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Abstract
This paper presents a model for distributing zones of liquefaction and nonliquefaction
for use in regional liquefaction risk analysis. There are two broad methodologies that
have been used to evaluate liquefaction risk on the regional scale: (a) application of
site-specific procedures using soil properties inferred from geology, or (b) application
of geospatial proxies for liquefaction. The first approach will tend to predict similar
liquefaction probabilities across broad areas with similar geology, water table depths,
and shaking intensities. The second approach yields the probability of liquefaction,
which can be interpreted as the portion of the area affected by liquefaction (%Aliq).
Neither approach, however, gives an informed prediction of the spatial distribution
of liquefaction and the resulting displacements, which are particularly important for
assessments of seismic risk for spatially distributed infrastructure systems. We pro-
pose a methodology for incorporating spatial correlation into a geospatial proxy for
liquefaction to create maps of liquefaction and nonliquefaction for a given earthquake
scenario. First, we describe a latent Gaussian process that is assumed to govern the
spatial distribution of liquefaction. Next, a database of empirical observations of
liquefaction is used to obtain the coefficients that describe that latent Gaussian pro-
cess. The proposed model yields random realizations of maps of liquefaction and
nonliquefaction conditioned on a map of %Aliq. Such maps can be used to constrain
the area over which displacements are estimated using soil properties inferred from
geology and are therefore a critical component in reducing bias in assessments of
liquefaction risk at the regional scale.
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Introduction

Background

Liquefaction has caused extensive damage to land, structures, and infrastructure systems
in past earthquakes (e.g. Bray et al., 2014; Hamada et al., 1996; Van Ballegooy et al.,
2014). Accordingly, liquefaction risk analysis is a critical tool for estimating the potential
damage in future earthquakes and making decisions regarding mitigation strategies.

Although liquefaction consequences can be influenced by highly site-specific conditions
(e.g. Beyzaei et al., 2020; Cubrinovski et al., 2019), the primary conditions necessary for
liquefaction to occur are driven by geology and geography. Geology (i.e. age and deposi-
tional environment) determines whether granular, liquefaction-susceptible soils are present
(e.g. Baise et al., 2006; Lewis et al., 1999; Obermeier et al., 1990; Youd and Hoose, 1978;
Youd and Perkins, 1978). Geography (i.e. topography and proximity to water) determines
the depth of the water table, wtd (e.g. Fan et al., 2013). These two factors combined deter-
mine whether saturated, liquefaction-susceptible soils are present at a given location.
Because geology and geography determine the distribution of deposits that are prone to
liquefaction and whether they are saturated, liquefaction tends to threaten multiple loca-
tions across a given region (i.e. on the scale of geologic units or bodies of water).
Furthermore, because these factors are not rapidly evolving, liquefaction will tend to
repeatedly affect a given region in any sufficiently strong earthquake if saturated, suscepti-
ble soil deposits are present (e.g. Quigley et al., 2013).

Liquefaction risk assessment at the regional scale is a key component in forecasting the
impacts of liquefaction in future earthquakes because (a) liquefaction can occur over broad
regions, and (b) the systems affected by liquefaction are likewise distributed over broad
regions. Furthermore, the response and performance of systems affected by liquefaction
may depend on the nature of its spatial distribution. For instance, we expect that a buried
pipe would respond differently to crossing a single continuous 50 m wide polygon contain-
ing liquefaction-induced deformations than to crossing five discontinuous 10 m wide poly-
gons. Figure 1 shows these two scenarios schematically. The length of the pipe exposed to
liquefaction-induced deformations is the same in both cases (50 m), but the outcomes
regarding pipeline performance are likely to be different.

The majority of procedures for liquefaction risk analysis are developed for use in a site-
specific context (e.g. Boulanger and Idriss, 2016; Cetin et al., 2018; Moss et al., 2006).
Applying these procedures in regional analysis requires inferring subsurface conditions that
are typically too sparse to use directly (e.g. Holzer et al., 2006; Youd and Perkins, 1978).
This approach will tend to give similar estimates of liquefaction hazard across broad areas
of similar geology, conditioned on wtd and the shaking intensity in the given earthquake
scenario. Recently, Greenfield and Grant (2020) used Gaussian fields to map site-specific
observations into 3D independent random fields of groundwater depth, soil plasticity, and
penetration resistance for different geologic units, and integrated the resulting models in a
regional-scale probabilistic framework for liquefaction triggering. Still, their approach
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requires statistically significant site characterization data, which is rarely available on
regional scales. On the opposite length scale end, geospatial proxies for liquefaction hazard
(e.g. Rashidian and Baise, 2020; Zhu et al., 2015, 2017) provide an alternative tool for
regional liquefaction risk assessment that uses inputs available from remote sensing, such
as the topography at a given location, to predict the probability that a specific location will
be affected by liquefaction (Pliq). Such proxies may still require inference of certain inputs
or estimation using global models (e.g. wtd), but the uncertainty associated with these
inferences is expected to be smaller than that associated with subsurface soil conditions.
Pliq can be interpreted as the percent of the area covered by liquefaction (%Aliq), as in the
USGS ground failure product (Allstadt et al., 2021). Applying site-specific procedures
regionally by inferring subsurface conditions also gives Pliq, and can account for both
variability around those procedures’ outputs as well as uncertainty associated with the
inference of soil properties. Regardless of which of these two approaches (applying site-
specific procedures with inferred inputs or applying a geospatial proxy with remotely avail-
able inputs) is used, no method exists for assigning liquefaction and nonliquefaction to spe-
cific locations aside from random assignment.

