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ABSTRACT: Target identification remains a major challenge for modern drug discovery programs aimed at understanding the
molecular mechanisms of drugs. Computational target prediction approaches like 2D chemical similarity searches have been
widely used but are limited to structures sharing high chemical similarity. Here, we present a new computational approach called
chemical similarity network analysis pull-down 3D (CSNAP3D) that combines 3D chemical similarity metrics and network
algorithms for structure-based drug target profiling, ligand deorphanization, and automated identification of scaffold hopping
compounds. In conjunction with 2D chemical similarity fingerprints, CSNAP3D achieved a >95% success rate in correctly
predicting the drug targets of 206 known drugs. Significant improvement in target prediction was observed for HIV reverse
transcriptase (HIVRT) compounds, which consist of diverse scaffold hopping compounds targeting the nucleotidyltransferase
binding site. CSNAP3D was further applied to a set of antimitotic compounds identified in a cell-based chemical screen and
identified novel small molecules that share a pharmacophore with Taxol and display a Taxol-like mechanism of action, which
were validated experimentally using in vitro microtubule polymerization assays and cell-based assays.

Modern drug discovery often involves screening large
compound libraries to identify hits that induce desired

phenotypic effects in cell culture or animal models.1,2 In
contrast to reverse target screening, which often necessitates a
well-defined molecular target, the phenotype-based or cell-
based chemical screen has no such restriction.3 Forward
chemical screens can often be used to identify small molecules
that modulate a wide range of intractable diseases like cancer
and diabetes as well as aging, where modulating multiple targets
in a complex disease network is required.2,4,5 However, the
binding mechanisms of the identified molecules are often
unknown, and determining their underlying molecular targets
has become an integral part of the drug discovery process.
Current experimental target identification approaches like
chemical proteomics or haploinsufficiency assays can rarely
achieve large-scale drug target profiling, mainly due to
disproportionate protein abundances, weak target binding
affinities, and low phenotypic penetrance.6,7 As a result, the
development of in silico drug target profiling approaches that
can effectively prioritize putative on and off targets for

experimental validation will be critical for the success of
current and future drug discovery programs.
In silico target fishing methods can be classified as profile-

based, structure-based, or ligand-based approaches.1 Currently,
ligand-based approaches remain the de facto standard for
computational target prediction, as this approach does not
depend on the availability of protein structures, prior
experimental measurements, or computational training require-
ments. The rationale behind ligand-based approaches is the
chemical similarity principle, which asserts that structurally
similar compounds often share similar bioactivities.8 To
compare chemical similarity between compounds, each
molecule is encoded as a substructure fingerprint, and the
degree of similarity is quantified by shared bits using a
Tanimoto index.8 To predict the drug targets for the query
ligands, the compounds are used to search the bioactivity
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databases, and putative drug targets are inferred from annotated
ligands in the database that share the highest chemical similarity
to the query ligand. One widely used ligand-based approach is
SEA (Similarity Ensemble Approach), which applies a BLAST-
like statistical score to identify targets from annotated ligands
relative to a random background.9

We recently developed a new computational approach
termed CSNAP (chemical similarity network analysis pull-
down) for drug target profiling using chemical similarity
networks.10 In contrast to traditional ligand-based approaches,
CSNAP classified query and annotated ligands from the
ChEMBL database into subnetworks of compounds sharing
common chemical scaffolds known as chemotypes. A network-
based scoring function, similar to that used for protein function
prediction in protein−protein interaction (PPI) networks, was
used to predict the drug targets for query compounds within
the network based on its network environment and
connectivity.11 Specifically, we applied a consensus statistic
(S-score) to identify the most common drug targets in the first-
order neighbor of each query compound in the CSNAP
network. Our validation study showed that network-based
target prediction was potentially more effective and could
circumvent the limitations of on- and off-target profiling found
in conventional ligand-based target prediction approaches. We
further highlighted the utility of the CSNAP approach by using
it to profile the drug targets of compounds identified in a cell-
based screen and identified several novel mitotic targets not
previously associated with mitotic progression.2,10

