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ABSTRACT OF THE THESIS

Context-Aware Runtime Engine For Android Operating
System

by

SALMA HOSNI EMAM MOHAMED ELMALAKI
Master of Science in Electrical Engineering

University of California, Los Angeles, 2014

Professor Mani B. Srivastava, Chair

Context-awareness—the ability of systems to sense and react to their environment—

can enable software to intelligently adapt its functionality across time, locations, and

operating conditions. In this thesis, we introduce CAreDroid, a Context-Aware run-

time adaptation system for Android. CAreDroid allows the runtime system to switch

between blocks of code that perform alternative or comparable functionality. At any

point in time, CAreDroid activates the blocks of code that best fit the device’s con-

text. CAreDroid targets both the Java and native layers of Android and can help users

develop and analyze tradeoffs between accuracy and cost in different contexts. The

proposed framework enables applications to dynamically and transparently adapt their

functionality, quality, and timeliness of results, leading to a range of 3–12x reduction in

execution time compared to context-aware Android apps that do not rely on CAreDroid.

Context-aware operation is particularly important for energy efficiency. In mobile

phones the marginal energy cost of performing any operation changes according to de-

vice context as determined by, for example, remaining battery capacity, connectivity

status, or sources of environmental and process variability like operating temperature.

We show that context-aware applications using CAreDroid can achieve 20%–40% en-

ergy savings with acceptable quality degradation.
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CHAPTER 1

Introduction

1.1 Context-Aware Computing

Unlike in traditional desktop and server systems, in mobile and wearable devices the un-

derlying execution context—defined for example by connectivity availability, remain-

ing battery capacity, charging status, or user location—is ever changing. Context-aware

computing [ST94] argues that, as this context changes, software functionality should

change accordingly.

At the heart of context-aware computing is the ability to sense the environment

and adapt accordingly. For each particular application, a set of contexts that affects

performance is discovered, specialized context-sensing mechanisms are designed, and

adaptation procedures are deployed. These context-aware computing techniques have

been shown to improve the performance and efficiency of applications significantly

[BGX10, ZGF11, PZC14, LLH13].

Context-awareness is important not only from a purely functional standpoint, but

also has crucial implications on related aspects of computing. In particular, it is im-

portant to study how context-aware computing can be used to enhance energy-aware

computing [RSH08, RZ11]. The problem of energy efficiency on mobile devices has

often been attacked from the angle of trying to produce high quality and accurate re-

sults while spending less energy. We argue that, when a desire for powerful processors,

advanced applications, and device longevity go hand in hand, compromises in quality

must be made. Energy management actions should likewise be informed by device
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state and context.

1.2 CAreDroid

While previous work focused on application-specific context-aware implementations,

systematic support for context awareness is still missing. In this paper we focus on

runtime support for enabling context aware computation. In particular, we introduce

CAreDroid, a Context-Aware runtime adaptation framework for the Android mobile

operating system.

CAreDroid is loosely related to polymorphic engines [Yet93] in that it is used to

transform sections of a program into different versions with alternate code paths that

provide roughly the same functionality. Polymorphic engines are used to intercept and

modify code transparently, typically for malicious purposes such as hiding malware

functionality from anti-virus software. In CAreDroid, the different code paths provide

functionality that is better suited to the device under its various operating contexts. Mu-

tations from one version to another are triggered by changes in device operation context.

CAreDroid can thus be seen as a dynamic or flexible version of delegation [Lie86] for

object-oriented systems, where lookup rules are used to bind methods to objects. A spe-

cific block of code may be activated, for example, when processor temperature reaches

a certain threshold (an indicator of higher leakage power consumption). A second block

may be activated when remaining battery capacity drops under a specified percentage.

In this work, the different code blocks may be either standard library functions pro-

vided by the runtime system or alternative implementations provided by application

programmers. Per-application configuration files determine when and under what cir-

cumstances code mutations should be triggered. The runtime system monitors device

context and transparently triggers mutations at appropriate times.

CAreDroid targets both the Java application layer and the Linux runtime libraries

in the Android system. For simplicity, in this work we refer to these as the Java and

2



native layers. In both layers, individual functions in applications and shared libraries

can be marked as sensitive to device context. Polymorphic implementations of these

functions are tailored to specific operating points for the device and activated according

to a sensitivity list. For each of the polymorphic implementations, a sensitivity list de-

termines ideal ranges of operation under different context vectors of energy expenditure

(remaining battery capacity, temperature, and battery voltage) and connectivity (WiFi

connectivity state, and signal strength, and signal quality). Calls to sensitive methods

are identical to calls to regular functions, and the CAreDroid runtime monitoring sys-

tem dynamically and transparently triggers adaptations to find the set of functions that,

at any point in time, better suit the device’s context.

1.3 Related Work

Context-awareness relies on the ability of a software system to switch between different

code paths based on the context. The idea of alternate code paths, or algorithmic choice

has been explored in the energy-aware software literature. Petabricks [ACW09] and

Eon [SKG07], for example, feature language extensions that allow programmers to

provide alternate code paths. The runtime system dynamically chooses paths based

on energy availability. In Petabricks, multiple versions of object code are created and

profiled for execution time and quality using a sample set of input data. Paths for an

application may be chosen statically or altered in runtime through accuracy valuations.

A similar process is used in Green [BC10], where a combination of a calibration phase

and runtime accuracy sampling are used by the application to define which function

to execute from a set of possible candidates. In Eon, the runtime system dynamically

chooses paths based on energy availability. Levels is an energy-aware programming

abstraction for embedded sensors based on alternative tasks [LMM07]. Programmers

define task levels, which provide identical functionality with different quality of service

and energy usage characteristics. The run-time system chooses the highest task levels

3



that meet the required battery lifetime.

Algorithms and libraries with multiple implementations can be matched to an un-

derlying hardware configuration to deliver the best performance [FJ05, LGP07]. Such

libraries can be leveraged to choose the algorithm that best tolerates the predicted con-

text variation and deliver a performance satisfying the quality-of-service requirement.

In CAreDroid we leverage the notion of algorithmic choice from previous work and

extend it to encompass a broader view of device context. While in previous work adap-

tation has been either left to applications or triggered by energy availability or CPU

utilization, in CAreDroid adaptation can be triggered by multiple dimensions of a de-

vice context’s state including both connectivity vectors (e.g., signal strength or WiFi

availability) as well as energy expenditure vectors (e.g, temperature or remaining bat-

tery capacity). Adaptation in CAreDroid is transparent but subject to per-application

mutation rules dictated by sensitivity lists for polymorphic methods.