Objective

In this study, we develop an empirical procedure for creating maps of areas of liquefaction
and nonliquefaction based on a latent Gaussian process. This procedure extends existing
geospatial proxies to allow the assignment of liquefaction and nonliquefaction across
regions while reflecting the spatial correlation structure observed in liquefaction manifes-
tations in past earthquakes. The proposed methodology allows continuous spatial varia-
tion in %Aliq.

Methods

Geospatial proxy for liquefaction

Geospatial proxies such as Zhu et al. (2015, 2017) are commonly used to analyze liquefac-
tion risk at a regional scale. Zhu et al. (2017) proposed separate models for use in coastal

Figure 1. Schematic maps showing (a) one 50-m wide polygon of liquefaction-affected area and (b) five
10-m wide polygons of liquefaction-affected area relative to a hypothetical pipeline.
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and non-coastal regions, where the coastal model is applied at sites less than 20 km from
the coast. Both the coastal and non-coastal models apply as independent variables the
time-averaged shear-wave velocity in the top 30 m at a given location (VS, 30), the total
annual precipitation at that location (precip), and the peak ground velocity at that loca-
tion in a given earthquake (PGV ). The coastal model also requires the distance from the
location of interest to the nearest river (dr) and the distance from that location to the coast
(dc). The non-coastal model instead uses wtd at the location of interest and the distance
from that location to the nearest body of water (dw).

The Zhu et al. (2017) models give the probability of liquefaction (Pliq) at the location of
interest in a given earthquake as their output. These models interpret Pliq as being equiva-
lent to %Aliq based on the assumptions and procedure used in their development. The
inputs for Zhu et al. (2017) can be obtained from broad, global models; specialized,
regional models; or detailed measurement at the sites of interest. In this study, we apply
regional models where available and global models elsewhere.

Wald and Allen (2007) developed a globally-applicable model for VS, 30 based on topo-
graphy. Thompson et al. (2014) produced a VS, 30 map of California that incorporates
observed values of VS, 30 as well as geology and topography. Foster et al. (2019) and Ahdi
et al. (2017) applied a similar approach to develop maps of VS, 30 in New Zealand and the
Pacific Northwest, respectively. Multiple studies have produced global maps of precip,
including Daly et al. (1997), Kubota et al. (2007), and Adler et al. (2018). PGV can be
obtained from shake maps for backward analysis of past earthquakes (e.g. Allen et al.,
2008) or predicted using ground motion equations (e.g. Boore et al., 2014; Campbell and
Bozorgnia, 2014) or seismic hazard maps (e.g. Petersen et al., 2020) for forward analysis.
Fan et al. (2013) developed a globally applicable model for predicting wtd based on obser-
vations at over 1.6 million locations and used hydrological modeling to address gaps in
the data. Region-specific models of wtd have been developed for some areas (e.g. Befus
et al., 2020 for the California coast and Westerhoff et al., 2018 for New Zealand). Finally,
dr, dc, and dw can be obtained for a given location by calculating distances between that
location and coastlines, rivers, and lakes.

Gaussian processes

Gaussian processes are collections of random variables where each variable corresponds
to a location and/or a point in time. Essentially, a Gaussian process is a random field
where each variable has a normal distribution. The distribution of a Gaussian process
is then the joint distribution of all those (essentially infinite) random variables, and as
such, it is a distribution over functions with a continuous domain. Gaussian processes
can thus be seen as an infinite-dimensional generalization of multivariate normal distri-
butions (Dudley, 1967).

Gaussian processes are said to be stationary if their properties (i.e. mean and standard
deviation) remain constant over space and time. Gaussian processes are said to be ergodic
if their variation over space and their variation over time are interchangeable (i.e. if their
properties can be obtained using a sample over many locations at a single point in time or
a sample at a single location over many points in time). The concept of ergodicity is fre-
quently invoked in ground motion modeling (e.g. Anderson and Brune, 1999; Lavrentiadis
et al., 2022), where the variability of ground motion across space (i.e. at multiple stations
in multiple earthquakes in different locations) is assumed to reflect the variability of
ground motion at a single location going into the future.
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Describing a Gaussian process requires first obtaining a covariance function that
describes the correlation among locations distributed in space. Formulating empirical
semivariograms and fitting theoretical functions to the results is one approach to
obtaining the covariance function. For a set of spatially distributed observations of
some variable, z, the empirical semivariance, g(h), is given by Equation 1, where zu is
the value of z at location u and zu + h is the value of z at a location separated from u by
a distance of h:

g(h) =
1

2
E½(zu � zu + h)2� ð1Þ

Theoretical semivariograms, denoted as ĝ(h), are fit to g(h) using nonlinear regression.
This notation implies that we are treating the empirical semivariogram as the observed
‘‘truth,’’ and the theoretical semivariogram as an estimator which we determine by regres-
sion. Several functional forms can be used for ĝ(h) that are valid for forward analysis using
kriging, such as the exponential and Gaussian forms (Chiles and Delfiner, 2009; Isaaks
and Srivastava, 1989), while linear combinations of valid semivariograms are also valid
(Journel and Huijbregts, 1978).

