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Hot multiboundary wormholes from bipartite
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Abstract: We analyze the 1+1 CFT states dual to hot (time-symmetric) 2+1 multibound-

ary AdS wormholes. These are black hole geometries with high local temperature, n ≥ 1

asymptotically-AdS3 regions, and arbitrary internal topology. The dual state at t = 0 is defined

on n circles. We show these to be well-described by sewing together tensor networks corresponding

to thermofield double states. As a result, the entanglement is spatially localized and bipartite:

away from particular boundary points (“vertices”) any small connected region A of the boundary

CFT is entangled only with another small connected region B, where B may lie on a different

circle or may be a different part of the same circle. We focus on the pair-of-pants case, from

which more general cases may be constructed. We also discuss finite-temperature corrections,

where we note that the states involve a code subspace in each circle.
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1 Introduction

The thermofield double (TFD) state

|TFD〉 =
∑
E

e−E/2T |E〉|E〉 (1.1)

on two copies of a quantum field theory serves as the poster child for many ideas [1–7] relating the

emergence of bulk geometry to entanglement in some dual theory. As explained in [1], although a

single copy of a CFT can be naturally dual to bulk quantum gravity with a single asymptotically

AdS boundary, the particular entanglements between the two copies described by (1.1) allow

it to be dual to a two-sided eternal black hole in which two distinct asymptotic regions are

connected by an Einstein-Rosen bridge1. The state also typifies relations between the area of

codimension-2 surfaces and CFT entanglement encapsulated in the Ryu-Takayangi conjecture [7]

and the covariant generalization by Hubeny, Rangamani, and Takayanagi (HRT) [5]. Here and

1Though there may be interesting subtleties; see e.g. [8].
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below we work in the regime where the bulk planck scale `p is small in comparison with the bulk

AdS scale `AdS (which we generally set to 1), or equivalently where N � 1 in the CFT (i.e., large

central charge c for a 1 + 1 CFT).

In discussing |TFD〉, it is natural to focus on the bipartite entanglement between the

associated two copies of the CFT. This entanglement has a special structure: as shown in [9], the

entanglement is both local and bipartite in the sense that, when studying regions of the CFT

of size greater than the thermal scale, a given region can be said to be entangled only with the

corresponding spatial region in the second CFT. In particular, when we consider regions A, B (in

the same or opposite CFTs) separated by more than this scale, the mutual information

I(A : B) = S(A) + S(B)− S(AB), (1.2)

vanishes at leading order in large N . This result can easily be understood from a CFT path

integral point of view. In general, the thermofield double state is calculated by a CFT path

integral over a cylinder, linking the two copies of the spatial section the state (1.1) is defined

on. In the high temperature limit, this cylinder becomes short compared to its circumference, so

when we consider regions larger than the length of the cylinder, the resulting state naturally only

entangles regions on one boundary with the corresponding region on the other boundary.

It will be useful below to visualize this result in the language of tensor networks; see e.g.

[10]. The rather trivial nature of the above entanglement then translates into a similarly-trivial

coarse-grained tensor network description of |TFD〉 as shown in figure 1.

While the thermofield double state is a useful simple example, it is important to find further

examples where we can understand the relation of bulk geometry to CFT entanglement structures.

We are also interested in exploring the role played by multi-party entanglement in connections

between 3 or more subsystems and what form it takes in the associated CFT states, see e.g.

[11–13].

The vast literature on holographic entanglement has focused primarily on bipartite relations

between a given subsystem in the CFT and its complement, so that relatively little is known about

multiparty issues. One general result is the monogamy of holographic entanglement established

in [14]. But a more detailed investigation of multipartite entanglement was recently initiated

in [12] using a class of 2+1-dimensional black hole spacetimes [15–18] describing a collapsing

wormhole that connects n regions each asymptotic to (global) AdS3. When the corresponding

Euclidean geometries define the dominant saddle of a natural path integral, such geometries

are dual to entangled states on n copies of a 1+1 dimensional CFT on S1 × R defined by a

path integral on a Riemann surface Σ with n circular boundaries [1, 19–21]. The corresponding

entanglement was found to display a rich dependence on the moduli, including regimes of purely

bipartite entanglement, and others of strong multipartite entanglement. Interestingly, the strongly

multipartite regions identified in [12] corresponded to bulk black holes with temperature less than

the AdS scale2. The recent work [22] describes an infinite family of generalizations of results from

2It remains an open question whether such phases ever dominate the path integrals described above. But even if
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Figure 1: A simple tensor network displaying the localized purely-bipartite entanglement

characteristic of holographic |TFD〉 states at large N on scales longer than the thermal scale.

Each node represents a region in the CFT of scale longer than the thermal scale. We focus mainly

on CFT states on S1 × R where one takes a high-temperature limit in order to fit many such

long-distance regions onto the circle, though one may equally-well consider the planar case. The

solid links are the entangling tensors implied by (1.1). The dashed lines guide the eye by linking

neighbouring regions in each of the two CFTs.

both [14] and [12].

We focus below on the opposite limit in which all bulk black holes have high temperature.

The length of their horizons is then very large with respect to the AdS scale. We will show that

these geometries are dual to states constructed by sewing together copies of |TFD〉, as shown in

figure 2. The entanglement is thus both local and bipartite away from small regions containing

certain “vertices” where the sewing involves three or more copies of |TFD〉. From the CFT path

integral point of view, this arises because the boundary circles are large compared to the distance

between them; in a conformal frame where the boundaries are finite size, there are thin strips

joining them, corresponding to the short tensor networks in figure 2. In section 4 we will justify

this picture more quantitatively by showing that local pieces of the surface Σ are described by

regions of BTZ up to exponential corrections. As a result, as in [23] tripartite entanglement

appears to localise in isolated AdS-scale regions of the bulk. Away from these vertices, the

construction of the state involves only the sewing together |TFD〉’s of inverse temperature β1

and β2, giving a local version of the |TFD〉 of inverse temperature β1 + β2. Since we focus on

1+1 CFTs, we henceforth refer to the limit of large central charge c rather than large N .

Note that nothing prevents sewing operations that link together disjoint regions in the same

CFT as shown in figure 2 (bottom). As we will see, this also provides an interesting picture in

our limit of CFT states dual to single-boundary black holes with internal topology. The reader

should thus be aware that, while we use term “multiboundary” below, this explicitly includes the

very interesting case n = 1 as well as n ≥ 2.

One may expect each local piece of |TFD〉 in figure 2 (right) to correspond to a bulk region

not, one presumes them to be dual to some other class of CFT states whose entanglement must be correspondingly

multipartite.
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Figure 2: Two topologically-distinct ways in which three copies of the tensor network in figure 1

can be sewn together (left figures) into a single tensor network (right figures) defining a state

on 3 copies of the system. The dashed lines (red in color version) internal to the left diagrams

guide the eye toward recognising the 3 constituent copies of the network in figure 1. Links that

meet across adjoining pairs of dashed lines are contracted, establishing entanglement between the

remaining boundaries (marked 1, 2, and 3). In the bottom-left figure, two parts of the outermost

tensor network are contracted with each other, resulting in two well-separated regions of boundary

1 becoming entangled with each other as shown in the bottom-right figure. As discussed below,

all 3-boundary time-symmetric vacuum wormholes with pair-of-pants topology (orientable with

no handles) and large horizons correspond at the moment of time-symmetry to one of the cases

shown, or to the degenerate case that interpolates between them, when described in the “round”

conformal frame in which the energy density is taken to be constant along each of the 3 boundaries.

Although we show only a simplified cartoon of the full tensor network, we argue below that sewing

the actual |TFD〉 tensor networks together in this way describes the corresponding CFT states

with exponential accuracy away from the two ‘vertices’ in each diagram where 3 |TFD〉’s meet.

whose geometry near t = 0 is well-approximated by a corresponding piece of BTZ. We show in

section 5 that this is indeed the case, and thus that bulk Ryu-Takayanagi (or, more precisely,

HRT) calculations are consistent with the entanglements shown.

We begin by reviewing aspects of general multiboundary wormholes and their relation to

CFT states in section 2. Section 3 then studies the high temperature (equivalently, large horizon

length L) limit of the geometry of Σ. We show that the region between the horizons in Σ becomes

unimportant in this limit. This allows us to argue in section 4 that the CFT path integral

produces the structure described by figure 2. Section 5 then describes how this same result is seen
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in the bulk HRT calculation and argues that the desired bulk wormhole does indeed dominate the

corresponding bulk path integral. Section 6 briefly addresses finite temperature corrections and

we conclude in section 7 with discussions of the general n-boundary case, internal topology, higher

dimensions, and future directions. In particular we comment explicitly on examples with n = 1.