1.4 Thesis Contribution

We show how CAreDroid can help users in developing and analyzing tradeoffs between

accuracy and cost in different contexts, as well as reduce CPU utilization and energy

consumption with user-defined quality degradation policies. Case studies using the Java

and native layers show how applications can use CAreDroid to adapt to system context

without having to directly deal with hardware sensors or manage multiple software

implementations. Microbenchmarks show that the system can monitor hardware and

environmental context and trigger code mutations with negligible overhead. We make

the following contributions:

• We extend the Dalvik Java Virtual Machine in the Android layer and provide

shared libraries in the Linux layer to support context-aware application execu-

tion that can transparently switch between polymorphic versions of functions at

runtime;

4



• We design a framework for the implementation of context-aware polymorphic

functions and for the definition of application-specific function mutation rules;

• We implement a context monitoring and mutation engine that finds the set of

functions that best match a device’s context at any point in time;

• We demonstrate how application developers can leverage CAreDroid to make

applications context aware with minimal disruptions to the standard application

development process.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents the CAreDroid

system architecture, including its configuration, monitoring, and context adaptation

strategies. Chapters 3, 4, and 5 present implementation details CAreDroid. Chapter 6

shows evaluation and case studies. Finally, we present some discussion on Chapter 7

and conclude in Chapter 8.
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CHAPTER 2

System Architecture

2.1 Overall Architecture

We propose CAreDroid as an application runtime support system where the operating

system adjusts functionality according to context-aware policies. Applications and sys-

tem libraries define multiple implementations alternatives f1, f2, · · · , fn for a function

f . A series of sensitivity rules dictates which of the alternatives of f should be used

under different execution contexts. For example, f1 could be used when the device is

charging and has WiFi connectivity, and f2 could be used when remaining battery ca-

pacity is below a 20%. The CAreDroid adaptation runtime monitors various sensors of

device context and dynamically aliases f to the alternative that best fits device context

at any time.

Figure 2.1 shows a conceptual overview of the CAreDroid architecture. Applica-

tions call polymorphic functions f and g normally. Each function is aliased to one of

its versions (f1 and g2, respectively in the example). A sensitivity configuration file, de-

fined on a per-application basis, describes rules that determine under what context each

of the polymorphic versions should be used. For each version of a method, sensitiv-

ity rules define acceptable ranges of operation for different sensors of system context.

Function f1 could define, for example, two rules rule stating that WiFi connectivity and

charging status should be equal to 1, while f2 could define one rule stating that remain-

ing battery capacity should be between 0 and 20. Rules are assigned priorities that help

determine which of the versions should be used when multiple rules are valid.

6
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Figure 2.1: CAreDroid System Architecture

2.2 Sensitivity Configuration File

The sensitivity configuration file constrains and directs context adaptation for individual

applications in CAreDroid. The file is structured as a series of sensitive methods and

their respective context sensitivity lists described in XML format.

Each polymorphic implementation of a method is described by name, a tag, and a

priority. The name corresponds to the function name in source code. The tag associates

different implementations of a method to each other. For example, methods f1 and f2

could be associated with a tag f . For the Android/Java layer of CAreDroid, sensitive

methods are encompassed by a sensitive class definition. Finally the priority for a

method helps the system resolve ambiguities when multiple version of a method satisfy

the current context. More information about the structure of the configuration file is

given in Chapter 3.
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Figure 2.2: CAreDroid Tool Flow

2.3 System Layer

In the system layer, CAreDroid parses application configuration files to discover adapt-

able functions and their rules of operation. A context monitoring block abstracts the

various sensors in the system, and exposes context information to an adaptation engine.

When significant changes in context occur, the adaptation engine changes the aliasing

of the adaptable functions according to the sensitivity rules. If more than one version

of a function matches the current context, the priorities of the sensitivity rules are used

to chose between them. When there are no alternatives of a function that exactly match

the context, CAreDroid choses the version that most closely conforms to the current

state of the device. Detailed information about the System Layer is given in Chapters 4

and 5.
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Sensor Description Range Unit
Battery Remaining capacity 0–100 %
Temp. Battery operating temperature -30–100 ◦C
Voltage Battery operating voltage 3–4.2 V
WiFi Connection Status 0,1 –
Signal Link Quality 0–70 A/Va

RSSI Signal strength -100 – -55 db

aAbsolute value dependent on hardware/driver implementation. It is based on the contention, inter-
ference and frame error rate of the link.

Table 2.1: Context Sensors and Ranges.

2.4 Context Sensors

Ranges of operation for the various context sensors are defined for each method with

sensitivity lists. Sensitivity lists define permissible ranges of operation for the vectors

of sensitivity for each version of a method. While CAreDroid can support any avail-

able context sensors, for our prototype implementations we target a set of six energy

and connectivity sensors shown in Table 2.1. The battery sensor indicates remaining

battery capacity. The battery temperature sensor is indicative of high battery load as

well as elevated power consumption. Operating voltage is indicative of battery health.

The WiFi and link quality sensors indicate respectively whether a WiFi connection is

available and its quality. Finally, the Received signal strength indication (RSSI) indi-

cates the strength of the signal. This RSSI value is then used to set five levels for the

signal strength from 0 (the lowest signal strength) to 4 (the highest signal strength).

9



CHAPTER 3

CAreDroid Configuration File

The CAreDroid Configuration File is the entry point for the proposed framework. It

represents the interface between the developer and the CAreDroid framework. The

developer is responsible of providing the necessary information on the context-based

polymorphic methods. This information is manifested later in the lower layers.

3.1 Configuration File Structure

Listing 3.1: The schema of the CAreDroid XML configuration file.
<?xml version="1.0" encoding="UTF-8"?>

<Class>

<ClassName> </ClassName>

<Preference> </Preference>

<Method>

<MethodName> </MethodName>

<orderOfPreference> </orderOfPreference>

<tag> </tag>

<item>

<itemName> </itemName>

<vstart> </vstart>

<vend> </vend>

</item>

</Class>

The CAreDroid configuration file is an XML file. This file specifies the names of:

1. Sensitive Classes: the Java classes that contains context-based polymorphic meth-

ods.

10



2. Sensitive Methods: for each sensitive class, this field lists the method names

that are prune to polymorphic, context-based replacements.