We here model the theoretical semivariogram using a nested exponential model after
Markhvida et al. (2018), given by Equation 2. Note that the sill value (g(100m)) of the
empirical semivariograms is 1 because z(s) has a standard normal distribution. The nug-
get (g(0m)), on the other hand, was fixed to zero because manifestations of liquefaction
from a single earthquake on the same site (i.e. zero separation distance) are perfectly
correlated:

ĝ(h) = 1� c1 exp �3
h

‘1

� �� �
� c2 exp �3

h

‘2

� �� �
ð2Þ

On the same time, this functional form for the semivariogram allows us to model sepa-
rate short-distance and long-distance correlation structures, where the respective correla-
tion lengths are ‘1 and ‘2. This feature of the form in Equation 2 allows the model to
capture the influence of the size of individual manifestations (i.e. the scale of sand boils or
clusters of sand boils) with ‘1 and the influence of the size of liquefiable deposits with con-
sistent properties with ‘2. The relative importance of the short- and long-distance correla-
tion is determined by c1 (the weight on the short-distance correlation). c2 is equal to 1� c1

such that the semivariance at large distances is equal to unity.

Finally, we also provide the functional form for a nested Gaussian model, per Equation
3. This functional form is mean-squared differentiable, while the nested exponential
(Equation 2) is not, which makes it more suitable for some risk analysis applications that
adopt methods based on level-crossing statistics (Zimmaro et al., 2019). Figure 2 shows
theoretical semivariograms of the forms given by Equations 2 and 3 for a given set of para-
meters (c1 = 0:7, c2 = 0:3, ‘1 = 20 m, and ‘2 = 50 m). The nested exponential form has a stee-
per slope for separating distances close to 0 m, but a shallower slope at long separating
distances. Both forms reach g’0:97 at h = ‘2.

ĝ(h) = 1� c1 exp �3
h

‘1

� �2
" #

� c2 exp �3
h

‘2

� �2
" #

ð3Þ
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For the case of a standard normal random field (i.e. one with unit variance), the esti-
mated correlation between the field values at two sites separated by h, denoted as r̂(h), is
given by Equation 4:

r̂(h) = 1� ĝ(h) ð4Þ

Liquefaction manifestation as a latent Gaussian process

This section interprets the spatial distribution of surficial liquefaction manifestation as
being governed by a latent (i.e. hidden) Gaussian process. In the context of latent variable
modeling (see, for example, Skrondal and Rabe-Hesketh, 2007), this Gaussian process is a
hypothetical construct, meaning that it cannot be directly observed. Rather, we must mea-
sure it indirectly based on observations of liquefaction manifestation and our assumptions
about its behavior.

We denote the sites of interest as s, where si is the i-th site; we denote surficial manifesta-
tions at the sites as m, where mi = 1 if there are manifestations at si and zero otherwise, and
we denote the latent Gaussian process as Z and a given realization of Z as z(s) (denoted in
Figure 3 as field value), whose cumulative probability of being below a threshold is equiva-
lent to a positive observation of liquefaction. Our goal is to define Z such that Equation 5
is true at all si:

P(Z<z(si)) =%Aliq, i ð5Þ

Liquefaction manifests at the surface at si (i.e. mi = 1) if the inequality given by Equation
6 holds, where F( � ) is the standard normal cumulative distribution function (CDF) and
%Aliq, i is the portion of the area liquefied estimated at si:

F(z(si))<%Aliq, i ð6Þ

If the inequality in Equation 6 holds, Equation 5 is also true.

Figure 2. Nested exponential and Gaussian semivariograms with c1 = 0:7, c2 = 0:3, ‘1 = 20 m, and ‘2 = 50 m.
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This formulation assumes that the latent Gaussian process is stationary (i.e. we assume
that Z is a standard normal variable at each location in s). Moreover, it assumes that Pliq

at a given site in future earthquakes is equivalent to Pliq at many such sites in past earth-
quakes. This assumption is akin to the ‘‘ergodic assumption’’ commonly made in ground
motion prediction (e.g. Anderson and Brune, 1999). Figure 3 demonstrates how this
inequality determines the areas where liquefaction is assigned across a horizontal cross-
section for a constant %Aliq of 30%. When z is less than F�1(%Aliq), liquefaction is
assigned. Two examples are shown: one without a correlation structure and one with a
correlation structure like those derived subsequently.