2 Path integrals, states, and bulk geometries

We now commence our review. As is well known, the thermofield double state of inverse

temperature β is computed by the CFT path integral on the cylinder of circumference 2π and

height β/2. Here one regards each of the two circular boundaries as the (say) t = 0 slice of a

corresponding CFT. The path integral between field configurations φ1, φ2 on the two boundaries

then gives the wavefunction Ψ(φ1, φ2) of the joint state of the two CFTs.3 At sufficiently high

temperatures, the corresponding bulk path integral is dominated by a saddle point associated

with the Euclidean BTZ black hole. In this case we may say that, to good approximation, the

corresponding Lorentz-signature bulk black hole is dual to |TFD〉.

The cylinder of circumference 2π and height β/2 plays two important roles in the BTZ

geometry. First, it is conformally equivalent to (half of) the boundary of Euclidean BTZ. This

is what allows Euclidean BTZ to be a saddle for the desired bulk path integral. But this same

cylinder is also conformal to the BTZ geometry at t = 0, which may be equally-well considered

as a slice of either the Euclidean or the Lorentzian black hole. This may be seen by recalling

[24] that Euclidean BTZ can be constructed as a quotient of global Euclidean AdS3 (i.e., of the

hyperbolic three-space H3) by an isometry. The simplest statement requires two steps. One first

writes Euclidean AdS3 in terms of its slicing by hyperbolic planes H2 (equivalently, by copies of

Euclidean AdS2) as

ds2

`2
AdS

= dt2E + cosh2 tEdΣ2, (2.1)

where dΣ2 is the metric on the unit-radius H2. One then quotients each H2 slice by a discrete

group Γ = {gn : n ∈ Z} generated by some hyperbolic element g of its SL(2,R) group.4 The

action of g and its fundamental domain in H2 are indicated in figure 3. Since the different H2

slices in (2.1) differ only by the overall scale factor cosh2 tE, the same is true of their quotients.

The spatial slice at t = 0 (equivalently, tE = 0) is thus conformal to the geometry at tE = −∞.

This is half of the Euclidean boundary, with the other half being tE = +∞. We may therefore

write |TFD〉 as given by the CFT path integral over the Riemann surface defined by the t = 0

slice of the corresponding BTZ geometry.

3In this discussion we assume for simplicity that the CFTs admit (anti-unitary) time-reversal symmetries T

which can be used to map bra-vectors to ket-vectors and vice versa, and which can therefore be used to construct

(1.1) from the thermal operator e−
1
2βH .

4In other words, thinking of SL(2,R) as the Lorentz group SO(2, 1) of 2+1 Minkowski space this g must be a

boost preserving some spacelike direction.
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H

B B
1 2

Figure 3: The quotient of the hyperbolic plane H2 by Γ. The pair of labeled geodesics are

identified by g, so the region between them forms a fundamental domain for the quotient. The

minimal closed geodesic H is the horizon for the resulting BTZ geometry.

This final conclusion can be extended to a much larger class of states. Any Riemann surface

Σ with n boundaries can be written as a quotient of H2 by some discrete subgroup ΓΣ of SL(2,R).

We may use (2.1) to construct a corresponding quotient of Euclidean AdS3, with Σ conformal

to both the slices at t = 0 and tE = −∞. So long as this saddle point dominates the bulk

path integral with boundary conditions defined by the tE = −∞ slice, to good approximation

the corresponding Lorentz-signature bulk solution – given by substituting tE = −it into (2.1)

– is dual to the CFT state defined by the path integral over the slice at t = 0. For notational

simplicity we identify Σ with this slice below and write the CFT state as |Σ〉. These quotients of

AdS3 were first considered in [16], and the holographic relation to |Σ〉 was introduced in [19–21].

An exploration of the entanglement properties of these states was initiated in [12].

The Lorentz-signature solutions describe wormholes connecting n asymptotically-AdS3 bound-

aries. By topological censorship [25, 26], each boundary is associated with a distinct event horizon.

A special property of AdS3 vacuum solutions is that the geometry outside each event horizon

is precisely that external to some BTZ black hole. This allows us to define a useful “round”

conformal frame, in which the usual rotational symmetry of this BTZ region is a symmetry of

the boundary. That is, for each of these exterior regions there is a coordinate φi such that ∂φi
is an exact rotational Killing field in the region outside the horizon (and in fact in an open

neighbourhood in the interior of the horizon as well). The round conformal frame is the one in

which the CFT lives on a spacetime with standard cylinder metric

ds2 = −dt2 + dφ2
i (2.2)

with φ ∼ φ + 2π. In addition, the BTZ exterior implies that the bifurcation surface of each

horizon – where the future and past horizons meet – is a geodesic in the t = 0 surface. The key

novelty in the n > 2 cases is the existence of a “causal shadow” region in between these horizons.
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B3 B2

B1−

B1+

H1+

H1−

H2H3

Figure 4: The surface Σ as a quotient of the Poincaré disc for n = 3. The pairs of labeled

geodesics (blue and red in colour version) are identified by the action of Γ. The region of the

Poincaré disc bounded by these geodesics provides a fundamental domain for the quotient. B3,

B2 and B1 = B1+ ∪B1− become the desired three circular boundaries. There are corresponding

minimal closed geodesics H3, H2 and H1 = H1+ ∪H1−. The lengths La of these geodesics fully

characterize the geometry of Σ.

Our ideas will apply to a codimension one limit in the moduli space of such Riemann surfaces

for any n, but for simplicity we will focus our discussion on the case where Σ is an orientable

surface with three boundaries and no handles. Such surfaces are topologically the same as a

pair of pants. This is the simplest non-trivial example, and is also a primitive building block

for constructing other cases, since a general orientable Riemann surface can be constructed by

sewing together pairs of pants. The relevant quotient of H2 is depicted in figure 4. The moduli

space of pair-of-pants Riemann surfaces can be parametrized by the lengths La (a = 1, 2, 3) of

the three horizons, which as usual we take to be measured in units with `AdS = 1. Without loss

of generality we take L3 ≥ L1, L2. The causal shadow is the region in between these geodesics.

Properties of such states were explored in [12], with most emphasis on the so-called puncture

limit La � 1. In particular, [12] showed that in this limit Σ is conformal to the Riemann sphere

with small holes removed around n points, and hence |Σ〉 can be related to an n-point function in

the CFT. For the three-boundary case, the state was determined up to some constant factors to

be, in the round conformal frame,

|Σ〉 =
∑
ijk

Cijke
− 1

2
β̃1H1e−

1
2
β̃2H2e−

1
2
β̃3H3|i〉1|j〉2|k〉3, (2.3)

where

β̃a = βa − 2 ln rd − 2 ln 3, (2.4)

and Cijk are the three-point OPE coefficients, βa = 4π2

La
is the inverse temperature of the BTZ

geometry associated with the region near the a’th boundary, and rd is an undetermined constant
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independent of the moduli. The rather explicit expression (2.3) exhibits both dependence on the

structure of the CFT and Boltzmann-like suppression factors similar to the thermofield double

state.

3 Geometry of Σ in the high temperature limit

Our current aim is to elucidate the structure of |Σ〉 in the limit La →∞ with fixed ratios La/Lb.

This is the opposite of the limit emphasized in [12, 23]. We assume L3 ≥ L1, L2, so the ratios

L1/L3, L2/L3 take values in (0, 1]. In this limit, the geometry of Σ again simplifies. The essential

point is that the causal shadow region will play a relatively unimportant role. We will focus on

the pair of pants case, but the discussion is easily extended to arbitrary Riemann surfaces. We

comment on this extension in section 7.

Our limit can be characterised as a high temperature limit, in the sense that the BTZ horizon

in each of the exterior regions becomes large compared to the AdS scale (as for a high T BTZ

black hole). But we note that the restriction of the state |Σ〉 to a single boundary is not necessarily

even approximately thermal: as discussed in [12], when one La is larger than the sum of the other

ones, reduced density matrix in that exterior region has much less entropy than the thermal value

at the same energy.

