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Abstract
Many statistical methods are available for genomic selection (GS) through which genetic values of quantitative traits are
predicted for plants and animals using whole-genome SNP data. A large number of predictors with much fewer subjects
become a major computational challenge in GS. Principal components regression (PCR) and its derivative, i.e., partial least
squares regression (PLSR), provide a solution through dimensionality reduction. In this study, we show that PCR can
perform better than PLSR in cross validation. PCR often requires extracting more components to achieve the maximum
predictive ability than PLSR and thus may be associated with a higher computational cost. However, application of the HAT
method (a strategy of describing the relationship between the fitted and observed response variables with a hat matrix) to
PCR circumvents conventional cross validation in testing predictive ability, resulting in substantially improved
computational efficiency over PLSR where cross validation is mandatory. Advantages of PCR over PLSR are illustrated
with a simulated trait of a hypothetical population and four agronomical traits of a rice population. The benefit of using PCR
in genomic selection is further demonstrated in an effort to predict 1000 metabolomic traits and 24,973 transcriptomic traits
in the same rice population.

Introduction

Genomic selection (GS) is a new form of marker-assisted
selection (MAS) in modern animal and plant breeding
programs (Hayes et al. 2009; Heffner et al. 2009; Xu et al.
2014). It differs from the conventional MAS in that the
marker detection step has been skipped and all markers are
included in a prediction model regardless their effects (Xu
et al. 2014). Many statistical methods are available for GS,
including popular Bayesian methods (Bayes B) (Meuwissen
et al. 2001), best linear unbiased prediction (BLUP) (Van-
Raden 2008), kernel-based methods (Gianola and De Los
Campos 2008; Gianola et al. 2006), least absolute shrinkage

and selection operator (LASSO) (Tibshirani 1996), and
partial least squares regression (PLSR) (Colombani et al.
2012). There is no such a method as universally optimal for
all traits in all populations. A method performing well for
one trait may predict poorly for another trait, depending on
the nature of the model and the genetic architecture of the
trait. Therefore, all available methods should be tested if
convenient software packages are available.

A large number of predictors with much fewer subjects
become a major computational challenge in GS (De los
Campos et al. 2013). Principal component regression (PCR,
Hotelling 1957; Jeffers 1967; Kendall 1957; Wentzell and
Montoto 2003) and its derivative, i.e., PLSR (Wold 1966),
provide intuitive solutions through dimensionality reduc-
tion. Both methods are commonly used in the field of
chemometrics (Frank and Friedman, 1993; Wentzell and
Montoto 2003). Recently, the two methods have been
introduced to breeding and GS studies (Colombani et al.
2012; Coster et al. 2010; Long et al. 2011; Lorenz et al.
2011). PCR is less popular than PLSR due to the unsu-
pervised nature of extracting principal components only
from predictor variables. This is in contrast to the super-
vised counterpart PLSR (Wentzell and Montoto 2003)
where extracting components depends also on response
variables. Both PCR and PLSR extract independent or
orthogonal components from predictor variables to fit one
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or more response variables, but PLSR also maximizes the
covariance between the resultant components and the
response variables (Lafaye De Micheaux et al. 2017), which
explains why PLSR is called a supervised method. As a
result, PLSR is believed to be more efficient than PCR.
However, experienced PLSR and PCR users often report
that the two prediction methods rarely produce results with
noticeable difference, except that PCR always requires
extracting substantially more components to achieve the
same level of predictive ability as PLSR (Andrew and
Worsfold 1994; Hemmateenejad et al. 2007; Solberg et al.
2009; Wentzell and Montoto 2003). More components in
PCR mean higher computational cost when samples are
large and massive number of predictive variables are
considered.

The unsupervised nature of PCR is not necessarily
undesirable. We can take advantage of this nature and
convert it into a useful tool to improve computational effi-
ciency of prediction. As constructing the principal compo-
nents (scores) does not involve the response variables, PCR
allows an explicit method to assess model predictive ability.
Such a method is called the HAT method, which is a
strategy of describing the relationship between the fitted and
observed response variables with a hat matrix and is rou-
tinely used in linear regression for diagnosis of influential
observations and outliers (Cook 1977; 1979). The HAT
method in linear regression can replace cross validation to
evaluate model predictive ability. Considering a linear
regression model y= Xβ+ e, the HAT method utilizes a hat
matrix to describe the linear relationship between the fitted
and observed response variables, i.e., ŷ ¼ Hy, where the hat
matrix is defined as H ¼ XðXTXÞ�1XT . The predicted
residual error sum of squares (PRESS) is defined as

PRESS ¼
Xn
j¼1

ðyj � ŷjÞ2=ð1� hjjÞ2; ð1Þ

where hjj is the jth diagonal element of the hat matrix (Cook
1979; Hoaglin and Welsch 1978). The PRESS calculated
from the above HAT method is exactly the same as that of
the leave-one-out (LOO) cross validation. In this study, we
propose to develop a hat matrix for PCR to avoid time
consuming cross validation for model assessment. An
approximate HAT method has been developed for BLUP
prediction (Xu 2017). In this study, a similar HAT method
was developed for PCR. The hat matrix for PCR is not the
same as the hat matrix for BLUP. In addition, using the
HAT method of PCR for GS has not been reported in
previous literatures. As PLSR involves the response
variables in construction of the orthogonal components, a
comparable HAT method is not available for PLSR. When
PCR is implemented with the HAT method, it can
outcompete PLSR in both predictive ability and

computational efficiency. Another advantage of PCR over
PLSR is that one only needs to perform eigenvalue
decomposition once on the predictors prior to prediction
for all traits in PCR; while PLSR must conduct matrix
algebra to extract regression components for every trait if
one trait is analyzed at a time as the resultant components
from the decomposition are different across traits.

