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Staged Metaprogramming for Shader System Development

KERRY A. SEITZ, JR., University of California, Davis, USA
TIM FOLEY, NVIDIA, USA
SERBAN D. PORUMBESCU, University of California, Davis, USA
JOHN D. OWENS, University of California, Davis, USA

The shader system for a modern game engine comprises much more than
just compilation of source code to executable kernels. Shaders must also
be exposed to art tools, interfaced with engine code, and specialized for
performance. Engines typically address each of these tasks in an ad hoc
fashion, without a unifying abstraction. The alternative of developing a
more powerful compiler framework is prohibitive for most engines.

In this paper, we identify staged metaprogramming as a unifying abstrac-
tion and implementation strategy to develop a powerful shader system with
modest effort. By using a multi-stage language to performmetaprogramming
at compile time, engine-specific code can consume, analyze, transform, and
generate shader code that will execute at runtime. Staged metaprogramming
reduces the effort required to implement a shader system that provides ear-
lier error detection, avoids repeat declarations of shader parameters, and
explores opportunities to improve performance.

To demonstrate the value of this approach, we design and implement a
shader system, called Selos, built using staged metaprogramming. In our sys-
tem, shader and application code are written in the same language and can
share types and functions. We implement a design space exploration frame-
work for Selos that investigates static versus dynamic composition of shader
features, exploring the impact of shader specialization in a deferred renderer.
Staged metaprogramming allows Selos to provide compelling features with
a simple implementation.

CCS Concepts: • Computing methodologies → Computer graphics; •
Software and its engineering → Compilers; Domain specific languages;
Extensible languages.
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1 INTRODUCTION
Developers of real-time 3D game engines like Unity,1 Unreal En-
gine,2 and other in-house engines3 want to deliver high-quality,
efficient, and accessible frameworks on which many types of games
can be built. In order to accomplish this goal, they must implement
a shader system that provides a variety of functionality, including
shader parameter reflection and metadata extraction, effect and ma-
terial systems, shader optimization frameworks, and cross compil-
ers to support different target graphics APIs (e.g., Direct3D [Blythe
2006] and OpenGL [Segal et al. 2015]). Such a shader system is mul-
tifaceted – it must provide different interfaces to different clients
of the system. These clients include a wide variety of users (rang-
ing from expert graphics programmers to non-technical artists),
as well as runtime engine code that configures shaders for high-
performance execution. As a result, engine developers spend a lot of
effort designing shader systems that both result in highly optimized
final code while simultaneously providing the appropriate interfaces
for each type of person involved in development.
The shader programming interfaces in graphics APIs do not di-

rectly help with building such multifaceted shader systems, because
they only focus on issues that affect loading and execution of GPU
shader code. Modern graphics APIs are designed to facilitate robust,
high-performance implementations on a wide range of hardware,
and as such their shader programming interfaces focus on minimal,
low-level abstractions (as evidenced by the shift from high-level
languages as the standard interface to lower-level intermediate
representations like SPIR-V [Kessenich and Ouriel 2018]). Thus, de-
velopers are left to create layered implementations of missing facets
on top of these API interfaces.

Engine developers must balance the cost to implement function-
ality against the benefits in improved features or robustness of the
system. Features are typically built in an incremental, ad hoc fashion,
with increasing complexity as the system evolves. The initial version
of a shader system might read and write shaders as strings of text,
performing pattern matching, substitution, etc. To add further func-
tionality, an engine might wrap an underlying shading language
with a custom domain-specific language (DSL). Finally, makingmore
invasive changes to a shading language requires building or modi-
fying a compiler. Because engines require different design choices,
it is difficult to amortize this work by developing a single shader
system that can be used in multiple engines.
When examining the disparate techniques used to implement

shader systems, we observe that they largely fall under the umbrella
of metaprogramming: writing code that manipulates other code.

1https://unity3d.com/
2https://www.unrealengine.com/
3e.g, http://www.frostbite.com/ and https://www.cryengine.com/
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Textual-based processing tools, DSL implementations, and compilers
must all read, analyze, transform, and generate code. However, the
metaprogramming methods currently employed by modern shader
systems are on an unfavorable continuum – methods with greater
capabilities require greater effort for implementors of the shader
systems. Using the key insight that these techniques are all examples
of metaprogramming, we present the following contributions:

• We identify staged metaprogramming as a unifying method-
ology that sidesteps the trade-off between capabilities and
implementation complexity.

• We present the design of Selos,4 a shader system built using
staged metaprogramming, to demonstrate the efficacy of this
technique.

• We demonstrate how staged metaprogramming can open
opportunities for optimizations by creating a design space
exploration framework in our system. This framework inves-
tigates static versus dynamic composition of features in order
to balance between execution efficiency and the number of
compiled shader variants.

We present the design of Selos in Section 5. Prior to that, we
introduce staged metaprogramming, the underlying methodology
onwhich it is built (Section 4). Tomotivate our decision to use staged
metaprogramming, we examine other methods of creating shader
systems (Section 3), which also inform our design goals (Section 2).
We then use Selos to explore static versus dynamic composition of
shader features in Section 6.

2 DESIGN GOALS
Motivated by issues in other modern systems, we built a shader
system guided by the following goals:

• Minimize implementation effort andmaintenance costs
Each engine requires a unique shader system, customized to
the engine’s design and the needs of its users. Developers
must often balance between the effort required to add features
versus the benefits those features provide to users. To better
enable the development of robust and feature-rich shader sys-
tems, we must minimize the resource investments required
to build them.

• Early error detection
Underlying graphics APIs, as well as many shader systems,
expose shader parameters to CPU code through “stringly-
typed” runtime interfaces, which provide poor validation. In
contrast, our goal is to detect errors as early as possible.

• Don’t Repeat Yourself (DRY)5

Programmers should not need to declare the same shader
parameter, uniform buffer, etc. in more than one place.

• Performance
In real-time graphics applications, performance is paramount,
so a shader system must not decrease game runtime perfor-
mance. The system must strive to minimize overheads to
GPU shader code and CPU engine code, as well as enable
developers to explore opportunities to improve performance.

4https://github.com/kseitz/selos
5https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

• Productivity for artists and technical artists
While engine and graphics developers often prioritize perfor-
mance over programming inconveniences, shader systems are
also used by artists for whom productivity is key. Therefore, a
shader system must provide artists with familiar workflows.

• Support options for static and dynamic composition
Game engines generate specialized shader variants to achieve
maximum performance. However, complete static special-
ization can lead to additional overheads that decrease per-
formance. Thus, exploring the trade-offs between static and
dynamic composition is important for future shader systems.

Given the landscape of existing solutions (Section 3), our first de-
sign goal (“Minimize implementation effort and maintenance costs”)
seems at odds with some of our other goals. While this observation
is true in many languages, we will demonstrate that certain pro-
gramming techniques alleviate this concern. Specifically, our system
meets these goals using staged metaprogramming (Section 4).

Our set of design goals cannot be readily realized in current ver-
sions of the languages commonly used by game engines today (e.g.,
C++, HLSL, GLSL) because they lack more modern programming
techniques. As such, we do not restrict ourselves to using these lan-
guages. Therefore, while ease of adoption is an important practical
consideration, it is largely orthogonal to the core contributions of
this paper. While we explore opportunities presented by other lan-
guages and programming techniques, we discuss the potential for
these techniques to be used in future versions of C++ in Section 8.

3 EXISTING SOLUTIONS
In this section, we briefly discuss existing ways to implement some
aspects of a shader system, ordered by increasing levels of com-
plexity. Since we cannot survey every possible solution, we have
chosen a few representative examples to illustrate the need for a
better overall approach. Note that when we refer to HLSL below, we
could substitute any modern shading language like GLSL or Metal
Shading Language. As we will discuss, our key insight is that all of
these methods heavily utilize some form of metaprogramming.

3.1 Plain C++ and HLSL
Simple graphics applications might rely on the facilities provided
by C++, HLSL, and the Direct3D (D3D) API directly. Consider this
(abridged) example shader written in HLSL:
cbuffer LightData : register(b0) {

float3 lightDirection;

};

...

float4 surfaceShader(...) {

...