To understand the geometry of Σ in our limit, it is useful to introduce a different presentation

using two patches with BTZ coordinates on each5. We split figure 4 in half along the horizontal

geodesic (not drawn explicitly) joining boundaries B1 and B2. This divides Σ into two identical

regions Σ±, each containing half of each horizon Ha. The surface Σ is then recovered by gluing

together Σ± along three geodesics, the two identified geodesics in figure 4 and the new split. We

label these geodesics Gab = Gba with a 6= b labelling the boundaries they run between; see figure

5 (left). They can be described more formally as the fixed points of a Z2 isometry of Σ, which

acts as a reflection φ→ 2π − φ in the round conformal frame on each of the boundaries (with

appropriate choices of the origin φ = 0 on each boundary). The event horizon Ha of boundary a

is the unique geodesic that runs orthogonally between the two geodesics Gab, Gac (b 6= c) that

end on boundary a. Our partition of Σ into Σ± also breaks each horizon Ha into two pieces Ha±.

It is useful to describe Σ± in planar BTZ coordinates.6 Consider for definiteness Σ+. We

choose the BTZ coordinates to be

ds2
BTZ

`2
AdS

=
dρ2

ρ2 + 1
+ (ρ2 + 1)dx2, (3.1)

with ρ ∈ (−∞,∞). Thus our reference BTZ solution has inverse temperature 2π. Without loss of

generality, we take L3 ≥ L2 ≥ L1 and orient Σ+ such that the portion of H3 in Σ+ lies along the

5In the actual history of our project, this description was also inspired by computing mutual information on

pairs of pants with large La using the technology of [27].
6By planar BTZ we mean the usual BTZ coordinates with no identification on the spatial coordinate on the

boundary; this provides a coordinate system on the whole of H2, thought of as the t = 0 surface in AdS3. Since

our Σ± are subregions of H2, they can be conveniently described in these coordinates.
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B3 B2

B1−

B1+

G23

G13

G12

H3+

H1+

H2+

G23G13

G12

H3+

H1+ H2+

x1 x2
ρ =∞

ρ = −∞
x = L3

4
x = −L3

4

Figure 5: The region Σ+ bounded by the geodesics Gab, half each of B2, B3, and B1+ shown in

the Poincaré disc (left) and the BTZ frame strip (right). The BTZ presentation is chosen to place

the half-horizon H3+ along the BTZ horizon. The geodesics G13, G23 are respectively the lines

x = −L3

4
, x = L3

4
. In contrast, G12 lies in the upper half of the strip; its endpoints have x = x1, x2

with ρ = +∞. Half each of B1, B2 is mapped respectively to the line segments x ∈ [−L3

4
, x1],

x ∈ [x2,
L3

4
] at ρ =∞ respectively, whilst half of B3 is mapped to ρ = −∞. The corresponding Σ−

is the symmetric region below G23 in the Poinaré disk (left) and has an identical representation

in the BTZ strip.

horizon at ρ = 0, and the boundary B3 lies at ρ = −∞, in both cases for x ∈ [−L3/4, L3/4]. Since

the geodesics G13 and G23 intersect H3 orthogonally, they will lie at x = −L3/4 and x = L3/4 in

these coordinates. The other two boundaries B1 and B2 lie at ρ =∞, for x ∈ [−L3/4, x1] and

x ∈ [x2, L3/4] (with x1 < x2), and the remaining geodesic G12 runs between these points x1, x2.

The portions of H1, H2 in Σ± are the geodesics running from the edges of the strip to meet G12

orthogonally. These coordinates are illustrated in figure 5.

The half-surface Σ+ is thus a strip x ∈ [−L3/4, L3/4] in the planar BTZ coordinates, with

a bite cut out of the middle above G12. It is important to emphasize that the boundaries at

−L3/4, L3/4 are not identified with each other; instead they and G12 are identified with the

corresponding boundaries in a second copy of this region.

As we verify in appendix A, varying the endpoints x1, x2 of B1, B2 generates all possible

lengths L1, L2 for the remaining horizons H1, H2 and the map (x1, x2) 7→ (L1, L2) is both smooth

and one-to-one. When we take the limit of large La (at fixed ratios), the results simplify, with a

form that depends on the relative lengths. For L3 − (L1 + L2)� 1,

x1 ∼
L1

2
− L3

4
− log 2, x2 ∼

L3

4
− L2

2
+ log 2, (3.2)

where the tildes (∼) represent agreement up to exponentially small corrections. Note that up to

a fixed order-one offset, the endpoints are respectively L1/2 and L2/2 from the ends of the strip.
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x1 x2

H3±

H1± H2±

G12

G13 G23

B1 B2

B3

0−L3

4
L3

4

x

ρ =∞

ρ = −∞

(a) L1 + L2 > L3

x1 x2

G12

G13 G23

B1 B2

(b) L1 + L2 ∼ L3

x1 x2

G12
G13 G23

(c) L3 > L1 + L2

Figure 6: Half of the pair-of-pants (either Σ+ or Σ−) described as a region in planar BTZ.

Three examples are shown representing distinct regions of moduli space: L1 + L2 > L3 (top),

L1 + L2 ∼ L3 (middle), L3 > L1 + L2 (bottom).

In the complementary case L3 − (L1 + L2)� 1, we find instead

x1 + x2

2
∼ L1 − L2

4
,

x2 − x1

2
= exp

(
−L1 + L2 − L3

4

)
. (3.3)

In our BTZ presentation, the long length of H3 corresponds directly to the large width of the

strip. The horizons H1, H2 are also long as a result of extending over a large coordinate distance

in the x direction and possibly also from extending out towards the boundary of the strip at

large ρ. If both of them together are shorter than H3 (L1 + L2 ≤ L3), they terminate on G12

in the interior of the strip, staying within an order one distance from the horizon H3 at ρ = 0

along their whole length, as in the last panel of figure 6. When the sum is larger (which includes

the case where the three lengths are equal), the length of the interval x2 − x1 is exponentially

short, hence H1, H2 meet G12 at large ρ, as in the first panel of figure 6. In both cases, H1 and

H2 approach H3 exponentially for |x− x1,2| � 1.

The contributions to L1, L2 from the width of the strip or from H1 and H2 running to large

ρ look different, but we should remember that Σ+ treats the three horizons symmetrically, so
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this is just an artifact of our choice of coordinates. The symmetry can be made manifest in an

appropriate Poincaré disk representation; see e.g. figure 8 of [12]. The relationship between any

pair of horizons is thus much the same; consider for example H1 and H3. We can see explicitly

from the calculation in appendix A that the minimal distance between them is exponentially

small, and that they remain exponentially close over a large region. Thus, the area of the causal

shadow region remains finite even as their length becomes large.

In fact, since the boundaries of the causal shadow are closed geodesics (and thus have vanishing

extrinsic curvature), the Gauss-Bonnet theorem requires this area ACS to be independent of the

moduli La (for any fixed genus g and number of boundaries n). For the pair of pants we find

ACS = 2π; more generally ACS = 2(n− 2 + 2g)π. As we will see in the next section, this implies

that the causal shadow region plays little role in the path integral construction of the CFT state

|Σ〉.

In the case where L3 − (L1 + L2) � 1, the endpoints of the geodesic G12 are far apart in

coordinate distance, and it will also be exponentially close to H3 over most of its length. When we

glue Σ+ and Σ− to form Σ, the section of H3 that is close to G12 will lie close to the corresponding

section of H3 in Σ−, as in figure 2 (right). All remaining cases with L3 ≥ L2 ≥ L1 are intermediate

between the two just described.

4 The CFT state at large La

Let us now consider the implications of the above results on the structure of Σ for the CFT state

|Σ〉. In this section we will argue for large La that |Σ〉 will be described to exponential accuracy

by figure 2 (right). In particular, when restricted to appropriate regions it agrees to exponential

accuracy with the corresponding restriction of a thermofield double state |TFD〉. We also show,

under the assumption that non-handlebody contributions can be ignored, that the Euclidean bulk

geometry (2.1) dominates the bulk path integral defined by using Σ as the conformal boundary.

It follows that, to exponential accuracy, our bulk pair-of-pants wormhole is dual to the state

described by figure 2 (right).

Recall that |Σ〉 is defined by the CFT path integral over Σ. We will use the BTZ representation

of Σ± associated with figure 6 to break Σ into three pieces Σ1,2,3 that are topologically cylinders,

corresponding to figure 2 (left). Each piece Σa will contain the entire pair-of-pants boundary Ba,

but no portion of the boundaries Bb for b 6= a. The decomposition is defined by drawing a graph

in Σ as shown in figure 7. As noted in the figure caption, far from the vertices the piece Σa nearly

coincides with the region Ea of Σ exterior to Ha (i.e., lying between Ha and boundary a). The

geometry in this latter region is just that of the appropriate BTZ solution outside the horizon

and is conformal to a round (rotationally-invariant) cylinder.

