, 

individual waterfall characteristics, and water discharge levels. The complex surrounding 

watershed is affected by a mixture of glaciers, annual snow deposition, precipitation events, 
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and widely varying temperatures and topography. These factors make a robust analysis of 

this clutter challenging with the currently available infrasound, weather, and stream data.  

Key aspects in whether mass movements can be detected are the source size, source 

proximity, level of wind noise, and the presence of any other infrasound sources occurring 

simultaneously. For the events in this study, which are small, and occurring on the order of 

5–10 km from sensors, these latter two aspects can be significant. During the day, wind 

speeds are typically higher, potentially causing events of interest to be masked in the data. 

The combination of wilderness boundary, and forests either too dense for solar panels, or too 

sparse for adequate wind mitigation, makes desirable site selections difficult to identify in 

this area, however. Use of cameras focused on the upper reaches of Mount Adams may have 

helped capture specific locations of some of the missed events, particularly in the summer 

when instability is highest and weather clearest. Similarly, confirming that much of the 

background clutter (microbaroms aside) is produced by local fluvial and waterfall infrasound 

requires study with additional instrumentation, such as using flow data and imagery at 

several select sites. As fluidized debris flows (lahars) can traverse these channels, 

characterizing their normal range of fluvial and infrasonic behaviors is critical, particularly 

as locations like waterfalls can become dominant sound sources, even in the presence of a 

moving flow. Reducing microbarom detections using methods described in chapter 3 would 

help clarify the local data landscape. Additionally, such techniques could potentially remove 

other clutter from persistent fluvial sources so that only transient changes to these features 

are highlighted. Exploring alternate array processing algorithms to PMCC would be 

beneficial, as this algorithm is not optimized to identify more than one source at a time 

within the same frequency band. Example approaches include root-MUSIC (Rübsamen and 

Gershman, 2009) and modified applications of CLEAN (Högbom, 1947; den Ouden et al., 
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2020). Propagation effects due to topography and wind can also be significant (e.g., Johnson 

and Palma, 2015; Marchetti et al., 2019b) and needs to be understood better in this region. 

Better characterization of snow coverage effects on SNR would also significantly help with 

station and detection system design, particularly given that the limited literature on this topic 

to date has provided inconsistent results (e.g., Adam, 1998; Bowman et al., 2005; Woodward 

et al., 2005; Keith et al., 2018). 

For large events of a hazardous nature, it is probable that these would be detectable 

with the kinds of instrumentation and site locations in the study. Activity during the last 100 

years has included events up to 8 km long (e.g., Vallance, 1999), with this type of magnitude 

more likely to be seen in the near term than those of a scale capable of reaching the 

community of Trout Lake, 22 km south. Probabilistic flow and acoustic propagation 

modeling can help to establish what kinds of network configurations would be suitable for 

detecting and tracking such an event, when accounting for factors like flow composition, 

wind noise levels, and flow path (e.g., Watson et al., 2020; Coco et al., 2021). A future 

comprehensive monitoring strategy would however not likely rely on infrasound alone, but 

rather also include additional instrumentation around a few key drainages such as 

seismometers, video surveillance, flow meters, and trip wires (e.g., Stähli et al., 2015). This 

range of data types would improve detection sensitivity and flow-front location accuracy, 

and allow for interpretation of physical properties. With this kind of robust system, false 

alarms can be minimized, and alerts tailored to events of particular magnitude. Further to a 

recent review of infrasonic detection of volcano mass movements (Allstadt et al., 2018), this 

study demonstrates some of the physical and analytical challenges involved in identifying 

signals of interest in a noisy background environment formed by wind and drainages. 
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4. Final Remarks 

 There are several recurring themes in the results from these chapters. These include 

the limitations of poor SNR and limited sensor distributions, with wind noise and anisotropic 

atmospheric propagation playing a large part in signal detectability. Wind noise reduction 

though signal processing is a potentially useful, but still second best scenario compared to 

careful site selection and hardware designs to limit wind noise being initially recorded. 

Whereas configurations of pipes and hoses have been traditionally used to this end in high-

end arrays (e.g., Marty, 2019), the availability of fabric or metal wind domes are increasing 

the options available, but their size can sometimes be impractical (e.g., Raspet et al., 2019). 

Although not widely adopted, optical fiber sensors have also been developed for acoustic 

detection (e.g., Zumberge et al., 2003), offering effective wind noise reduction, particularly 

as the sensor length and thus spatial averaging increases. The current range of on-sensor 

shrouds and diffusers offer relatively poor performance to the above systems, however. With 

infrasound sensors increasingly beginning formed into standalone networks (e.g., Pilger et 

al., 2018), or incorporated into existing regional geophysical deployments (e.g., Busby et al., 

2018; Le Pichon et al., 2021), and used more commonly in a range of science applications 

(e.g., Wang and Tanimoto, 2020), ensuring the quality of this data is paramount. Effective 

wind noise mitigation should be a key aspect in these experiment and deployment designs. 