3. Sensitivity List: for each sensitive method, this field describes the different con-

texts for which this sensitive method needs to change its behavior. In particular,

our current framework supports six contexts. Three of them are power-related

(Battery capacity, battery temperature, and battery voltage ) while the other three

contexts are connectivity-based (Wifi availability, Wifi signal strength, and GPS

availability).

The structure of the configuration file is shown in Listing 3.1. The configuration file

contains multiple root elements, Class, that provide the required description needed by

the CAreDroid framework. The Class element contains three different child elements:

ClassName, Preference, and Method. In the remainder of this section, we are going

to illustrate each of these child elements.

The ClassName element captures the name of a sensitive class in the application.

Each application is allowed to contain several sensitive classes. All sensitive classes

needs to be defined in the same configuration file.

The CAreDroid framework handles two different modes named, battery-aware ex-

ecution and connectivity-aware execution. The Preference element of the XML file is

used to switch between these two execution modes. In the battery-aware execution, the

CAreDroid framework gives higher preference to the battery related context signals,

like battery voltage and battery capacity, more than the connectivity related context

signals like WiFi and GPS. On the other hand, the connectivity-aware execution, gives

higher attention to the connectivity related context signals compared to the battery re-

lated signals. This preference is used as in input to the CAreDroid Runtime layer later.

More information about these two modes of execution are presented in Chapter 5.

The third element in the configuration file is the Method element. In contrast to the

previous XML elements, the Method element can appear multiple times, depending on

11



the number of sensitive methods within the class. Each Method element corresponds

to one implementation that can be polymorphically switched, on run-time, with other

Method elements. Although, this definition may lead restricts each class to have only

one set of context-based, polymorphic methods, we resolve this restriction using the

further XML elements in the configuration file, as discussed below.

Each Method element contains a set of sub-elements named, MethodName, or-

derOfPreference, tag and item. The describe the sensitivity list associated with this

sensitive method.

The orderOfPreference gives the sensitive method a rank. This rank is used to

resolve ambiguity and contradictions that can appear in the configuration file. For ex-

ample, a configuration file may contain two sensitive methods with overlapping values

for their sensitivity list. In this case the lower the rank, the highest the priority vote for

this method to execute under conflict.

The structure of the configuration file that we described so far specifies the names

of the sensitive classes and sensitive methods. However, it is essential to categorize the

sensitive methods into disjoint groups. A sensitive method can be switched with only

the methods that belongs to its same group. That is why we introduced the tag element

in the XML configuration file. The tag is used to mark the methods that are associated

with each other as alternatives by assigning the same group number to all of them.

Finally, the item element is the one that specifies the sensitivity list for each sen-

sitive method. Our framework handles three energy related contexts (battery capacity,

battery temperature, and battery voltage) and three connectivity related contexts (WiFi

availability, WiFi signal strength, and GPS availability). Although we focus in our im-

plementation on these six contexts, the framework itself is generic and can be extended

to much more contexts.

Note that the item element can appear multiple times under the same method. This

allows the developer to describe complex behaviors. Moreover, the proposed frame-

12



work is able to resolve, on run-time, conflicts between multiple specifications of sensi-

tivity lists.

The item element contains three sub-elements which are itemName, vstart, and

vend. The itemName represents the name of the context and can take value of any of

the pre-described contexts. The vstart, and vend specifies the value of the specified

context for which this method needs to be executed. The ranges for vstart, and vend

vary depending on the itemName as follows:

• “BatteryCapacity”: The vstart and vend can take values in the range number

between 0% (minimum battery capacity) and 100% (maximum battery capacity).

• “Temperature”: Battery temperature can vary based on the environment and the

processor usage (which leads to higher current consumption and therefore in-

crease in the battery temperature). The Lithium-Ion battery typically works in

the range of -24 degree Celsius up to 70 degree Celsius. Therefore, the vstart

and vend elements can be assigned values between -24 and 70.

• “Voltage”: Battery voltage changes across the lifetime of the phone. Most Lithium-

ion batteries operate at 3.7v/4.2v the battery starts at 4.2v and falls quickly to

about 3.7v for most of the life time of the battery. The vstart and vend elements

can be assigned accordingly.

• “Wifi Availability”: The vstart can be assigned a binary value of 0 or 1 to reflect

whether this method is sensitive to Wifi availability. The value 1 represents the

need of Wifi signal for this method to be triggered while the value of 0 represents

that the Wifi needs to be absent for this method to operate.

• “Received Signal Strength Indicator (RSSI)”: In this case, the The vstart and

vend can be assigned an integer value between 1 and 4 (with 1 being the lowest

signal strength). It determines the strength of the received signal. It is calculated

based on the proximity relative to the nearest access point.
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• “Link Quality”: The vstart can be assigned an absolute value that defines the link

quality in terms of contention, frame rate failure, and interferences. It is different

from the signal strength, for example, you may have a high RSSI if you are near

an access point. However, the quality of the signal may be poor, if you have high

source of interference (e.g. a microwave oven).

A final note is that the proposed framework uses the method that is invoked in the

app code as the default method unless the underlined context or operating point changed

before the first call of this method.

3.2 Example Of Concrete Configuration File

Figure 3.1 shows a snippet of a configuration file. Methods solve CG and solve ChDec

are bound together as alternative implementations for the tag solve. These methods

are alternative ways to solve set of linear equations. An iterative and approximate

method is using Conjugate Gradient, solve CG, while an accurate one is by using

Cholesky Decomposition, solve ChDec. Both methods are sensitive to temperature

and battery capacity. The first method defines a range of operation of 0 − 60◦C and

21−100% remaining battery capacity. The second method can operate in the ranges of

0− 100◦C and 0− 100% battery. When the ranges overlap, the method with the lowest

priority value (indicating higher priority) is preferred.

3.3 Packing/Unpacking the Configuration File

The configuration file is provided as an Android asset file. This enforces the Android

tool chain to pack the configuration file inside the Android application package file

(APK).