We wish to regard both Ea and Σa as path integrals constructing states |Ea〉, |Σa〉, each

of which is defined on two copies of our CFT (on the outer and inner boundaries of Ea or Σa

respectively). Indeed, we may write |Σa〉 = Ŝa|Ea〉 where Ŝa is the operator defined by the path
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B1 B2

B3

Σ1± Σ2±

Σ3±

v±

B1 B2

B3

Σ1± Σ2±

Σ3±

ṽ

B1 B2

B3

Σ1± Σ2±

Σ3±

v v′

Figure 7: The decomposition of Σ± into pieces Σ1±,Σ1±,Σ1±. We then glue Σa+ to Σa− along

the relevant Gab to make pieces Σa conformal to cylinders with Σa containing all of boundary a.

The decomposition is determined by a graph. In cases (a) and (c), the graph has two trivalent

vertices. In case (a) each piece Σ± contains one vertex v±. The 3 edges of the graph each connect

v+ to v− running between two distinct horizons Ha, Hb for a 6= b. In case (c) both vertices v, v′

lie on the cut along G12, as does the edge that connects them. The other two edges are loops

connecting v to v or v′ to v′. One lies between H1 and H3 while the other lies between H2 and

H3. Case (b) represents a degenerate limit interpolating between the two in which we choose to

fuse the two vertices into a single 4-valent vertex lying on G12. The graph has two edges, each

of which are loops. One lies between H1 and H3 while the other lies between H2 and H3. In

the regions far from the vertices the pieces Σ1,2,3 defined by cutting Σ along the edges of the

appropriate graph differ from the cylinders defined by the regions outside horizons H1,2,3 only by

exponentially small amounts.

integral over the causal shadow region Sa = Σa/Ea in Σa beyond the horizon Ha. We specify

the conformal frames of all states by again taking φa to define the standard angle on the CFT

cylinder; this involves a natural extension of φa through the causal shadow Sa. The region Sa

is topologically an annulus and so can be conformally transformed to a cylinder. But Sa is
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exponentially thin over most of its circumference; indeed, setting a = 3 (so that we may replace

φ3 by 2π/L3 times the BTZ x) and multiplying the BTZ metric (3.1) by `−2
AdS(1 + ρ2)−1 gives a

metric

ds2
S3

= dx2 + dy2, (4.1)

where y = tan−1 ρ ranges over [0, f(x)] with f(x) is exponentially small far from the vertices of

our graph. Introducing ỹ = y/f along with x̃ such that dx̃ = dx/f , and multiplying (4.1) by f−2

gives a metric

f−2ds2
S3

= dx̃2 + (dỹ + f ′ỹdx̃)2, (4.2)

where f ′ = df/dx, on cylinder of unit height ỹ ∈ [0, 1] but with exponentially large circumference.

The metric is not flat, though it differs from the standard cartesian flat metric dx̃2 + dỹ2 only by

exponentially small corrections proportional to powers of f ′. It follows that there is a further

conformal transformation to a metric cylinder of unit height – and with exponentially small

difference in circumference from the range of x̃ – whose action on the region far from the vertices

is exponentially close to the identity map7.

Rescaling this cylinder to one of circumference 2π allows us to write the path integral over Sa

in terms of the operator e−βH with exponentially small β. Up to exponentially small corrections,

this operator acts as the identity with respect to degrees of freedom associated with spatial regions

of order-one size as measured by the original spatial coordinate φa. So far from the vertices we

may identify |Ea〉 and |Σa〉 with exponential accuracy.

On the other hand, the exterior region Ea is half of the BTZ t = 0 surface, so |Ea〉 is given

by a path integral over a cylinder of length β/4, so it is a copy |TFD〉a of (1.1) at twice the

temperature of the associated bulk horizon. Thus |Σa〉 is, up to exponentially small corrections, a

thermofield double state. Recall that for large La such |TFD〉a are described by a tensor network

of the form shown in fig. 1.

It remains only to sew the |Σa〉 = |TFD〉a together into |Σ〉. The sewing procedure is defined

by the way the path integrals Σ1,2,3 combine to form Σ. Away from the vertices of the graph, this

identifies the horizons in E1,2,3: for L1 + L2 > L3, parts of H3 are identified with each of H1 and

H2, and the remaining parts of H1 and H2 are identified with each other. For L1 + L2 < L3, H1

and H2 are each entirely identified with corresponding parts of H3, and the remaining regions

of H3 along G12 are identified with each other. Since the sewing operation on path integrals

coincides with the sewing operation on tensor networks – one simply sets all arguments equal

along the seam and integrates over allowed values8– this implies that the state |Σ〉 is given to

exponential accuracy by fig. 2 (right), with the top picture relevant for L1 + L2 > L3 and the

bottom picture relevant for L1 + L2 < L3.

7Here we use the fact that conformal transformations satisfy an elliptic equation with a Green’s function that

decays exponentially along a strip. We expect that similar arguments are common in the literature, but for a

specific example the interested reader interested in details may consult for comparison e.g. section 3.1.1 of [12].
8Here for simplicity we again make use of the time-reversal symmetry mentioned in section 2 to turn bra-vectors

into ket-vectors.
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Finally, we also wanted to see that |Σ〉 is dual to our bulk geometry with moment of time

symmetry Σ. As in [12] we assume that the dominant saddle of the associated bulk integral

is a handlebody. The other possible bulk saddles discussed in [12] correspond to disconnected

Lorentzian geometries. It is natural to expect this saddle to dominate at large temperatures,

by analogy to the familiar result for |TFD〉 that disconnected solutions dominate only at low

temperatures. But one can now make a further argument based on entanglement. If the HRT

proposal is correct, and in particular if entanglement is associated with extremal surfaces in the

real Lorentz-signature geometry, the disconnected geometries cannot reproduce the entanglement

structure of figure 2 (right), which involves entanglement between the different boundaries at

leading order in the central charge. It would be interesting to verify this conclusion by direct

computation of the Euclidean actions, as it would serve as a check on HRT.

5 Holographic entanglement calculations

The previous section used the CFT path integral to show that the CFT state |Σ〉 is given by

figure 2 (right), so that the state has local bipartite entanglement with the same local structure

as the thermofield double state. In this section we will buttress that argument by showing that

our picture of the geometry of Σ, now thought of as the t = 0 surface in the bulk spacetime,

gives consistent results for entanglement from holographic Ryu-Takayanagi calculations. Indeed,

in the history of our project we originally discovered that the state had this simple bipartite

structure by performing these holographic calculations explicitly. We consider the entanglement

for a region in boundary 3, since our coordinates are adapted to this boundary, but by symmetry

similar results apply in the other cases.

Consider first a region in boundary 3 where the horizon H3 is exponentially close to either H1

or H2, that is x1 − x� 1 or x− x2 � 1. In the exterior region E3, the planar BTZ coordinate

x is identical (up to a scale and a shift of origin) to the round conformal frame coordinate φ3

defined in section 2: φ3 = 2π
L3
x. In the other exterior region, at similar x but outside H1, H2,

because the horizon H1,2 is exponentially close to H3, the planar BTZ coordinate x agrees with

φ1,2 (up to a scale and a shift of origin) up to exponentially small corrections. We can take for

example φ1 = 2π
L1
x. This is manifestly true near ρ = 0 (see (3.1)) and continues to hold at large ρ

due to the properties of geodesics in hyperbolic geometry9. So for x1 − x� 1, x− x2 � 1 we

may take x to define the round conformal frame on all three boundaries up to exponentially small

corrections.