Materials and methods

Singular value decomposition and eigenvalue
decomposition

Let n be the number of observations and m be the number of
variables (features). In GS, m is often many times larger
than n. Let Xn×m be an n×m feature matrix and yn×1 be an
n×1 vector of responses. The PCR requires eigenvalue
decomposition for matrix XT

m�nXn�m (Shlens 2014), which
is an m×m matrix and may not be decomposed easily when
m is very large. However, the common practice in PCR is to
use singular value decomposition (SVD) for the feature
matrix Xn×m as (Bordier et al. 2011; Mandel 1982; Shlens
2014)

Xn�m ¼ Un�nΔn�mV
T
m�m; ð2Þ

where the columns of U are called the left singular vectors,
the columns of V are called the right singular vectors
and Δ is a rectangular diagonal matrix with non-negative
real numbers on the diagonal. These diagonal elements
are called singular values. How do we connect singular
value decomposition of X with eigenvalue decomposition
of XTX?

Let us replace X in XTX by its SVD (denoted by X=
UΔVT) and perform the following matrix multiplication,

XTX ¼ ðUΔVTÞTðUΔVTÞ ¼ VΔTUTUΔVT ¼ VΔTΔVT ¼ VDVT :

ð3Þ

Clearly, the right singular vector matrix of SVD for X is
identical to the eigenvector matrix for XTX. In addition, the
eigenvalues of XTX are the squares of singular values of X as
indicated by D= ΔTΔ. Therefore, we can simply perform
SVD for the feature matrix X to obtain the eigenvectors and
eigenvalues for matrix XTX. When m is extremely large,
singular value decomposition for X may still be expensive
in terms of computational load. Therefore, we propose to
perform eigenvalue decomposition for matrix XXT which is
an n×n matrix, and then convert its eigenvectors to the
eigenvectors of matrix XTX which is an m×m matrix. We
first need to show that the two matrices, XTX and XXT, have
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the same eigenvalues,

XXT¼ðUΔVTÞðUΔVTÞT¼UΔVVTΔTUT¼UΔΔTUT¼UDUT ;

ð4Þ

where D=ΔΔT. The diagonal non-zero elements of ΔΔT

are equal to those of ΔTΔ. Therefore we conclude that the
eigenvalue decomposition for XXT is XXT ¼ UDUT . It can
be shown that the eigenvectors of XTX can be written as
V ¼ XTUD�1=2. We can prove this by showing

VDVT ¼ XTUD�1=2DD�1=2UTX ¼ XTUUTX ¼ XTX:

ð5Þ

Therefore, in principal component analysis, it is much
more efficient to perform eigenvalue decomposition on XXT

(a lower ranking matrix) first and then find the eigenvectors
of XTX (a higher ranking matrix) using V= XTUD−1/2. In
general, the score matrix can be obtained by the following
simple expression

T ¼ XV ¼ ðUΔVTÞV ¼ UΔ ¼ U
ffiffiffiffi
D

p
: ð6Þ

We can treat the scores in principal component analysis
as the weighted eigenvector of XXT.

Principal component regression

The eigenvector matrix V is also called X loading and it is an
m×m matrix. Let p (p ≤ n) be the number of components
chosen by the investigator. The loading matrix is then
truncated as an m×p matrix. Define an n×p score matrix by
Tn�p ¼ Xn�mVm�p. The principal component regression is to
perform multiple regression of y on the score matrix, y= Tb
+e. The estimated coefficients of scores can be expressed as

bb ¼ ðTTTÞ�1TTy: ð7Þ

Because columns of the score matrix are orthogonal, we
get ðTTTÞ�1 ¼ ðVTXTXVÞ�1 ¼ D�1. Therefore,bb ¼ D�1TTy, which is easy to calculate because D is
diagonal. Substituting T= XV into Eq. (7), we get

bb ¼ VTðXTXÞ�1XTy: ð8Þ

Recall that the original prediction model is y= Xβ+ e
and we have β̂ ¼ ðXTXÞ�1XTy based on the least squares
estimation. Instead of estimating β directly using the above
model, in the PCR analysis, we estimate b first and then
convert b into β using β̂¼Vbb (Greenberg 1975; Næs and
Martens 1988).