#if defined(STANDARD)

color = evalStandardMaterial(shadingData);

#elif defined(SUBSURFACE)

color = evalSubsurfaceMaterial(shadingData);

#elif defined(CLOTH)

color = evalClothMaterial(shadingData);

#endif

return color * max(0, dot(shadingData.normal, lightDirection));

}
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This shader has one parameter (lightDirection) and expresses
three specialization options (STANDARD, SUBSURFACE, and CLOTH)
that each use a different bidirectional reflectance distribution func-
tion (BRDF). The only way we know about these specialization
options is by examining the HLSL code directly; therefore, to gen-
erate specialized shader variants, a shader author must manually
specify the appropriate #defines to the shader compiler.
Shading languages and their corresponding graphics APIs are

only concerned with providing an interface to programmers. Thus,
a programmer would need to separately prepare a list of parameters
(e.g., using XML) to expose them to a GUI-based tool for artists.
Similarly, coordinating the interaction between CPU and GPU code
is left to the programmer. Hence, setting the value of parameters
from C++ is a manual process as well:

dxContext->PSSetConstantBuffers(0, 1, &lightDataBuf)

where the first argument refers to the register binding slot writ-
ten in the shader (register(b0)). Neither HLSL nor the D3D API
perform any checks to ensure that the correct register was used
or that the layout of the CPU-side lightDataBuf data structure
matches the layout of the GPU-side LightData constant buffer.
To work around these issues, one could write a shared header

that declares a common data structure for the constant buffer, using
C preprocessor #defines to handle the differences between HLSL
and C++. Each time a programmer authors such a shared struct,
they need to manually account for the packing rules of the under-
lying API so that the layout of the CPU-side struct matches what
the shader expects. Furthermore, a developer can write additional
infrastructure for each shader to better interface with C++ code.
Unreal Engine uses this approach, where each HLSL shader has a
corresponding C++ class written by the shader writer [Epic Games,
Inc. 2019]. Though these classes provide a clean interface for other
parts of the engine to use the shaders, the programmer is responsible
for ensuring that, e.g., the parameter names and types match those
specified in the separately-written HLSL code.
The user-written class implementations make heavy use of pre-

processor macros defined by Unreal Engine. By using the macro
mechanisms built into C++ and HLSL, the Unreal Engine developers
do not need to invest resources in developing their own mecha-
nisms. However, C preprocessor facilities are limited in what they
can express, resulting in extra effort for users of the engine.

3.2 A Layered DSL with Embedded HLSL
To provide further functionality, some engines implement a custom
layered DSL on top of an underlying shading language. Shaders in
Unity are written in ShaderLab [Unity Technologies 2019]:
Shader "SurfaceShader" {

Properties {

lightDirection {"Light Direction", Vector} = (0,0,0)

}

...

CGPROGRAM

#pragma multi_compile STANDARD SUBSURFACE CLOTH

float3 lightDirection;

float4 surfaceShader(...) {

...

#if defined(STANDARD)

color = evalStandardMaterial(shadingData);

#elif defined(SUBSURFACE)

color = evalSubsurfaceMaterial(shadingData);

#elif defined(CLOTH)

color = evalClothMaterial(shadingData);

#endif

return color * max(0, dot(shadingData.normal, lightDirection));

}

ENDCG

}

The code between CGPROGRAM and ENDCG is HLSL. Shader variants
are again expressed using preprocessor #if commands. However,
ShaderLab uses a custom preprocessor to implement the #pragma
multi_compile syntax, which exposes the variant options to the
system and allows the engine to generate the set of compiled variants
automatically. After textual preprocessing, ShaderLab treats HLSL
code as a black box.
Because the ShaderLab compiler has no understanding of the

embedded HLSL code, shader authors must repeat themselves by
declaring each artist-configurable parameter twice – once in the
HLSL and again in the “Properties” listing – which is more error
prone and can lead to issues with refactoring tools. Analogous to
the D3D API, programmers use a “stringly-typed” interface to set
shader parameters, which is also error prone:

shader.SetVector("lightDirection", Vector4(1.0, 1.0, 1.0, 1.0));

// bug: lightDirection is a float3 in the shader, not a float4

If a programmer specifies the wrong parameter name, the system
may generate a runtime error. However, if the wrong type is used
(as above), no error is reported and instead they are left with a bug.

By using a mix of preprocessor features and a simple DSL com-
piler, the effort required to implement Unity’s ShaderLab is relatively
modest. However, the system precludes early error detection and
results in shader authors repeating themselves, thereby hindering
user productivity.

3.3 A DSL That Manipulates and Generates HLSL
Bungie’s TFX language [Tatarchuk and Tchou 2017] features better
integration with HLSL at the cost of greater implementation effort
for the engine developers. The surface shader example written in
TFX might look (roughly) like:
import "MaterialComponents.tfx"

c_materialType:* material @default(none);

float3 lightDirection @default(float3(0,0,0)) @UI(Slider);

...

#hlsl

float4 surfaceShader(...) {

...

color = material.apply(shadingData);

return color * max(0, dot(shadingData.normal, lightDirection));

}

#end

In this example, the different material BRDFs are written as “com-
ponents” (imported from a separate file). The shader parameter
named material will be exposed to a GUI, where an artist can
select a specific implementation of the c_materialType interface

ACM Trans. Graph., Vol. 38, No. 6, Article 202. Publication date: November 2019.
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(e.g., c_materialType:standard, c_materialType:cloth) in or-
der to generate a specialized shader variant for the required BRDF.

While the TFX compiler does not understand all of HLSL, it does
know enough to manipulate it. For example, it can translate DSL
features like components (material.apply(shadingData)) into
plain HLSL. TFX also has a custom metadata system that allows
one to express information (e.g., default values, GUI controls) di-
rectly alongside the parameter declaration, thus avoiding the double-
declaration problem in ShaderLab. This feature is possible because
TFX generates HLSL from these parameters, rather than just treating
HLSL code as a black box.
TFX provides multiple mechanisms for communicating runtime

data to shaders. “Object channels” and “global channels” allow
scripts and artist-authored content to bind data to shaders. Because
this data comes from content (not code), it is loaded dynamically
(and, thus, cannot be validated at compile time). In contrast, “externs”
communicate engine-provided data to shaders. This data is tightly
bound to the C++ engine code, so any changes require recompilation
of the engine and rebaking of the affected shaders.
The TFX system provides a better way to encapsulate shader

variants and does not require shader authors to repeat themselves.
However, such features require tighter integration with HLSL, re-
sulting in higher implementation effort.

3.4 Modifying HLSL
Rather than creating a DSL that embeds HLSL, one could instead
extend the shading language itself. The Slang shading language [He
et al. 2018] extends HLSL by adding some general-purpose language
features from other popular programming languages. Here is the
surface shader example in Slang:
include "MaterialComponents.slang"

float3 lightDirection;

...

float4 surfaceShader<M : IMaterial>(ParameterBlock<M> material) {

...

color = material.eval(shadingData);

return color * max(0, dot(shadingData.normal, lightDirection));

}

Similar to TFX, the material BRDFs are again written as compo-
nents that implement a common interface (IMaterial). Slang uses
generics, constrained by these interfaces, to express specialization
options (<M : IMaterial>). Programmers use the Slang runtime
API to generate specialized shader variants:

Module* module = loadModule(/* path */);

EntryPoint* entry = findEntryPoint(module, "surfaceShader");

Type* clothType = findType(module, "ClothMaterial");

Kernel* clothShader = specializeEntryPoint(entry, &clothType, 1);

This introspection API provides runtime validation to ensure that
the final types are compatible with the interface constraints. The
API also includes the ability to query type layout information (not
shown here), which the renderer can use to properly setup and
populate parameter blocks by accounting for GPU data packing
rules. However, since the API uses strings to identify entry points,
types, etc., it cannot perform validation at application compile time.
Slang is a shader compiler, not a multifaceted shader system.