9Two geodesics on H2 fired at slightly different angles from the same point will diverge exponentially as

measured by the proper distance separating them as the curves approach the boundary. So curves of constant

φ1,2 and x that meet at the horizon also diverge in a similar manner near the boundary. But two geodesics fired

orthogonally from different points x′, x′′ of the horizon again diverge exponentially at precisely the same rate. So

a curve of constant φ1,2 that meets the horizon at x′ with |x′ − x1,2| � 1 will meet the boundary at some x′′ with

|x′′ − x′| still exponentially small.
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The above relations allow us to easily map those geodesics involved in any HRT calculation

of the mutual information between subregions of boundaries 1 and 3 (or 2 and 3) that lie far from

x1, x2 to geodesics in BTZ. The BTZ calculation was studied in [9], who found that for regions

much larger than the thermal scale, the mutual information is simply proportional to the size of

the overlap between the two regions. The overlap is maximal when the two regions are directly

opposite each other, in which case the high-temperature result (3.27) of [9] becomes

I(A : B) = S(A) + S(B)− S(A ∪B) =
L

4G

(∆φ+ 2π − (2π −∆φ))

2π
=

L

2G

∆φ

2π
+O(L0). (5.1)

Applying appropriate scalings to (5.1), the mutual information between corresponding regions of

boundaries 1 and 3 with x1 − x� 1 is

I(A : B) =
1

2G
∆x+O(1) =

L1

2G

∆φ1

2π
+O(1) =

L3

2G

∆φ3

2π
+O(1). (5.2)

In addition, since the region of boundary 1 with x1 − x� 1 is well-separated in the bulk from

the region of boundary 2 with x− x2 � 1, it also follows that these two regions share no mutual

information. The situation is exactly similar for the region in boundary 3 with x− x2 � 1, which

has a mutual information of the same form with a region in boundary 2.

If |x2 − x1| � 1, there are large parts of H1, H2 that are far from H3, and so have yet to

be described. This indicates that there are large intervals of φ1,2 along boundaries 1 and 2

with x-values close to the endpoints x1, x2. But it also implies a large conformal transformation

between the round conformal frame for B1, B2 and the planar BTZ coordinate x. As a result,

the renormalized length of any geodesic connecting boundary 3 to these regions of boundaries 1, 2

is very long and HRT calculations give no mutual information between boundary 3 and these

regions.

For |x2−x1| � 1, the above results describe the entanglement properties of boundary 3, with

the exception of a region with length of order the thermal length scale (which in the planar BTZ

coordinates is of order the AdS scale) near x1, x2. So away from the vertices the entanglement

structure obtained from bulk calculations corresponds precisely with that predicted by the state

pictured in the top panel of figure 2, given by sewing together thermofield double states.

We now turn to the complementary case |x2 − x1| � 1. There is then a large region of

boundary 3 not covered by the regions x1 − x� 1, x− x2 � 1 studied above. But across the

region satisfying both x− x1 � 1 and x2 − x� 1, the geodesic G12 lies exponentially close to

H3. So sewing together Σ+ and Σ− in this region is well-approximated by simply gluing to each

other the boundaries of E3 (the region outside H3; the lower half of each diagram in figure 6)

along H3±; i.e., the result is well approximated by the region of the two-sided BTZ geometry with

x1 < x < x2.

Note that the two asymptotic boundaries of this new BTZ geometry are identified with

different regions of boundary 3 coming respectively from Σ+ and Σ−. In particular, since our

slicing of the pair of pants into Σ± was performed using the Z2 reflection symmetry, we see that

a given value of x with x1 < x < x2 corresponds both to some point φ3 and also to 2π − φ3 in
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terms of the usual coordinate on boundary 3 that defines the round conformal frame. Thus, in

this case the mutual information of a region in boundary 3 with the corresponding region on the

opposite side in boundary 3 will be as given in (5.2), supporting the local thermofield-double like

entanglement between the two pieces of this boundary as indicated in the bottom panel of fig. 2.

6 Finite size corrections

We have shown that |Σ〉 has a simple structure in the high temperature limit. To use this as a

systematic approximation to the state corresponding to finite-size wormholes, it is interesting to

investigate finite-temperature corrections to this. In this section we will consider this first for the

simple two-boundary case and then for three boundaries.

6.1 Two boundaries

In the two-boundary case, we want to understand and characterise the departure from the trivial

network pictured in figure 1. The departure will be significant when we consider small regions, of

order the thermal scale or smaller. For simplicity, we diagnose this by considering the mutual

information between a subregion in one boundary and the whole of the other boundary.

The key finite temperature effect is that, for small regions, there is a competition between

different possible minimal surfaces in the bulk homologous to A. For S(A), we need the smaller of

l(γA), the length of the minimal (connected) geodesic γA homotopic to A, or l(γAc) +L, where γAc

is the minimal (connected) geodesic homotopic to Ac and L is the length of the closed geodesic

at the horizon. Similarly S(Ac) is determined by either l(γAc) or l(γA) + L, and there is an

interesting competition between these two possibilities when A is nearly the whole boundary.

At high temperature the geodesics γA, γAc behave as shown in figure 8. As a function of the

angle φ, they drop quickly from the boundary to the horizon, hug the horizon while traversing an

angle nearly 2π −∆φ, and then quickly return to the boundary. One thus finds

l(γA) = L
∆φ

2π
+O(L0), l(γAc) = L

(
1− ∆φ

2π

)
+O(L0), (6.1)

which reproduces the behaviour in (5.1) found in [9].

At finite L, corrections to (6.1) are exponentially small in L when A and Ac are larger than

the thermal scale, and the entropy remains close to linear in ∆φ. But for any finite L there is a

Ryu-Takayanagi phase transition when either A or Ac becomes sufficiently small. In that regime

the relevant entropy S(A) or S(Ac) becomes controlled by the disconnected geodesic. Thus, when

the length of A falls below 2π log 2/L+O(e−L/L) one finds I(A : B) = 0. For Ac smaller than

this threshold, one finds I(A : B) = 2S(B) = L
2G
. Plotting the full I(A : B) at large but finite T

clearly shows these “plateaux” as in figure 9. These plateaux were studied in [28]; they can be

characterised in terms of saturation of the Araki-Lieb inequality as discussed in [29].
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Figure 8: The geodesics giving, in the high-temperature limit, the phases of entanglement

entropy of the union of a pair of intervals (cyan) lying on opposite boundaries, along with the

event horizon added to satisfy the homology constraint, marked by the horizontal dashed line.

When one of the intervals is a whole boundary, there are only two relevant phases (left), otherwise

a third phase (right) may dominate, for which the corresponding geodesics cross the horizon and

have endpoints lying on opposite boundaries.
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Figure 9: Left: Plot for L = 10 of the mutual information I(I1; 2) between an interval I1 of size ∆

in B1 and all of B2, as a function of ∆, scaled by the maximal value 2S. The mutual information

increases approximately linearly in ∆ and becomes non-zero at the phase transition where ∆ ∼ l−1

(vertical line near left edge). Right: Plot of the deviation in the mutual information shown at

left from the high-temperature estimate 2S ∆
2π

. This deviation is very small; for readability the

vertical scale has been magnified relative to the left-hand plot. The deviation is most significant

for small and large values of ∆, and decays exponentially in L at intermediate values as expected.

The fact that small intervals do not capture the entanglement with boundary 2 indicates

that this information is encoded in a way that is non-local on the thermal length scale. This is

not surprising, but it is useful to note that this correction to the large L picture has a natural

expression in the language of [30]. It says that at finite temperature the information about the

entanglement between the two boundaries is not encoded locally in degrees of freedom at individual

spatial points, but rather in a code subspace in each boundary, which entangles individual spatial

degrees of freedom on the thermal scale. The ability to recover all of the information from any

sufficiently large spatial subset of the degrees of freedom is the characteristic signature of such

encoding in a code subspace. In [30], the size of the region needed to access information in a code

subspace was related to the radial location of the bulk region encoded. Similarly, in BTZ this

size is related to the radial position of the horizon.

On a related note, the plateau at large ∆φ appears precisely when the Ryu-Takayanagi surface
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(a) Phase 1: 1 (b) Phase 2: g−1
1

(c) Phase 3: g−1
2 (d) Phase 4: g2g

−1
1

Figure 10: The geodesics giving the four possible phases of entanglement entropy of a single

interval, in red, along with the event horizons added to satisfy the homology constraint, marked

by dashed lines.

for region A is γ(Ac) plus the horizon. In other words, it occurs precisely when the so-called

entanglement wedge [3] – the region inside this Ryu-Takayanagi surface – reaches all the way to

the horizon. Indeed, in this case we see that it touches each and every point on the horizon and

on A’s side of the horizon it misses only a small part of the space near Ac. This suggests that the

bulk near-horizon degrees of freedom are encoded non-locally in the CFT in such a way that they

can be perfectly recovered from a large spatial subset A that remains slightly smaller than the

entire boundary.