In forward applications (i.e. simulating the effects of future earthquakes), a large num-
ber of realizations of z(s) ensures that the probability of an individual site manifesting
liquefaction is set to its %Aliq, i (per Equation 6). Furthermore, for a dense enough number
of sampling points, the proportion of sites with a given %Aliq, i that manifest liquefaction
in a single realization of z(s) will also be %Aliq, i. Both of these properties are desirable for
simulating maps of the liquefied area for regional risk analysis because they are consistent
with the assumption that Pliq and %Aliq are equivalent.

Empirical data

Sources

This study uses observations of surficial liquefaction manifestations in past earthquakes
to produce a model for their spatial correlation. Table 1 summarizes the data used. The

Figure 3. A hypothetical horizontal cross-section showing areas assigned liquefaction according to Equation
6 with a constant %Aliq of 30% (a) with no correlation structure and (b) with a correlation structure.
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data were collected from Schmitt et al. (2017), Zimmaro et al. (2020), and Geyin et al.
(2020).

The data from each earthquake detailed in Table 1 consist of the latitude and longitude
coordinates of s, as well as mi for all si. The Fan et al. (2013) water table model and the
Daly et al. (1997) precipitation model are used to estimate wtd and precip in all regions,
respectively. Fan et al. (2013) is used even when post-earthquake cone penetration test
(CPT) data includes water table estimates so that wtd is consistent between the liquefac-
tion (i.e. observed) and nonliquefaction (i.e. sampled) points in a given earthquake. Maps
of PGV for all events are obtained from the ShakeMap Atlas Allen et al. (2008). The
Thompson et al. (2014), Ahdi et al. (2017), Foster et al. (2019), and Kwok et al. (2018)
models for VS, 30 are used for all locations in California, Washington, New Zealand, and
Taiwan, respectively. The Wald and Allen (2007) model for VS, 30 is used in all other
regions.

Per Table 1, there are limited instances of data from multiple earthquakes in the same
region, with the exceptions of the Canterbury, New Zealand, and Puget Sound,
Washington regions, each of which has three earthquakes in the database. Although there
are five California earthquakes in the database, none affected the same region.

Balance and completeness

For the purposes of this study, the completeness and balance of the datasets are important.
We call a dataset complete if it includes all locations with liquefaction manifestations in the
corresponding earthquake. We call a dataset balanced relative to %Aliq if the ratio of the
number of liquefaction and nonliquefaction points aligns with %Aliq (e.g. if 4 out of 10 si

in a dataset have mi = 1 where %Aliq, i = 0:4 for all i). Equation 7 defines the balance of the
database (denoted as B), where n is the number of sites in the database.

B =

P
i mi

n
ð7Þ

Table 1. Summary of the empirical data used in this study

Earthquake Moment magnitude, MW Liquefaction points

1949 Olympia, WAa 7.1 151
1965 Puget Sound, WAa 6.7 223
1989 Loma Prieta, CAb 6.9 108
1994 Northridge, CAc 6.7 34
1999 Chi-Chi, Taiwand 7.7 170
2001 Nisqually, WAe 6.8 68
2003 San Simeon, CAf 6.6 10
2008 Wenchuan, Chinag 7.9 116
2010 El-Mayor Cucapah, CAh 7.2 72
2010 Darfield, New Zealandi 7.1 1315
2011 Christchurch, New Zealandi 6.2 4786
2015 Gorkha, Nepalj 7.8 12
2016 Valentine’s Day, New Zealandi 5.7 154
2019 Ridgecrest, CAk 7.1 190

aChleborad and Schuster (1990) and Rogers et al. (1998); bTinsley et al. (1998); cStewart et al. (1996); dChu et al.

(2004); eBray et al. (2001); fHolzer et al. (2005); gCao et al. (2010); hMcCrink et al. (2011); iGeyin et al. (2020); jMoss

et al. (2015); kZimmaro et al. (2020).
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We calculate %Aliq, i using Zhu et al. (2017) for all sites in all earthquakes. Based on the
calculated %Aliq, i, the databases in Table 1 are initially imbalanced relative to estimates of
%Aliq for the corresponding earthquake. Therefore, we sample nonliquefaction points
within the study area following an approach similar to that of Zhu et al. (2017). These
points are located at least 20 m and at most 1000 m away from existing liquefaction
points. This strategy assumes that the field observations include all surficial liquefaction
manifestations that were generated in the given earthquake (i.e. that the datasets are com-
plete). Put differently, this approach assumes that, for the studies listed in Table 1, lique-
faction manifested at the ground surface only at the reported liquefaction points, and that
any randomly sampled point is a true nonliquefaction point. We are generally confident in
this assumption based on experience with post-earthquake reconnaissance. However, we
should note that we are more confident in this assumption for more recent earthquakes
where the reconnaissance benefited from geolocation and tracking of team members (e.g.
Brandenberg et al., 2019). Other factors can also affect the validity of this assumption,
such as certain areas being inaccessible to reconnaissance teams (e.g. private property or
military installations). We do not address possible differences in our confidence in the
earthquakes presented in Table 1 in this study.