Therefore, it does not directly provide the various interfaces needed

by such a system, instead requiring that users (e.g.) implement
artist tools and facilitate setting parameters across the CPU-GPU
boundary.
Creating a new language and compiler to implement missing

shader system features is cost prohibitive for the vast majority of
development teams. Similarly, forking an existing compiler (such
as Slang or Microsoft’s DirectX Shader Compiler [Microsoft 2019])
brings alongmaintenance costs as both the fork and themain project
continue to evolve. In contrast, the previous approaches discussed in
this section could reuse an existing compiler without modification,
thereby limiting the resource investments needed to use them.

3.5 Summary
While each subsequent example presented above improves upon
some deficiencies of the previous examples, this improvement comes
at the cost of greater implementation effort. Ideally, we believe
developers should be able to achieve the results of the more complex
solutions, while requiring effort similar to the simpler methods.

When examining these solutions, we observe that the techniques
they employ are all examples of metaprogramming. We broadly de-
fine metaprogramming as writing code that manipulates other code,
which includes reading, analyzing, transforming, or generating code.
C preprocessor facilities, custom DSL implementations, and shading
language compiler modifications all fit this definition. Therefore, we
hypothesize that the effort required to implement a robust shading
system can be reduced by making metaprogramming a fundamental
design principle and utilizing a metaprogramming technique that
sidesteps this apparent trade-off between capability and complexity.

4 STAGED METAPROGRAMMING
The principal design decision for our system, underlying the core of
its implementation, is to use a technique called staged metaprogram-
ming. Unlike the metaprogramming techniques commonly used by
shader systems today (discussed in Section 3), staged metaprogram-
ming provides a more favorable balance between the effort required
to use it and the capabilities it provides, which better enables us
to achieve our design goals. In this section, we will present staged
metaprogramming and motivate our decision to use it as a basis for
our system.

4.1 Definition
Our definition of staged metaprogramming aligns with the descrip-
tion of amulti-level language in Taha’s dissertation [1999]. In staged
metaprogramming, code running in an earlier stage of execution can
construct and manipulate code that will run in a later stage using
explicit staging annotations (e.g., quasi-quote and unquote). Staged
metaprogramming also includes multi-stage languages, which ex-
tend multi-level languages by allowing explicit invocation of next-
stage code (e.g., by eval in Lisp [McCarthy 1960]).

The key features of staged metaprogramming are:

• Code is a first-class citizen, meaning programs can operate on
code in the same ways that they can operate on other entities
(including passing code as arguments, returning code from
functions, and storing code in data structures).
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• Code is constructed (metaprogrammed) using regular lan-
guage syntax by enclosing the code to generate in a quasi-
quote construct. Code within quasi-quotes is syntax- and
type-checked at application compile time.

• Generated code created with quasi-quote is inserted into the
runtime application using unquote.

• To prevent variable capture issues, quasi-quoted code is hy-
gienic and lexically scoped by default [Bawden and Rees 1988].
However, there are mechanisms to intentionally violate lexi-
cal scoping when needed.

• Quasi-quotes can be specialized to generate different versions
of the code as needed.

• Current-stage code can execute quasi-quote code using an
eval mechanism.

As we will discuss in Section 7.3, some previous shader systems
have employed a staged metaprogramming approach, albeit not by
name. These works are examples of runtime staged metaprogram-
ming, focusing on generating code at application runtime. While
runtime staged metaprogramming is indeed useful for shader devel-
opment, real-time graphics applications must be high performance,
and excess code generation at runtime will degrade performance.
Therefore, our work focuses on compile-time staged metaprogram-
ming (while supporting runtime as well) in order to prevent code-
generation overhead from affecting runtime performance.
Staged metaprogramming allows programmers to run arbitrary

code at compile time, written in a fully-featured language. Engine
developers can create libraries that get invoked during the compila-
tion processes to analyze and generate both application and shader
code. This functionality gives them a level of control over compi-
lation that would otherwise only be possible by creating a custom
language and compiler. By providing a feature-rich environment in
which to create, modify, and transform code, staged metaprogram-
ming allows developers to express powerful code generation and
manipulation implementations using semantic information, with
effort only slightly greater than ad hoc approaches based on textual
preprocessing.

4.2 Example Shader
Returning to the surface shader example from Section 3, here is how
this shader looks in our staged metaprogramming-based system:
local MaterialSystem = require("MaterialSystem")

...

shader SurfaceShader {

ConfigurationOptions {

MaterialType = MaterialSystem.MaterialTypeOption.new()

}

...

uniform LightData {

@UIType(Slider3) lightDirection : vec3

}

...

fragment code

...

color = [MaterialType:eval()](shadingData)

return color * max(0, dot(shadingData.normal, lightDirection))

end

}

In our system, specialization is expressed and controlled through
ConfigurationOptions. Different shader variants are generated
by changing the configuration:

local Cloth = require("MaterialTypes").Cloth

local config = SurfaceShader:getDefaultConfiguration()

config.MaterialType:setMaterial(Cloth)

SurfaceShader:setConfiguration(config)

local src = SurfaceShader:generateShaderSourceCode()

In this case, the code to evaluate the Cloth BRDF (im-
ported from the “MaterialTypes” file) will replace the call to
[MaterialType:eval()], and src will contain the HLSL/GLSL
of the specialized shader.
Beyond manually specifying a single specialization, our system

can generate all specialized variants automatically because the
ConfigurationOptions contain information about all specializa-
tion options. ShaderLab’s #pragma multi_compile feature enables
Unity’s shader system to generate all variants as well. However, be-
cause ShaderLab relies on preprocessor #if directives to express
the specialization options, they are limited to generating variants
that either statically include or statically exclude each option. In
contrast, we will show in Section 6 that staged metaprogramming
provides greater flexibility when generating variants, allowing our
system to explore additional specialization decisions.

Because our system is better able to understand and manipulate
the code of a shader, shader writers can express metadata for artist
GUIs directly alongside the parameter declaration. Therefore, shader
writers do not have to repeat themselves when declaring such pa-
rameters, in contrast to ShaderLab’s separate “Properties” listing.
Furthermore, our system can readily generate a statically-checked
interface for CPU-side code to set shader parameters, in order to
detect errors at compile time:

var myShader = SurfaceShader.new()

var lightData = myShader.LightData:map(...)

lightData.lightDirection = vec4(1.0f, 1.0f, 1.0f, 1.0f)

-- compile-time error: lightDirection is of type vec3

Notice that the example shader above looks similar to a shader
written in GLSL or HLSL, and it does not exhibit aspects of staged
metaprogramming directly. This design is intentional. While staged
metaprogramming underlies our shader system, technical artists
should not be confronted with foreignmetaprogramming constructs,
as these constructs may interfere with their productivity. Therefore,
we present a DSL to these artists so that they can work with a
familiar interface. The example shader above is written in this DSL.
In Section 5.2, we show how staged metaprogramming enables our
shader DSL implementation, and we also present a description of
this syntax with a more complex example.

4.3 Lua-Terra: A Research Substrate for Staged
Metaprogramming

Because C++, HLSL, and GLSL do not have the features required of
a staged metaprogramming environment (as listed in Section 4.1),
we must use a different language to demonstrate why these features
are useful for shader systems. We want to model the programming
environment of typical game engines as much as possible, meaning
that our runtime engine should be implemented in a low-level sys-
tems programming language similar to C++. Therefore, we built our

ACM Trans. Graph., Vol. 38, No. 6, Article 202. Publication date: November 2019.
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shader system using the Lua-Terra programming language [DeVito
et al. 2013].

Lua-Terra is a multi-stage language that uses Lua [Ierusalimschy
et al. 1996] code (a commonly-used scripting language in games
today) in the first stage tomanipulate next-stage code in Terra (a low-
level statically-typed C-like language). Lua-Terra extends the syntax
of Lua to allow Terra expressions and statements to be quasi-quoted
(`(expr) or quote stmts end). Lua expressions that evaluate to
Terra code can be spliced into a quasi-quote using the unquote
operator ([expr]). Lua-Terra also provides a mechanism for writing
syntax extensions to Lua, allowing for rapid DSL implementation.