Some of these sensors follow a low-power, low-cost, and moderate quality systems, 

facilitating mass production and testing under a range of scenarios (e.g., Anderson et al., 

2017). These efforts are akin to nodal arrays that have become more common in seismology 

in recent years (e.g., Kiser et al., 2016). As the temporally and spatially evolving velocity 

structure of the atmosphere affects which stations are able to detect events clearly, wide 

distributions of sensors are able to both reduce the consequences of poor wavefield sampling 
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in data analysis. Taking full advantage of these sensors in detecting and locating events of 

interest, as well as more advanced analyses, often requires use of atmospheric specifications. 

The ongoing proliferation of open-source propagation and atmospheric modeling codes, as 

well as the increasing availability of powerful computational resources can ideally make such 

efforts more routine and commonplace (e.g., de Groot-Hedlin, 2017; Waxler, 2017). Equally, 

high numbers of sensors are able to highlight where these models still need further 

development to match predictions and observations (e.g., Green et al., 2018; Fee et al., 

2020). In a similar fashion, and as noted for chapter 3, rapid machine learning developments 

in the fields of automated event and classification, as well as detection and location will 

facilitate future investigations into the types of questions addressed in this dissertation (e.g., 

Carniel and Guzmán, 2020, and references therein).  
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Appendix 1. Preliminary Chapter 2 Work 

The material presented in this appendix was developed during work on chapter 2. 
These topics include preliminary strategies developed to improve reverse time migration 
(RTM) results, but were ultimately not pursued due to time or publication space limitations, 
as well as implementation challenges and method effectiveness. Selected results from 
nonvolcanic events are also included here. Authors, affiliations, acknowledgments, and 
resources are as per chapter 2. Some material was presented at conferences 2018–2019. 
 
A1.1. Cross-Correlation Beamforming 

One approach which shows promise in improving our RTM approach is analogous to 
cross-correlation beamforming (e.g., Ruigrok et al., 2017), where station traces are replaced 
with the cross-correlation function between themselves and a template trace. The template 
can be: 1) from a station known to record eruptions well; or 2) instead of choosing a 
template (given that the location of events are often unknown a priori), the algorithm can 
automatically search for which trace would make the nominally best template. 

The process is as follows: (1) determine where the center of the event is in absolute 
time by convolving the template envelope/trace with itself; (2) find event times for each 
other trace by cross-correlating the template with those traces; (3) use (1) and (2) together to 
calculate where the events are in absolute time for each trace; (4) replace each trace with the 
appropriately shifted cross-correlation time-series. I.e., where there was an event waveform, 
there is now a cross-correlation function; (5) optionally mask traces with low cross-
correlation values. This procedure comes after normalization in preprocessing, and the 
resulting data are not re-normalized. 

Stacking the cross-correlation functions can improve detector function (DF) signal-
to-noise ratios (SNR) dramatically compared to stacking waveform envelopes, i.e., the 
primary method in chapter 2. For example, comparing Figure 1 here vs. Figures S3 in 
chapter 2, and similarly Figure 2 vs. Figure S4, shows that volcanic events are more 
prominent here. As discussed in chapter 2, much of this effect is due to well correlated traces 
at arrays. Location accuracy is relatively low here, however. Notably, this approach doesn't 
generally reduce swimming artifacts/peak broadness, which was the original intent given the 
stacked functions should be sharper than otherwise. Such artifacts remain independent of 
stacking method. However, replacing the cross-correlation functions with delta functions 
may improve results. Parameters that are effective in with cross-correlation beamforming 
may differ from those use in the standard RTM procedure used in chapter 2. Figure 1 for 
instance, compared to the methodology presented in chapter 2, filters from 0.5–1.0 Hz, 
smooths with a 60 s window, subtrends with 1,800 s point spacing, does not use automatic 
gain control (AGC) or peak emphasis steps, and uses 20 m/s intervals for the celerity range. 

 We did not incorporate this approach in the principle analysis because, for year-round 
use, the algorithm cannot rely on a specific template trace due to seasonal changes in the 
dominant stratospheric wind direction. Consequently, the method is sensitive to optimizing 
automated template formation, an aspect still under investigation. In addition to RTM 
however, cross-correlation information via this method, or others (e.g., Bergen and Beroza, 
2018, and references therein) may be used in alternate location strategies, such as inversions 
relying on time difference of arrivals (e.g. Cochran and Shearer, 2006; Fee et al., 2016, and 
references therein). 
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Figure 1. Cross-correlation beamforming RTM results. (a) Alaska-wide detector function (DF) whose 
variation principally reflects eruptions from Bogoslof during the indicated month. DFs use all available 
infrasound sensors within 2,000 km of Bogoslof. Colored dots on the second y-axis indicate the number of 
AVO infrasound arrays were cataloged as having detected infrasound (Coombs et al., 2019). Vertical dashed 
lines mark the onset of all cataloged events, regardless of infrasound activity, with durations marked by gray 
bars. The mislocation to Bogoslof for each DF sample is shaded. The horizontal dashed line is equivalent to 
12.5 dB on the Alaska-wide DF. (b) As per (a), though the DF reflects variation specifically at the spatial grid 
node coincident with Bogoslof (i.e., is equivalent to the stack corresponding to this grid node). 
  