Empirical approach to characterizing the latent Gaussian process

Let us now suppose that the latent Gaussian process for Z described above, exists. If Z

were directly observable (i.e. if we could measure its value from past event data), the devel-
opment of the geospatial model would have been straightforward. However, in this case,
the available empirical dataset is binary (manifestation or no manifestation) and Z, which
controls the manifestation of liquefaction, is hidden. For this reason, to develop the geos-
patial model for Z, we first perform a Monte Carlo simulation according to Equations 8
and 9, generating multiple realizations that both satisfy the underpinning assumptions
(Equation 6) and are consistent with the empirical dataset. Using the Monte Carol realiza-
tions, we then determine the spatial correlation structure of z(s): for each observation of
manifestation or no manifestation of liquefaction in the empirical dataset, the random rea-
lizations are generated with:

ui =
U (0,%Aliq, i), mi = 1

U (%Aliq, i, 1), mi = 0

�
ð8Þ

z(si) = F�1(ui) ð9Þ

where, U(a, b) is a realization of a uniform random variable bounded from a to b; and
F�1(:) is the inverse standard normal CDF.

As mentioned above, Equations 8 and 9 create sets of random realizations of the latent
variable z(s) for all sites, based on: (a) whether or not liquefaction has been observed at a
given site, and (b) the probability of liquefaction at that site (Pliq). Up to this point, no
assumptions about the spatial distribution of Z have been made. Intuitively, if a site has
liquefied, the range of z(si) is not well constrained in the Monte Carlo simulations if Pliq is
large, while z(si) can only span a small range if Pliq is small. The opposite holds if the site
has not liquefied. For instance, if a site has liquefied (mi = 1), the first branch of Equation 8
gives the range of random realizations of ui that increase proportionally to %Aliq, i, which,
in Zhu et al. (2017), is equivalent to Pliq. The opposite behavior is expressed in the second
branch of Equation 8 for sites without liquefaction (mi = 0). In both cases, Equation 9 is
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then used to compute the corresponding random realizations for the latent variable z(si)
from which the geospatial model is derived.

Equations 8 and 9 enforce the assumption stated by the inequality in Equation 6. From
the Probability Integral Transform (Casella and Berger, 2021), the z(s) cumulative distri-
bution (F(z(s))) follows a uniform distribution, from 0 to 1, if z(s) is a standard normal
random field (i.e. to have zero mean, unit variance, and to pass a test for normality such
as Lilliefors, 1967). However, the sampled F(z(s)) is only uniformly distributed under cer-
tain conditions regarding the balance in the database (i.e. B per Equation 7) and the values
of %Aliq, i. Figure 4a demonstrates that a population of z(s) is not normally distributed for
B.%Aliq. Figure 4b shows the variance of z(s) for ranges of B and %Aliq. Along the line
defined by B =%Aliq, the variance of z(s) is approximately 1.0.

We address the issue of imbalanced data by sampling additional nonliquefaction points
such that B is approximately equal to the average value of %Aliq, i in the database, which
pushes z(s) toward a standard normal distribution. We require that the sampled points are
between 20 m and 1000 m from points in the database. Sampling additional nonliquefac-
tion points assumes that surficial manifestations were not present in any location not iden-
tified as a liquefaction point.

We then formulate the empirical semivariogram of each z(s) and fit its theoretical
semivariogram using nonlinear regression with Equations 2 or 3 as the functional form.
Because z(s) has a standard normal distribution, the sill value of the empirical semivar-
iograms is 1, and we assume that c1 + c2 = 1. Finally, because each z(s) is created using
realizations of uniform random variables (i.e. u per Equation 8), we repeat this process
1,000 times for each earthquake using Monte Carlo simulation and analyze the pooled
results. Each Monte Carlo simulation is consistent with the assumed behavior of the
latent Gaussian process as well as the %Aliqi

calculated using Zhu et al. (2017) at each
site. Applying models in this framework derived from the empirical data in Table 1 to
analyses of future earthquakes requires assuming some degree of ergodicity (i.e. that
the z(s) obtained for past earthquakes reflect future earthquakes in those regions or
elsewhere).

Results

Table 2 provides the parameters for the fitted semivariograms (Equations 2 or 3 for the
nested exponential and nested Gaussian models, respectively) calculated using 1,000 simu-
lations of the latent Gaussian process for each individual earthquake, as well as for the
earthquakes pooled together according to region.

Figure 5 shows the empirical and fitted nested exponential semivariograms for each
earthquake in Table 1 grouped according to their regions. The results presented in Table 2
and Figure 5 indicate that for most earthquakes, the overall correlation length of liquefac-
tion manifestation (i.e. the h where ĝ(h) is approximately 0.95 and r̂(h) is below 0.05) is
between 300 and 500 m. These results are consistent with estimates of the correlation
length of indices such as the liquefaction potential index (LPI ; Iwasaki et al. (1978); ‘;
500 m) and CPT cone resistance and sleeve friction (‘; 300 m) per Wang et al. (2017).
Figure 6 shows the fitted and empirical semivariograms for each earthquake together,
along with those of the results pooled together according to region.