Fig. 1 True and estimated QTL effects of the simulated trait from three methods. a True QTL effects of the simulated trait; b estimated effects from
PCR; c estimated effects from PLSR; d estimated effects from BLUP (ridge regression)

14 C. Du et al.



Cross validation (CV) and the HAT prediction

The predicted phenotypic values are
ŷ ¼ Tbb¼TD�1TTy ¼ Hy. Therefore, the HAT matrix is
defined asH ¼ TD�1TT . Let r ¼ ŷ� y ¼ ðI � HÞy be the
residual errors. The PRESS is PRESS ¼Pn

j¼1 r
2
j =ð1� hjjÞ2,

where hjj is the jth diagonal element of the HAT matrix
H. Let SS ¼Pn

j¼1 ðyj � yÞ2 be the total sum of squares.
If y is already standardized, then SS= n− 1. The predictive
ability is R2

HAT ¼ 1� PRESS=SS. The residual error sum of
squares (RESS) is calculated as

Pn
j¼1 r

2
j . The model

goodness of fit is defined as R2
FIT ¼ 1� RESS=SS.

Note that the model goodness of fit R2
FIT is not a

good measure of model efficiency. Goodness of fit is
often close to unity when m is extremely large, a
phenomenon called overfitting. The predictive ability
R2
HAT is an appropriate measure of model efficiency. The

HAT matrix does not involve y and thus R2
HAT can replace

the predictive ability obtained from the LOO cross
validation.

The HAT predictive ability and the predictive ability
obtained from 10-fold cross validation for the PCR
method will be compared along with the predictive ability
obtained from 10-fold cross validation for the PLSR method
and the BLUP evaluated from the HAT method (Xu 2017).
As variation of predictive ability will occur when the
sample is partitioned into ten parts in different ways, we
replicated the cross validation experiment ten times by
randomly partitioning the sample into ten parts differently
each time. The predictive ability reported for each method is
the average of predictive ability of ten replicated CV
analyses.

Design of a simulation experiment

We simulated 1000 individuals of an F2 family generated
from the cross of two inbred lines. Two chromosomes were
simulated, each with 2400 centi-Morgan (cM) in length
covered by 961 evenly distributed co-dominant markers.
The ratio of the three genotypes of each marker, AA,
AB, and BB, is 1:2:1, a typical Mendelian ratio. Each
genotype was numerically coded as 1, 0, and −1 for AA,
AB, and BB, respectively. The distance between two con-
secutive markers is 2.5 cM. The total number of markers for
the entire genome (two chromosomes) is 1922. The
numerically coded genotype data are stored in an n×m=
1000×1922 feature matrix X. The first chromosome contains
20 quantitative trait loci (QTL) with effects and positions
shown in Fig. 1a as well as in Supplementary Table S1. The
second chromosome contains no QTL and this ‘empty’
chromosome was used to control type 1 error in a separate
QTL mapping study. Phenotypes of the 1000 individuals

were generated using

y¼β0 þ
Xm
k¼1

Xkβk þ e; ð9Þ

where β0= 10 is the intercept, βk is the effect assigned to
marker k, and e is the residual error vector following an
Nð0; Iσ2EÞ distribution with σ2E ¼ 10. Of the m= 1922
markers, only 20 randomly selected markers have non-zero
effects which add up to a predefined constant termed the
total genetic effect (Fig. 1a; Table S1). Theoretically, the
total genetic variance collectively contributed by the
simulated QTL is σ2G ¼ 59:4303. The sum of these
individual marker variances is Σg ¼ 46:7806. The differ-
ence between σ2G and Σg is Cg= 12.6497, which is caused
by linkage (covariance) between the simulated QTL. The
heritability of the simulated trait is

h2 ¼ σ2G
σ2G þ σ2E

¼ 59:4303
59:4303þ 10:00

¼ 59:4303
69:4303

¼ 0:8559:

ð10Þ

Although the total contribution of the 20 QTL to the
phenotypic variance is high, contribution from each QTL
varies from 0.36 to 14.39% with an average contribution of
3.37% (Table S1).

Two additional simulated data sets, which represent low
heritability (30%) case and medium heritability (50%) case,
respectively, are also analyzed. The effects of the 20 simu-
lated QTL in these two simulation scenarios are shown in
Table S2. Details of the simulation experiment and the
theoretical analysis are presented in Supplementary Note
S1.

Rice data

Four agronomic traits collected from 210 recombinant
inbred lines (RILs) were used for prediction; they are yield
per plant (YD), 1000-grain weight (KGW), tiller number
per plant (TP), and grain number per plant (GN). The
experiment was replicated four times in multiple years and
multiple locations (MYML) (Hua et al. 2002; 2003; Xing
et al. 2002). The average phenotypic values of each trait
across the replicates were used as the response variables.
The genomic data are represented by 1619 bins inferred
from ~270,000 SNPs of the rice genome (Xie et al. 2010;
Yu et al. 2011). All SNPs within a bin have exactly the
same segregation pattern (perfect linkage disequilibrium or
LD) and thus one SNP from a bin is sufficient to represent
the entire bin. Bin genotypes of the 210 RILs were coded as
1 for the Zhenshan 97 genotype and 0 for the Minghui 63