 
Figure 2. As per Figure 1 for January 2017. 
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A1.2. Coherence Weighting 
Given co-location of seismic and infrasound sensors at the majority of stations, we 

have begun exploring use of ground-coupled air-waves (GCAs) to improve 
detection/location capabilities (Ichihara et al., 2012; Fee et al., 2017) using the regional 
networks in our study. For example, seismo-acoustic coherence analysis may be used to 
weight/enhance the SNR of volcanic infrasound signals (Matoza and Fee, 2014 and 
references therein; Fee et al., 2017; McKee et al., 2018) and thus RTM stacks. Alternatively, 
once GCAs are isolated, amplitude-based location methods could be applied. We assess 
several eruptions at Bogoslof, Cleveland, and Pavlof (Fee et al., 2017) to identify if using 
coherence weighted volcanic infrasound with RTM would be viable. We make the following 
initial observations:  

(1) These events generate a sparse presence of volcanic GCAs at up to 1,700 km, 
with no clear distribution of coherence or infrasound amplitude with distance;  

(2) Coherence from non-volcanic sources is common. These non-volcanic coherence 
patterns can be long or short duration, narrow or broadband, and of various intensities 
(Figure 3). Some of the waveforms coincident with this non-volcanic coherence appear on 
multiple proximal stations indicating a real source. Some of the coherence may be recording 
or processing artifacts;  
 

 
 
Figure 3. Coherence of Bogoslof data on 8 March 2017. (a) 16 hours of filtered seismic, filtered infrasound, 
and coherence weighted filtered infrasound data from a station 59 km from Bogoslof. (b) Coherence matrix of 
infrasound and seismic data. Coherence from the eruption is observed primarily from 2.0–4.0 Hz, with a 
temporal gap coincident with changes in the acoustic-seismic ratio. Here the unweighted infrasound would be 
preferred for RTM stacking. (c, d) As per (a, b) but from a station at 1,659 km from Bogoslof, in Fairbanks, 
Alaska (Figure 1a, chapter 2).. Acoustic arrivals are between ~09:30 and 12:00, either recorded directly by 
infrasound sensors or as ground-coupled airwaves on the seismic sensor. In Figure 3d, the coherence matrix 
shows a number of sources of strong coherence, however, indicating the complexity needed in an automated 
coherence weighting process.  
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(3) At close proximity to the volcano (e.g., < 100 km) coherence may be unusually 
low where direct seismic waves negate recording of clear GCAs. This is seen for example for 
Bogoslof on 8 March 2017 at stations on Okmok (Figure 3a) and Makushin. These coherence 
observations may also reflect changes in the acoustic-seismic ratio coincident with vent 
flooding (Lyons et al., 2020). 

Considering the above, if all infrasound data based was weighted solely on 
coherence, useful infrasound from stations that were close to the origin, or infrasound that 
simply didn't lead to good coherence could be lost. Similarly, non-volcanic coherence may 
be incorporated by treating all coherence equally. A rigorous strategy will be required in 
order to incorporate GCAs of this nature into a stacking algorithm. For example, requiring a 
minimum degree and duration of coherence within frequency bands that are less susceptible 
to non-volcanic coherence. However, a full treatment of such strategies is beyond the scope 
of this study. 

An example of an event which permits are more straightforward implementation is 
the 18/19 December 2018 UTC bolide/fireball located between Kamchatka and Alaska at 
25.6 km altitude (CNEOS, 2019). This event is the second largest in the last 35 years, with a 
calculated total impact energy of 173 kilotons (CNEOS, 2019). Clear ground-coupled 
airwaves are widely identified across Alaska (Figures 4 and 5), enabling use of the weighted 
infrasound in our RTM scheme. Comparative record sections (Figure 5) show the weighted 
infrasound having significantly improved SNR. DFs are shown in Figure 6, with similar 
character to the synthetic examples determined for such a source location (Figure 11b, 
chapter 2). The DF amplitudes and SNR reflect those in the record sections. 
 

 
 
Figure 4. Coherence of data from large bolide on 18/19 December 2018. (a) ~4 hours of filtered seismic, 
filtered infrasound, and coherence weighted filtered infrasound data from a station at 1,599 km from the 
published origin (CNEOS, 2019). (b) Coherence matrix of infrasound and seismic data. Coherence from the 
event is observed clearly at 01:13. (c, d) As per (a, b) but from a station at 2,905 km from the origin. For both 
stations, the coherence weighted infrasound shows the event more clearly and is preferred for RTM stacking. 
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Figure 5. (a) Infrasound record section of a relatively large fireball/bolide on 18/19 December 2018 (filtered 
0.35–2.5 Hz). Waveforms have been self-normalized. Array elements are colored red, and non-array sensors 
colored black. There are clear arrivals to 3,000 km though some of these are obscured by noise. (b) As per (a) 
but using coherence weighted infrasound (green traces from Figure 4). The noise from (a) is effectively 
removed by the weighting process, leaving relatively clear signals. The filter range was chosen according to 
the typical peak coherence band in plots such as Figure 4. 
 