The fitted and empirical semivariograms are similar for most earthquakes in the study.
Two outliers (the 2001 Nisqually and 2015 Gorkha earthquakes) have longer correlation
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lengths of 800 to 900 m. The databases of observations of liquefaction manifestations for
these two earthquakes are small relative to many of the other earthquakes in the database,
per Table 1.

Figure 4. Demonstration of the effects of database balance including (a) a histogram of a simulated field
for a poorly balanced database, (b) the observed variance of the simulated field as a function of database
balance and the portion of the area liquefied, and (c) a histogram of a simulated field for a properly
balanced database.
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Figure 5. Empirical and fitted semivariograms for earthquakes in (a) Washington, (b) California,
(c) Canterbury and (d) other global locations.

Table 2. Parameters for the fitted semivariograms for each earthquake and region

Earthquake Exponential Gaussian

c1 ‘1 (m) ‘2 (m) c1 ‘1 (m) ‘2 (m)

1949 Olympia 1.00 473 – 1.00 296 –
1965 Puget Sound 1.00 275 – 1.00 171 –
1989 Loma Prieta 1.00 365 – 1.00 212 –
1994 Northridge 1.00 355 – 1.00 262 –
1999 Chi-Chi 1.00 506 – 1.00 278 –
2001 Nisqually 1.00 892 – 1.00 564 –
2003 San Simeon 1.00 306 – 1.00 190 –
2008 Wenchuan 1.00 333 – 1.00 203 –
2010 El-Mayor Cucapah 1.00 159 – 1.00 44 –
2010 Darfield 0.64 46 431 0.80 69 788
2011 Christchurch 0.68 77 508 0.80 75 872
2015 Gorkha 1.00 799 – 1.00 481 –
2016 Valentine’s Day 0.57 8 140 0.80 32 310
2019 Ridgecrest 1.00 436 – 1.00 271 –
Washington 1.00 386 – 1.00 206 –
California 1.00 468 – 1.00 301 –
Canterbury 0.82 66 435 0.89 67 755
Other regions 1.00 445 – 1.00 268 –
Global 0.87 123 501 0.88 113 778
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Correlation structures with multiple scales (i.e. significant values of both ‘1 and ‘2) are
only identified for the three Cantabrian earthquakes. This structure is more apparent for
the earthquakes with very many (i.e. . 1000) recorded liquefaction points (the 2010
Darfield and 2011 Christchurch earthquakes). It is unclear whether this structure emerges
for these two cases because (a) liquefaction was particularly widespread in those earth-
quakes, (b) some feature of the geology in the area around Christchurch differentiates it
from other regions globally, or (c) the data for those two earthquakes are the most robust.
Additional empirical observations are needed to determine which possible explanation of
this result is correct.

The models presented above are developed without consideration of surficial geology.
To examine the error introduced by this assumption, we repeat the analysis above for the
earthquakes in California and restrict the non-liquefaction points to be sampled in geolo-
gic units containing quaternary alluvium or artificial fill over intertidal mud according to
the Wills et al. (2015) geologic map (for all other geologic units, liquefaction is considered
to be absent). Table 3 reports the correlation lengths obtained in the conditioned analysis
using the Gaussian functional form (Equation 3), which we denote as ‘�1. The correlation
lengths conditioned on susceptible geology differ by 10% or less compared to the original

Figure 6. (a) Fitted and (b) empirical semivariograms for calculated for each earthquake and for the
earthquakes in each region pooled together.
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values. The distance restrictions placed on sampling the non-liquefaction points (i.e. that
they are between 20 m and 1000 m away from the observed liquefaction points) may affect
this result. Further investigation is needed to determine how the correlation structure of
z(s) is affected by conditioning on geology, including separating the liquefaction manifes-
tation length-scales for Quaternary alluvium and artificial fill, which in principle could be
derived from densely sampled observational data. In its current form, the model should be
considered agnostic to the underlying geologic units.

Finally, the models presented above can also be used to develop probabilistic estimates
of the size of features or zones of features (features are hereby identified as areas connect-
ing adjacent grid points that are assigned liquefaction). Figure 7 shows exceedance prob-
ability curves for the size of liquefied zones for two values of %Aliq. The exceedance
probability curves in Figure 7 assume a large area with a constant %Aliq for clarity. To
obtain the exceedance probability curves in Figure 7, we perform Monte Carlo simulations
of ẑ(s) for a 2D grid of s at a regular spacing and with a constant %Aliq; ẑ(s) denotes reali-
zations of Z that are generated using the smoothed fitted semivariogram ĝ(h).

Model implementation and demonstration

In this section, we provide a concise summary of how the models presented in this paper
can be applied, and validate the outcomes of the method by comparing results of the simu-
lation to observations from the 1989 Loma Prieta and 2001 Nisqually earthquakes.

Model implementation

Implementing the latent Gaussian process model to produce spatially correlated maps of
the liquefied area in a past or future earthquake proceeds as follows:

1. Select the lateral extents of the region of interest.
2. Divide the region of interest into a grid with spacing at least one tenth of the corre-

lation length obtained from Table 2.
3. Define s by locating the centroid of each differential element within the grid (for

example square, rectangular, hexagon).
4. Estimate %Aliqi

for each si using a geospatial proxy (e.g. Zhu et al., 2017) or infer-
ence based on geology (e.g. Youd and Perkins, 1978).