6.2 Pair of pants

For the pair of pants, we again study finite temperature corrections by considering the departure

of the mutual information between a region in one boundary, say boundary 3, and the whole of

another boundary, say boundary 1,

I(A3 : 1) = SA3 + S1 − SA3∪1, (6.2)

from the approximation suggested by (5.2). As for the two boundary case, we expect the

main departure to come near transitions between different phases, where different geodesics are

exchanging dominance in the calculation of the holographic entanglement entropies. For this case,

the phase transitions depend on two parameters: the size of A3 and its location on boundary

3. The different possible phases for S(A3) and S(A3 ∪ B1) are illustrated in figures 10 and 11

respectively.

The calculation of the associated geodesic lengths can be easily automated using the description

of the geodesic lengths as traces of corresponding SL(2,R) group elements exploited in [27]. The
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(a) Phase 1: 1 (b) Phase 2: g−1
1

(c) Phase 3: g−1
2 (d) Phase 4: g2g

−1
1

Figure 11: The geodesics giving the four possible phases of entanglement entropy of the union

of a single interval A1 and the whole of boundary 2, in red, along with the event horizons added

to satisfy the homology constraint, marked by dashed lines.

lengths of the relevant geodesics can be found by computing the appropriate matrix products

and traces. While the exact form of the answer is complicated and unilluminating, the general

structure is fairly simple, being built mostly from polynomials in parameters encoding horizon

lengths and the position of the interval. With a list of all contributing monomials in hand, finding

the length in the large L limit is equivalent to finding the maximum of a set of linear functions.

This calculation is implemented in Mathematica by performing a truncated series expansion.

Of course, the full series can also be computed numerically. The results are summarized

in figure 12, which shows numerical results at finite-temperature for deviations from the high-

temperature approximation (5.2). The errors are indeed largest near the regions where nearby

horizons are not exponentially close (i.e., where the causal shadows become large) and for intervals

of size comparable to the thermal scale. Such regimes are close to phase transitions in the mutual

information, where pairs of minimal curves exchange dominance.

In addition to the bipartite entanglement, at large but finite temperature one expects to find

tripartite entanglement associated with the shadow region between the horizons. But as noted

above the area of the pair-of-pants causal shadow is ACS = 2π in AdS units for all values of the

moduli La. Chopping off the exponentially thin “arms,” it can be useful to model this region as

an AdS-scale disk. This is quite reminiscent of the picture obtained in the tensor network model

of the AdS vacuum in [23], where different spatial regions mostly had bipartite entanglement,

with a residual multipartite component corresponding to an AdS-scale region.
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Figure 12: Deviation of the mutual information I(A : B1) between a region A = {φ3 ∈
[φ̄−∆φ/2, φ̄+ ∆φ/2]} in B3 and the whole of boundary 1 from the piecewise-linear form implied

by figure 2 (lower right) for L1 = 9, L2 = 15, L3 = 30. We plot the ratio between the error and

the maximal mutual information (twice the entropy of B1). Here φ3 = 0 is the leftmost point in

figure 2 (lower right) and for comparison the inverse temperature β3 is (2π)2

30
≈ 1.3. The error is

exponentially small in L, except in a region of thermal scale around certain phase transitions,

where the order L0 terms in (5.2) contribute. The diagonal lines with largest error occur where

an endpoint of A leaves the region of B3 entangled with B1. The vertical lines with similarly

large error are along a plateau phase transition, as occurs in the two boundary case.

7 Discussion

Our main result is that, in the limit of large black hole horizons, the pair-of-pants wormhole

in 2+1 gravity is dual to a CFT state formed by sewing together thermofield doubles in one of

the manners shown on the right of figure 2, or to the degenerate case that interpolates between

them. We showed this by directly analyzing the CFT path integral defining the state |Σ〉, and

used consistency with bulk holographic calculations of the mutual information to argue that the

Σ-wormhole dominates the associated bulk Euclidean path integral. We focused on the pair of

pants for simplicity but – as will be discussed further below – it is easy to extend the central

aspects of our discussion to more complicated wormhole spacetimes.

We also focused on the case of circular boundaries, but the same conclusions apply to the

planar case. In 2+1 bulk dimensions, such high-temperature n-boundary planar cases are just

AdS3 in non-standard coordinates corresponding to performing certain conformal transformations

on the dual CFT vacuum that are singular at n points on the circle, with each segment running

between two such singular points representing a distinct planar boundary. One may also consider

wormholes having both planar and circular boundaries.

Let us now briefly describe the extension to more general Riemann surfaces. Recall that a
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general orientable Riemann surface Σ (other than the sphere or annulus) can be decomposed into

pairs-of-pants. Let us think of Σ as the t = 0 slice of a wormhole spacetime with n boundaries

each asymptotic to AdS3. Then the surface contains geodesics Hi (i = 1, 2, . . . , n) that define

bifurcation surfaces of the event horizons for each boundary. In addition, it contains a number

of internal geodesics. Each pair-of-pants decomposition of Σ corresponds to cutting Σ into

pair-of-pants pieces along some set of these internal geodesics. It will be convenient for us to

also cut along the Hi so that we in fact decompose Σ into n cylinders Ci and some number of

pair-of-pants pieces ΣI . In a somewhat redundant notation, we will refer to the geodesics forming

the three boundaries of ΣI as HIa for a = 1, 2, 3. Note that the set of HIa includes the horizons

Hi. In this decomposition, the moduli space of the Riemann surface is parametrised by the

lengths LIa of the HIa and the twists θIa specifying the relative rotation between the two pairs of

pants on the internal geodesics where we are sewing pairs of pants together.

Each ΣI has the same geometry as the causal shadow region lying between the three horizons

in figure 6 as defined by the corresponding LIa. So each Σ± has area precisely 2π, independent of

moduli. Any HIa which is long will lie exponentially close to another HIa (or another region of

the same HIa) across the causal shadow region. As a result, a large number of such ΣI can be

sewn together without introducing an appreciable causal shadow or an appreciable reduction of

the local energy density along each boundary. Away from the special points in each boundary

corresponding to vertices in our previous discussion, the effective |TFD〉 temperature remains

uniform in the round conformal frame specified by the cylinders Ci. Note that this is needed for

consistency with the fact that the solution is precisely BTZ outside each horizon Hi, so that each

boundary has constant energy density in our round frame10. Some simple examples are shown in

figures 13 and 14, the former being a 1-boundary wormhole whose causal shadow at t = 0 has the

topology of a punctured torus.

Interesting new behaviour can arise as a function of the twists as we sew together pairs of

pants with the structure of the lower panel in figure 2, as we illustrate by example in figure 14.

Consider for example a four-boundary wormhole with external horizons H1, H2, H ′1, H ′2, and split

it into two pairs of pants along an internal geodesic H3 = H ′3 separating H1,2 from H ′1,2. We take

L3 � L1 + L2, L3 � L′1 + L′2. If H3 and H ′3 are identified via some twist θ, a given region in

say H1 is entangled with a region in H3, which is in turn identified with some region in H ′3. For

generic θ at large L3 this will be entangled with some other region in H ′3, which is then identified

back to H3. For large L3 we will cycle through the identification between H3 and H ′3 many times

before finally identifying the region with one of the other horizons (H2, H1′ , H2′). In the limit

where L3 is much larger than the external horizons, the identifications resulting from a general

twist are chaotic and appear to give a fractal entanglement structure. It would be interesting to

characterize these structures in more detail, and to relate this behavior to the well-known chaotic

10When the number of such pieces becomes comparable to the lengths Li of the horizons Hi, the qualitative

effect on the CFT state |Σ〉 will depend on how these pieces of causal shadow are distributed along each boundary,

and in particular on whether any regions of the boundaries do in fact remain far enough away to retain their

|TFD〉 description.
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H

L̃, θ BC1

Σ1

B
B

Figure 13: A decomposition of the torus wormhole (left) with one boundary B into a single pair

of pants Σ1 and a single cylinder C1. Taking boundary 3 of Σ1 to adjoin C1, we see that there are

three distinct moduli: the length L3 of H, L1 = L2 = L̃, and a possible twist θ. Tensor networks

for θ = 0 dual CFT states with large L3, L̃ are also shown for L3 < 2L̃ (middle) and L3 > 2L̃

(right). In both cases, corresponding cyan and orange links are to be identified as dictated by the

twist angle θ. For θ = 0, this identification is reflection about the vertical axis through the center

of each diagram. (Without this reflection, the spacetime is a punctured Klein bottle instead of a

torus.) The cyan and orange links should be viewed as exponentially short, while the black links

have length β/2 set by the inverse effective temperature β of the black hole. So for θ = 0 these

identifications generate exponentially short closed loops which can be removed from the tensor

without changing the state at leading order in large L3, L̃ and central charge c. See discussion in

main text below.

dynamics of geodesics on compact hyperbolic spaces.