 
 



Appendix 1 

 253 

 
 
Figure 6. (a) Non-weighted infrasound for fireball event. Top panel: Grid-wide DF (colored by basic 
distance) and true-source specific DFs (colored black) for the fireball event on 18–19 December 2018 UTC. 
Matching amplitudes between the two DFs, marked in black, indicate basic locations coincident with the true 
source location. Final location estimates for the event are performed only on the high amplitude values boxed 
with solid green lines. Data is from all available infrasound sensors within 3,000 km of the fireball. Due to the 
summation process in forming the DF, the DF amplitude can be higher than the number of normalized 
waveform envelopes being stacked. The vertical dashed line is the cataloged event onset (CNEOS, 2019).  
A white arrow indicates the time of the maximum amplitude. Second panel: Variation in basic distance 
(section 2.5, chapter 2) over time. Third panel: Variation in celerity over time, reflecting primarily 
stratospheric arrivals for the event peak. As discussed in section 3.6, chapter 2, the majority of the DF profiles 
are due to source geometry artifacts. (b) Coherence weighted infrasound for fireball event. Details as per (a). 
(c) Time-slice of summed-stack amplitudes, taken at the time of the maximum grid-wide DF from (a). The 
locations determined by RTM are close to those provided by CNEOS (2019). (d) as per (c) but for the 
coherence weighted infrasound. The COM3 location estimate is at the provided/true source coordinates. 
Given the magnitude of the event, the results between the two datasets are relatively similar. However, the DF 
of the coherence-weighted data is higher, and has improved source accuracy vs. the non-weighted data. 



Appendix 1 

 254 

A1.3. Earthquake-Induced Infrasound 

This section provides some additional details regarding three earthquakes detected 
and located with RTM during the Bogoslof eruption sequence, and briefly mentioned in 
chapter 2. The earthquakes are as follows: (1) the M 7.9 earthquake southeast of Kodiak 
Island in the Gulf of Alaska on 23 January 2018; (2) the M 6.4 earthquake southwest of 
Kaktovik, Alaska on 12 August 2018; (3) the M 7.1 earthquake in Anchorage, Alaska on 30 
November 2018 (Figure 7). RTM provides location estimates 0–100 km from the reported 
epicenters, with infrasound stations recording these events to distances of 1,800 km, 600 km 
and 1,250 km for events (1), (2), and (3) respectively. Shani-Kadmiel et al. (2018a) show 
that for the 2018 Anchorage earthquake, that infrasound was likely generated by steep 
topography around the Cook Inlet. Notably, that study uses backprojection methods with 
data from only the IMS IS53 array, following the methods of Shani-Kadmiel et al. (2018b). 
 
Event 1: https://earthquake.usgs.gov/earthquakes/eventpage/us2000cmy3/ 
Event 2: https://earthquake.usgs.gov/earthquakes/eventpage/ak20076877/ 
Event 3: https://earthquake.usgs.gov/earthquakes/eventpage/ak20419010/ 
 

 
Figure 7. Locating the 30 November 2018 M7.1 Anchorage earthquake with RTM. The event was detected 
by many stations around Alaska, with the high azimuthal coverage providing a well constrained and accurate 
source location estimate. The color scale represents the amplitude of time-aligned data stacks at each grid 
location. Sensors are shaded red proportional to stack contribution for the corresponding source time. Circles 
are at 500 km spacing. 
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A1.4. Travel Times from Atmospheric Propagation Models 

This section describes an initial foray into mitigating atmospheric path effects on 
waveforms, which affects trace alignment and the resulting stack amplitude. In the RTM 
scheme presented in chapter 2, at each time step, traces are stacked using a linear celerity, 
keeping those stacks that produce the highest amplitudes from the range of celerities tested. 
In reality, however, celerity varies with azimuth and distance, and is sensitive to atmospheric 
structures and wind effects that can produce multipathing. One potential result is 
“branching”, where arrivals are unevenly staggered with distance due differing celerities. 
Compensating for these issues would improve trace alignment during stacking, and thus the 
resultant DF SNR. Section A1.1. on cross-correlation beamforming is also an effort to use 
trace alignment, but as signals are emergent and waves change with distance, such 
approaches can be challenging. In order to obtain realistic travel times between potential 
sources and stations, an atmospheric model, wind model, and wave propagation software are 
needed. The former can be relatively up-to-date 12 hour forecasts (e.g., AVO-G2S, 
Schwaiger et al., 2019), or a daily average of meteorological conditions from long-term 
observations (e.g., NRLMSISE-00, Picone et al., 2002; HWM-14, Drob et al., 2015), 
depending on the desired balance of computational efficiency and model accuracy. 

