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Abstract 

A mathematical model is presented that can calculate the frequency response of a 

rotating disk accounting for multicomponent diffusion, migration, and homogeneous and 

heterogeneous reactions. The wor~ng algorithm uses concentrated-solution theory, 

incorporating the Stefan-Maxwell transport equations, and accounts for a finite Schmidt 

number and interfacial velocity. The governing equations of the disk boundary layer 

and electrode boundary condition are first discussed. Next, the electrochemical 

impedance of the disk electrode is analyzed theoretically. This includes examining the 

impedance due to each contribution of the total cell potential and total current. This is 

necessary because the definitions of some terms used in the electrochemical impedance 

literature are often confusing and not universally recognized. Such a fundamental 

approach of formulating the problem gives rise to impedance terms typically neglected 

in other ac-impedance treatments. 

key words: Stefan-Maxwell multicomponent transport, faradaic impedance 
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1. Introduction 

A mathematical treatment of the total electrochemical impedance of a rotating 

disk electrode is to be presented. The macroscopic modelt utilizes the Stefan-Maxwell 

multicomponent transport equations to describe diffusion and migration in concentrated 

solutions with homogeneous chemical and heterogeneous electrode reactions. This 

model is capable of predicting the impedance behavior for many electrochemical 

systems, although in this paper, only the governing equations are discussed. In later 

papers, the developed model will be applied to the anodic dissolution of copper in 

chloride solutions. 

2. Model Development 

The macroscopIC model to be presented has been discussed lI) previously. 

Therefore, details of concentrated-solution theory will not be described here. Instead, 

an overview of the equations, boundary equations, and numerical procedure will be 

given with emphasis on the new contributions to the model and to formulation of the 

impedance problem in general. 

2.1. Governing Equations 

The Stefan-;viaxwell transport equations to· be outlined account for 

m ulticom ponent concen trated-solution theory, 121 including migration, diffusion, 

convection, and homogeneous reaction kinetics within the mass-transfer boundary layer. 

t Macroscopic refers to the rotating-disk boundary layer, as opposed to a 
microscopic double-layer model. 

'. 
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The generalized set of governing equations in the distributed, macrOSCOpIC model is 

summarized in table 1. There are 2n + 1 variables and equations in the model, where n 

is the number of species present, including the solvent. The variables: electrostatic 

potential <1>, mole fractions, Xo for the solvent and Xj = cJcT for species i, and the molar 

fluxes, Jo and Jj = Cj( Vi - V) relative to the mass-average velocity V, are functions of the 

axial distance z from the electrode and of time. 

In matching variables and equations, the first three equations ill table 1, the 

electroneutrality equation, the mole fraction relationship, and the molar flux/molecular 

Table 1. Governing equations in the distributed macroscopic model. 

Variables 

<1>( z) 

Equations 

'" M.J. = 0 ~ " 

zp x;l,. - x,.Ji 
'iJx· + -'- x·'iJ<P = '" ----, RT I ~ D k".. CT i.k 

8Ci -
- = - 'iJ.J. + R· - CTY''iJX' + c·y·'iJ In M at I I I I 

Number 

1 

1 

1 

n -1 

n -1 

2n + 1 
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weight relationship, can correspond to the electrostatic potential and the solvent mole 

fraction and flux. The remaining n - 1 transport equations and n - 1 material 

balances are for the 2n - 2 mole fractions and fluxes. M j is the molecular weight of 

species i, and M is the average molecular weight of the solution, weighted by mole 

fractions and including the solvent. R j is rate of homogeneous production, and our 

treatment of chemical-reaction kinetics is summarized in table 2. The first equation in 

the table represents a single homogeneous reaction. Activity coefficients are not 

accounted for in the model at this time but can be added without disrupting the 

calculation scheme. 

Dj,k is the concentrated-solution-theory diffusion coefficient describing the 

interaction of species i and k. The number of transport properties defined by the 

Stefan-Maxwell equation is ~ n(n - 1), since D j k = Dk j and D j j is not defined. It , , , 

should be noted that these transport properties are rigorously to be obtained from 

independent measurements of the conductivity, (n - 2) transference numbers, and 

~(n - 1)(n - 2) diffusion coefficients corresponding to interdiffusion of neutral 

combinations of species. Thus, for four species (for example, three ions and a solvent) 

there are six transport properties: six coefficients D j,k corresponding to one 

conductivity, two independent transference numbers, and three diffusion coefficients 

required to describe diffusion of the electrolyte CB and supporting electrolyte cA in the 

solvent. 



Table 2. Homogeneous-reaction equationst used in the concentrated-solution model. 

