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Abstract:  The data on the outcomes of solid organ transplant recipients who have contracted 

coronavirus disease 2019 (COVID-19) are still emerging. Kidney transplant recipients are commonly 

prescribed renin-angiotensin-aldosterone system (AAS) inhibitors given the prevalence of 

hypertension, diabetes, and cardiovascular disease. As the angiotensin-converting enzyme 2 (ACE2) 

facilitates the entry of coronaviruses into target cells, there have been hypotheses that preexisting use 

of Renin-Angiotensin-Aldosterone System (RAAS) inhibitors may increase the risk of developing 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Given the common use of 

RAAS inhibitors among solid organ transplant recipients, we sought to review the RAAS cascade, the 

mechanism of SARS-CoV-2 entry, and pertinent data related to the effect of RAAS inhibitors on 

ACE2 to guide management of solid organ transplant recipients during the COVID-19 pandemic. At 

present there is no clear evidence to support the discontinuation of RAAS inhibitors in solid organ 

transplant recipients during the COVID-19 pandemic.
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Introduction

The current coronavirus disease 2019 (COVID-19) pandemic is associated with unprecedented 

morbidity and mortality 1, and recent publications in the transplant literature report varying rates of 

mortality from 6-28% 2–5. Early reports from China and Italy have shown that co-existing conditions, 

including diabetes mellitus, hypertension, congestive heart failure, and coronary artery disease, are 

more common among patients who developed severe symptoms of COVID-19 6–9. Conventional 

medical management of these comorbidities often includes the use of Renin-Angiotensin-Aldosterone 

System (RAAS) inhibitors. Interestingly, coronaviruses interact with angiotensin-converting enzyme 

2 (ACE2) to facilitate entry into target cells 10, raising concerns in several published commentaries 

that preexisting use of RAAS inhibitors may increase the risk of developing severe manifestations of 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection 11–14. Citing preclinical 

studies that demonstrated the correlation between increased levels of circulating ACE2 and RAAS 

inhibitors, some in the medical community suggested preemptive discontinuation of RAAS inhibitors 

during COVID-19, as these medications might theoretically promote viral entry 12.

Given the common use of RAAS inhibitors among solid organ transplant recipients with 

cardiovascular disease or polycythemia, we sought to review the RAAS cascade,  the mechanism of 

SARS-CoV-2 entry, and pertinent data related to the effect of RAAS inhibitors on ACE2 to guide 

management of solid organ transplant recipients during the COVID-19 pandemic.

RAAS, ACE2, and SARS-CoV-2

The RAAS is a cascade of vasoactive peptides that orchestrate key physiological processes, including 

blood pressure regulation, fluid and electrolyte balance, and cardiac and renal function 15,16. In the 

classical view of the cascade, renin cleaves angiotensinogen and generates angiotensin (Ang) I, which 

is cleaved by angiotensin-converting enzyme (ACE), generating Ang II (Figure 1A). Ang II is the 

active form of angiotensin that binds to receptors in the adrenal cortex, releasing aldosterone. Ang II 

also induces arterial vasoconstriction and promotes fibrosis. A parallel pathway mediated by ACE2, a 

homolog of ACE, generates Ang (1-9) from Ang I and Ang (1-7) from Ang II (Figure 1B). Ang (1-7) 
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has organ-protective properties which oppose the vasoconstrictive, inflammatory, sodium retaining, 

and remodeling properties of Ang II.

While ACE2 is predominantly a membrane-bound enzyme, its membrane anchor can be cleaved by a 

disintegrin and metalloprotease 17 (ADAM17), releasing ACE2 into blood, urine, and other body 

fluids. Membrane-bound ACE2 (found on pneumocytes) along with transmembrane protease serine 2 

(TMPRSS2) is required to facilitate SARS-CoV-2 entry into target cells 17. On the other hand, soluble 

ACE2 has been shown to significantly block early stages of SAR-CoV-2 infections in in vitro 

experiments and represents a potential therapeutic intervention 18 (Figure 2).