Genomic selection using principal component regression 15



genotype, which are the two parental lines of the 210 RILs.
In addition to the agronomic traits, we also predicted

1000 metabolomic traits measured from the 210 RILs using
the 1619 bins of the rice genome. The metabolomic data
consisted of 683 metabolites measured from flag leaves and
317 metabolites from germinated seeds (Gong et al. 2013).
The data were collected in 2009 and 2010 (two replicates).
For metabolic profiling, germinated seeds were sampled in
one biological replicate in 2009 and one in 2010, and flag
leaves were sampled in two biological replicates in 2009. In
both tissues, the expression level of each metabolite was
log2 transformed. For each line, we took the average of
expression levels measured from the two replicates as the
measurements of the metabolites.

We also used transcriptomic data as traits to evaluate
the performances of different models in the prediction.
The transcriptomic data contained 24,973 gene expression
traits measured in tissues sampled from flag leaves for all
the 210 RILs (Wang et al. 2014). For each RIL, the RNA
samples used for expression profiling were the mixture (1:1)
of two replicates of that line. The RNA samples were
hybridized with Affymetrix Rice Genome Arrays, and the
expression data were preprocessed using Robust Multiarray
Average (RMA) suite of Affy package and log2
transformed.

Software

All analyses were performed in R. We developed an R
pipeline to implement the genomic prediction using PCR,
PLSR, and BLUP. The source code for the pipeline is
available at github (https://github.com/JulongWei/GS_
PCR). Supplementary Note S2 also provides a detailed
instruction for implementing the R pipeline to reproduce the
results in our study.

Results

Computing time of eigenvalue decomposition for a
hypothetical large data

We used a large simulated data to investigate the compu-
tational efficiency of the new eigenvalue decomposition
method in comparison to the singular value decomposition
algorithm from the svd() function of R and the principal
component analysis method from the prcomp() function of
R. The simulated sample has n= 5000 observations and m
= 100,000 variables stored in matrix Xn×m. This data matrix
was generated via random draws of n×m independent
standardized normal distributions using the following R
statement

X=matrix(rnorm(n�m),n,m).

The three methods of eigenvalue decomposition are (1)
SVD(X), (2) EIGEN(XXT), and (3) PRCOMP(X), where the
second method is the one developed in this study. On a
desktop computer DELL with a single core of Intel i7-
6700K 4.00 GHz CPU, the new method EIGEN(XXT) spent
significantly less computational time than the other two
methods, i.e., SVD(X) and PRCOMP(X), to complete the
eigenvalue decomposition (Table 1).

Analysis of a simulated data set

For a simulated data set generated from the method
described in the Methods section, we performed PCR and
PLSR predictions and also estimated the marker effects.
Figure 1a–c shows the estimated effects of 961 markers on
the first chromosome from the two methods along with the
true effects. In addition, we also present the estimated
effects from the BLUP method (ridge regression) (see Fig.
1d). It is well-known that PCR, PLSR, and BLUP are not
suitable for detection of associations (Frank and Friedman
1993). In contrast to the true QTL effects, we do observe
severe shrinkages of the effects for all three methods. PCR

Table 1 Comparison of computing times for three methods of
eigenvalue decomposition for an X matrix with 5000 rows and
100,000 columns

Method Computing
time (min)

SVD(X) 72.01

EIGEN(XXT) 49.22

PRCOMP(X) 96.35

Fig. 2 Predictive abilities plotted against the number of extracted
components for three methods. (1) Principal component regression
implemented via the HAT method (PCR-HAT), (2) principal compo-
nent regression implemented via the 10-fold cross validation method
(PCR-CV), and (3) partial least squares regression via 10-fold cross
validation (PLSR-CV)
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and PLSR show stronger shrinkage than BLUP. It is sur-
prising that the shrunk estimates of the QTL effects for each
method appear to follow a similar pattern to the true effects.
Two additional simulations also show similar shrinkage
patterns for the three methods (Figure S1 and S2). This
phenomenon implies that the three shrinkage methods may
be able to detect QTL, which is contrary to the common
belief that they are not suitable for association studies.

We now compare the predictive abilities of PCR-HAT,
PCR-CV, and PLSR-CV along with BLUP-HAT, where
HAT and CV indicate the HAT method and the 10-fold
cross validation method, respectively. From the simulated
sample, we plotted the predictive ability against the number
of components for the three methods (Fig. 2). The max-
imum predictive ability of the PCR-HAT method is 0.7568
with 204 extracted components. The maximum predictive
ability and the number of components needed to achieve
this predictive ability are 0.7598 and 225 for the PCR-CV
method and are 0.7598 and 7 for the PLSR method,
respectively. The three methods have virtually the same
predictive ability, but achieved it with quite different
numbers of components. The PLSR method only required
seven components, in contrast to 204 and 225 for the PCR-
HAT and PCR-CV methods, respectively. Of the two PCR-
based methods, predictive ability of the HAT method
decreased more rapidly than the CV method after reaching
the maximum value of predictive ability. Surprisingly,
predictive ability of the PLSR method reached a constant
value of 0.60 after 100 components are extracted.