Rotating-Disk Electrode 

~V·I~i _ 0 
L.J" , 
i 

" 
Hi = - ~ Vi,1 HI 

I 

5 

A particular geometry must be specified before the mass-transfer governing 

equations in table 1 can be solved. For this work, the rotating disk has been chosen, 

t It should be noted that nonconventional chemistry notation is being used 
here since Vi,1 is positive for reactants, instead of being positive for products. Therefore, 

t:. ct = - ~ vi,1 J.lf instead of tl ct = ~ vi,1 J.lf. This is done so that the stoichiometry 
i i 

of the electrochemical and chemical reactions is consistent. 
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because its hydrodynamics l31• 141. 151 are well known and it has good mass-transfer 

properties,161. 171 such as providing an uniformly accessible surface. Additionally, the 

degree of nonuniformity of the current distribution lSI and the frequency dispersion III 

impedance measurements,I91 both due to ohmic effects, have been assessed. 

Next, we briefly discuss the characterization of the diffusion layer near a rotating 

disk, first under steady-state conditions, followed by a discussion of the frequency 

dependence of the concentration profiles. Concentration variations in the boundary 

layer are created by the electrode-reaction processes, which lead to depletion of the 

solution near the cathode and an enhancement of the concentration near the anode. 

Diffusion is important in the thin region adjacent to the disk because the axial velocity 

is small. Further from the electrode however, forced convection becomes the 

dominating mode of transport because of the high rates of stirring due to rotation of the 

disk. 

The effect of mass transfer due to convection is characterized by the equations for 

the rotating disk given in table 3. The normal component of the velocity for short 

distances from the disk is expressed as a dimensionless power series as a function of ~, 

the dimensionless variable used III the Von Karman transformation. 131 The 

dimensionless interfacial velocity, H(O), IS included, where rl is the rate of the 

heterogeneous reaction I and will be discussed III the next section. The equations III 

table 3 are restricted to constant fluid density and viscosity, whereas the equations in 

table 1 are not. Therefore, if physical-property data were available, variable fluid 

properties could be accounted for. The method of handling the coupled hydrodynamic 

and mass-transport problem in concentrated solutions with variable physical properties 

.. 
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Table 3. Supplementary equations used in the concentrated-solution model. 

Scaling of the Boundary Layer 

= [ 3DR ]1 /3 [.k..]1/2 
Zmax Emax av 11 

1 -
( )

1/2 
pSc 1/3 

+ 5.4 

RDE Velocity Profiles 

where [ ]
1/2 

<; = Z ~ 

H(<;) = H(O) - a f + 1. ~ + .!!.. <;4 + ..!c.. f + _a_ ~ _ (1 - 4ab) <;7 
3 6 30 180 1260 

H(O) - - 1 L; ~f· L; - I Jli I· 81.,1 TI , 
CrM(vO)l 2 i 1 

where M =" x·Af. LJ I 1 

is well worked out.11O!.llll 

For the transient mass-transfer problem, the concentration of ions responds to the 

sinusoidal ac perturbation at the surface, and then the concentration fluctuations 

propagate from the electrode out into the solution until eventually the concentration 

wave is completely damped out. The frequency dependence of the depth of penetration 



8 

of the ac-concentration variations was cited by Vetter,[12! where it was shown that the 

ac diffusion-layer thickness (the War burg line) varies inversely with the square root of 

the frequency, i.e., OJ(w) oc~. Thus, the ratio of OJ(w) to the steady-state, Nernst 

diffusion-layer thickness (given by the Levich equation: bj = 1.6117 D1'3 V 1/ 6 0-1/ 2), 

yields the frequency-dependent mass-transfer function (pSc 1/3t1/2, where p = w/O is 

the dimensionless perturbation frequency and Se = v/DR is the Schmidt number of the 

reference species. 

It is well known that the rotating-disk problem can be properly scaled using the 

dimensionless parameter ~ = z(O/ V)1/2 (av/ 3DR )1/3, arising from the dimensionless 

convective-diffusion equation.[21 For computational convemence, we introduce a 

boundary-layer thickness zmax' such that the diffusion-layer is always within the 

somewhat arbitrarily chosen zmax. The frequency-dependent nature of the diffusion 

layer thickness was alluded to above, and therefore justifies our introduction of the 

dimensionless maximum distance from the disk, ~max' given in table 3. In the steady 

state, ~max = 2 (D max /DR )1/3, where the diffusion-layer thickness is scaled based on the 

largest diffusion coefficient in the problem, D max. 