The Effects of RAAS Inhibitors on ACE2

Although ACE2 shares significant homology with ACE (40% identity and 61% similarity), its 

substrate-binding pocket site is distinct from ACE; therefore, classical ACE inhibitors (ACEi) do not 

directly affect ACE2 enzymatic activity 19. In addition, ACEi use may be protective as it reduces Ang 

II which increases alveolar permeability and would potentiate acute lung injury. Several animal 

studies have reported mixed findings on the effect of ACEi on ACE2 mRNA expression or enzymatic 

activity in cardiac 20–23 and renal tissues 24. In comparison, angiotensin II type I receptor blockers 

(ARBs) more consistently upregulate ACE2 mRNA or protein level in cardiac tissue 20,25–27 and renal 

vasculatures 28, though the effect varies across study models and requires high doses of ARBs. The 

upregulation of ACE2 by ARBs may be protective against lung injury via Ang-(1-7), a vasodilatory 

peptide 29.

In contrast, there are very few studies in humans to assess the effect of RAAS inhibitors on ACE2 

expression 30–35. It is important to note that all these studies reported the level of ACE2 activity in 

blood or urine, as quantifying membrane-bound ACE2 in vivo in human cardiac and kidney tissue 

would be technically challenging and invasive. There is no evidence to support that soluble ACE2 is a 

reliable surrogate for membrane-bound ACE2. Interestingly, membrane-bound ACE2 protein 

expression was found to be decreased in human autopsy hearts that were positive for SARS-CoV 

during the Toronto SARS outbreak in 2009 36. Hypothetically, if the animal data can be extrapolated A
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to humans, increased membrane-bound ACE2 in human myocardium associated with pre-existing use 

of RAAS inhibitors may be potentially protective against COVID19-associated myocarditis. 

Role of RAAS Inhibitors in Kidney Transplant Recipients

Kidney transplant recipients with cardiovascular disease and post-transplant erythrocytosis are 

commonly prescribed ACEi and ARB 37,38. Studies on RAAS blockade in kidney transplant patients 

have been mixed with regards to patient and graft survival 39–45. Interestingly, a rare condition that 

calls for the use of ARB post-transplant is antibody-mediated rejection related to angiotensin II type I 

receptor (AT1R), a G protein-coupled receptor expressed at the endothelial cell surface 46. In a 

prospective cohort of 1,845 kidney transplant recipients, circulating anti-AT1R antibodies have been 

associated with increased antibody-mediated rejection at one-year post-transplant and overall reduced 

allograft survival 47. Anti-AT1R antibodies are thought to develop post-transplant in response to 

ischemia-reperfusion injury, which in turn triggers an alloantigen immune response and activates an 

inflammatory cascade, leading to increased antigen expression and cytokine production 48. The use of 

ARB may improve allograft survival in kidney transplant recipients with elevated anti-AT1R 

antibodies 49. Although there is a growing interest in the contribution of anti-AT1R antibodies to 

allograft rejection, its overall prevalence and exact role in the pathogenesis of allograft rejection 

requires further investigation.

COVID-19, RAAS, and Kidney Transplant

In recent weeks, emerging data is allowing insight into provider experiences with COVID-19 

infection in transplant recipients. Early reports from Europe and China have shown that 

immunosuppressed patients are not at increased risk of severe complications in comparison to the 

general population 2,50–53. However, one study in the United States reported high early mortality up to 

28% among kidney transplant recipients with COVID-19. Almost 80% of patients required inpatient 

admission, with nearly 40% of those admitted requiring intubation. Mortality was very high, 64%, in 

patients requiring intubation 4. Similarly, a study of 20 kidney transplant recipients with COVID-19 

from Italy found a 25% mortality rate 5. Contrary to these higher mortality rates a single center cohort 

study out of Spain found a 6% mortality rate among 33 patients infected with COVID-19 from the A
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onset of the pandemic to mid-April of 2020 54. Similar to the study by Akalin et al., 80% of the 

identified renal transplant recipients required hospital admission with greater than 50% of those 

requiring ICU admission. No data on RAAS inhibitors was available in any of the above studies. 