Predictive ability drawn from a 10-fold cross validation
varies slightly depending on how the 10 parts of the sample
are partitioned. Therefore, we replicated the 10-fold CV ten
times with a different way of partitioning the sample each
time. The average predictive ability and the average num-
bers of extracted components for methods PCR-CV and
PLSR-CV are presented in Table 2 along with the corre-
sponding numbers for the PCR-HAT method. The conclu-
sion from the replicated CV analysis remains the same as
that from one 10-fold CV analysis shown in Fig. 2. Table 2

also shows that the BLUP method has a higher predictive
ability than PCR and PLSR for the simulated data. The
standard deviation of the 10 replicates appears to be small
for both the PCR and PLSR methods. Two-sample t-test
indicated there is no significant difference in predictive

Table 2 Average predictive abilities and numbers of components
extracted for four methods for the simulated trait from ten replicated
10-fold cross validation analyses

Predictive ability Number of
components

Method Mean StdEv Mean StdEv

PCR-HAT 0.7568 — 204.0 —

PCR-CV 0.7567a 0.0038 220.3 11.0156

PLSR-CV 0.7572a 0.0039 8.0 0.4714

BLUP-HAT 0.7731 — — —

Class labels a, b, or c denote significant differences between methods
at level of p < 0.05

Fig. 3 Predictive abilities of ten replicated cross validations plotted
against the number of extracted components for two methods. (1)
Principal component regression implemented via the 10-fold cross
validation method (PCR-CV) and (2) Partial least squares regression
via 10-fold cross validation (PLSR-CV)

Table 3 Average predictive abilities and numbers of extracted
components of four methods for four traits of the rice data from ten
replicated 10-fold cross validation analyses

Trait Method Predictive ability Number of
components

Mean StdEv Mean StdEv

YD PCR-HAT 0.1351 — 25 —

PCR-CV 0.1422a 0.0185 50.7 12.5082

PLSR-CV 0.1181b 0.0245 2.9 0.3162

BLUP-HAT 0.1991 — — —

TP PCR-HAT 0.5088 — 44 —

PCR-CV 0.5054a 0.0097 46.1 7.9085

PLSR-CV 0.5045a 0.0112 3.2 0.4216

BLUP-HAT 0.5373 — — —

GN PCR-HAT 0.3314 — 62 —

PCR-CV 0.3542a 0.0310 109.0 45.9347

PLSR-CV 0.3456a 0.0313 5.2 1.3984

BLUP-HAT 0.4184 — — —

KGW PCR-HAT 0.7466 — 94 —

PCR-CV 0.7470a 0.0172 138.5 15.5009

PLSR-CV 0.7316b 0.0174 9.9 3.6347

BLUP-HAT 0.7598 — — —

Class labels a, b, or c denote significant differences between methods
at level of p < 0.05
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ability between PCR-CV and PLSR-CV (p= 0.3867). The
predictive ability plots for all replicates of the two methods
(PCR-CV and PLSR-CV) are shown in Fig. 3. The two
methods were further compared with two additional sets of
β values, with 30% (low heritability) and 50% (medium
heritability) of phenotypic variation being explained by the
simulated QTL in two scenarios, respectively. The results
showed that PCR consistently had higher predictive ability
than PLSR (Table S3).

Analysis of rice data

The four methods (PCR-HAT, PCR-CV, PLSR-CV, and
BLUP-HAT) were also used to analyze four agronomic
traits of 210 lines of an RIL rice population. The results
are summarized in Table 3. The conclusions in terms of
predictive ability are slightly different from that of
the simulated data analysis. In the real data analysis, the
PCR-HAT method often has a slightly lower predictive
ability than the PCR-CV method. However, both PCR-HAT
and PCR-CV have higher predictive abilities than the
PLSR-CV method. Two-sample t-test was performed to
compare the predictive abilities between PCR-CV and
PLSR-CV when four agronomic traits were considered,
respectively. In the YD and KGW traits, PCR-CV has
significantly higher predictive ability than PLSR-CV (p <
0.05). No significant difference in predictive ability was
detected between PCR-CV and PLSR-CV (p > 0.05) for
traits TP and GN, although visual inspection showed that
PCR-CV tends to predict better than PLSR. The BLUP-
HAT method again shows higher predictive ability than the

PCR and PLSR methods. Does this mean that BLUP-HAT
is always better than PCR and PLSR? These four agronomic
traits are a small number of traits under evaluation. In the
next two sections, we predicted 1000 metabolomic traits
and 24,994 transcriptomic traits to compare the perfor-
mances of the four methods.