Another subtlety arises in cases like that shown in figure 14 a), where we consider the

four-boundary system with zero twist, and take for simplicity L1 = L′1 and L2 = L′2 with L3 again

very large. Then sewing together the two copies of figure 2 (lower right) indicates that B1 is

entangled only with B1′ and that B2 is entangled only with B2′ . As a result, taking A = B1 ∪B1′

and B = B2∪B2′ , the CFT state has I(A : B) = 0 (at leading order in large c and L). This result

may seem is surprising from the bulk point of view, as Σ contains a closed geodesic that runs

vertically around figure 14 (a), separating A from B. So HRT predicts I(A : B) = L/2G, where

L is the length of this geodesic. This would be consistent with the above prediction as large L3

makes this geodesic exponentially short so that its length can be ignored at leading order. Note

that this geodesic is short only for zero twist: we saw that for small-but-nonzero twist θ a part

of B1 is instead entangled in a local |TFD〉 state with part of B2′ , so the mutual information is

non-zero and grows as we scale up the La. Thus A and B can no longer be separated by a closed

bulk geodesic of negligible length11.

11This is also clear from the fact that the local bulk geometry of these regions is essentially that of a segment of

BTZ, and any such separating geodesic must traverse part of this segment of BTZ and thus have non-negligible

length
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1 2

1′ 2′

H3,3′

(a) θ = 0

1 2 H3

1′ 2′ H3′

1 2

2′

1′

H3,3′

(b) θ = π
2

1 2 H3

1′ 2′ H3′

1 2

2′ 1′

H3,3′

(c) θ = π

1 2 H3

1′ 2′ H3′

Figure 14: (Left diagrams) Two pairs-of-pants Σ and Σ′ are each cut along H3,3′ (red) and

the pair of interior portions are sewn together along the cuts with twists θ = 0, π/2, π to form

a four-boundary wormhole. Here we consider the case with L3 > L1 + L2, L3′ > L1′ + L2′ . In

(a,c left) each pair of pants is bisected by an additional closed geodesic (not shown) that runs

vertically around the diagram. In the high-temperature limit, the corresponding entanglement

structure is given by identifiying the outer boundaries H3,3′ of a pair of “eyeglass” diagrams,

shown in red on the right-hand figure. This identification entails a twist θ which is represented

by the dot in each cut which are identified across the join in accordance with the twist. For θ = 0

(top) we infer that boundaries 1 and 2 are each entangled only with 1′ and 2′ respectively. For

θ = π
2

(middle) and the chosen values of La intervals within any given boundary are entangled

with intervals in each of the others. The pattern of such entanglements become chaotic at generic

θ, though a twist in this setting never entangles two distinct intervals within the same boundary.

For θ = π (bottom) boundaries 1 and 2 are each entangled only with 2′ and 1′ respectively.
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Figure 15: The entanglement structure of the 4-boundary wormhole (figure 14) with large

L3 = L3′ for L1 = L1′ = L2 = L2′ = 1
4
L3 and θ = 11π

8
. The state is well-described by a tensor

network analogous to figure 2 right. The state on any pair of boundary intervals formatted

in the same way (color, dots/dashes/solid lines) is a local piece of |TFD〉; the labels 1, 1′, 2, 2′

indicate the boundaries connected to each TFD segment. The TFD intervals join at four vertices

A,B,D,E located as shown. Each vertex connects the 3 local TFD states listed in the key below

the diagram. C,F are not vertices, but are simply in the middle of the indicated (relatively

long) TFD intervals. Some TFD strips connect oppositely-oriented intervals, while some preserve

orientation.

Despite the above consistency, the appearance of such a short geodesic also suggests that

our Σ-wormhole may not in fact be the dominant bulk saddle for the CFT state |Σ〉. It seems

natural to conjecture that – unless forbidden by global features like a choice of spin structure –

when Σ contains such exponentially short geodesics there will be another bulk saddle of smaller

action where the geometry is modified so that these geodesics are contractible when viewed as

living on the boundary of the new saddle. That is, we conjecture that |Σ〉 in such cases is in fact

dual to a bulk geometry with t = 0 surface Σ′ built by cutting Σ along all exponentially small

geodesics and capping off the resulting holes with small disks. This Σ′− “wormhole” may not then

connect all the boundaries. From the tensor network point of view, the point is that the network

obtained by gluing together two copies of figure 2 with no twist breaks up into two disconnected

components, one connecting B1 and B1′ and one connecting B2 and B2′ . The remaining chains

merely form closed loops. At leading order in large central charge c the properties of the state |Σ〉
are unchanged if we remove all chains that form closed loops rather than ending on boundaries.

The resulting tensor network defines the manifold Σ′. The difference between |Σ〉 and |Σ′〉 is

then exponentially small at large c, and we conjecture the Σ′-“wormhole” to be the leading bulk
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3

1 2

Figure 16: Another way to sew three |TFD〉 states together. Here the outer |TFD〉 has been

sewn to itself at the ends as well as in the middle. The sewing at the ends creates features we call

‘buds.’ Such buds are removed if one transforms the result to the round conformal frame. One

may construct similar buds from the vacuum by applying a smooth conformal transformation

approximating over some region the singular one that gives the infinitely long planar thermofield

double state.

saddle describing both states. This feature also arises for the punctured torus shown in figure 13

for L3 < 2L̃ (middle figure) with vanishing twist θ.

It is worth elaborating further on this last point. As noted in the caption for figure 2, the

diagrams in this paper include only a simple cartoon of the |TFD〉 tensor networks from e.g. [4].

The full tensor network for |Σ〉 obtained by sewing together |TFD〉 pieces as we describe will

be correspondingly more complicated as well. In particular, returning to the simple example of

two pairs of pants with very large L3 sewn together along the corresponding boundary, this full

tensor network will certainly not factorize into unentangled states on B1B1′ and B2B2′ . Instead,

it will merely imply that the mutual information between B1B1′ and B2B2′ remains of order 1 at

large central charge c. This is analogous to |TFD〉 below the Hawking-page transition where it

describes two entangled copies of a thermal gas on pure global AdS3 backgrounds. Our conjecture

is thus that the dominant bulk geometry at t = 0 is correctly predicted by removing parts of the

full tensor network that fail to transmit mutual information of order c. We note that evaluating

this criterion requires understanding the tensor structure of each node in the tensor network

implied by the CFT dynamics; it is not apparent from the graph representation of the tensor

network alone.

So far we have considered tensor networks constructed by sewing together pair of pants

networks in the way suggested by bulk wormhole geometries. But it is possible to consider a more

general class of states defined by sewing together high-temperature |TFD〉 states in arbitrary

fashions. For example, one may sew a |TFD〉 to itself (or others) so as to introduce a ‘bud’

on the tensor network as shown in figure 16. Second, some pieces of some |TFD〉’s – or even

entire such states – may now be entirely internal to the tensor network, lengthening some chains

and thus lowering the local temperature. In general, the chain length can then be non-uniform

across any boundary. Together, these two effects recover the freedom to make arbitrary conformal

transformations relative to the round conformal frame used above. That is, these more general

states must be related to the states considered above rewritten in a more general conformal frame.
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Finally, one may also generate non-orientable Σ by performing antipodal identifications on

some circle boundary. For example, doing so one one boundary of a cylinder shows that the CFT

state dual to the high-temperature AdS3 geon (see e.g. [31]) is given by the thermofield double

tensor network on a Möbius strip.12 The Möbius strip can of course be constructed by cutting

open the cylinder along φ = 0 and gluing the two ends back together with a half twist. It is an

interesting question to what extent such gluing operations reproduce desired states when applied

to particular e.g. MERA-like tensor network representations of states at finite temperature and

finite central charge c. Results related to this issue will appear in [33].

While we have stressed the limit where all La become large, the discussion may be generalized

to allow some La to remain small. The pair-of-pants CFT states |Σ〉 are then described by figure

2 (right) with the small-L boundaries contracted to points that merge with the vertices where

the approximation by local TFDs breaks down. But regions of any large-L boundaries far from

the new vertices remain well-described by the indicated local TFDs. One should be aware that,

due to the possibility of bulk phase transitions like those described above, having some La small

may make it less clear which bulk spacetime is in fact dual to |Σ〉. Nevertheless, the local TFD

description of |Σ〉 remains valid. In particular, any entanglement of large-L boundaries with those

having small-L will be confined to intervals no longer than the effective thermal scale. The tensor

network issue dual to uncertainties regarding bulk connectivity is that some new vertices may

now be trivial in the sense that they no longer lead to order-c mutual information with the small

boundary. When this occurs and creates a ‘bud’ as in figure 16, the bud may again be absorbed

into a neighboring vertex without changing the large-c structure of the state other than by acting

with a conformal transformation13. Similar comments apply to Σ having more boundaries or

more general topology when some of the LIa remain small.