The APK file is then unzipped during the installation process of the app. The An-

droid operating system generates an app specific cache folder for the purpose of the
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<Method>
<MethodName>solve_CG</MethodName>
<priority>1</priority>
<tag>solve</tag>
<item>
<itemName>battery</itemName>
<vstart>21</vstart>
<vend>100</vend>

</item>
<item>
<itemName>temperature</itemName>
<vstart>0</vstart>
<vend>60</vend>

</item>
</Method>
<Method>

<MethodName>solve_ChDec</MethodName>
<priority>2</priority>
<tag>solve</tag>
<item>
<itemName>battery</itemName>
<vstart>0</vstart>
<vend>100</vend>

</item>
<item>
<itemName>temperature</itemName>
<vstart>0</vstart>
<vend>100</vend>

</item>
</Method>

Figure 3.1: Snippet of a CAreDroid configuration file.

installation. At this point, our framework intercepts the normal procedure of the instal-

lation, and unpack the configuration file into the cache folder as well. Since unzipping

the configuration file and saving it in the cache folder take place only at installation

time, the overhead accompanied with these actions does not contribute in calculating

the overhead in execution time later in the results section.

written in the asset folder of the application so it is packed inside the Android ap-

plication package file (APK) with its same format and is installed on the device with

the other contents of the APK file. APK files are ZIP file formatted packages based on

the JAR file format. This formate facilitates getting the configuration file entry inside

the APK and only this entry is unzipped, and not the whole zipped file.

The unzipping of the configuration file entry happens during installation of the ap-

plication. We use the cache folder created for the installed application to save the

configuration file inside it. Having the configuration file written as an asset file and not
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passing it to the SD-card gives us the ability to expand the size of the configuration

file and not be limited by the allowed SD-card storage size. Moreover it provides more

modularity by having a cache folder per application rather than having multiple config-

uration files in one SD-card folder. Since unzipping the configuration file and saving it

in the cache folder take place only at installation time, the overhead accompanied with

these actions does not contribute in calculating the overhead in execution time later in

the results section.

As mentioned, the configuration file is provided by the developer of the application,

the reason for that is the developer of the application is the one who provides the alter-

natives of the sensitivity methods and hence the assumption here is that the developer

is aware of the operation ranges for each sensitive methods that is defined in the ap-

plication. We are aware that in [ need citation here], some tools can figure some parts

of the software that are candidates for optimizations but most of these tools take into

account the execution time optimization. Our framework works with more than one

optimization parameter to choose the best method in the sense of best effort that fits the

current operation point.

16



CHAPTER 4

CAreDroid Optimization Process

4.1 The Optimization Process

During the installation of the APK file, the Android flow creates a new Dalvik Virtual

Machine (DVM) to host this application 1. During this process, the Android flow ex-

tracts the Dalvik Executable Files (DEX) which contain the compiled byte codes. It

starts by building specific data structures that captures all the information about the

classes and the methods that is presented inside the DEX file.

After the application is installed, and during the first execution of the application,

the Android flow performs several optimization procedures and initializations on both

the DEX file as well as on the extracted data structures. The final output is then saved in

the Optimized Dalvik Executable Files (ODEX) and its corresponding data structures,

which are loaded in the memory of the virtual machine.

The final ODEX data structures captures the offset of the byte code that corresponds

to each method. Therefore, whenever a method is called, the Dalvik virtual machine

accesses this data structure in order to jump to the correct address of the byte code.

Our CAreDroid framework aims mainly to switch between context-based polymor-

phic methods on run time. Hence, it is important to be able to capture the information

about the offsets, in the DEX byte code, of the context-based polymorphic methods.

Therefore, the CAreDroid flow intercepts the process of building the DEX data struc-

ture and the corresponding ODEX data structures in order to configure and optimize
1Android security mechanisms rely mainly on the concept of sandboxes. That’s why each application

is hosted on a separate virtual machine.
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Figure 4.1: CAreDroid Optimization Process

the CAreDroid runtime engine.

The optimization process consists of two main components; CAreDroid DEX Mod-

ifer and CAreDroid Configurator (Figure 2.2). Figure 4.1 shows the architecture of

these two components. The final output of this process is two map data structures

called Replacement Map and Table Of Indices. This section is devoted to discuss the

details of this optimization and configuration process.

4.2 The Replacement Map (RM) and the Table Of Indices (TOI)

As shown in Figure 4.1, the Replacement Map and the Table Of Indices are the final two

outputs of the configuration process. During this process, the values stored inside these

data structures is edited several times till they hold the final data. In this subsection, we

introduce these two data structures and point their importance.

To motivate for the importance of these two data structures, we examine how the

Java code is compiled into DEX and then optimized into ODEX. We consider the ex-

ample shown in Listing 4.1 - Listing 4.3. The Java code in Listing 4.1 instantiates an

object from the class “MyClass” and then calls the method called “foo”.
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The corresponding DEX code is shown in Listing 4.2. The DEX compiler assigns

a unique ID number for each class. For example, the “MyClass” is assigned the id

“type@0225”. Similarly, the methods are also assigned for a unique ID. For example,

the default constructor of the “MyClass” is assigned the ID of “method@101” while

the “foo” method is assigned to the ID “method@101e”.

On the other side, all objects are renamed by the DEX compiler. Unlike the class

names and the method names, the new object names are used in the DEX code and

the original name completely disappears. For example, the “myObject” instance is

renamed to “v14”.

The method call is done through the the special byte-code named “invoke-virtual”

which takes the reference to the object ( “v14” in our case) as its argument. Neverthe-

less, the original name of the method is still used to call the methods. The method ID is

used internally to point to the offset, in the DEX code, that points to the implementation

of that method.

Once the DEX file is optimized and the ODEX file is generated, the method names

and the IDs disappears. Instead, the index inside the virtual-table is used to access the

code. Note that the Java method name and the DEX method id are no more usable once

the ODEX is generated. The three steps of tracking the methodID and classID is shown

in Table 4.1

Our framework aims to switch between different methods by hacking the virtual

table and pointing to the method that best fits the current context. Therefore, its is of

great importance to track how the Java methods are assigned to IDs and then how these

IDs are translated to virtual table indices. This is the main role of the TOI and RM data

structures.
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Table 4.1: Replacement Map table. Method ID is updated at the three steps of generat-
ing the ODEX file

ClassID MethodID
... ...

256
4126 (Step 1)

5 (Step 2)
11 (Step 3)

256
4127 (Step 1)

6 (Step 2)
12 (Step 3)

256
4128 (Step 1)

7 (Step 2)
13 (Step 3)

... ...