Prediction of 1000 metabolomic traits of the rice
data

We now compare the predictive abilities of 1000 metabo-
lomic traits with the 1619 bin genotypes of the rice popu-
lation using the four methods (PCR-HAT, PCR-CV, PLSR-
CV, and BLUP-HAT). Six pair-wise plots are shown in Fig.
4, where the diagonal lines of each panel indicates the
equality line between the two methods under the compar-
ison. For each panel (comparison), if more points are above
the diagonal line, the method on the y-axis, on average,
predicts better than the method on the x-axis. The mean
predictive abilities (mean ± stdev) and pair-wise compar-
isons of the four methods are summarized in Table 4. Note
that the standard deviations of these predictive abilities
appear to be large because these represent the summary
scores for 1000 metabolomic traits, which is similar to the
values in Table 5 where many thousands of transcriptomic
traits are considered. Overall, BLUP-HAT is the best
method, followed by PCR-HAT and PCR-CV, and PLSR-
CV is the worst one. Two-sample t-test suggested that PCR-
CV had significantly higher predictive ability than PLSR-
CV (p < 0.05). The two PCR-based methods performed
equally well. The PCR-HAT method, however, has 211

Fig. 4 Pair-wise comparisons of
predictive abilities between four
methods of genomic prediction
drawn from 1000 metabolites of
an RIL rice population
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metabolites predicted better than the BLUP-HAT method.
We were not able to show this result when using only four
agronomic traits. The big data (1000 metabolomic traits)
indeed help achieve more than what can be achieved in
traditional field experiments.

Regarding the computational time of the four methods
for prediction of the 1000 metabolites, PCR-HAT and
BLUP-HAT only took less than 2 min to complete the
analysis, while PLSR and PCR-CV took about 6.3 and
2.9 h, respectively. The gain in computational efficiency
mainly came with the HAT prediction that avoids lengthy
cross validations. One may wonder whether a similar HAT
method can be used for PLSR prediction. The answer is NO
because PLSR requires response variables to construct the
scores. Once the response variables are involved in gen-
erating the predictor components (the scores), the HAT
method will exaggerate the predictive ability. In PCR, the
scores are constructed using only the predictors and thus the
HAT method works well, just like the HAT prediction in
ordinary least squares regression. Why do PCR-HAT and
PCR-CV generate slightly different predictions? The
answer is that we used the entire data to construct the scores
in PCR-HAT, while the PCR-CV constructs the scores only
based on portion of the data (training set). Simulation stu-
dies and real data analysis both showed that the two PCR-
based methods perform equally well.

Prediction of transcriptomic traits of the rice data

Finally, we used a much larger data set of 24,973 tran-
scriptomic traits (big data) to compare the prediction
behaviors of the four methods (PCR-HAT, PCR-CV,
PLSR-CV, and BLUP-HAT). Six pair-wise plots are shown
in Fig. 5. The mean predictive ability and pair-wide com-
parisons are summarized in Table 5. The conclusion
remains the same as that obtained from the metabolomic
trait prediction. The BLUP-HAT method gave the best
prediction, followed by PCR-HAT, PCR-CV, and PLSR-
CV is the worst one. Two-sample t-test suggested that PCR-
CV had significantly higher predictive ability than PLSR-
CV (p < 0.001). Again, the two PCR-based methods per-
formed equally well with PCR-HAT having 15,301 (out of
24,973) gene expressions predicted better than PCR-CV,
and the average predictive ability of PCR-HAT was slightly
higher than that of PCR-CV. PCR-HAT had 21,954 gene
expressions (~90% of all expression traits) with higher
predictive ability than PLSR-CV, and 5474 expression traits
predicted better than BLUP-HAT.

Considering the expensive computational time of PCR-
CV and PLSR-CV, we performed the prediction using the
HPCC cluster at University of California Riverside (UCR)
with 32 CPUs. The two HAT methods, PCR-HAT and
BLUP-HAT, took about 2 and 7 min to complete the

Table 4 Average predictive abilities of four methods for predicting 1000 metabolomic traits and pair-wise comparisons of the numbers of higher
predicted metabolites between methods

Method Predictive ability >PCR-CV >PLSR-CV >BLUP-HAT*

PCR-HAT 0.2218 ± 0.2157aA 523 856 211

PCR-CV 0.2233 ± 0.2191aAB 949 165

PLSR-CV 0.2033 ± 0.2231bA 6

BLUP-HAT 0.2453 ± 0.2233cB

Class labels a, b, or c denote significant differences between methods at level of p < 0.05

Class labels A, B, or C denote significant differences between methods at level of p < 0.01

*Indicates the numbers of metabolites with higher predictive ability than BLUP-HAT for the methods listed in the first column. For example, of the
1000 metabolites, the PCR-HAT method has 211 metabolites with predictive ability higher than the BLUP-HAT method

Table 5 Average predictive abilities of four methods for predicting 24,973 transcripts and pair-wise comparisons of the numbers of higher
predicted expressions between methods

Method Predictive ability >PCR-CV >PLSR-CV >BLUP-HAT*

PCR-HAT 0.1261 ± 0.1825aA 15301 21954 6074

PCR-CV 0.1240 ± 0.1870aA 21016 5474

PLSR-CV 0.1019 ± 0.1870bB 331

BLUP-HAT 0.1431 ± 0.1887cC

Class labels a, b, or c denote significant differences between methods at level of p < 0.05

Class labels A, B, or C denote significant differences between methods at level of p < 0.01

*Indicates the number of gene expressions with higher predictive ability than BLUP-HAT for the methods listed in the first column
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analysis, respectively. The two CV-based methods, PCR-
CV and PLSR-CV, however, required substantially more
computational time with about 2.5 and 6 h, respectively.