Although we have discussed 2+1-dimensional bulk geometries above, but many of our

considerations clearly apply to the higher dimensional case as well. In particular, sewing together

high-temperature |TFD〉’s defines a zoo of interesting states |Σ〉 and conformal geometries Σ.

And it is again natural to conjecture the CFT states |Σ〉 defined by such sewing operations to

be dual to Σ′-wormholes defined by having a moment of time-reflection symmetry on which the

induced geometry differs from (planar) Schwarzschild-AdS only by small corrections outside a

finite number of AdS-scale regions. But much remains to be understood and the details will prove

interesting to explore. In particular, one would like to find an algorithm that takes the tensor

network naturally associated with |Σ〉 defined by the above gluing procedure and turns it into

one in which the geometry of Σ′ is manifest – e.g., with the tensor network providing a cellular

decomposition of Σ′ in terms of AdS-scale cells [34–37]. One wonders if solving the Euclidean

Einstein equations to construct Σ′ from Σ can be related to a renormalization-group flow on

12This creates a local connection between antipodal points on the boundary. The fact that the bulk geodesic

between antipodal points is short in the large temperature limit can be seen from the explicit formula for the

geodesic lengths in [32], although it is incorrectly stated there that the length of the geodesic through the

identification is always longer than the one outside the horizon.
13It is then the diagram without the bud that describes the round conformal frame.
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tensor networks akin to those discussed in [38, 39].
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A The horizons H1, H2 in BTZ coordinates

We now compute the parameters characterising the region Σ+, corresponding to half of the t = 0

slice of the three-boundary wormhole with horizons H1, H2, H3, of respective lengths L1, L2, L3.

In the main text we ordered the lengths so that L3 > L1, L2; this assumption is relaxed here.

The region Σ+ is bounded by three geodesics Gab, running between the boundary components

labelled by a and b, and meeting horizons Ha, Hb orthogonally.

We use the metric (3.1) with H3 lying at ρ = 0 and G13, G23 lying at x = ±L3

4
. Thus x ∈

[−L3

4
, L3

4
]. Consider a geodesic parameterised by arclength s, using a dot to denote differentiation

with respect to s. From translation invariance, there is a conserved quantity (1 + ρ2)ẋ, which for

geodesics with both endpoints at ρ =∞ is given by
√

1 + ρ2
0, where ρ0 > 0 is the minimal value

of ρ. The geodesic is then given by

ρ = ρ0 cosh s, x = x0 + tanh−1

(
tanh s√
1 + ρ2

0

)
. (A.1)

Consider first the geodesics G12 and that corresponding to H1+ (see fig. 17 for the various

relevant geodesics and quantities). The endpoints of G12 lie at x = x1, x2, and it will be convenient

to parametrise these by the centre x̄ = x1+x2
2

and the half-width ∆x = x2−x1
2

. We intend to find

L1 in terms of these parameters, and along the way will also obtain the minimal distance d13

between H1+ and H3+, as well as the position at which G12 and H1+ intersect.

The geodesics are given by

G12 : ρ =
cosh s

sinh ∆x
, x = x̄+ tanh−1 (tanh ∆x tanh s) , s ∈ R, (A.2)

H1+ : ρ = sinh d13 cosh s, x = −L3

4
+ tanh−1

(
tanh s

cosh d13

)
, 0 ≤ s ≤ L1

2
, (A.3)

– 27 –



H1+
H2+

H3+

G12

G13 G23

x1 x2

d13
d23

ρ = −∞
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Figure 17: The geodesics Gab bounding the patch Σ+ in BTZ coordinates. The horizons Ha+

are also shown. The ρ direction runs vertically, and x horizontally. The positions where the

geodesics intersect are labelled with the arclength along each curve, measured from the deepest

point (minimal ρ), and d13, d23 mark the minimal distances between the horizons.

with the constraint that they intersect at right angles at the endpoint of H1+, where the arclength

along H1+ is s = L1

2
, and along G12 is s = s1, say, where s1 < 0.

The condition that two geodesics intersect orthogonally determines the value of ρ at which

they meet in terms of the conserved quantities for the two geodesics; for H1+ and G12 it gives

ρ2 = sinh2 d13 + coth2 ∆x = cosh2 d13 + csch2 ∆x at intersection. (A.4)

We now get two equations from identifying the value of ρ at intersection with the values of ρ for

G12 at s = s1, and for H1+ at s = L1

2
. A third comes from identifying the x coordinates at these

same arclengths:

coth ∆x = sinh d13 sinh
L1

2
, (A.5)

sinh s1 = − sinh ∆x cosh d13, (A.6)

x̄+ tanh−1(tanh ∆x tanh s1) = −L3

4
+ tanh−1

(
tanh L1

2

cosh d13

)
. (A.7)

We then solve for L1, d13, s1 in terms of x̄,∆x to obtain

cosh
L1

2
=

sinh
(
L3

4
+ x̄
)

sinh ∆x
, tanh d13 =

cosh ∆x

cosh
(
L3

4
+ x̄
) , tanh s1 = − tanh ∆x

tanh
(
L3

4
+ x̄
) . (A.8)

It is straightforward to translate these results into expressions for L2, the distance d23 between

horizons H2+ and H3+, and s2, the arclength along G12 at which it intersects H2+:

cosh
L2

2
=

sinh
(
L3

4
− x̄
)

sinh ∆x
, tanh d23 =

cosh ∆x

cosh
(
L3

4
− x̄
) , tanh s2 =

tanh ∆x

tanh
(
L3

4
− x̄
) (A.9)
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Finally, the above can be inverted to find x̄, ∆x, and dab (where, in particular, d12 = s2 − s1

is the minimal distance between H1+, H2+) in terms of L1, L2, L3.

sinh x̄ =

(
cosh L1

2
− cosh L2

2

)
sinh L3

4√
cosh2 L1

2
+ cosh2 L2

2
+ 2 cosh L1

2
cosh L2

2
cosh L3

2

, (A.10)

sinh ∆x =
sinh L3

2√
cosh2 L1

2
+ cosh2 L2

2
+ 2 cosh L1

2
cosh L2

2
cosh L3

2

, (A.11)

cosh d12 =
cosh L1

2
cosh L2

2
+ cosh L3

2

sinh L1

2
sinh L2

2

(and permutations) (A.12)

In particular, the explicit inversion shows that the mapping between (x1, x2) and (L1, L2) is

bijective and smooth.

We may now work out the asymptotic values of these quantities in the limit where all lengths

La are large. The typical expressions reduce to sums of exponentials of linear combinations of La,

so there are separate regimes depending on the relative sizes of the exponents; these turn out

to be three regimes where one horizon is longer than the sum of the others (L1 > L2 + L3 and

permutations), and the regime where no horizon is dominant in this way.

x̄ ∼


L3

4
− 1

2
exp

(
−L1−L2−L3

2

)
L1 > L2 + L3

−L3

4
+ 1

2
exp

(
−L2−L1−L3

2

)
L2 > L1 + L3

L1−L2

4
otherwise

(A.13)

∆x ∼


exp

(
−L1−L3

2

)
L1 > L2 + L3

exp
(
−L2−L3

2

)
L2 > L1 + L3

L3−L1−L2

4
+ log 2 L3 > L1 + L2

exp
(
−L1+L2−L3

4

)
otherwise

(A.14)

d12 ∼



L3−L1−L2

2
+ 2 log 2 L3 > L1 + L2

2 exp
(
−L2

2

)
L1 > L2 + L3

2 exp
(
−L1

2

)
L2 > L1 + L3

2 exp
(
−L1+L2−L3

2

)
otherwise

(A.15)

The corrections in each case are exponentially small in the La, except when L3 −L1 −L2 is order

one, for example.

The interval [x1, x2] looks qualitatively different in each of the four regimes. When L3 >

L1 + L2, it is long (the same order as the horizon lengths), and at a generic position. When

L1 > L2 + L3, it is exponentially short, and also close to the right end of the strip; it is similarly

short and close to the left end when L2 > L1+L3. In the remaining regime, it is again exponentially

short, but in a generic position.
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