Lua-Terra is primarily designed for runtime multi-stage metapro-
gramming: a running Lua program generates and executes Terra
code on demand. Our focus here is instead on compile-time metapro-
gramming, in which the Lua code runs entirely ahead of time, yield-
ing a final Terra program for deployment, free of metaprogramming
or dynamic features. During development, however, there are many
cases where more flexible multi-stage programming is valuable. For
example, development builds of an engine may implement hot reload
(reloading shaders while the application is running) by invoking
the compiler (Lua code) from runtime (Terra) code.
Lua and Terra are significantly different languages, since Lua

is a dynamic scripting language whereas Terra is a static systems
language. In our implementation, runtime application code, run-
time engine code, and shader code are all authored in Terra (and,
thus, can share types and subroutines), while Lua code performs all
metaprogramming tasks. We conjecture that an ideal metaprogram-
ming system for graphics would use the same language for both
metaprogramming and for final application code; however, to our
knowledge, a staged metaprogramming C++-like systems language
does not currently exist.

Newer languages like Rust [Rust Project Developers 2015], as well
as future versions of C++, are trending towards supporting staged
metaprogramming facilities, as we discuss in Section 8. However,
from our investigations, they do not yet have all of the features we
need. While Lua-Terra is less practical for building a production
game engine, it does have the features necessary for us to investigate
our design ideas today, which will hopefully guide future designs
as more popular systems languages continue to evolve.

4.4 Limitations of Staged Metaprogramming
Debugging programs with significant metaprogramming can be
challenging, and staging can compound the issue. Programs might
have nested metaprogramming components, requiring developers to
track down issues through multiple levels of code generation. How-
ever, programmers already cope with debugging metaprogrammed
code (e.g., C++ template metaprogramming issues, which tradition-
ally have convoluted error messages), and the additional code ma-
nipulation facilities of staged metaprogramming allow developers
to generate more descriptive error messages. Furthermore, devel-
opers can perform most of the metaprogramming in library code,
thereby hiding metaprogramming concerns from artists and techni-
cal artists (see Section 5.2). Nevertheless, both engine developers
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Fig. 1. An overview of the Selos Shader System, as discussed in Section 5.

and application/shader code authors can encounter difficulty de-
bugging metaprogramming issues, so exploring how to more easily
debug such issues is an interesting area for future research.

Excessive and undisciplined use of metaprogramming may trans-
form user-written shader code in ways that obfuscate final shader
code generation. Such obfuscation can negatively impact a devel-
oper’s ability to predict how changes in shader code will affect
final shader performance. Often, game developers will forgo us-
ing certain programming techniques if they reduce the ability to
understand how authored code is compiled to final executed code
because performance tuning is critical to the application. Still, en-
gines already use metaprogramming techniques successfully, so
employing a new, more structured metaprogramming method like
staged metaprogramming can provide significant value.

5 OTHER KEY DESIGN DECISIONS
Having presented our decision to use staged metaprogramming
as the underlying implementation technique, we now discuss the
design of our shader system, called Selos. Fig. 1 shows an overview.
In Selos, programmers write shader code in Terra (Section 5.3),

with custom syntax extensions for shader-specific features (e.g.,
Fig. 2 Listing 1). Our shader DSL (Section 5.2) implementation parses
the shader-specific features and generates a Shader Intermediate
Representation, or SIR, object (Section 5.1). The rest of the system
interfaces with the SIR to extract information about the shaders,
as well as to manipulate the shaders prior to final code generation.
The Material Editor pulls data from the SIR to display artist-editable
parameters in a GUI. Shader variants are generated by manipulating
the SIR to express each required variant (Section 5.5) and then send-
ing the SIR to our backend code generators to emit HLSL or GLSL
code. Finally, the Selos game runtime, also written in Terra, creates a
statically-checked runtime shader representation (Section 5.4) from
the SIR to allow engine and application code to control shader pa-
rameters and to setup graphics state appropriately prior to shader
execution.

In the rest of this section, we discuss the major design decisions
of our shader system. Many parts of our system are similar to other
modern shader systems (e.g., similar syntax, artist tool chain). There-
fore, we focus on the differences and how staged metaprogramming,
specifically, enables our design and leads to inherent benefits.
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1 shader SimpleShader {

2 textureSampler diffuseMap : sampler2D

3
4
5 param model : mat4

6 param view : mat4

7 param proj : mat4

8
9 uniform PerFrame {

10 @UIType(Slider3) lightDirection : vec3

11 }

12
13 uniform PerObject {

14 modelViewProj : mat4 =

15 proj*view*model

16 modelViewIT : mat4 =

17 inverse(transpose(view*model))

18 }

19
20 input position : vec3

21 input normal : vec3

22 input uv : vec2

23
24 varying vNormal : vec3

25 varying vUV : vec2

26
27 output outColor : vec4

28
29 vertex code

30 Position = modelViewProj * make_vec4(position, 1)

31 vNormal = (modelViewIT * make_vec4(normal, 0)).xyz

32 vUV = uv

33 end

34
35 fragment code

36 var diffuse = texture(diffuseMap, vUV)

37 outColor =

38 diffuse * max(0, dot(vNormal, lightDirection))

39 end

40 }

41

Listing 1. A simple shader in our DSL syntax.

1 local SimpleShader = ShaderBuilder.new("SimpleShader")

2 local diffuseMap =

3 SimpleShader:declareTextureSampler(sampler2D)

4
5 local model = SimpleShader:declareParam(mat4)

6 local view = SimpleShader:declareParam(mat4)

7 local proj = SimpleShader:declareParam(mat4)

8
9 local PerFrame = SimpleShader:declareUniformBlock()

10 local lightDirection = PerFrame:declareUniform(vec3, nil,

11 Slider3)

12
13 local PerObject = SimpleShader:declareUniformBlock()

14 local modelViewProj = PerObject:declareUniform(mat4,

15 quote proj*view*model end)

16 local modelViewIT = PerObject:declareUniform(mat4,

17 quote inverse(transpose(view*model)) end)

18
19
20 local position = SimpleShader:declareInput(vec3)

21 local normal = SimpleShader:declareInput(vec3)

22 local uv = SimpleShader:declareInput(vec2)

23
24 local vNormal = SimpleShader:declareVarying(vec3)

25 local vUV = SimpleShader:declareVarying(vec2)

26
27 local outColor = SimpleShader:declareOutput(vec4)

28
29 SimpleShader:addVertexCode(quote

30 Position = modelViewProj * make_vec4(position, 1)

31 vNormal = (modelViewIT * make_vec4(normal, 0)).xyz

32 vUV = uv

33 end)

34
35 SimpleShader:addFragmentCode(quote

36 var diffuse = texture(diffuseMap, vUV)

37 outColor =

38 diffuse * max(0, dot(vNormal, lightDirection))

39 end)

40
41 SimpleShader:finalize()

Listing 2. Lua code to construct the same shader as Listing 1.

Fig. 2. (1) This shader, which a technical artist might write, computes directional lighting (lines 37–38), modulated by a diffuse texture map (line 36). The DSL
syntax allows vertex inputs and fragment outputs to be declared, along with blocks of uniform parameters. Shaders also contain explicit params, which
can then be used to set uniforms from within shader code (lines 14–17). Uniforms without initializers automatically become explicit parameters (line 10).
Parameters can also contain information about how they should be exposed to artist GUI applications (line 10). Ordinary Terra statements inside code blocks
are attached to the vertex or fragment kernel, with intermediate values carried by varying parameters. Position (line 30) is a built-in variable for specifying
vertex position (equivalent to GLSL’s gl_Position). (2) The shader in Listing 1 can also be constructed programmatically, without custom syntax, using our
Lua shader builder API. Other system components, like Variant Generation and the HLSL/GLSL Backends, use this API to construct and modify shaders.