Discussion

We developed a new method of eigenvalue decomposition
for PCR. The new method requires eigenvalue decom-
position for an n×n matrix rather than an m×m matrix,
where m (number of variables) is often substantially larger
than n (number of observations) in GS. In addition to PCR,
principal component analysis (PCA) is often used in
genome-wide association studies (GWAS) to control
population structure. The eigenvalue decomposition applied
to GWAS is an m×m variance-covariance matrix. However,
with the new method, we can decompose the n×n kinship
matrix and convert its eigenvectors into those of an m×m
covariance matrix, which is further used to calculate scores
as input variables to control potential population structure.

This study does not intend to compare efficiencies of all
possible prediction methods (see Xu et al. (2017) for
comprehensive comparison of different methods). Rather,
we hope to demonstrate the advantage of the PCR method
over the PLSR method. It has been commonly believed that
PLSR is more efficient than PCR because PLSR takes
response variable information into account when con-
structing scores components. Moreover, PLSR can be used
to model relationship between multivariate response vari-
ables and multidimensional features, and it can be easily
implemented, for example, by ‘pls’ package in R (Wehrens
and Mevik 2007). Nevertheless, we observed that PCR is

often more efficient with a slight higher predictive ability
than PLSR in our GS analyses. This may be ascribed to the
distinction between two component-extraction processes
used in PCR and PLSR. Two optimization steps are
involved in PCR: (1) derivation of sorted components from
predictor variables without using any information from the
response variable(s), and (2) identification of a sub-
regression model, which best explains the response vari-
able(s) with the selected components. In PLSR, the only
optimization step is extraction of the regression components
from predictors by maximizing the covariance between
these components and the response variables; therefore, the
following regression step does not provide new contribution
to the model optimization. It seems that PCR has advantage
over PLSR by feeding the regression step with improved
data. The component-extraction step in PCR may be able to
distill better candidate regression components by scrutiniz-
ing the covariance structure among predictive variables.
Such a structure, if exists, may be overlooked by PLSR in
which the maximization of component-response covariance
is the priority. However, the performances of different
methods depend on the nature of data which are analyzed.
This explains why PCR had higher predictive ability than
PLSR for some metabolomic and transcriptomic traits while
the results were opposite when some other metabolomics
and transcriptomic traits were considered, with PCR being
generally preferred to PLSR in terms of predictive ability.
Although PCR requires extracting more components to
achieve the maximum predictive ability, application of the
HAT method to PCR is computationally more efficient than
PLSR because of the avoidance of lengthy cross validation.
Therefore, PCR-HAT is preferred to PLSR in GS. On the

Fig. 5 Pair-wise comparisons of
predictive abilities between four
methods of genomic prediction
drawn from 24,973 transcripts of
an RIL rice population
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basis of our results, neither PCR nor PLSR is as efficient as
BLUP in general. However, the metabolomic prediction
studies showed that 211 metabolites (out of 1000) have
higher predictive ability with PCR than with BLUP. Out of
all 24,973 expression traits, 6074 of them were predicted
better by PCR-HAT than BLUP-HAT. In reality, all avail-
able prediction methods should be used in GS because
different methods vary in predictive ability across different
traits over different populations (De los Campos et al.
2013).

Neither PCR nor PLSR was developed for association
studies. In fact, the original developers already warned that
such a method is only suitable for prediction (Tobias 1995).
However, with a RIL population we showed that the
method heavily shrunk the effects (Frank and Friedman
1993), just like ridge regression (BLUP), but the shrinkage
appears to be proportional to the true QTL effects. The
shrinkage estimates and the true effects vary with similar
patterns, which implies that the shrinkage methods may be
used for association studies. This conjecture needs to be
verified using other populations, for example, a natural
population of less related genotypes. Duarte et al. (2014)
actually recognized the similarity of the pattern between
shrunk effects and estimated effects under the fixed model
GWAS. They developed a simple method to bring the
shrunk test statistics back to the levels comparable to the
unshrunk test statistics. There must be a similar method that
can be applied to PCR and PLSR to make them suitable for
association studies. Further investigation is necessary to
unshrink the PCR and PLSR estimated effects and their test
statistics.
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Appendix

A toy example for eigenvalue demonstration
A toy data with n= 3 observations and m= 5 variables

are used to demonstrate the new method of eigenvalue

decomposition. This matrix is stored in Xn×m,

X ¼
�1:701 �0:863 �2:612 �0:408 �2:263

1:401 0:453 0:945 �0:121 0:766

0:318 0:879 0:668 2:542 1:547

2
64

3
75:

The ultimate goal is to perform eigenvalue decomposi-
tion on XTX, an m×m= 5×5 symmetric matrix,