However, one of the major challenges in ligand-based drug
target prediction is to deorphanize novel compounds,
particularly those ligands with unknown binding partners that
normally share low chemical similarity to existing small
molecules in bioactivity databases. Consequently, these orphan
compounds do not conform to an existing structure−activity
relationship (SAR), and their targets cannot be predicted by
simple similarity comparisons. Although several approaches
including 2D/3D pharmacophore and shape- and property-
based target predictions have been proposed to address this
limitation, many of these methods cannot fully capture the
essential structural features of protein−ligand interactions and
are not suitable for large-scale target predictions (Supporting
Information Text S1).
Here, we describe a new shape-based similarity network

approach for large-scale drug target inference called CSNAP3D.
Although orphan ligands can potentially interact with novel
receptor pockets and their targets are difficult to predict
computationally, recent studies indicate that structurally
distinct compounds are capable of interacting with the
receptors of known ligands with which they share a similar
3D environment, known as “scaffold hopping.”12,13 This
concept has been widely applied in lead generation and drug
discovery but can similarly be used to improve target prediction
based on the 3D structural similarity of compounds. First, we
performed an unbiased computational screen of 28 3D
chemical similarity metrics to identify the optimal chemical
descriptors for 3D similarity comparison. We showed that 3D
similarity metrics based on a combination of shape and
pharmacophore scoring provided the strongest improvement in
target prediction compared to those based on shape or
pharmacophore scoring alone. To this end, we developed the
ShapeAlign protocol, which can be used to identify scaffold
hopping compounds using shape alignment followed by a
combination of shape, pharmacophore, and 2D similarity

scoring. In our validation study, CSNAP3D achieved a high
true positive prediction rate of up to 95% for six labeled targets
using a benchmark set of 206 compounds. Significant
improvement in target prediction was observed for HIV reverse
transcriptase (HIVRT) inhibitors, a challenging drug class
consisting of diverse chemical structures that are scaffold
hopping compounds targeting the nucleotidyltransferase bind-
ing site. To test the utility of this approach, we performed
CSNAP3D analyses of novel antimitotic compounds and
identified several low molecular weight microtubule-stabilizing
agents that mimic the Taxol binding mode and exhibit
anticancer activity. The Taxol-like mechanism of these
compounds was validated experimentally using in vitro
microtubule polymerization assays and cell-based assays.

■ RESULTS AND DISCUSSION
Unbiased Computational Screen of 3D Similarity

Metrics. To identify the optimal 3D similarity metrics for
ligand structure comparison, we performed an unbiased screen
of 28 3D similarity scoring functions generated by three
popular 3D similarity comparison programs (Shape-it, Align-it,
and ROCS).14−16 These programs aligned molecules based on
either molecular shape (Shape-it and ROCS) or pharmaco-
phore (Align-it) features using a Gaussian-like function, and the
ligand alignments were scored using 28 diverse 3D similarity
metrics. The 28 3D similarity metrics were selected based on
molecular shape, pharmacophore, or a combination of shape
and pharmacophore as well as how these 3D properties
compared between two aligned ligands. 3D shape similarity
metrics were determined by the percentage of overlapped
molecular volume between two aligned molecules using 3D
Tanimoto index, Tversky index, or maximum overlapped
volume. On the other hand, pharmacophore similarity metrics
were defined by chemical matching of atomic pairs including
hydrogen donors, hydrogen receptors, lipophilic and aromatic
centers, as well as atomic charges.16 The aligned pharmaco-
phore features were scored using the percentage of overlapped
pharmacophore volumes or the number of overlapped
pharmacophore points (np). Scoring functions based on a
combination of shape and pharmacophore similarity such as
ComboScore and ScaledCombo were also provided by the
ROCS program. In addition, we devised a new ligand alignment
and scoring procedure called “ShapeAlign.” Similar to ROCS
combo scoring, ShapeAlign performed an initial shape
alignment between query and reference compounds using the
Shape-it program. The aligned conformations were used as
input to the Align-it program, which generated consensus
pharmacophore features, and the optimal ligand alignment was
identified using ComboScore and ScaledCombo based on a
combination of shape Tanimoto index and the number of
matching pharmacophore points (np). The main difference in
the combo score between ROCS and ShapeAlign was how
chemical features were scored. In the ROCS program, the
matching chemical features were scored using a color potential,
while in ShapeAlign the chemical features were evaluated by the
number of overlapping Gaussian volumes with similar chemical
properties.17 Although it is feasible to devise an algorithm that
simultaneously maximizes the alignment score based on both
shape and pharmacophore, ligand superposition is computa-
tionally intensive. Therefore, discarding any ligand that does
not conform to the shape requirement as the first step improves
the computational efficiency of the 3D ligand comparison
algorithm.
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To identify the optimal 3D similarity metrics for scaffold
hopping, we retrieved six drug classes from the DUD
(Directory of Useful Decoy) consisting of 46 angiotensin-
converting enzyme (ACE) inhibitors, 47 cyclin-dependent
kinase 2 (CDK2) inhibitors, 25 HMG-CoA reductase (HMGA)
inhibitors, 23 heat shock protein 90 (HSP90) inhibitors, 31
poly-[ADP-ribose]-polymerase (PARP) inhibitors, and 34 HIV
reverse transcriptase (HIVRT) inhibitors, and one active
conformation for each compound was generated using the
MOE program, whose structure generation accuracy has been
validated using ligand crystal structures (Text S2 and Figure
S1).18 Notably, these six DUD compound sets were known
actives for the assigned drug class and were validated binders to
the same respective receptor binding sites.19 One representative
compound from each of the six target categories was randomly
selected as the query and used to test the ability of each 3D
similarity metric to enrich class-specific chemical scaffolds to
the top rank by structure-based similarity searches (Figure 1A
and B). The heatmap and enrichment curves indicated that
several 3D metrics were indeed able to enrich each target
specific conformer to the top rank (Figure 1B,C and Figure S2
and Table S1). To quantitatively assess the 3D similarity
metrics, the performance of each metric was estimated by the
area-under-curve (AUC) of hit rates at different rank orders
(%), where 1 indicates a high target specific enrichment, while
0.5 indicates a random selection (Figure 2A and Table S1).