Listing 4.1: Java File
MyClass myObject = new MyClass();

myObject.foo();

Listing 4.2: classes.dex file
new-instance v14, Lcom/Application_Name/MyClass;

// type@0225

invoke-direct {v14}, Lcom/Application_Name/MyClass;.<init>:([[D)V

// method@101

invoke-virtual {v14}, Lcom/Application_Name/MyClass;.foo;

// method@101e

Listing 4.3: invoke virtual format in ODEX
invoke-virtual-quick {v14}, [000c]

// vtable #000c

4.2.1 The Table Of Indices (TOI)

The CAreDroid runtime engine checks the current context of the phone. It then picks

the method which best suits the current context and switch, transparently, to this method.
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Note that the developer can, in general, specify conflicting switching operation

ranges. That is, different polymorphic methods are sensitive for the same range of val-

ues for a specific context. Therefore, the CAreDroid have a runtime, conflict resolution

mechanism. The TOI serves as the main data structure to discover these conflicts.

The TOI consists of multiple associative arrays. For each of the six contexts (bat-

tery capacity, temperature, voltage, ... etc), we create a corresponding associative array.

Each associative array is initialized with the default operation range which is the full

operation range that this context can take. Each operation range is assigned a unique

identifier, called operation range identifier. The unique operation range identifier for

the default operation range is assigned to zero.

For each sensitive method, we check the specified sensitivity list and the associated

operation range. For each operation range specified in the XML configuration file,

the corresponding context-associative array stores this range versus a generated unique

operation range identifier.

On runtime, the CAreDroid runtime engine utilizes the TOI along with the current

phone context to retrieve all the operation range identifiers which is satisfied by the

current phone context. If there exist more operation range identifier, except for the

default operation range, a conflict is discovered. The CAreDroid runtime engine then

utilizes a decision tree in other to resolve this conflict (Chapter 5).

4.2.2 The Replacement Map (RM)

The replacement map2 is a map data structure.The key of this map is a composite key

which consists of the pair of class-id and method-id. The value field, of this map, is an

array whose length is equal to the number of contexts (six in the current implementa-

tion). This array specifies the operation range for this method for all the six contexts.

This association is done by copying the corresponding operation range identifier from

2Since each class can have multiple sensitive classes, our implementation creates a separate RM for
each sensitive class. However, for clarity of discussion, we refer to the RM as a single data structure.
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Class ID Method ID B T V W S Q
class 1 method 1 0 0 0 0 0 0
class 1 method 2 1 1 0 0 0 0
class 2 method 1 2 2 1 0 0 0
class 2 method 2 2 2 1 0 0 0

Table 4.2: Replacement Map. B: Battery Capacity, T: Battery Temperature, V: Battery
Voltage, W: WiFi connectivity, S: Signal strength, Q: Signal Quality

the TOI data structure. An example of the RM is shown in Table 4.2.

4.3 CAreDroid DEX Modifier

The values of the TOI and the RM are filled by the CAreDroid DEX Modifier and the

values of the RM is changed to reflect the changes done by the Android DEX Optimizer

on the method ids and offsets.

The CAreDroid DEX Modifier is executed within the installation process of the

APK file. It is issued just after the Android flow has extracted the DEX data structure.

It is responsible for building the TOI and RM and modify the internal data structures

accordingly.

Figure 4.2 shows the structure of the DEX data structures. The current data struc-

ture, contains a set of arrays that holds the names and the IDs of all classes, methods,

fields, and method prototypes inside these classes. We modified the DEX data structure

by adding two fields. These two fields are pointers to the generated RM and the TOI

data structures.

First, The TOI is constructed by parsing the XML configuration file. This process

takes place just after the installation of the APK file. The TOI is then added to the DEX

data structure.

Second, the RM is constructed based on the information in the DEX data structure

and the TOI. This is done by matching the ClassName and the MethodName elements

in the XML file with the strings in the MethodIDs in the DEX data structure.
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Figure 4.2: The fields of the extended DEX data structure. The unmarked fields rep-
resents the original fields in the DEX data structure while the marked fields represents
the fields added by the CAreDroid DEX Modifier.

Note that all these string information are not available once the DEX file is pro-

cessed by the Android flow and the Optimized DEX (ODEX) file is generated. There-

fore, it is important to intercept the Android flow at the installation time in order to

utilize these information along with the information in the configuration XML file. In

the next subsection, we examine how to modify the data inside the RM to reflect the

changes made by the Android DEX optimizer.

4.4 CAreDroid Configurator

After the DEX Modifier constructs the TOI and the RM data structures, the DEX file

passes through the normal Android optimization process, resulting into the generation

of the ODEX file. During this process, a virtual table, for each class, is generated and

methods are assigned for different method IDs that fits the ODEX structure.

The DEX optimization consists of two main steps. The first step is executed while

class loading takes place. During this step, each method is assigned with a local method

ID (compared to the global method ID assigned in the DEX). The CAreDroid frame-
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work intercept this process and modify the RM data structure accordingly.

The second step, of the DEX optimization process, takes place when object refer-

ences are linked with their classes. In this step, inheritance, polymorphism, method

overriding, and method overloading are being resolved. In particular, a virtual table is

generated for each class. Each resolved method correspond to an entry in this virtual

table. Therefore, each method is now identified with its unique index inside the virtual

table. For example, to call a method, the ODEX utilizes the “invoke-virtual-quick” byte

code along with the method offset in order to correctly call a method (Listing 4.3). As

before, the CAreDroid framework intercepts this process and edits the values inside the

RM accordingly.

Finally, we extend the ODEX file structure by adding two references to the TOI

and the RM data structures which are generated by the prescribed process. We also

extended the internal Android object and method data structures by adding sensitiv-

ity flags. These flags are used later by the Runtime Engine to facilitate the method

switching.
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CHAPTER 5

CAreDriod Runtime Engine

5.1 Overview of CAreDriod Runtime Engine

Once the ODEX file is generated, the application is now ready to run over the Dalvik

Virtual Machine (DVM) runtime. The Dalvik interpreter executes the instructions saved

in the ODEX file. DVM runtime utilizes two types of interpreters. The first is called the

“portable” interpreter which is implemented in C language and is able to work on any

platform. The second interpreter is called the “fast” interpreter which is implemented

in assembly and tailored towards specific platforms. The DVM supports switching

between the two interpreters on run-time.

In our framework, we extend the “portable” interpreter to support the CAreDriod

runtime engine. The extended interpreter checks the current interpreted ODEX Op-

Code. Whenever the OpCode corresponds to the “invoke-virtual” instruction (see List-

ing 4.3), the extended interpreter executes the CAreDriod runtime engine.

The CAreDriod runtime engine checks the arguments of the “invoke-virtual” instruction—

the method ID and the class ID — against the sensitivity flags (previously introduced in

Chapter 4 as an extension to the Android method data structure). If the sensitivity flag

is set, then CAreDriod runtime engine has encountered a sensitive method.