XTX ¼

4:9573 2:3821 5:9794 1:3328 5:4145

2:3821 1:7226 3:2694 2:5317 3:6598

5:9794 3:2694 8:1618 2:6494 7:6682

1:3328 2:5317 2:6494 6:6429 4:7631

5:4145 3:6598 7:6682 4:7631 8:1011

2
6666664

3
7777775
:

Eigenvalue decomposition of this matrix using the eigen
(XTX) function in R produces the following eigenvalues
(converted into a diagonal matrix),

D5�5 ¼

23:5502 0 0 0 0

0 5:6757 0 0 0

0 0 0:3598 0 0

0 0 0 0:0000 0

0 0 0 0 0:0000

2
6666664

3
7777775

and eigenvectors,

V5�5 ¼

�0:4082 �0:3771 0:7910 0:0000 �0:2559

�0:2645 0:1027 0:2087 �0:1936 0:9157

�0:5621 �0:3340 �0:4918 �0:5598 �0:1312

�0:3246 0:8554 0:1506 �0:2517 �0:2772

�0:5848 0:0630 �0:2574 0:7654 0:0445

2
6666664

3
7777775

Note that the rank of matrix XTX is p ¼ minðn;mÞ ¼
minð3; 5Þ ¼ 3 in this case. Therefore, there are only three non-
zero eigenvalues in this example. It is a common practice to
delete the zero eigenvalues and also delete all columns of the
eigenvectors corresponding to the zero eigenvalues because the
values of those columns are irrelevant to the principal compo-
nent analysis. After this manipulation, we have eigenvalues of

D3�3 ¼
23:5502 0 0

0 5:6757 0

0 0 0:3598

2
64

3
75;

and eigenvectors of

V5�3¼

�0:4082 �0:3771 0:7910

�0:2645 0:1027 0:2087

�0:5621 �0:3340 �0:4918

�0:3246 0:8554 0:1506

�0:5848 0:0630 �0:2574

2
6666664

3
7777775
:
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We now use the svd(X) function in R to decompose X so
that X=U ΔVT, where

U3�3 ¼
�0:7927 0:3919 0:4670

0:3362 �0:3579 0:8711

0:5085 0:8475 0:1520

2
64

3
75;

Δ3�5 ¼
4:8528 0 0 0 0

0 2:3823 0 0 0

0 0 0:5998 0 0

2
64

3
75;

and

V5�5 ¼

0:4082 �0:3771 0:7910 0:0000 �0:2559

0:2645 0:1027 0:2087 �0:1936 0:9157

0:5621 �0:3340 �0:4918 �0:5598 �0:1312

0:3246 0:8554 0:1506 �0:2517 �0:2772

0:5848 0:0630 �0:2574 0:7654 0:0445

2
6666664

3
7777775
:

The svd() function deletes zero eigenvalues and columns
of eigenvectors corresponding the zero eigenvalues. Note
that the right eigenvectors are the same as the eigenvectors
of matrix XTX (some columns differ by signs, but irrelevant
to principal components analysis). Note that

XTX ¼ VΔTΔVT ¼ VDVT ;

where

D5�5 ¼ ΔT
5�3Δ3�5 ¼

4:85282 0 0 0 0

0 2:38232 0 0 0

0 0 0:59982 0 0

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775
:

Therefore, singular value decomposition on X will produce
information for both eigenvalues and eigenvectors of matrix XTX.

When the number of variables (m) is substantially larger
than the sample size (n), an alternative but more efficient
way to do eigenvalue decomposition for XTX (an m×m
matrix) is through eigenvalue decomposition on XXT (an
n×n matrix). This matrix from the toy data is

XXT ¼
15:7483 �6:9265 �7:5823

�6:9265 3:6624 2:3524

�7:5823 2:3524 10:1750

2
64

3
75:

Eigenvalue decomposition for XXT=UDUT produces

D ¼
23:5502 0 0

0 5:6757 0

0 0 0:3598

2
64

3
75

and

U3�3 ¼
0:7927 0:3919 0:4670

�0:3362 �0:3579 0:8711

�0:5085 0:8475 0:1520

2
64

3
75:

Let us define B as

B ¼ XTUD�1=2 ¼

�0:4082 �0:3771 �0:7910

�0:2645 0:1027 �0:2087

�0:5621 �0:3340 0:4918

�0:3246 0:8554 �0:1506

�0:5848 0:0630 0:2574

2
6666664

3
7777775
:

This matrix is exactly the same as V, the eigenvectors of
matrix XTX after deleting columns corresponding to zero
eigenvalues. Therefore, the eigenvectors of XTX can be
obtained via eigenvectors of matrix XXT.

Principal components (also called scores) are constructed
based on

T ¼ XV ¼
3:8469 0:9336 �0:2801

�1:6317 �0:8527 �0:5225

�2:4677 2:0192 �0:0912

2
64

3
75:

One can verify that TTT=D. If we have a response
variable y, a principal component regression can be per-
formed using y as the dependent variable and T as the
predictor matrix.
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