Overall, ROCS and ShapeAlign similarity metrics based on a
combination of shape and pharmacophore scoring gave the
highest average AUC values (AUCShapeAlign:ComboScore = 0.6,
AUCShapeAlign:ScaledCombo = 0.6, AUCROCS:TanimotoCombo = 0.64,
AUCROCS:Comboscore = 0.67) compared to Shape-it or ROCS
metrics that relied on simple molecular shape scoring
(AUCShape‑it:Tanimoto = 0.52, AUCROCS:ShapeTanimoto = 0.54; Figure
2B). While the Align-it program also produced high overall
AUC values (AUCAlign‑it:Tanimoto = 0.68, AUCROCS:ColorTanimoto =
0.7, AUCROCS:ScaledColor = 0.7), visual inspection of the aligned
conformations revealed that many class-specific compounds did
not yield the correct superposition perhaps due to the difficulty
in resolving multiple alignments from redundant pharmaco-
phore arrangements (Figure 2B).
We subsequently selected 10 3D similarity metrics including

those based on molecular shape (Shape-it:ShapeTanimoto,
ROCS:ShapeTanimoto), pharmacophore (Align-it:PharmTani-
moto, Align-it:NumberPharmacophore, ROCS:ColorTanimo-
to), combined shape and pharmacophore (ShapeAlign:Scaled-
Combo, ROCS:ComboScore), or in combination with FP2
Tanimoto scores. These were incorporated into the CSNAP3D
program (Figure 3A), and their performance was evaluated in
comparison to the CSNAP2D program that used FP2
fingerprints (Text S3 and Figure S3). Interestingly, 3D
similarity metrics that used a combination of shape and
pharmacophore scoring such as ShapeAlign:ScaledCombo or