 
Figure 8. GeoAc ray-tracing (Blom and Waxler, 2012) through an averaged atmospheric model (based on 
NRLMSISE-00 and HWM-14) for 8 March 2017 Bogoslof eruption. This shows a poor match between 
predicted and observed arrivals at infrasound stations AKS, DLL, and IS53. The atmospheric profile was 
calculated with the soon to be publicly available Automated Rapid Climatological Azimuth Deviation 
Estimation (ARCADE) program (Rodrigo de Negri, University of California, Santa Barbara).  
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Figure 8 illustrates ray tracing through an average atmospheric model for the day of 
the 8 March 2017 Bogoslof eruption. A stratospheric duct and thermospheric returns lead to 
multiple predicted arrivals at three selected stations along a transect between Bogoslof and 
Fairbanks, Alaska. This example shows some of the expected complications from an average 
model and simple propagation scheme, such as arrivals predicted in observed shadow zones, 
and observed signals starting after predicted. In such schemes, traces could be weighted 
based on predicted attenuation coupled with wind noise assessments. The reader is referred 
to Schwaiger et al. (2020) for a thorough treatment of infrasound propagation and 
corresponding observations during the Bogoslof eruption. 
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Appendix 2. Preliminary Chapter 3 Work 

This appendix presents preliminary research for chapter 3, which was presented as an 
online poster at the online Annual Geophysical Union conference in December 2020. This 
material focuses more on reverse time migration (RTM) techniques than chapter 3, and uses 
entirely unsupervised noise reduction methods. Authors, affiliations, acknowledgments, 
resources, and references are as per chapter 3. 
 
Title 

Infrasonic backprojection with the EarthScope Transportable Array in Alaska: 
Improving detection and localization of explosive volcanism via noise reduction 
 
Abstract 

The current deployment of the EarthScope Transportable Array (TA) in Alaska 
affords an unprecedented opportunity to study explosive volcanic eruptions using a relatively 
dense regional seismoacoustic network. Since 2016, seven volcanoes have erupted in Alaska 
with a range of magnitudes and styles. The 2016–2017 eruption of Bogoslof in particular 
produced seventy explosive eruptions. Such events provide a unique validation data set to 
examine the ability of different network configurations and processing strategies to detect, 
locate, and characterize remote volcanic eruptions in Alaska. When incorporating the TA and 
regional infrasound stations, a simple envelope-based backprojection technique, and 
automated event identification process, is able to capture up to 85% of the infrasound 
generating events from Bogoslof that were cataloged by the Alaska Volcano Observatory 
(Sanderson et al., 2020). Notable limitations to the scheme come from anisotropic 
atmospheric propagation, and low signal-to-noise (SNR) conditions, with wind being the 
dominant noise source. Here we focus on improving waveform data processing to reduce 
noise and so enhance signal detection and source location accuracy during backprojection. 
Additional evaluation metrics include degree of SNR improvement, any signal distortion, 
need for manual data labeling, and computational cost. The latter point is particularly 
relevant to real-time data processing applications. We compare a range of recently developed 
techniques that separate signals and noise in the spectral domain, including within the same 
frequency band. Examples include block thresholding, non-negative matrix factorization, and 
singular spectrum analysis. Such noise reduction on individual waveforms (i.e., pre-stack 
processing) can improve many basic analyses, given that SNR enhancements do not rely on 
combining traces (or stacking of other functions; i.e., co-stack strategies) in order to improve 
coherence and isolate events. We further compare results of the pre- and co-stack methods 
(e.g., phase-weighting, adaptive F-statistic time-series), as well as combinations of both 
techniques. More broadly, trace-based noise reduction can increase the value of isolated 
infrasound sensors in places where an array, or spatial averaging equipment, is impractical. 

  
A2.1. Background and Motivation 

The EarthScope Transportable Array (TA) in Alaska affords an unprecedented 
opportunity to study explosive volcanic eruptions using a relatively dense regional seismo-
acoustic network (Figure 1). Since 2016, seven volcanoes have erupted in Alaska with a 
range of magnitudes and styles, including 70 explosive eruptions from Bogoslof during 
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2016–2017 (e.g., Coombs et al., 2019). Notable limitations to infrasound source location 
techniques come from anisotropic atmospheric propagation, and low signal-to-noise (SNR) 
conditions, with wind being the dominant noise source. Here we focus on improving 
waveform data processing to reduce noise and so enhance signal detection and source 
location accuracy.  

Signals from Bogoslof often have similar character to wind in both the time and 
frequency domains (Fee et al., 2020; also Matoza et al., 2011 re. Eyjafjallajökull), providing 
a challenge for noise-signal separation. In part this is due to attenuation and remote 
detection, but also the often submarine nature of the eruptions (e.g., Lyons et al., 2019).  

In this study we use data from all infrasound sensors within 2,000 km of Bogoslof, 
including the TA, several arrays operated by AVO, and an array which is part of the 
International Monitoring System array (IS53). 