5. Assemble a matrix, h, where hij is the distance separating locations si and sj in m.
6. Construct the covariance matrix for a standard normal random field, ẑ(s) using

Equations 2 or 3 and the appropriate coefficients from Table 2 for the region of
interest.

Table 3. Parameters for the fitted semivariograms for each earthquake located in California: estimates
of ‘�1 are conditioned on sampling points only in susceptible surficial geology

Earthquake ‘1 (m) ‘�1 (m)

1989 Loma Prieta 212 208
1994 Northridge 262 261
2003 San Simeon 190 190
2010 El-Mayor Cucapah 44 45
2019 Ridgecrest 271 244
California 301 310
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7. Generate the desired number of realizations of ẑ(s).
8. For each realization, assign liquefaction to those grid polygons where

F(̂z(si))<%Aliq, i (Equation 6).

Case studies

This section applies the latent Gaussian process model to develop maps of the liquefied
area in Seattle, WA, in the 2001 Nisqually earthquake and San Francisco and Monterey
Bay, CA, in the 1989 Loma Prieta earthquake. For all cases, we use a hexagonal grid at
100 m spacing (roughly 1/4 of ‘1 for these regions). Figure 8 shows maps of PGV for these
case studies as obtained from ShakeMaps and Figure 9 shows maps of %Aliq for these case
studies as derived from the Zhu et al. (2017) model.

Figures 10 and 11 show maps of ẑ(s) for these case studies including and excluding spa-
tial correlation, respectively. Per Equation 6, low (negative) and high (positive) values of
ẑ(s) are relatively likely and unlikely, respectively, to be liquefaction locations, depending
on the values of %Aliqi

. The coefficients from Table 2 for Washington are used for Seattle
and those for California are used for San Francisco and Monterey Bay. It should be noted
that the realizations of ẑ(s) with and without spatial correlation (Figures 10 and 11 corre-
spondingly) are operators that translate the percent area liquefied (%Aliqi

) maps into

Figure 7. Exceedance probability curves for two dimensional feature or zone size for two values of
%Aliq for (a) California and (b) Canterbury.
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spatially correlated maps and uncorrelated maps (Figures 12 and 13 correspondingly) of
the liquefied area, and as such have no physical meaning.

Next, Figures 12 and 13 show maps of the liquefied area corresponding to the ẑ(s) fields
from Figures 10 and 11. Qualitatively, we see that the density of liquefaction observations
in both the correlated and uncorrelated maps (Figures 12 and 13) reflects the spatial distri-
bution of the %Aliq predictions. Furthermore, the predictions of %Aliq reflect the different
geologic conditions (e.g. Treasure Island is a hydraulic fill, and Yerba Buena island is a
rock outcrop). In the uncorrelated maps the liquefaction points do not tend to form con-
tinuous polygons corresponding to liquefaction features such as lateral spreads. However,

Figure 8. Peak ground velocity maps for (a) Seattle in the 2001 Nisqually earthquake, (b) San Francisco
and Oakland in the 1989 Loma Prieta earthquake, and (c) Monterey Bay in the 1989 Loma Prieta
earthquake.

Figure 9. Percent area liquefied (%Aliqi
) maps for (a) Seattle in the 2001 Nisqually earthquake, (b) San

Francisco and Oakland in the 1989 Loma Prieta earthquake, and (c) Monterey Bay in the 1989 Loma
Prieta earthquake. %Aliqi

calculated using Zhu et al. (2017).
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such features are obtained by application of the spatial correlation model, which produces
the correlated map (Figure 12) that has clearer distinctions between areas of liquefaction
and nonliquefaction.

We can obtain a suite of maps like those in Figure 12 for each region by generating
multiple realizations of ẑ(s) in Monte Carlo simulation. Each map can be used to evaluate
performance metrics of interest (e.g. disruption of an infrastructure system), the results of
which can then be aggregated across the map suite to evaluate probabilities (e.g. probabil-
ity of failure of an infrastructure system).

Figure 10. Spatially correlated standard normal random field maps, depicting field value (ẑ(s)) for (a)
Seattle in the 2001 Nisqually earthquake, (b) San Francisco and Oakland in the 1989 Loma Prieta
earthquake, and (c) Monterey Bay in the 1989 Loma Prieta earthquake.

Figure 11. Uncorrelated standard normal random field maps, depicting field value (ẑ(s)) for (a) Seattle
in the 2001 Nisqually earthquake, (b) San Francisco and Oakland in the 1989 Loma Prieta earthquake,
and (c) Monterey Bay in the 1989 Loma Prieta earthquake.
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To verify that the Gaussian process accurately captures the predictions of %Aliq from
the geospatial model, Figure 14 shows the simulated %Aliq (i.e. the area of cells marked as
‘‘liquefied areas’’ in Figures 12 and 13 divided by the total area) binned according to the
predicted %Aliq (i.e. Figure 9). Results from 10 random field realizations are shown for
both approaches. Either approach generates maps of the liquefied area that are consistent
with %Aliq.