Figure 1. Computational screen of 3D similarity metrics. (A) Example of a structural alignment between a query ACE inhibitor and a hit ACE
compound with a distinct chemical scaffold generated by the structural superposition algorithm. 3D chemical similarity metrics were used to measure
the molecular shape and overlapping chemical features. (B) Unbiased screen of 28 3D chemical similarity metrics from Shape-it, Align-it, and ROCS
programs. Representative ACE inhibitors were used as a query to test the ability of each 3D chemical similarity metric to enrich for class-specific
scaffolds to the top rank from a combined set of 206 benchmark compounds consisting of six drug classes. The heatmap shows that the query
(green) was retrieved as the top hit for all metrics. Additionally, each metric demonstrated a different ability to enrich for ACE-specific scaffolds
(blue) from other drug classes. (C) The percentage of retrieved class-specific scaffolds was plotted against the ranking by each respective similarity
score. TPR denotes true positive rate. To determine the performance of each metric, the area under the curve (AUC) was used to compute an
enrichment factor (EF). For a list of 3D similarity metrics used, see Figure S2.
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ROCS:ComboScore provided the highest overall true positive
rate (TPR) and lowest false positive rate (FPR) than scorings
based on either shape or pharmacophore features alone (Figure
S4). The optimal performance was achieved by combining
ShapeAlign:ScaledCombo with 2D FP2 Tanimoto scores,
which gave a TPR > 95% at 0.85 Tanimoto coefficient (Tc),
which defined the cutoff of chemical similarity between ligands
(Figure 3B). On the other hand, ROCS demonstrated the
highest computational efficiency among the four programs
(Figure S5). A comparison of CSNAP3D and CSNAP2D
chemical similarity networks showed that diverse drug
chemotypes from the 2D similarity analysis were clustered
into a smaller number of 3D shape-based networks with high
target specificity, indicating that CSNAP3D allowed automated
recognition of scaffold hopping compounds with diverse 3D
structures (Figure 3C and D). CSNAP3D also improved the
target predictability of orphan compounds that normally do not
share high 2D similarity in bioactivity databases (Figure 3C and
D). Next, we compared the performance of CSNAP3D with
CSNAP2D and two other commonly used target prediction
methods SEA and PASS (Text S4, Figure S6, and Table
S2).9,10,20 We evaluated the ability of each approach to correctly
rank the labeled targets of six drug classes. Based on the top
prediction using each respective scoring function, the

CSNAP3D approach achieved the highest TPR value
(TPRCSNAP3D = 0.98) in comparison to the CSNAP2D
(TPRCSNAP2D = 0.83), SEA (TPRSEA = 0.64), and PASS
(TPRPASS = 0.11) approaches (Figure S6). We further evaluated
the AUC values from the enrichment curve of TPR values
against target rankings (1−1000 predictions; Text S4).
Similarly, CSNAP3D yielded the highest AUC value
(AUCCSNAP3D = 0.98) in comparison to CSNAP2D
(AUCCSNAP2D = 0.94), SEA (AUCSEA = 0.90), and PASS
(AUCPASS = 0.89; Figure S6).

3D Target Profiling of HIVRT DUD Set. HIV reverse
transcriptase (HIVRT) is a well-known target for antiviral
therapy. Many HIVRT drugs like Non-nucleoside Reverse
Transcriptase Inhibitors (NNRTIs) are known scaffold hopping
compounds that target a common nucleotidyltransferase
binding site, and the binding modes have been well
characterized by extensive crystallography and molecular
modeling studies.21 However, recent studies using alignment
or nonalignment approaches based on 3D conformation or 2D
similarity analysis of the HIVRT DUD set yielded low
predictability.22,23 This challenge may be attributed to the
structural diversity of the NNRTI chemical scaffolds and the
lack of target annotations in bioactivity databases. This also
suggested that current 3D target similarity inference approaches

Figure 2. Performance assessment of 28 3D similarity metrics. (A) The performance of 28 3D similarity metrics were evaluated by the area under the
curve (AUC) for six drug classes, where an AUC value of 1 indicated high selectivity and that of 0.5 indicated random selection. The results showed
that ACE, CDK2, and PARP drug classes produced higher AUC values than HMGA, HSP90, and HIVRT. (B) Comparison of 28 3D chemical
similarity metrics based on the average AUC values of six known drug classes. 3D chemical similarity metrics based on pharmacophore or a
combination of shape and pharmacophore scoring produced higher enrichment factor (EF) values than those based on shape alone. Simple shape-
based scoring produced the lowest EF values.
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have limited capabilities for detecting scaffold hopping
compounds. Therefore, we performed a CSNAP3D target
profiling analysis of the 34 HIVRT inhibitors from the DUD
set, and the results were compared to that from the CSNAP2D
approach. Indeed, CSNAP2D analysis of the 34 HIVRT
inhibitors resulted in 20 chemical similarity subnetworks
corresponding to diverse chemotypes (Figure 4A and B).
Further 2D target profiling by mapping the predicted S-scores
of each compound on a heatmap indicated that 12 of the
HIVRT inhibitors did not yield a prediction, giving a TPR of
65% (Figure 4C). In contrast, CSNAP3D analysis using
ShapeAlign similarity metrics with a 2D FP2 Tanimoto score

was able to cluster the 34 HIVRT inhibitors into a single shape-
based chemical network that relates compounds by 3D
structural similarity (Figure 4D). The network connectivity
supports that many NNRTIs are in fact scaffold hopping
compounds. Furthermore, 3D target profiling analysis correctly
predicted HIVRT as the primary target for 33 HIVRT
inhibitors, thus improving the TPR values to 97% (Figure
4E). To test if network connectivity was due to 3D scaffold
hopping, the aligned ligand conformations generated by the
CSNAP3D algorithm were retrieved. CSNAP3D correctly
identify three FDA-approved HIVRT drugs, Efavirenz,
Nevirapine, and Tivirapine, as scaffold hopping compounds