For sensitive methods, the CAreDriod runtime engine examines the current platform

context (also called the current operating point). This is done by snooping on the un-

derlying Linux device drivers. Once the operating point is determined, the CAreDriod

runtime engine picks the method that fits the current operating point based on the con-
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Figure 5.1: CAreDroid Runtime Layer

figuration delivered by the user and captured in the RM data structure. This process

requires to resolve the conflicts in the user configuration. The CAreDriod runtime en-

gine utilizes the TOI data structure to execute the selected method instead of the original

method. This process is illustrated in Figure 5.1.

The CAreDriod runtime engine consists of three blocks. The first block is named

the “Driver Snooping” block. This block is responsible to obtain the current operating

point. The second block is called the “decision tree”, which is responsible for conflict

resolution and selecting the method that fits the operating point. Finally, in order to

optimize the execution of the CAreDriod runtime engine, the third block, “cache”, is

used to cache the conflicts resolved recently in order to by pass unnecessary usage of

the “decision tree”. This section illustrates the details of each of these blocks.

5.2 Driver Snooper

Android system leverages the information about the current context to the software

stack through the Hardware Abstraction Layer (HAL). The HAL consists of a set of

sensor managers that work as an intermediate layer between the low level drivers and
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the high-level Java applications.

In our framework we snoop on the interface between the HAL and the low level

device drivers. This interface is called the “sysfs” virtual file system. Each device

driver exports his data into a set of files located under “/sys/class/ ”. By reading these

files, our framework is able to determine the state of the battery, WiFi and GPS. This

state is then sent to the decision tree in order to pick the right method.

5.3 CAreDroid Decision Tree

In order to choose the correct implementation that best suits the current context, our

framework utilizes the data supplied by the developer in the configuration file. We

use the information presented in the RM data structure (associated with this sensitive

method ) to get all candidate methods. Since a conflicting configuration file may re-

sult into multiple candidate methods, we need to resolve this conflict and choose one

method out of this set of candidate methods.

For each candidate method, the RM data structure associates six — one for each

context — operation ranges. We differentiate between two cases. In the first case, a

method is considered a candidate method if the operating point satisfies all the six op-

eration ranges. On the other hand, the second case considers all methods for which the

operating point satisfies at least one of the operation ranges. Therefore, our framework

implements two conflict resolution policies, called “must fit” and “best fit”.

In the “must fit” policy, conflicts are resolved based on the rank associated to each

method (defined by the orderOfPreference element in the Configuration XML file).

In the “best fit” policy, the framework utilizes both the method rank as well as

the preference for the context parameters (defined by the Preference element in the

Configuration XML file). The framework resolves the conflicts first by resorting to the

context preferences, that is, reducing the set of the candidate methods, based on whether

they satisfy the highest preferred context and so on. Further conflicts are resolved using
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the method rank.

Choosing which method to execute depends on the best method in the feasible sets

in the sense of meeting the user preference as stated in the configuration file. If the pref-

erence is a Power preference then the choice is made based on this order: the battery

capacity requirement first then meeting the requirement for battery temperature and fi-

nally meeting the requirement of the battery voltage for the battery related parameters

then considering the connectivity parameter. However, if the preference is a Connec-

tivity preference then the wifi status parameter is considered first and then the battery

related parameters are taken into account in the same order as in the Power preference.

If none of the available feasible sets intersect with the operating point, the decision

tree will output the replacement method to execute based on its order of preference

stated in the configuration file.

The feasible set for the battery related parameters divide the space into 3-dimensions

in which each of the three battery parameters create a plane in its dimension and the

intersection of three planes defined by the ranges on each dimension gives a possible

candidate of a method to execute. If there is no intersection between three planes, the

candidate method is chosen from the possible intersection of two planes. If the there

are two possible candidates for 2-planes intersections, the candidate method is chosen

from the planes of more importance to meet as stated by the preference.

Since our design select the battery capacity to be the most important metric in the

battery related parameters then if for example the are two 2-planes that are formed, one

with battery capacity plane and battery temperature plane and the other with battery

temperature plane and battery voltage plane, the candidate method is chosen from the

feasibility set of the former 2-planes intersection (battery capacity and battery temper-

ature).

As stated above the choice of the candidate method is based on best effort. First, the
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algorithm tries to find a feasibility set with three intersecting planes (battery capacity,

battery temperature, battery voltage), if not found, it tries to allocate feasible sets with

two intersecting planes and make a preference choice on them based on the relative im-

portance of the intersecting planes. However, if the later step does not succeed meaning

that the operating point does not lie in any intersecting planes, it tries to allocate iso-

lated planes. The algorithm then chooses the planes with relative importance as defined

above. If all the previous steps fail then the algorithm will return a method based on its

order of preference value in the configuration file.

For example if an operating point lie in an isolated plane of battery capacity and

there are two candidate methods defined in this feasible set then the algorithm will

return the one with the higher order of preference.

The different types of candidate sets and the decision of the replacement method

from them is shown in Table 5.1. In this table, Level A is the highest level in which

the operating point meets the three constraints defined by the three battery parameters

for more than one method, in this case the decision is based on the order of preference.

Level B Type1 is the case when the operating point satisfies only two constraints

in more than one one methods but they are the same two constraints, in this case the

decision is based on the order of preference.

Level B Type2 is the case when the operating point satisfies two different con-

straints in more than one method, in this case the decision is taken based on the priority

of the constraints.

Level C Type1 happens when the operating point satisfies one constraint in more

than one method but it the same parameter associated with this constraint and in this

case the decision is based on the order of preference of the methods involved.