Currently, there are very limited numbers of SARS-Cov-2 infections documented in transplant 

recipients who were on ACEi or ARB therapy. A small cohort study of renal transplants afflicted with 

COVID-19 in the UK found that five out of seven patients required inpatient management, with one 

death in their cohort 2. Two patients were on RAAS inhibitors, which were continued through their 

course. A 67-year-old kidney transplant recipient who was on ACEi for hypertension developed acute 

kidney injury, ARDS, and passed away on hospital day 12. Guillen et al. described the clinical course 

of a middle-aged kidney transplant recipient who was on Losartan therapy due to hypertension. The 

patient developed acute respiratory distress syndrome (ARDS), requiring ventilator support 10 days 

after onset of symptoms 55. At our transplant center, we observed the successful recovery of an elderly 

kidney transplant recipient from SARS-Cov-2 14 days after onset of symptoms while being continued 

on Losartan with no development of ARDS.

Summary

Currently, there is limited evidence that ARBs may upregulate membrane-bound ACE2 in renal and 

cardiac tissues of animal models. Unfortunately, the animals were not challenged by coronaviruses in 

these studies. To date, no comprehensive studies demonstrate the effect of RAAS inhibitors on the 

lung-specific expression of ACE2 in experimental animal models or humans though studies are 

continuing to emerge 56. Informative data can be potentially obtained by examining human epithelial 

cells from oral mucosa 57 or endobronchial lining 58, which not only highly express membrane-bound 

ACE2 but are also more relevant to COVID-19’s route of transmission. Autopsy studies on the hearts 

of COVID-19 positive patients would be informative to elucidate the relationship between cardiac 

membrane-bound ACE2, ACE/ARB therapy, and predisposition to COVID-19 associated 

myocarditis. Mechanistic data on whether modulating the level of membrane-bound ACE2 in target 

tissue would affect the entry of SAR-CoV-2 would aid in our understanding. In short, the hypothetical 
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concerns regarding the causal relationship between RAAS inhibitors, membrane-bound ACE2, and 

severity of COVID-19 are not supported by the available data.

Overall, there is no clear evidence to support discontinuation of ACEi and ARB in solid organ 

transplant recipients with COVID infection. Thus, we cautiously support the continuation of ACEi 

and ARB in solid organ transplant recipients with COVID infection without any direct survival 

benefit of continued use.
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Figure Legends

Figure 1. (A) Classic RAAS: Renin cleaves angiotensinogen to form angiotensin I, which is then 

converted to angiotensin II by ACE. (B) Angiotensin I can be converted to angiotensin 1-9, and 

Angiotensin II to Angiotensin 1-7, by ACE2, a homologue of ACE. This ACE 2-dependent pathway 

counterbalances the classic pathway.

Figure 2. (LEFT) Membrane-bound ACE2 is required to facilitate cellular entry of SARS-CoV-2. 

(RIGHT) When cleaved by ADAM17, ACE2 is released extracellularly. The soluble form of ACE2 is 

shown to prevent SAR-CoV-2 entry in preclinical experiments. 
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Figure 1 (A) Classic RAAS: Renin cleaves angiotensinogen to form angiotensin I, which is then 

converted to angiotensin II by ACE. (B) Angiotensin I can be converted to angiotensin 1-9, and 

Angiotensin II to Angiotensin 1-7, by ACE2, a homologue of ACE. This ACE 2-dependent 

pathway counterbalances the classic pathway. 
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Figure 2. (LEFT) Membrane-bound ACE2 is required to facilitate cellular entry of SARS-CoV-2. (RIGHT) 

When cleaved by ADAM17, ACE2 is released extracellularly. The soluble form of ACE2 is shown to 

prevent SAR-CoV-2 entry in preclinical experiments. 
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