Figure 3. CSNAP3D analysis of benchmark compounds using 3D similarity metrics. (A) Workflow of CSNAP3D. The query compound was used to
search the bioactivity database using 2D similarity fingerprints. The identified hits and query were clustered into 3D chemical similarity networks
based on shape and/or pharmacophore. A network-based scoring scheme (S-score) was used to identify the most probable target from the annotated
hits in the first-order neighbor of the query node. (B) Drug target prediction rate of 206 benchmark compounds were evaluated using selected 3D
chemical similarity metrics. The percent true positive rate (TPR) and false positive rate (FPR) were evaluated at different chemical similarity
thresholds (Tc). The results showed that the optimal 3D metrics were ShapeAlign using a combination of shape and pharmacophore scoring. In
combination with 2D FP2 scoring, the ShapeAlign metric achieved a TPR > 85% and FPR ∼ 0% at a threshold of 0.85. The performance surpassed
those based on 2D or 3D chemical similarity metrics alone. (C,D) Comparison between CSNAP2D and CSNAP3D target profiling of 206
benchmark compounds from six known drug classes. CSNAP2D partitioned the drugs into multiple chemotype-based similarity networks using a 0.6
Tanimoto cutoff (left). CSNAP3D linked the 2D chemotype-based networks into a smaller number of 3D shape-based networks using a threshold of
0.85 (right). The results indicate that many benchmark compounds are target-specific scaffold hopping compounds.
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and the structural alignments were in agreement with previous
pharmacophore modeling and SAR studies (Figure 4F).21 In
addition, CSNAP3D analysis also identified multiple novel
HIVRT scaffold hopping pairs including compounds 4 and 5
that shared high 3D similarity and were not previously known
(Figure 4G). These results indicated that CSNAP3D could be
effectively applied to large-scale ligand deorphanization and

scaffold-hopping prediction of any compound set with high
structural diversity.

Discovery of Novel Taxol Mimetics by 3D Scaffold
Hopping. Taxol is a potent anticancer drug that binds and
stabilizes microtubules, which leads to an M-phase cell cycle
arrest and subsequently apoptosis.24 Although Taxol is widely
used in the treatment of many cancers like breast and ovarian, it

Figure 4. CSNAP3D target profiling of HIVRT inhibitors. (A,B) CSNAP2D analysis partitioned 34 diverse HIVRT inhibitors into 20 chemotype-
based chemical similarity subnetworks. One representative chemotype from each network is shown in A. (C) Target profiling indicated that only 22
compounds were correctly predicted, giving a 65% TPR. (D) CSNAP3D analysis linked the 34 diverse HIVRT inhibitors into a single shape-based
chemical similarity network, indicating that these compounds were scaffold hopping compounds. (E) Target profiling correctly predicted 33
compounds, thus improving the TPR value to 97%. (F) Selected HIVRT scaffold hopping pairs predicted by the CSNAP3D algorithm. Three FDA-
approved drugs, Efavirenz, Nevirapine, and Tivirapine, were predicated to be scaffold hopping compounds, and the structure alignment agreed with
crystal structures and molecular modeling studies. (G) CSNAP3D analysis identified novel HIVRT scaffold hopping pairs between compounds 4 and
5 that shared high 3D chemical similarity. (F,G) Indicated compound pharmacophores are composed of hydrogen bond donors (HD), hydrogen
bond acceptors (HA), aromatic groups (AR), and lipophilic groups (LP).