 
Figure 1. Locations of historically active volcanoes and available seismic (S) and infrasound (I) data in 
Alaska during the course of the Bogoslof eruption, 2016–2017. During 2020, several additional infrasound 
arrays have been installed by the Alaska Volcano Observatory in the Aleutian Islands. Some Transportable 
Array stations will be removed entirely starting from 2021, while others are being adopted by existing 
regional networks.  
 
A2.2. Methodology 

Backprojection is a “delay and stack” grid search approach for locating events. As per 
Figure 2, for each trial source location on a grid, sections of waveforms from each station are 
extracted, aligned, and stacked. The grid search is performed for a range of celerities 
(range/time, 250–350 m/s), and then we retain the highest amplitude from all stacks at each 
time step to form a detector function (DF). The grid node which gives the highest amplitude 
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in the DF is assumed to be the event source. Details of the data preprocessing, detection, and 
location methodologies can be found in Sanderson et al. (2020).  

In this study, we compare how linear stacking compares to three advanced stacking 
techniques from seismology, namely: (1) phase-weighted stacking (PWS; Schimmel and 
Paulssen, 1997), (2) robust stacking (Pavlis and Vernon, 2010), and (3) selective stacking 
(Yang et al., 2020). Each of these "co-stack" methods, though differing in implementation, 
penalize traces that do not share common waveform elements, and thus noise is reduced.  

We also examine the impacts of “pre-stack” noise reduction, which takes place on 
each individual trace prior to enveloping during preprocessing (Figure 2b). There is 
relatively limited literature on denoising individual seismic or infrasound traces (e.g., Cabras 
et al., 2012; Carniel et al., 2014; Zhu et al., 2019; Williams et al., 2020), as SNR 
enhancement is usually via stacking. Methods which don’t require full supervision (training 
with signals and noise) enable the backprojection results to include non-volcanic events and 
facilitate application to a wider range of data sets. 
 

 

Figure 2. (a) Signal source and stations within a grid of trial source nodes. (b) Envelopes recorded by stations 
when using true source as the trial source. Data sections are extracted according to modeled celerity (diagonal 
blue lines). (c) Data sections from (b) are reverse migrated in time to the projected origin time. (d) The 
migrated data are stacked. (e) Stacks for all grid nodes. The stack for the true source (colored black) has the 
highest amplitude; stacks far from the true origin have small stacks (colored blue). A simple DF is the running 
maxima of all these stacks (colored red). The time of the DF maximum is marked with a green dashed line. (f) 
Contoured map of stack amplitudes at the time of the DF maximum in (e). Hotter colors toward the center are 
associated with stacks with higher amplitudes. Correct source locations are only provided by choosing times 
from (e) when the stack from the true source node is the highest.  
 

For initial evaluation of pre-stack denoising methods we compared how well and how 
consistently different kinds of noise were reduced relative to volcanic signals for a range of 
distances, station designs, as well as computational times. We proceeded with a spectral 
noise gating method (after Sainburg and Amr, 2019). This method operates by masking trace 
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elements that have lower power frequency components than statistical thresholds derived 
from a designated noise-only section. For simplicity with this semi-supervised approach, the 
“noise” is set here to be the entire trace.  

A characteristic example of the effectiveness of the method is shown in Figure 3, 
where the persistent background noise (primarily microbaroms) is effectively removed. The 
mean SNR in the band 0.1–5 Hz is 9.3 dB before denoising and 27.4 dB after denoising, 
representing a 295% increase in SNR by denoising. This calculation uses a window before 
the event as a noise estimate. Much of the wind noise at the end of the day remains however. 
Changes in the event amplitude and shape occur in both cases. 
 

 

Figure 3. Waveforms and spectrogram examples showing before denoising (top) and after denoising (bottom) 
using a spectral gating method. Event from Bogoslof on 8 March 2017 (middle of day) recorded on station 
AV.DLL4 (left, 820 km away) and TA.G26K (right, 1,950 km away). The high amplitude oscillation at the 
end of day is assumed to be wind noise. The color scale has a reference of 1 Pa2.  

 
 

A2.3. Results 
Figure 4 illustrates some effects that different processing options can have. Denoising 

does not affect the overall SNR of the DFs in this case, but does modulate the sharpness and 
amplitude of the DF peaks. This is important as location estimates are performed on the 
samples making up the tops of each peak. If the maximum values of DFs happen to represent 
grid nodes far from the source, then the mislocation value (source distance error) will be 
high. Although the denoised robust stack will give relatively poor location estimates, the 
SNR is high enough to show a third pulse of the eruption, which none of the other 
combinations illustrate clearly. 
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Figure 4. Examples of stacking methods used during this study using event from Bogoslof on 15 January 
2017, with and without denoising during preprocessing. The black trace is the stack of traces assuming 
Bogoslof is the source location. The colored trace is the DF. Mislocation is the distance of the corresponding 
grid node from Bogoslof. The vertical black dashed lines mark the duration of seismic activity based on the 
AVO catalog (Coombs et al., 2019), and the dark grey shaded area is the cataloged infrasound activity. Black 
dots show intersections of the Bogoslof stack and DF, implying those parts represent the true source location.  
 