5.1 Represent Shaders as Compile-time Lua Objects
The biggest implementation difference between Selos and other
modern shader systems is our use of a unified shader intermediate
representation (SIR) throughout the system. The components of
Selos all interface with the same SIR, which contrasts to, e.g., Unity,
where the representation of a shader is different for different system
components. This key structural difference in our design is a direct
consequence of staged metaprogramming because we are able to
store code directly in a data structure.

The SIR encodes shaders in terms of Lua objects that exist at com-
pile time only. SIR is a high-level typed representation with detailed

semantic information, similar to an Abstract Syntax Tree (AST)
representation (as opposed to a low-level assembly-like format).

Since code is first-class in staged metaprogramming, we can store
type- and syntax-checked shader code directly in the SIR data struc-
ture using quasi-quotes. The SIR Lua object contains a set of mem-
bers that represent each construct in the shader. Shader inputs, out-
puts, uniform blocks, etc. are all stored as members in a SIR shader.
Along with storing names and type information, a SIR shader also
stores metadata about each member, such as bindings/locations for
inputs, outputs, uniforms, and textures, as well as which graphical el-
ement to display for each artist-editable parameter. All components
of Selos operate on the same SIR, as described above.
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Because the SIR exists only at compile time, the overhead of
operating on it does not affect the performance of the final game
executable. This property is guaranteed in our system because Lua
code can only be executed at compile time. The ability to act on a
unified representation of a shader at compile time differentiates our
system from previous work on shader metaprogramming.

5.2 Write Shader Definitions Using a DSL
As Section 4.4 notes, unconstrained use of metaprogramming could
lead to code that is more difficult to write, read, maintain, and debug.
Therefore, we minimize direct metaprogramming where possible.
While staged metaprogramming is the underlying technology of
our shader system, the actual metaprogramming code is primarily
written by engine developers, not shader writers.

To preserve technical artist and shader writer productivity, Selos
provides a custom shader DSL that allows them to author shaders in
a familiar style, similar to HLSL andGLSL code. Shader authors write
the core logic of a shader in plain Terra code (discussed in Section 5.3)
and use the DSL syntax to express shader-specific features that are
not inherent in Terra, such as declaring uniforms, inputs, outputs,
and textures. Fig. 2 Listing 1 shows a simple shader in our DSL
syntax.

Along with hiding metaprogramming concerns from shader writ-
ers, other elements of this DSL are also designed in the interest of
productivity. In our shaders, artist GUI information is expressed
directly alongside uniform parameters (e.g., Fig. 2 Listing 1 line 10),
avoiding the double-declaration issue in ShaderLab. By including
both vertex and fragment code in the same shader, varying param-
eters and shared uniform buffers are declared only once as well.
Furthermore, our DSL’s method of expressing specialization options
is akin to that of TFX and Slang (as described in Sections 3.3 and 3.4,
respectively). Our method provides greater flexibility than the sim-
ple preprocessor-based methods of Unity (Section 3.2). We discuss
this method further in Section 5.5.

The implementation of our DSL is driven by staged metaprogram-
ming. Our parser constructs a SIR shader from DSL code by calling
into an underlying shader builder API, written in (compile-time)
Lua code.6 Other Selos components can use this API to program-
matically construct and modify shaders, which does require writing
some metaprogramming code directly. Fig. 2 Listing 2 shows how
the shader from Fig. 2 Listing 1 can be constructed using the builder
API. Note the explicit use of key staged metaprogramming features
(listed in Section 4.1) – the quote keyword specifies the creation
of a Terra quasi-quote, the code inside the quote is written as “just
plain code,” and the quoted code is added directly to the builder data
structure.

❧

Because staged metaprogramming provides a favorable balance
between code manipulation capabilities and the effort required to
use them, we implemented the features of our DSL with only a mod-
est development effort. Table 1 compares lines of code for the Selos
implementation against the ShaderLab and Slang implementations.

6We implement the actual parsing functionality using Terra’s syntax extension mecha-
nisms: http://terralang.org/api.html#the-language-and-lexer-api

The ShaderLab and Slang compilers most closely relate to our SIR,
DSL, and Builder API implementations.
ShaderLab and Selos require a comparable amount of code (but

Selos provides additional benefits as discussed above), while Slang
consists of a significantly larger codebase because it required build-
ing/modifying an HLSL compiler. For Selos, we also have to im-
plement HLSL and GLSL backends to support writing shader code
in Terra (Section 5.3). We believe these backends are not engine-
specific and can be shared between multiple shader systems as
an open-source component, similar to hlsl2glslfork [Pranckevičius
2013].
While lines-of-code metrics are not standalone proof of the ef-

fort required to use a programming technique, Table 1 suggests
that staged metaprogramming is similar in complexity to using
textual-based preprocessing methods like in ShaderLab (given that
Terra is C-like and Lua is an imperative language commonly used
in games). Furthermore, modifying Slang to implement additional
features requires understanding how those changes interact with
every existing language feature in a complex compiler with a large
codebase, whereas adding features to ShaderLab or Selos requires
understanding significantly fewer interactions in a much smaller
body of code.

Table 1. Lines of code for various Selos components, as well as for Unity’s
ShaderLab DSL implementation and the Slang compiler (v0.12.6). We report
only non-commented, non-empty lines for Selos and Slang, as reported by
CLOC.7 *The Unity count was obtained via personal communication and
is estimated to include 10–15% blank lines and comments [Pranckevičius
2016].

System Component Language(s) Lines of Code

Unity ShaderLab DSL Flex/Bison/other ~2000*

Slang Compiler C++ ~67,000

Selos
SIR/DSL/Builder Lua-Terra ~2300
HLSL/GLSL Backend Lua-Terra ~2200

5.3 Write Shader Logic and Application Code in the Same
Language

As GPU shader cores continue to evolve to support more general-
purpose code, the distinction between general purpose systems
languages and special purpose shading languages becomes less
relevant. Therefore, in Selos, we use the same language for both the
game runtime application and for shader code. Both are written in
Terra and can use the same types and functions, both system- and
user-defined, which increases programmer productivity. The only
exception is that shader code cannot use Terra constructs that are
unsupported in the target shading languages (e.g., pointers).

In addition, Selos provides implementations of special types (and
functions) commonly found in shading languages, such as vector,
matrix, and texture types.We implement these types as Terra structs,

7http://cloc.sourceforge.net/
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meaning that they are usable in application code as well.8 Other
shader systems typically provide a CPU-side vector and matrix li-
brary that is distinct from (but compatible with) the shader’s equiv-
alent types. In contrast, because Selos’s vector and matrix types are
used exactly the same in both CPU and GPU code, programmers
need not worry about any differences between the CPU and GPU
types. When used in shader code, however, our backend code gener-
ators replace these structs with the built-in equivalents in the target
language to ensure no overhead is added by our abstraction. Sharing
types and functions between CPU and GPU code allows program-
mers to debug shader code by running it on the CPU. Furthermore,
it is easier to migrate compute-intensive CPU code to GPU compute
shaders.

Our decision to write shader logic in Terra was motivated not only
by the benefits of heterogeneity but also by the ease of implementing
cross-compilation to HLSL and GLSL using staged metaprogram-
ming. Since we could encapsulate shader logic in quasi-quotes, we
did not need to implement a frontend to parse and separate out
shader code. Instead, Terra’s language frontend parses and syntax-
checks the quotes, which are then store in the SIR. Our backend
code generators convert these quotes into human-readable HLSL
and GLSL (which helps facilitate debugging). Staged metaprogram-
ming allows us to directly reuse Terra’s frontend and AST for the
statements, expressions, and types used within shader code, min-
imizing the development effort needed to add shader support to
Terra. Thus, our backends required only a modest amount of code
(Table 1).

Most importantly, we were able to implement all of this function-
ality in user-space code, without modifying the Lua-Terra compiler.
In contrast, attempting to create something similar in C++ today
would require a custom compiler implementation.