ACS Chemical Biology Articles

DOI: 10.1021/acschembio.6b00253
ACS Chem. Biol. 2016, 11, 2244−2253

2249

http://dx.doi.org/10.1021/acschembio.6b00253


is plagued by issues related to its synthesis and solubility,
despite a long history of attempts to circumvent these
limitations by structural modifications.25,26 Furthermore,
many treatment failures can be attributed to its exclusion
from the central nervous system due to its large molecular
weight, acquired drug resistance, and dose-limiting toxicities.
Thus, the discovery of small molecular weight Taxol mimetics
that bind to the taxane site with improved transport properties
and resistance profiles will be particularly important.
We recently performed a high-throughput cell cycle small

molecule screen and identified 212 compounds that arrested
HeLa cells in the M-phase of the cell cycle.2 CSNAP target
profiling and tubulin polymerization assays indicated that more
than 20 compounds strongly stabilized microtubules and were

potential Taxol mimetics.10 However, 2D similarity comparison
suggested that these compounds were low molecular weight
ligands that shared low structural similarity to Taxol. Thus, we
hypothesized that many of these compounds were potential
scaffold hopping compounds to the taxane site. To test this, we
performed CSNAP3D target profiling of the 212 antimitotic
compounds using ShapeAlign:ComboScore similarity metrics
in combination with FP2 fingerprints. CSNAP3D target
profiling revealed that compound predictability had increased,
in comparison to CSNAP2D, and many compounds were
predicted to target tubulin due to their network linkage with
tubulin stabilizers or destabilizers, consistent with previous
tubulin polymerization assay results.10 To identify potential
Taxol mimetics, 30 Taxol structural analogs with different 3D

Figure 5. CSNAP3D identification of novel Taxol mimetics. (A) CSNAP3D analysis of 212 antimitotic compounds identified 36 Taxol structural
analogs (green). A total of 60 first order neighbors were retrieved, and among them 42 were predicted to be Taxol mimetics (TM). (B) CSNAP2D
analysis partitioned the 42 predicted Taxol mimetics into three major chemotype subnetworks. Seven compounds were confirmed true positives
(red), validated by end-point tubulin polymerization assays, and showed a >25% fold increase in microtubule mass relative to the DMSO control.
Four compounds (compounds 6−9) formed a microtubule-stabilizing network, their % fold increases in microtubule mass relative to DMSO are
indicated in parentheses. (C) Structural alignment between Taxol mimetics and Taxol. Compounds 6−9 share a similar T-shape conformation to
Taxol and are predicted to interact with the beta-tubulin taxane site. (D) Microtubule polymerization curves showed that compound 6 had a fast
polymerization kinetic similar to Taxol and a higher end-point tubulin polymerization mass (OD = 0.55) than Taxol (OD = 0.45). (E) The drug-
induced mitotic phenotype of compound 6 was compared with Taxol in HeLa cells using immunofluorescence microscopy. Both compound 6 and
Taxol induced the formation of similar mitotic microtubule asters, a characteristic of Taxol-like compounds. In contrast, the negative control
colchicine displayed a distinct microtubule depolymerization effect. Scale bar indicates 5 μm.
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conformations were identified from the mitotic compound
network, and their first order neighbors were extracted followed
by 2D similarity clustering (Figure 5A). Among the 42
predicted Taxol mimetics, seven mitotic compounds were
true positives and were validated by end-point tubulin
polymerization assays with >25% fold increases in microtubule
mass relative to DMSO control (Figure 5B). To see if these
seven tubulin-targeting molecules were predicted exclusively by
the CSNAP3D method, we queried these molecules using the
SEA and PASS severs to see if tubulin was a predicted target.
Three molecules were predicted to target tubulin by the PASS
server but with a low confidence score (Pa < 0.5), while the
SEA server did not predict these molecules as tubulin-targeting
agents (Table S3). We then focused on analyzing compounds
6−9, which colocalized onto a 3D similarity subnetwork
(Figure 5B). Surprisingly, preliminary structural alignment with
the Taxol conformation retrieved from the CSNAP3D
algorithm indicated that these compounds displayed a T-
shape 3D conformation similar to Taxol despite possessing
much simpler molecular scaffolds (Figure 5C). Additional
molecular modeling studies of the identified Taxol mimetics
within the taxane site also revealed that these compounds
shared a consensus pharmacophore (Text S4, Figures S7, S8,
and S9). We further evaluated the anticancer effects of
compounds 6−9 in cell viability and mitotic arrest assays to
determine their potency in cell culture. Compounds 6, 7, and 9
showed cytotoxic and antimitotic effects with EC50s < 5 μM for
either cell viability or G2/M arrest (Figure S10). Our previous
study indicated that compound 6 had a >2 fold increase in
microtubule polymerization in our tubulin polymerization
assays and was the most potent tubulin polymerizing agent in
the series.10 As further validation, we tested compound 6 in
tubulin polymerization kinetic assays by monitoring the rate of
drug-induced tubulin polymerization as well as the total
amount of drug-induced microtubule formation by end-point
readings. The results indicated that compound 6 achieved a
faster polymerization kinetic at 50 μM in comparison to Taxol
at 5 μM (Figure 5D). To further verify that tubulin was the
main target of compound 6, we compared the mitotic arrest
phenotype that was induced by the two compounds in HeLa
cells. As expected, immunofluorescence microscopy showed
that both compound 6 and Taxol induced the formation of
similar mitotic microtubule asters, a characteristic phenotype of
Taxol-like compounds (Figure 5E).
Conclusions. We developed a new structure-based target