 

Table 1 also contains a measure of the area under a receiver operating characteristic 
(ROC) curve, which is a metric showing how well a detection scheme correctly classifies 
detections against a catalog of events. An area of 1 would indicate there is a DF threshold 
above which all cataloged events (with recorded infrasound) are detected, and there are no 
false positives. A 0.5 area value indicates thresholds have no ability to discriminate.  
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These results are generally affected by the change in stratospheric wind direction 
over the course of the eruption (Sanderson et al., 2020; Schwaiger et al., 2020). A more 
detailed analysis of relative performance between the schemes for different kinds of events 
and different time periods is left to future work. 
 
Table 1. Performance of processing schemes outlined in this paper. CPU times are calculated using a 3.1 GHz 
processor on a stack of 119 traces of length 17,280 samples (24 hours at 0.2 samples per second). The 
selective stack results use a correlation coefficient threshold of 0.3, and PWS uses a power of 2. The detection 
threshold is 12.5 dB. 
 

 

A2.4. Discussion 
Denoised traces may lead to higher mislocation if waveform shapes are changed to 

the extent that waveform features no longer align. Another factor is that signals with very 
low SNR are reduced further as they fall below the statistical thresholds for the denoising 
mask. These factors also affect event detection rates.  

A limitation to the performance of all the stacking methods comes from the way in 
which celerities were used to account for variable travel times in the atmosphere. Use of a 
realistic propagation model would likely improve the alignment of arrivals and thus SNR 
(e.g., Shani-Kadmiel et al., 2018).  

The common/general processing parameters used here were primarily tuned for noisy 
linear stacking, whereas other common parameters may work better depending on the 
configuration. Similarly, the effects of tuning parameters for the denoising and stacking 
methods could be explored.  

Future work could focus on the impulsive wind components specifically. Some 
approaches show promise in this regard, but perform inconsistently. Figure 5a shows how 
wind noise at the end of the day is reduced well by methods 2 and 3. This station has a 
mechanical noise filter such that the wind character is constrained to a narrow band below 
that of the event (Figure 3). This enables methods 2 and 3 to discard the stationary and 
relatively low frequency wind.  

In contrast, Figure 5b shows how these same two methods preserve the wind but 
remove the signal as it is now the event that is relatively stationary and low frequency vs. the 
wind (Figure 3). Methods 4 and 5 however, which are essentially methods 2 and 3 operated 
in reverse, preserve the event rather than the wind (unlike in Figure 5a). Method 1, which is 
used for the results in Table 1, is relatively consistent in retaining more of the event at each 
station, but the SNR changes little vs. the wind.  
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Figure 5. Bogoslof eruption on 8 March 2017. (a) Comparison of trace-denoising strategies at station 
AV.DLL4 (infrasound array element, 820 km from source). Gray traces are filtered 0.1-5 Hz, black traces are 
denoised gray traces. Y-limits are scaled to the extremes of the denoised data. Red lines indicate the predicted 
onset based on AVO catalogs and a celerity of 280 m/s. VAD = Voice Activity Detection, after Boll (1979) 
(https://doi.org /10.1109/ICASSP.1979.1170696). NMF = Non-negative Matrix Factorization, a process of 
dividing a time-frequency representation into components which can then be clustered and masked to retain 
only the components of interest. (b) As per (a), but for station TA.G26K (1,950 km from source).  
 
A2.5. Conclusions 

A “one scheme fits all data sets” signal enhancement strategy is a challenging task 
due to potentially high variability in signal and noise character at the same infrasound station 
over the space of a few hours. In the preliminary results presented here, we find that linear 
and PWS stacking strategies perform best. Computationally, it is more efficient to enhance 
the SNR of backprojected data during pre-stack processing than during stacking itself. Trace-
based denoising using a spectral gating approach typically did not benefit results with the 
Bogoslof data set. Future success will likely require a semi-supervised approach with a 
cascade of signal-noise separation algorithms involving adaptive processing. For data sets 
where signals and noise share fewer properties, denoising algorithms may be simpler, and the 
benefits to backprojection more pronounced.  

Noise reduction on individual waveforms can likely improve results from many 
analysis types aside from location strategies and is an important area of future study. More 
broadly, trace-based noise reduction can increase the value of isolated infrasound sensors in 
places where an array, or spatial averaging equipment, is impractical. 
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Appendix 3. Popocatépetl Deployments 

Following the November 2019 CONVERSE (Community Network for Volcanic 
Eruption Response) meeting in Fairbanks, Alaska, a website began development in order to 
share practical information about volcano infrasound, and make infrasound science more 
accessible to a wider community (https://sites.google.com/view/volcano-infrasound/home). 
Part of this website includes “best practices” for installing infrasound sensors under a range 
of scenarios. I was asked to contribute to the section on long-term installs, and chose to 
describe work at Popocatépetl volcano, Mexico, that I participated in during my PhD 
program. The following focuses on a deployment from 2017 to 2018, as well as introduces 
the station design deployed in 2021, which continues to operate at the time of writing. I was 
primarily responsible for designing and building the seismoacoustic stations in the first 
project, as well as the infrasound stations in the current deployment. This material is 
standalone, and not referred to elsewhere in the dissertation. 
 