5.4 Generate Runtime Data Structures for Shaders
Given that shader and application code are both written in Terra, we
can easily extract parameter information from the SIR to generate a
Terra struct for each shader. Our system generates these structs at
application compile time to provide a static, type-checked interface
for the runtime application to set shader parameters. This interface
accounts for shader packing rules, so that users do not have to man-
ually navigate data across the CPU-GPU boundary. Furthermore, it
allows us to catch more errors at application compile time (like the
example in Section 4.2).
The effort to implement this functionality was minimized be-

cause we could utilize semantic information provided directly by
the staged metaprogramming features and because all types are the
same in both CPU and GPU code by default (Section 5.3). In contrast,
other systems may similarly generate C++ structs from constant
buffers, but doing so requires parsing underlying HLSL/GLSL code
and accounting for type differences between the host and shading
languages, which requires greater implementation effort.

In addition, these generated structs contain CPU-side setup logic
that is expressed with shader code (e.g., lines 14–17 in Fig. 2 List-
ing 1). These code expressions are stored as quasi-quotes in the SIR
8We heavily utilized metaprogramming when implementing the CPU-side versions of
the HLSL/GLSL built-in types and functions, which greatly reduced the effort required.
For examples, see https://github.com/kseitz/selos/blob/master/src/builtin.t

and are later inserted into the game application code using unquote.
This feature allows shader writers to expose one set of parameters
to artists, and then use the artist-configured values to precompute
data on the CPU prior to sending the data to the GPU. Both TFX,
as well as the renderer used in Far Cry 5 [McAuley 2018], provide
similar functionality.
The TFX compiler implements this functionality using an HLSL

interpreter. The CPU logic is extracted from the TFX shader file
and interpreted at application runtime to set the shader parameters
appropriately. In the Far Cry 5 system, a programmer writes a Lua
script to calculate shader parameters from artist inputs. This script is
loaded and executed at game runtime. Both of these implementations
required extra infrastructure to provide this additional functionality.
In contrast, our system utilizes staged metaprogramming’s quasi-
quote and unquote, thus requiring minimal effort to implement.
However, one downside to our approach is that changes to a

shader’s interface or the CPU-side logic requires recompiling the
game executable.9 TFX and Far Cry 5 do not have this downside,
since they support loading shaders dynamically at runtime. Lua-
Terra supports just-in-time (JIT) compilation of Terra code, so we
could use this functionality to support dynamically loading shaders
if desired. Also, if JIT compilation is disallowed (e.g., on consoles),
then a system like ours could fall back to an interpreter, as is used
by TFX and Far Cry 5.
Dynamic loading allows for more rapid iteration; however, the

added validation of a static, type-checked interface to shaders re-
duces the likelihood of errors caused by out-of-sync shader and ap-
plication code. An interesting area of future work is to combine these
approaches using a system that dynamically recompiles changes to
source files. Users could make runtime modification to shaders that
would be type-checked and recompiled into the application behind
the scenes.

5.5 Implement Complex Specialization Options Using
Staged Metaprogramming Constructs Directly

While our previous design decisions emphasize hiding much of
the metaprogramming from shader writers, direct use of staged
metaprogramming constructs like quasi-quotation enables greater
flexibility when expressing specialization options. Therefore, we en-
courage engine developers and shader writers with a more technical
background to use these constructs directly when creating parts of
the shader library that have interesting specialization decisions. As
we will show in Section 6, this decision enables us to explore both
static and dynamic composition of features, which has performance
implications.

However, using components with complex specialization options
should still be straightforward for end users. Therefore, Selos ex-
poses these components to shaders and controls their specializations
through ConfigurationOptions. We showed an example of this
functionality in Section 4.2, so we omit such a discussion here. By
using the ConfigurationOptions, our system allows experienced
developers to use direct staged metaprogramming to implement

9If only the core GPU logic of a shader changes, then we need not recompile the
application. Selos can also hot reload shaders when only the GPU logic changes.
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complex specialization options, while hiding the intricacies from
end users.

To explore a design alternative, we also implemented functionality
similar to Unity’s #pragma system. Shader writers express shader
features using syntax similar to Unity’s #pragma multi_compile
and preprocessor #ifdefs, and compilation is controlled program-
matically through the SIR. Unlike in Unity, our version has the
ability to syntax- and type-check each feature in isolation (rather
than having to compile all possible variants). In addition, because
our version does not treat shader code as a black box (whereas Unity
does), it is able to make more interesting choices when generating
specializations (such as those presented in Section 6).
However, using direct staged metaprogramming coupled with

ConfigurationOptions provides greater flexibility and results in
simpler shaders. In the #pragma-like design, all shader features
must be written within the same shader, resulting in complicated
and bloated shaders (as they would be in Unity as well). Neverthe-
less, C preprocessor-like mechanisms can sometimes be useful for
expressing straightforward specialization decisions, and we can use
such mechanisms alongside our recommended design.

6 EXPLORING THE SPECIALIZATION DESIGN SPACE

6.1 Background and Motivation
Through staged metaprogramming, Selos allows us to target chal-
lenging problems faced by designers and users of modern shading
systems. One major technique for increasing performance is shader
specialization, which takes an input shader (or shaders) that may
express rendering code for many different options (e.g., various
material types, light types, and platform-specific optimizations) and
generates final kernel code by outputting a subset of those options,
based on some compile-time parameters. We refer to a specialized
kernel as a variant of the original input shader. The goal of spe-
cialization is to increase the performance of final kernel code by
optimizing away unused code paths, which eliminates unnecessary
computation, reduces register pressure, and allows for more backend
compiler optimization opportunities.
Sometimes, however, complete static specialization is not feasi-

ble. For example, when performing shading in a deferred renderer,
different pixels might require different material or lighting features;
shaders must use dynamic branches to enable or disable features
per-pixel.
When complete specialization may be unfeasible, some special-

ization can still be beneficial. The renderer used in Naughty Dog’s
Uncharted 4 specializes shaders to the features needed on a per-
tile basis (where a tile is a 16×16 group of pixels) [El Garawany
2016]. For example, if no pixels in a given tile contain fabric, then
the renderer uses a shader variant that removes fabric-related code
when rendering that tile. Additionally, if all pixels in a tile use the
exact same set of features, then a “branchless” variant is used, which
removes the runtime ifs around each feature.
This approach can be extended to include specialization based

on light types. Some games implement light culling by generating a
per-tile list of lights that are known to affect that tile. When shading
a tile in the deferred pass, the shader will use the tile’s light list,
rather than computing lighting for all lights in the scene. Similar

to Uncharted 4’s material specialization, if a given tile’s list has no
lights of a given type, then we can use a shader that omits the code
for that light type when shading that tile.
However, overspecialization can lead to negative consequences.

Generating the full set of shaders for all combinations ofmaterial and
light types results in a combinatorial explosion of shader variants.
Instead, we may wish to statically specialize only a subset of the
features in order to decrease the number of shader variants (which
would decrease game load time, shader switching overhead, dispatch
overhead, etc.). We, thus, would like to explore the tradeoffs between
compile-time and runtime specialization in order to achieve the
best performance; however, the variant design space is large, so
automatically exploring this tradeoff is essential.

While implementing such an exploration using the C preprocessor
is challenging and requires shader writers to explicitly plan for it, we
can implement this technique in Selos completely in engine library
code without manual changes to shaders.

6.2 Experimental Setup
To demonstrate the benefits of this approach, we implemented a
tiled deferred renderer and used it to render the ORCA Sun Temple
scene [Epic Games 2017]. However, this scene does not specify what
type of BRDF to use for each material in the scene (nor do other
widely available test scenes). In order to be representative of modern
games, which use a variety of material and light types throughout,
we render the scene as follows:

• Most objects use our StandardMaterial, based on Falcor’s [Benty
et al. 2018] diffuse and specular BRDFs (using the Frostbite
diffuse term).

• Since many objects have a clear coat layer on them, the
pedestals use a StandardMaterialWithClearCoat type, which
adds Filament’s [Guy and Agopian 2019] clear coat model on
top of our StandardMaterial.

• We render the angel statues as if they were made of marble
by using a SubsurfaceScattering type, based on Filament’s
subsurface model but using our diffuse and specular terms.

• We drape instances of a cloth model (based on the model
providedwith Filament) on top of the angel statues and render
them with a ClothMaterial type, also based on Filament’s.