Across a sufficiently large number of realizations, the true positive rate at sites with
manifestations is equal to %Aliq, i at those sites, as dictated by Equation 6. The false posi-
tive rate at sites without manifestations is likewise equal to %Aliq, i at those sites. These

Figure 12. Spatially correlated maps of the liquefied area for (a) Seattle in the 2001 Nisqually
earthquake, (b) San Francisco and Oakland in the 1989 Loma Prieta earthquake, and (c) Monterey Bay in
the 1989 Loma Prieta earthquake.

Figure 13. Uncorrelated maps of the liquefied area for (a) Seattle in the 2001 Nisqually earthquake, (b)
San Francisco and Oakland in the 1989 Loma Prieta earthquake, and (c) Monterey Bay in the 1989 Loma
Prieta earthquake.
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identities are true for the implementations with and without spatial correlation. However,
the case including spatial correlation is more likely to correctly identify clusters of sites
with manifestations. Figure 15 shows the true positive rate conditioned on a nearby true
positive (i.e. how likely it is for the model under evaluation to have correctly predicted that
a site has truly liquefied given that a nearby site has also liquefied) for the cases with and
without spatial correlation for 1,000 realizations of the Monterey Bay and Puget Sound
study areas. These areas are used for this analysis because they include more observations
(46 and 37 points, compared to 16 in the San Francisco and Oakland study area). The con-
ditional true positive rate is much higher at short distances when including spatial correla-
tion. In the case without correlation, predictions at each site are independent, and the true
positive rate is %Aliq, i regardless of whether a site with a true positive is located nearby.

The extensive reconnaissance survey after the 2019 Ridgecrest (Zimmaro et al., 2020) is
believed to have mapped all locations of liquefaction manifestation within certain study
areas located within or adjacent to the two dry lakes (Searles Lake and China Lake; their
specific study locations shown in their Figures 4, 5 and 8). Accordingly, for this event, a
similar comparison can be performed both for the true positive rate conditioned on true
positive, as well as, the true negative rate conditioned on true negative (Figure 16). The
case with spatial correlation has a higher true positive and true negative at short separation

Figure 14. Comparison of the predicted and simulated %Aliq values for 10 random field realizations for
each case study area for (a) the case including spatial correlation and (b) the uncorrelated case.
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distances, meaning that it more effectively predicts the liquefaction and no-liquefaction
clusters. The case with no spatial correlation treats every site independently and so the
conditional true positive and true negative rate are equal to %Aliq and 1�%Aliq regardless
of their proximity to nearby location with liquefaction or no-liquefaction manifestation,
respectively. Figure 16 indicates a more rapid rate of decay of true positive probabilities
with separation distance than is seen in Figure 15 for Monterey Bay and Puget Sound. We
believe this is caused by the potentially liquefiable regions being separated by bands of
non-liquefiable material, which are associated with the depositional environment of the
dry lakebeds where the reconnaissance was performed. Within such setting, the decay rate
is highly directional, being slow parallel to the old shoreline and rapid in the perpendicular
direction. Since the semi-variogram model does not capture these directional features, a
directional averaging occurs that produces, in aggregate, a relatively show decay rate.

Concluding remarks

This study proposes a latent Gaussian process model for generating maps of the liquefied
area in future earthquakes. The model uses a geospatial proxy model for liquefaction and
a standard normal random field (̂z(s)) to assign liquefaction or non-liquefaction to an arbi-
trary set of locations in a given earthquake or earthquake scenario. As implemented here,

Figure 15. The true positive rate for sites in the (a) Monterey Bay and (b) Puget Sound case study
areas conditioned on a true positive within a threshold separating distance.
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the Zhu et al. (2017) geospatial proxy model is applied, although this feature is modular
and other models could be used for particular applications if they are judged to be more
suitable for the application region.

The semi-variogram coefficients needed to simulate ẑ(s) are estimated using databases
of observations of surficial liquefaction manifestations from 14 historical earthquakes. At
present, the models are strictly compatible only with the Zhu et al. (2017) geospatial
proxy, but the approach described in this study could be applied to produce models for
ẑ(s) for another proxy. Whether the semi-variogram applied here could be used with
another geospatial proxy depends mainly on the accuracy and spatial resolution of that
proxy. If %Aliq is mapped using a methodology with a similar level of accuracy and indices
that are broadly consistent spatially (such as surface geology) the present semi-variogram
model could be used, albeit with additional epistemic uncertainty.

The latent Gaussian process models developed in this study allow users to assign lique-
faction and nonliquefaction to a grid of locations in a manner that is consistent with both
(a) the expected portion of area liquefied (%Aliq) at those locations and (b) the spatial dis-
tribution of liquefaction manifestations observed in past earthquakes. The models could be
improved by incorporating liquefaction inventories from additional earthquakes, and this
work highlights the need for collecting rich inventories of both liquefaction and nonlique-
faction points in future reconnaissance efforts.
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conditioned on a true negative within a threshold distance.
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