prediction approach called CSNAP3D that incorporates 3D
similarity metrics for large-scale drug target profiling. Our
enrichment analysis on 206 benchmark compounds showed
that while pharmacophore metrics provided the highest
enrichment rates and AUC values, visual inspection of the
aligned structures showed that pharmacophore scoring cannot
be used to identify the correct ligand alignment. Similarly, the
performance of using shape-based metrics alone was sub-
optimal. On the other hand, the improvement in target
prediction when using a scoring function based on a
combination of shape and pharmacophore features highlights
the importance of shape complementarity and residue
interactions, which are critical for protein−ligand interactions
in three-dimensional space. Nevertheless, our analysis of
HIVRT inhibitors suggests that pharmacophore features were
more critical for identifying the three HIVRT inhibitor scaffold
hopping compounds Efavirenz, Nevirapine, and Tivirapine,
which have distinct molecular shapes. Furthermore, we found

that by combining 3D metrics with 2D fingerprints, the
prediction rate was improved when evaluated in the CSNAP3D
algorithm. This improvement can be explained by the
sensitivity of the 3D similarity metrics to subtle ligand
structural variations when performing conformational searches.
We subsequently applied the CSNAP3D algorithm to

identify several novel low molecular weight Taxol mimetics
from a list of antimitotic compounds identified in a cell-based
small molecule screen. While several small molecules that
stabilize microtubules have been identified including Synstab B
and GS-164, many of which were discovered by stochastic
chemical screens, the binding modes of these ligands are
unknown.27,28 Automated structural alignments generated by
CSNAP3D showed that compound 6 displayed a T-shape
conformation similar to that of Taxol. Further docking studies
indicated that a similar conformation was observed in the
Taxane pockets from which we were be able to identify a
consensus pharmacophore for Taxol mimetics. This pharma-
cophore model allowed us to explain the increased tubulin
polymerization effect of compound 6 that is due to the
presence of phenyl moieties, which are capable of making π−π
stacking interactions with residue His229 in the taxane site
(Figures S7, S8, and S9). The binding mechanism of compound
6 was experimentally validated by kinetic tubulin polymer-
ization assays, where it showed fast microtubule polymerization
kinetics similar to Taxol and in end-point microtubule
polymerization assays. Similarly, phenotypic comparison of
drug-induced phenotypes indicated that tubulin was the main
target of compound 6, which induced microtubule aster
formation in HeLa cells, a characteristic of Taxol-like
compounds. Despite having a lower potency than Taxol,
compound 6 has a lower molecular weight and may have
improved pharmacokinetic and transport properties. Further-
more, the structural information, pharmacophore, and binding
mode of compound 6 are critical information that could be
used in future pharmacophore-based virtual screening studies
and structure-based drug design studies aimed at optimizing its
antitubulin effects and anticancer properties.
Although CSNAP3D substantially improved compound

target prediction, particularly for orphan ligands, there are
several limitations to this approach. First, structural alignment is
based on a single rigid low-energy conformation. Thus, it
potentially excludes the possibility that a single ligand can
interact with multiple binding sites by adopting different
conformations and induce multiple on- and off-target activities.
One potential approach to address this is to consider
multiconformers CSNAP3D networks by structural enumera-
tion. Alternatively, chemical descriptor similarity fingerprints
capable of capturing ligand flexibility can likewise be applied.
Second, while CSNAP3D is capable of detecting scaffold
hopping ligands that share low 2D chemical similarity but bind
in a similar 3D conformation to the same pocket environment,
CSNAP3D is not able to deorphanize compounds that interact
with orphan receptors that have unknown binding ligands. This
challenge can potentially be addressed by considering
pseudoligands, which can be extracted as a mirror image of
the receptor pocket with annotated chemical features. We are
currently pursuing this approach for large-scale structural
polypharmacological target profiling.
In conclusion, we have developed a new computational