We use the lights as specified in the Falcor scene file: one Direc-
tionalLight and thirteen PointLights. We replace two of the point
lights with ShadowedPointLights, since games typically render shad-
ows for only a subset of point lights. Our implementation of these
light types are based on Falcor’s. Fig. 3 shows an image of our scene.
In order to find the optimal tradeoff between reduced register

pressure from specialization versus decreased shader switching over-
head from using fewer, more general shaders, we must determine
which material and light types are the most important to specialize.
Therefore, we generate all combinations of specializations where
only k features are specialized, for all values of k where 0 ≤ k ≤ n
and n = 6 (number of material types + number of cullable light
types). This generation results in

(n
k
)
variant sets for each k .

Generating these variant sets was straightforward in Se-
los, due to staged metaprogramming. We authored two
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Fig. 3. The test scene used for evaluating different sets of shader variants.
This scene is a modified version of the ORCA Sun Temple, in which we
added red cloth to the angel statues.

ConfigurationOptions that control how specialization op-
tions compile into shader variants: TiledDeferredMaterialType
for material types and TiledLightListEnv for light types. The
system specifies which type(s) to include in a given variant, and
these implementations modify the SIR of the deferred shader
accordingly to express that specialization. This functionality is
possible because the ConfigurationOptions know what material
and light types are available, have access to the code for these types
via quasi-quote, and can splice together the correct combination
of quotes into the shader (with runtime branches inserted to
select which code to run on a per-pixel basis). We present and
explain further details of our specialization implementation in the
Supplementary Materials.

6.3 Performance Results
We run our deferred renderer on the modified Sun Temple scene
for each variant set and present the results in Fig. 4 for the best
performing set for each value of k .10 We also hand authored an
HLSL shader equivalent to the fully-general case (as is the default
for deferred rendering) and compare its performance in Fig. 4 as
well. Because the complexity of shaders used in games can vary
widely, we emulate increasing shader complexity by (redundantly)
computing lighting within a shader 1, 2, 5, and 10 times [Clarberg
and Munkberg 2014]. Furthermore, games often use many more
lights than the 14 in our test scene. In some scenes, Battlefield
4 has up to 40 lights per tile [Andersson 2011], Detroit: Become
Human has 124 lights [Marchalot 2018], and Doom has ~300 light
sources [Sousa and Geffroy 2016].
For this particular combination of scene, material types, light

types, hardware, etc. the best GPU performance was achieved by
specializing either three or four features (Fig. 4a). In addition, most
of the benefits of specialization can be achieved by specializing
only one or two features (resulting in 2 or 4 total variants). The
ClothMaterial type was in the best performing variant set in all
cases, but the second feature differed based on shader complexity.
10These results were produced using a resolution of 1920×1080 pixels with a tile size
of 16×16, on a computer running Windows 10 with an Intel Core i7-6700K CPU and an
NVIDIA GeForce GTX 1080 GPU. We benchmarked every 100th frame (30 frames total
over the 50 second camera path).

Furthermore, the impact of specialization increases with shader
complexity.
Beyond improving GPU performance, using fewer variants has

additional benefits. Whenever shader code changes, all affected
variants must be recompiled, so using fewer variants saves build
time. Game load times are improved too, because fewer variants need
to be loaded. In addition, as shown in Fig. 4b, runtime CPU overhead
increases as the number of variants increase. Thus, developers may
wish to trade off GPU performance to save CPU cycles, or vice versa.

Finally, the performance of the fully-general handwritten HLSL
shader is comparable to that of the fully-general shader generated
by our system. Therefore, the code generation and manipulation
that Selos performs does not negatively impact the performance of
final shader code.
Staged metaprogramming allowed us to easily build a tool to

explore compile-time and runtime specialization in a principled
and straightforward way. Because the performance tradeoffs in the
specialization design space depend on the game, shader features,
scene, platform (including D3D11 vs. OpenGL, operating system,
drivers, CPU, GPU, etc.), and other variables, exploiting automation
is essential to achieve the best performance across various config-
urations. Using staged metaprogramming, we are able to rapidly
explore the specialization design space, without requiring shader
writers to explicitly include code for each case in the shaders.

While we have demonstrated one potential method for investigat-
ing the shader permutation problem, exploring this issue more fully
is an interesting area of future work. We believe staged metapro-
gramming provides the proper abstraction for solving this and other
types of issues faced by game engine developers.

7 RELATED WORK

7.1 Extended Shader Programming Models
A wide range of alternative programming models have been devel-
oped on top of the baseline interface provided by graphics APIs.
Often, the primary goal of these systems is to improve the software-
development productivity of shader programmers while simultane-
ously maintaining high performance.

The Real-Time Shading Language (RTSL) system [Proudfoot et al.
2001] shows that a high-level shading language, inspired by the Ren-
derMan Shading Language (RSL) [Hanrahan and Lawson 1990], can
be compiled, with good efficiency, for early programmable hardware.
Abstract shade trees [McGuire et al. 2006] build upon the idea of
Shade Trees [Cook 1984], to enable composition of real-time shaders
from separately-developed pieces. Spark [Foley and Hanrahan 2011]
extends the approach of RTSL to modern rasterization pipelines,
improving support for modular software development.
Spire [He et al. 2016] demonstrates that a suitable high-level

shader IR can allow complex rate-placement optimizations to be
applied automatically. Our exploration of specialization decisions
(Section 6) is conceptually similar, where one of the rates involved
is “constant.” We believe that this kind of exploration is important,
and is just one example of the kinds of shader optimizations tools
developers can build with staged metaprogramming.
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(a) GPU Performance
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1 x Lighting 2 x Lighting 5 x Lighting 10 x Lighting

Average CPU Time (µs / frame)

1x   13.7    14.7    19.4    23.3    33.9    35.2    39.7    56.7

2x 13.1    14.6    19.3    28.5    33.7    35.3    39.0    55.7

5x 13.6    14.3    18.8    28.2    32.9    34.7    37.8    54.6

10x  14.3    14.4    19.0    27.9    33.7    35.2    38.3    54.9

(b) CPU Performance

Fig. 4. GPU and CPU performance for the deferred pass, relative to using no specialization (higher is better). Also shown in the tables are the absolute GPU
and CPU times (lower is better). This data was gathered using our Direct3D 11 implementation and the test scene described in Section 6 (Fig. 3). While each
number of specialized features has multiple possible combinations of shader variants, we display results for the best performing variant set, based on GPU
time. We also compare against a handwritten HLSL shader with no specialization (presented as H in the graphs), which is representative of a typical deferred
shader implementation. We repeat lighting calculations within the shaders 1, 2, 5, or 10 times to emulate increasing shader complexity and because games
often have many more lights than in our scene. As complexity increases, specialization has a greater positive impact on GPU performance. For this particular
scene and set of specialization options, the best performance is achieved using a partially specialized variant set, and most of the benefits of specialization can
be achieved by specializing only one or two features. More specialization results in worse CPU performance, because the average number of compute shader
dispatches per frame increases (thus causing more CPU overhead). The design of our shader system, and specifically our use of staged metaprogramming,
made this exploration possible.

Effect systems expand the scope of shaders beyond programmable
pipeline stages to include configuration of fixed-function state [Mi-
crosoft 2010; NVIDIA Corporation 2010], and even abstraction over
multiple rendering passes [Lejdfors and Ohlsson 2004].
Each of these projects, representing different visions of what

shader programming should be, is implemented as a stand-alone sys-
tem, often with considerable effort. We believe that staged metapro-
gramming provides an approach that reduces the cost of implement-
ing novel programming models like these, whether in research or
production.