Level C Type2 is the case when the operating point satisfies one constraint but for

different parameters in more than one method, and in this case the decision is based on

the priority of the parameters.
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At run-time an arbitrary operating point can be located on a plane of different in-

tersection polygons and the determination of which intersection polygon as explained

above is used to select the candidate methods. An example for an arbitrary point is

shown in Figure 5.3 where three feasibility regions for three sensitivity methods along

with four different arbitrary operating points.
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Figure 5.2: Region of Operation for one sensitive method fs with arbitrary values; The
intersection of the three regions defined by the polygons marked in H and � and •;
which represent the regions of battery voltage, and battery temperature, and battery
capacity respectively; is the polygon drawn with the dashed lines which represents the
feasibility region for this method

Table 5.1: Candidate Sets Levels
Candidate Set
Level

Candidate Set Property Decision from the Candidate Set

LevelA Satisfies the three constraints Based on the higher order of preference
LevelB Type1 Satisfies similar two constraints Based on the higher order of preference
LevelB Type2 Satisfies different two constraints Based on the priority of parameters
LevelC Type1 Satisfies similar one constraint Based on the higher order of preference
LevelC Type2 Satisfies different one constraint Based on the priority of the parameters
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Figure 5.3: Arbitary Operating Points (OP) with respect to three sensitivity
methods; fs1, and fs2, and fs3 are marked by •, and H, and � respectively.
OP1: Candidate Set Level-A = {fs3}; OP2:
Candidate Set Level-A = {fs1, fs2, fs3}; OP3:
Candidate Set Level-A ={fs2, fs3}; OP4:
Candidate Set Level-A = {}; OP4:Candidate
Set Level-B Type 2 = {fs1, fs2}.
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5.4 Optimization Cache

In order to decrease the overhead of the conflict resolution mechanism, our framework

utilizes a “conflict resolution cache”. Similar to the concept of “temporal locality”, our

heuristic assumes that the operating point does not change in small scale granularities.

Therefore, if a method is called multiple times within a short amount of time (inside

a loop for example), the same polymorphic implementation will be used for all these

multiple calls.

The designed cache is used to store the recently resolved conflicts, that is, the re-

cent operating points along with the method that fits this operating point. Each entry

corresponds to the six value of the operating point along with the method ID for the

selected method. The cache utilizes a Least Recently Used (LRU) approach to replace

existing entries with newer enteries.
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CHAPTER 6

Evaluation

Evaluation of CAreDroid is carried out on two phases. The first phase, is character-

ization of the CAreDroid overhead and comparison between context-aware platforms

versus non context-aware ones. In the second phase, we present a complete app that

can benefit from the CAreDroid framework. In these results, our framework gives an

order of 3–12x saving in execution time in comparison to context-aware platforms that

do not rely on CAreDroid.

In both phases, we focus on arithmetic/signal processing test cases with variable

output quality. This is motivated by the work on approximate computing [KK12,

KGE11, Tis09, ACN11]. Approximate computing utilizes variable quality in order to

double the efficiency and reduce energy consumption [HO13]. Using CAreDroid, ap-

proximate computing, now, can be implemented to be context-aware. That is, different

accuracy levels can be attained based on the underlying context of the phone.

The Java layer test cases are carried over a Nexus 4 phone running a modified sys-

tem image for platform 4.2 API 17 [Anda]. The execution time is obtained using

the Android SDK tracer [Andb]. The native layer test cases are carried over VarEMU

Virtual Machine Monitor [WEL13]. VarEMU facilitates obtaining detailed energy mea-

surements on method granularity.
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6.1 Case Study: Variable quality arithmetic

In this section we present a series of small numerical applications that serve as mi-

crobenchmarks to demonstrate the benefits and overheads of CAreDroid.

6.1.1 CAreDroid/Java: Linear Equations Solver

In this example, we use three linear equations’ solvers, named LUP-decomposition

(LU), Cholesky decomposition (CHD), and Conjugate Gradient (CG). These three meth-

ods have different memory and convergence time characteristics. We implemented a

simple application that solves 20 linear equations in 20 unknowns using the three men-

tioned matrix solvers. In order to characterize the CAreDroid overhead, we generated

an arbitrary configuration file which assigns each of the three solvers to different battery

and connectivity contexts. We evaluated our CAreDroid against a pure Java implemen-

tation performing the same functionality. That is, the pure Java application listens to

changes in battery and WiFi connectivity using the standard HAL callback mechanism

provided by the Android SDK.

Table 6.1 shows the CPU time for each individual solver if it is used in a non

context-aware system. It also shows the overhead for both the pure Java implementation

and CAreDroid calculated as the percentage increase of the CPU time compared to

the non context-aware implementation. Table 6.1 shows that CAreDroid outperforms

the pure Java implementation with around 3–12x savings in CPU time while adding

a minimal overhead (2.5%–5%) compared to the non context-aware case. The results

in Table 6.1 also shows that the driver shopper mechanism used by CAreDroid is a

major factor of reducing the overhead compared to the HAL interface provided by the

Android flow. The results also shows that best fit policy adds a slightly more overhead

compared to the must fit policy due to the complexity of the decision tree used by

the former. The same order of overhead also appears in the pure Java implementation

because of the added code for switching between contexts. The execution time and
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overhead comparison are shown in Figure 6.1.1 and Figure 6.1.1 respectively.

Platform Solver CPU timea (ms) Overhead

Non-context aware (Base)
LU 8.322 + 0 -

CHD 16.872 + 0 -
CG 13.375 + 0 -

Context aware (Pure Java)
LU 8.549 + 2.56 32.6%

CHD 17.648 + 2.56 18.9%
CG 13.736 + 2.56 21.26%

CAreDroid (Must Fit)
LU 8.54 + 0 2.55%

CHD 17.277 + 0 2.34%
CG 13.867 + 0 3.55%

CAreDroid (Best Fit)
LU 8.748 + 0 4.87%

CHD 17.734 + 0 4.86%
CG 13.882 + 0 3.65%

aCPU Time = Method time + HAL Callback time

Table 6.1: Results of the execution time for the different implementations of the linear
equations solver example.

Platform CLOC Overhead
Non-context aware (Base) 275 -
Context-aware (Pure Java) 606 54.62%

CAreDroid 275 +156a 36.19%

aXML Configuration file

Table 6.2: Results of the Count line of code (CLOC) for the different implementations
of the linear equations solver example.

Table 6.2 shows the total number of line of code (CLOC) for each of the implemen-

tations. It is direct to observe the reduction in CLOC for the applications written using

CAreDroid compared to the pure Java implementation for this particular example.

6.2 Case study: A Context-Aware Image Processing App

Various social media apps provide the functionality of modifying/enhancing pictures

before sharing them. This functionality rely on different image processing primitives.

One of the most important image processing primitives is edge detection which is heav-

ily used in feature detection/extraction and face recognition [Yak76, YH94]. We focus
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Figure 6.1: Execution Time Comparison for Matrix Solver Example

Figure 6.2: CAreDroid Execution Time Overhead for Matrix Solver Example

this study on performing edge detection with variable quality based on the underlying

context.