program CSNAP3D, a 3D upgrade of the CSNAP framework
for large-scale network-based drug target prediction based on
ligand superposition. Specifically, we have addressed the
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challenges of target prediction by 2D similarity comparison by
using 3D similarity metrics for automated identification of
scaffold hopping ligands and ligand structural alignment for
large-scale network target prediction. In addition, we have
successfully applied this approach to elucidate the binding
mode of small molecule Taxol mimetics and identified a
consensus pharmacophore for structure-based discovery. We
expect that CSNAP3D will stimulate further methodology
development and applications for drug target prediction in the
new paradigm of structural polypharmacology.

■ METHODS
Compounds. Compound 6 was purchased from Astex Inc. with

greater than 95% purity. For compound information, see Table S4. For
1H NMR of compound 6, see Figure S10.
Cell Culture. HeLa cells were grown in F12:DMEM 50:50 medium

(GIBCO) with 10% FBS, 2 mM L-glutamine, and antibiotics in 5%
CO2 at 37 °C.
Cell-Based Assays. HeLa cells were treated with increasing

concentrations of the indicated compounds (6−9) in triplicate, and
the cell viability and percent G2/M arrest was quantified as described
previously.10 Briefly, for mitotic arrest EC50’s, cells were treated with a
20 2-fold-titration (190 pM to 10 μM) of each compound for 20 h,
and the percentage of G2/M arrested cells was measured using the
Vybrant DyeCycle Green (Invitrogen) assay.2 For cell viability EC50’s,
cells were treated with a 14 2-fold-titration (12.2 nM to 100 μM) of
each compound for 72 h, and cell viability was measured using the
CellTiter-Glo Assay (Promega).2,10 Assay plates were read with a
Tecan M1000 microplate reader (Tecan) at 540 nm. The CDD
software (www.collaborativedrug.com) was used to compute EC50 and
EC90 values.
Immunofluorescence Microscopy. Immunofluorescence mi-

croscopy was performed as described previously.29 Briefly, HeLa
cells were treated with indicated compounds at their respective EC90s
for 20 h, fixed with 4% paraformaldehyde, permeabilized with 0.2%
Triton X-100/PBS, and costained for DNA (0.5 μg/mL Hoechst
33342) and tubulin (rat antitubulin primary antibodies and antirat Cy3
secondary antibodies). Images were captured with a Leica DMI6000
microscope at 63× magnification.
In Vitro Tubulin Polymerization Assays. Tubulin polymer-

ization assays were conducted using the HTS-Tubulin polymerization
assay kit (Cytoskeleton Inc.) as described previously.10 The final
concentration of test compounds was 50 μM in 0.5% DMSO. Tubulin
polymerization kinetics were measured at 37 °C in a Tecan microplate
reader (Tecan Group Ltd.) at 340 nm every minute for 1 h.
Molecular Modeling. The crystal structure of Taxol-bound

tubulin was from the PDB database (PDB ID: 1JFF), and the beta-
tubulin monomer with bound Taxol (chain B) was extracted from the
protein model using UCSF Chimera software.30 The model of the
beta-tubulin monomer was then imported into the MOE software for
docking experiments. The Taxol-binding pocket was prepared using
the ligX protocol including hydrogen protonation, tether energy
minimization, and removal of unbound water. The docking of
compounds 6−9 into the Taxol-binding site was performed using
the Dock protocol with default parameters (placement, triangle
matcher; score, London dG; retained conformations, 30). The
molecular modeling was performed using the 2009 MOE software.
Software. The CSNAP program is available as a web service

http://services.mbi.ucla.edu/CSNAP/. The ligand alignment pro-
grams Shape-it and Align-it were from Silicos Inc. (http://silicos-it.
be.s3-website-eu-west-1.amazonaws.com/index.html). The ligand
alignment program ROCS was from OpenEye Scientific Software
(http://www.eyesopen.com/). The molecular structures were gen-
erated using Pymol V.1.6. The chemical similarity networks were
generated using Cytoscape V.3.2.0.
Structural Data. The ligand structure data of benchmark sets were

retrieved from DUD LIB VS 1.0 in the Directory of Useful Decoy
(DUD; http://dud.docking.org/). Ligand structure data for Taxol

mimetics were provided by the UCLA molecular screening shared
resource center. The beta-tubulin structure was from the PDB
database (PDB ID: 1JFF).
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