7.2 Multi-Stage Programming and Syntax Extension
As described in Section 4.1, we take our definition of multi-stage
programming from Taha [1999]. Our Selos implementation was built
using Terra [DeVito et al. 2013], which adds multi-stage constructs
and low-level programming support to the Lua language [Ierusal-
imschy et al. 1996], along with user-defined syntax extensions.
The BraidGL language [Sampson et al. 2017] uses the syntax of

staging for both metaprogramming and to map communication
to the vertex and fragment stages of a rasterization pipeline, in a
manner similar to rates (as used in RTSL, Spark, and Spire). The
design of BraidGL promotes staging as a language mechanism to be
used by most shader writers. In contrast, Selos promotes staging as
a mechanism to be used in implementing shader systems, but most
shader writers need not use or understand it directly.
Rust [Rust Project Developers 2015] is a systems programming

language that supports limited syntax extension using a macro

system in the tradition of Scheme [Flatt 2002; Sussman and Steele
1998].

Some projects have attempted to add multi-stage programming
features to existing systems programming languages like C/C++.
‘C (“tick C”) [Engler et al. 1996] adds a quasiquotation construct to C,
with a focus on code generation at run-time (similar toMetaML [Taha
and Sheard 2000] andMetaOCAML [Calcagno et al. 2003]). OpenC++
adds compile-time code generation and limited syntactic extension
to C++ using a metaobject protocol [Chiba 1995]. The extension-
oriented compiler Xoc [Cox et al. 2008] allows extensions to the
syntax and semantics of C to be loaded dynamically by the compiler.
However, the current (and upcoming) C and C++ standards do not
have such features, and we therefore could not use these languages
to implement this work. Fortunately, ongoing C++ projects and pro-
posals continue to explore the types of facilities needed for staged
metaprogramming (Section 8).

7.3 Shader Metaprogramming
Several previous systems have applied metaprogramming tech-
niques to shaders. For example, the PyFX system [Lejdfors and
Ohlsson 2004] uses Python code to compose multi-pass effects from
Cg shaders. Shaders are authored as strings, and the system extracts
parameter data to expose named parameters to Python code.

Sh [McCool et al. 2002] and Vertigo [Elliott 2004] expose shaders
as an embedded DSL (eDSL) in C++ andHaskell, respectively. Special
types are used to express shader code, and operators on those types
are overloaded to construct an intermediate representation (IR).
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Arbitrary code running in the host language can be used to generate
or specialize the shader code. In Sh, the host and shader languages
use distinct syntax for control flow constructs (shader control flow
is expressed with macros). In both systems, the type checking rules
of the host language are used to guarantee type safety of generated
shader code, and they can also provide for statically-checked setting
of shader parameters.
These previous systems may be viewed as examples of runtime

staged metaprogramming. In each case, runtime application code
(in Python, C++, or Haskell) in the first stage is used to synthe-
size shader code for subsequent execution. While shader code is
embedded in the application language (whether as strings of Cg
source code, or via macros and overloaded operators), they belong
to different stages, and so cannot easily share types or subroutines.
Our approach, based on compile-time staged metaprogramming,

differs from prior work in two key ways. First is the simple fact
that we perform code generation and manipulation tasks at compile
time, which reduces run-time costs and enables deployment on
platforms where runtime code generation is either disallowed or
not advised. Furthermore, metaprogramming code running in the
compile-time stage has access to more complete information about
source locations and symbol names than is available at runtime,
allowing engine-specific services to emit higher-quality diagnostic
messages (errors and warnings).

Second, and more fundamentally, runtime application and shader
code in Selos are expressed in both the same language and same
stage of execution; both are written in Terra, and they can share
types and subroutines. In contrast, prior shader systems using staged
metaprogramming separate CPU and GPU code into distinct stages
with distinct languages, libraries, etc. Our approach is thus more
similar to CUDA [NVIDIA Corporation 2007], where CPU and GPU
compute code are deeply integrated using the same language and
execution stage.

Partial evaluation [Futamura 1982] is a concept related tometapro-
gramming. Rodent [Pérard-Gayot et al. 2019] utilizes partial evalua-
tion to generate a specialized renderer for a given scene description.
Both Rodent and Selos are motivated by reducing the effort required
to implement rendering frameworks. However, we focus on real-
time rendering, whereas their emphasis is on offline path tracing.
Our work provides a clear distinction between compile-time code
and runtime code, so real-time graphics developers can be confident
that expensive operations happen at compile time. In contrast, a
partial evaluator will evaluate as much as it can based on data avail-
able to it at compile time, but it does not provide strong guarantees
about what it will or will not evaluate.

8 THE FUTURE OF METAPROGRAMMING IN C++
Some recent proposals to the C++ Standards Committee seek to
add more robust and powerful metaprogramming facilities to the
language. P0194 [Chochlik et al. 2018] proposes adding support
for compile-time reflection to C++ by having the compiler gener-
ate meta-object types that represent certain program declarations.
These meta-object types can be used at compile time to obtain in-
formation about the program being compiled. This functionality is
akin to the introspection abilities of staged metaprogramming.

The authors of P0633 [Vandevoorde and Dionne 2017] explore
the design space for metaprogramming in C++, looking at aspects of
reflection, code synthesis, and control flow constructs. For example,
they discuss supporting raw string injection, where arbitrary strings
could be consumed by the compiler to generate code. They presume
that the compiler would provide local scoping when translating
these string to avoid variable capture issues. Since strings are first-
class citizens in C++, this functionality could mimic a quasi-quote
construct (albeit without the syntax-checking guarantees, since the
underlying representation would still be just strings).
Metaclasses [Sutter 2018] would allow programmers to write

new class features as “just code,” without requiring compiler mod-
ifications for these features. A programmer could write compiler-
enforced patterns, requiring that all instances of the metaclass ad-
here to certain constraints. We are interested to see if we could
create a metaclass for shaders using this functionality.
The Circle compiler [Baxter 2019] extends C++17 by including

new introspection, reflection, and compile-time execution features.
For example, one can introspect a struct, extract the parameters
from it, and then generate new code based on these parameters, all
using regular C++ syntax. We believe that some parts of Selos could
be implemented using Circle, given that it meets some of the criteria
for staged metaprogramming. However, it lacks a quasi-quote con-
struct at present and, thus, is not a full staged metaprogramming
environment.
These projects represent an increasing interest in evolving C++

toward better metaprogramming features. While they do not yet
enable staged metaprogramming in C++, they are a step in the right
direction. In the future, we hope that staged metaprogramming
becomes a staple in modern systems programming languages.

9 CONCLUSION
In this paper, we have demonstrated how staged metaprogramming
provides the proper facilities with which to build an expressive
shader system, complete with a unifying shader intermediate repre-
sentation, the ability to express heterogeneous code within a shader,
and cross compilers for HLSL and GLSL.We also showed an example
of using staged metaprogramming to explore the shader variant
design space, which increased performance for our test scene by
determining which features were most important to specialize, thus
preventing overspecialization. Implementing these system compo-
nents required only a modest effort, thanks to staged metaprogram-
ming.
Beyond the components presented here, staged metaprogram-

ming provides the flexibility to implement many more types of
designs, such as graphical node-based material editors (e.g., Un-
real Engine’s Material Editor). Furthermore, the shader permutation
problem is far from solved, so using staged metaprogramming to
implement new solution ideas is an interesting area for future work.

We hope that in the future, GPU shader code will be a first-class
construct in mainstream systems programming languages, just as
CUDA gives GPU compute code first-class treatment in C++. How-
ever, even if shaders are better supported in modern systems lan-
guages, graphics programming is far from achieving heterogeneity
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similar to CUDA. In fact, the newer graphics APIs (Direct3D 12 [Mi-
crosoft 2017] and Vulkan [Khronos Group 2016]) push graphics
further away from this heterogeneity by requiring lower-level man-
agement of GPU states and resources. Exploring ways to integrate
the performance benefits of these APIs into a heterogeneous envi-
ronment is a challenging endeavor.
GPU-based graphics provides a complex and well-explored do-

main in which to investigate the broader concept of heterogeneous
programming. In a future with potentially many different processor
types (e.g., accelerators for high-performance machine learning),
we will need programming models that enable many domains to ef-
ficiently utilize a wide range of heterogeneous processing resources.
The lessons learned while studying heterogeneous graphics pro-
gramming will help inform such future designs. Our experience
leads us to believe that staged metaprogramming will be an impor-
tant feature of such future heterogeneous systems.
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