The app utilizes different polymorphic implementations of the edge detection de-

scribed as follows:

1. Default: This implementation uses Canny filter [Can86] which gives the highest

35



(a) Default (b) Optimized

(c) Fast (d) Server-Client

(e) Opt. Server-Client

Figure 6.3: Accuracy results of the different polymorphic methods used for edge detec-
tion.
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accuracy and runs locally on the mobile. This is the default implementation in

the normal context.

2. Approximate: When the battery capacity is critical (very low), it is important to

reduce the amount of computations. Hence, this implementation use Sobel Filter

which is less computationally intensive [MA09].

3. Fast: High increase in the battery temperature is an indication of having multiple

apps running. Therefore, in order to enhance the response of the app, this imple-

mentation first down scales the image size then performs a Canny filter on the

reduced size image leading to significant decrease in computation time leaving

more room for the rest of the apps.

4. Server-Client: If the WiFi connectivity is available with good quality, the app

can remove the burden of enhancing the image to a remote server. In this im-

plementation the computationally expensive Canny filter is implemented on a

remote server and the results are pushed back to the app.

5. Approximate Server-Client: This implementation is used when the battery ca-

pacity is approaching critical value (very low) and the WiFi is available with

good quality. This implementation utilizes a Sobel filter implemented on a re-

mote server. By using the Sobel filter, the server will be able to push back the

image to the app without leaving the app waiting for longer time to accommodate

with the low capacity in the battery.

The accuracy result of the five edge detection method is shown in Figure 6.3. To

better understand these accuracies, we compare all implementations to the Canny filter.

We define the number of false positives as the number of pixels that the algorithm de-

tects as an edge falsely compared to the edges detected by the Canny filter. Similarly,

we define the number of false negatives as the number of pixels that the algorithm fails

to detect as an edge. Figure 6.4 shows the percentages of false positives and false neg-
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Figure 6.4: Edge Detection Results. Percentage of false positives and false negatives
versus CPU execution time.

atives with the execution time for the five edge detection methods. These results reveal

the tradeoff between different methods in terms of accuracy versus execution time. it

is obvious to note that server-client implementations requires negligible execution time

since all the computation is done on the server. It is also observed that the execution

time of the fast method is reduced to nearly quarter the time of the default, which was

expected because we scaled the image to quarter the size in this example.

In this case study, we show that context awareness can be manifested to show the

tradeoff between execution time and accuracy.
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CHAPTER 7

Discussion

In this section we discuss some aspects of the CAreDroid in terms of assumptions,

limitations, and portability.

7.1 Limitations and Considerations

Assumptions: CAreDroid assumes that the app developer is aware of the suitable

ranges of operations for the different sensitive methods.

Limitations: In CAreDroid/Java layer, the polymorphic methods should be pure func-

tions. Pure functions must satisfy three conditions:

1. Does not depend on I/O devices or external input.

2. Does not change any global state that may change how the program behaves or

proceeds in the middle of the execution.

3. The output result depends only on the function arguments. In other words, the

function evaluates the same result given the same arguments.

However, in CAreDroid/Native layer, functions need not be pure, but they must have

consistent side effects and state—i.e., each alternative implementation of a function

must manipulate any global state consistently and atomically for each function call.

This design choice simplifies function mutation both in implementation and in run-

time complexity.
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7.2 Portability

CArDroid framework is a firmware modifier. The framework creates a new system

image that has to be flashed on the Android platforms for our system to work. The

framework is based on Android Open Source Project (AOSP)-API level 17. CArDroid

execution engine is an extension to the Android portable interpreter. Hence, it can be

used on any Android platform and is not architectural dependent.

7.3 Enhancements

Portable interpreter has a negative effect on the execution time of the app, albeit it

makes the framework portable. To address this issue, we enable the possibility of the

switch between fast interpreter and portable interpreter to happen at run-time. The ex-

ecution will start normally using the Just-In-Time compiler (JIT) as a “fast” interpreter

and when the interpreter hits a calling from a sensitive class, the interpreter will switch

to the “portable” interpreter. After executing the sensitive method the interpreter will

switch back to the “fast” version. This enables our framework to work on different

platforms and at the same time benefit from the fast interpreter.
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CHAPTER 8

Conclusion

Context-aware computing is a powerful technique for adaptation and energy-awareness

in mobile systems. It improves resource usage of mobile systems by adapting to con-

text. In this paper we presented CAreDroid, a framework for context-aware computing

in Android. CAreDroid allows for applications to be context-aware without having to

directly deal with context sensors in application code. In CAreDroid, multiple versions

of methods that are sensitive to context are dynamically and transparently replaced

with each other according to application-specific configuration files. A configuration

file may, for example, indicate that a certain implementation of a method should be

used when battery capacity is low, or when WiFi signal quality is good. In this paper

we showed how context-awareness can help applications reduce their resource usage

in constrained contexts, or alternatively provide high-quality results in contexts where

resources are abundant. Results with variable quality arithmetic operations show how

CAreDroid can provide a band of upwards of 40% in energy savings at the cost of up-

wards of 0.6% degradation in application output quality. We further demonstrated how

CAreDroid can provide context-awareness more efficiently and in fewer lines of code

than application-specific context-aware implementations.

Polymorphic methods in CAreDroid must be pure functions, i.e., they cannot per-

form I/O or cannot change global program states, and their output must depend only on

the function arguments. To allow for non-pure functions, the framework would require

state migration procedures between every possible pair of alternate functions. Function

mutations would also be more costly in runtime—our simpler design choice requires
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only replacing the function itself for each migration. While lifting these design re-

strictions could potentially lead to broader choices of function adaptation, we believe

that would lead to an impractical system both in terms of development and runtime

overhead.

CAreDroid assumes that an application developer can provide multiple implemen-

tations of sensitive methods. We believe that, for some applications, polymorphic sys-

tem services such as the variable quality math library demonstrated in this paper could

provide significant benefits without incurring in additional application implementation

complexity. CAreDroid also expects the application programer to be aware of suitable

ranges operations for different sensitive methods. In the future, we intend to explore

automated code profilers that could suggest ranges of operation for each of the choices,

helping users in defining suitable adaptation configuration files. CAreDroid contexts

are modular, and we expect to extend available contexts to include other sensors such

as battery health, state of charge, or communication link noise. We furthermore intend

to abstract context information from raw sensor data into high level inferences. This

could allow the programmer, for example, to configure applications to adapt to user

activity contexts (such as driving, walking, or running), locations (such as at home, at

work, or on travel), emotional status (such as calm or nervous), or expected charging

behavior.
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