A temporary seismoacoustic station (ATLI) was deployed from September 2017 to 
June 2018 at Atlimeyaya (Puebla, Mexico) by representatives of Universidad Nacional 
Autónoma de México (UNAM), and the University of California, Santa Barbara (UCSB) 
(Figure 1a). This site was chosen in order to determine the value of regional infrasound 
stations for observing eruptive activity from Popocatépetl volcano, 15.8 km to the west-
northwest. Some of the site considerations included: (1) ability to house the footprint of the 
infrasound array, equipment vault, and solar panels; (2) permission of the local community, 
(3) security; (4) ease of access/visiting; (5) shape and directivity of the crater; (6) local noise 
sources; and (7) the presence of nonvolcanic sources with similar back azimuths to 
Popocatépetl. 

The infrasound component of the station used four Hyperion IFS-3111 sensors 
(Figure 1b) to form a triangular array (aperture ~50 m), with a central element. Each sensor 
had a high-frequency shroud to reduce wind noise, and capability to record pressures ±500 
Pa on scale (1,000 Pa full-scale range). The vertical and radial components from a broadband 
seismometer (Nanometrics 120-s Trillium Compact Posthole), co-located with the central 
infrasound sensor, were also recorded. Sensor cables were buried in conduit within trenches, 
and infrasound sensors hidden within vegetation. A six-channel REF TEK 130S digitizer 
recorded the data at 200 Hz. The system was powered by ~200 W of solar, with panels 
attached to the roof of a building, and angled based on the latitude and winter sun elevation 
(Figure 1c). The panels were grounded to a buried copper post. The battery, solar charge 
controller, digitizer, and fuse system were housed inside the building in a small metal cabinet 
(Figure 1d). The primary installation challenge was creating and sealing a port in the 
building wall for cables to pass through. 

The kind of system described can be used where site security is good as large solar 
panels are easily visible from distance, and the array footprint makes it potentially 
conspicuous, with the multiple sensors often being unattended. Cable conduits should be 
buried to a depth such that they cannot be unearthed by e.g., animals, vehicles, and changes 
in land use, etc. Consideration should be given to nonvolcanic hazards, such as earthquakes, 
flooding, and lightning, which may affect the site. These factors are particularly important in 
cases where a station is not telemetered, as such issues will not immediately be discovered. 

For the current deployment at Popocatépetl (2021+), we are using modified station 
designs, employing single infrasound sensors rather than arrays, in order to minimize station 
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footprints and maximize the number of potential sites that can be occupied. The sensors are 
housed inside the enclosure, with a hose connecting the sensor to the atmosphere. A flexible 
design allows the enclosure to be placed inside or outside a building, with lengths for the 
sensor hose, and cables for GPS and solar panels easily customizable (Figure 1e). Several of 
the stations use a Chaparral Model 64 (M64) ultra-high pressure (UHP) sensor (±1,000 Pa), 
which uses less power than the aforementioned Hyperions, enabling smaller solar panels. 
The relatively high dynamic range M64s were selected for the closest sites to the volcano in 
order to avoid waveform clipping. Infrasound sensors, including the Hyperion, can often be 
set up (at purchase) with any peak to peak amplitude range, however. For this experiment, 
each infrasound sensor is also co-located with a broadband seismometer. 

In terms of logistical challenges, one of the foremost is identifying appropriate 
locations that address the aforementioned site requirements. This reconnaissance work 
requires several trips to evaluate a range of potential sites and establish any specific 
installation considerations. A second challenge is transporting equipment between the USA 
and Mexico. Long-term but still temporary imports such as these require administrative 
preparation and documentation to make sure there are no critical holdups in customs or 
airport security. Equipment has been taken on aircraft with field personnel, as well as 
shipped. This latter option enables travel arrangements to be made only once equipment 
clears customs. 

Results from the 2017–2018 deployment focus on air to ground signal coupling of 
five well-recorded Vulcanian explosions. Please see Matoza et al. (2019) and Mendo-Pérez et 
al. (2021) for further details of the research, and http://ds.iris.edu/mda/5K/ATLI/ for 
additional instrumentation specifications and data access. 
 

 
 
Figure 1. (a) Geometry of Popocatépetl and the ATLI array, after Matoza et al. (2019). PPIG is a seismic 
station operated by the Servicio Sismológico Nacional (SSN), of the Instituto de Geofísica, Universidad 
Nacional Autónoma de México (UNAM). (b) Hyperion sensor deployed at the ATLI array, from 2017–2018. 
(c) Solar panels at ATLI, with Popocatépetl in the background. (d) ATLI electronics enclosure, featuring a 
digitizer, battery, solar controller, and fuse system. (e) Station design for 2021+ Popocatépetl deployments. 
Lengths for the GPS cable, sensor hose, and solar panel cables can be easily customized and attached to 
external ports on the vault. 
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