2.2. Boundary Conditions 

Before the problem can be resolved, the corresponding boundary conditions must 

be specified. The mathematical formulation of the governing equations at the 

boundaries is given in table 4. Far from the disk, the composition approaches that of 

the bulk fluid, and the potential is arbitrarily set to zero at the position ~max. The 

interface, where multiple charge-transfer reactions can occur, serves as the other 
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Table 4. Governing equations at the boundaries used in the concentrated-solution model. 

Electrode Surface 

arj,d = N!ct) _ N(t: = 0) at I I" 

r'd = I, 

" z·x· = 0 L.J I I 

Bulk Sol-ution 

x· = x· at t: = 00 I 1,00 ~ 

n -1 

1 

n -1 

1 

boundary. At steady state, the first equation III table 4 reduces to 

Nt) = Cj,OVO + Jj ( e = 0), where the molar flux N j( e = 0) at the electrode is expressed in 

terms of the velocity through the interface, Vo, and the flux, Jj , calculated relative to the 

mass-average velocity. For nonsteady-state conditions, diffuse-layer adsorption is 

important. Thus, the surface excess rj,d of all ionic species in the diffuse part of the 

double layer must be accounted for using the transient material balance in table 4. 

Linearized diffuse-layer theory (see appendix A) can be applied, yielding the second 

equation in table 4. On the solution side of the interface, the electroneutrality condition 



10 

remains valid up to the inner limit of the diffusion layer, although, strictly speaking, it 

is not a boundary condition. 

A single electrochemical reaction is represented by 

E Si,1 A(i - nl e- , 
i 

(1) 

and the modified Butler-Volmer expression given in table 5 describes its kinetics, when 

the reaction order is assumed to be proportional to the reaction's stoichiometry. 

v = <Il m - <Ilo is the electrode potential minus the potential of a reference electrode of a 

given kind located just outside the diffuse part of the double layer. The reference 

electrode of a given kind has been chosen to be the saturated calomel electrode in the 

equations. This potential difference serves as the kinetic driving fotce for the faradaic 

charge-transfer reactions. The kinetic relationship, along with equations for the 

equilibrium constants also given in table 5, completes the set of governing equations for 

the macroscopic transport model. 

2.3. Breakdown of V'o, 

Next, we should express the theoretical kinetic potential difference, V, in terms of 

the measurable cell potential, V'o, = <Il m - <Il RR' V'o, is the electrode potential relative 

to a real reference electrode located in the bulk solution, essentially at infinity. The 

total cell potential will be used later In the determination of the total electrochemical 

impedance and may be rewrittent 

t An alternative breakdown of V'Ol in terms of the more commonly used surface 
and concentration overpotentials is given in appendix B. 



Table 5. Supplementary equations describing the faradaic reactions. 

(et) '" ",.!iL . 
N j = - L.J Sj,1 'I = - L.J n F 1/,1 , 

I I I 

FU8 1· 8 1 E 8 
I =-J.lH -u:.+-- s'lJ.l' no tl '---H I, S' 
~. nl j 

nl = - E Si,1 Zj 
j 

Sj 1< 0 , 

11 

(2) 

where the first term on the right is the potential difference of interest, V. The final 

term reduces to the liquid junction potential, Ll<PLJ, if the reference electrodes of a given 

and a real kind are chosen to be the same. Ll<P LJ depends on how the junction is formed 

and the concentration profile. The Henderson formula l13J may be used for a continuous· 

mixture junction; however, this difference is quite small in practice, and usually can be 

neglected. Furthermore, it is not part of the impedance problem. 
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The second term contains an ohmic contribution and the diffusion potential and 

takes the form [21 

6. R T 6 t q 8 In(c ·f· ) 
<1>0 - <1>6 = J ..!.. dz + - J ~ ~ 1 l,n dz , 

o I'\, F 0 j z j 8z 
(3) 

where t J is the transference Dumber of species j with respect to the velocity of the 

f - f /fz/z~ h solvent, j,n - j n is the molar activity coefficient of species j relative to t e 

reference species n, and I'\, is the electrolytic conductivity, a well-recognized physical 

property given in reference 2 for concentrated solutions or for dilute solutions by 

(4) 

Activity coefficients would need to be introduced into the treatment of multicomponent 

transport for greater rigor, as was done in reference 10 for a binary solution. The lack 

of a general data base for multicomponent solutions hampers this effort of applying 

concentrated-solution theory (see also Smyrl and Newman[141 and chapters 4 and 6 of 

reference [2]). 

The potential difference between the solution adjacent to the electrode surface and 

a hemispherical counterelectrode located at infinity can be expressed in terms of the 

well-known ohmic resistance l151 for a primary current distribution to a disk, (4I'\,ooTo(1, 

by using the following: 

A A 

<1>0 - <I> 6 = (<1>0 - <1>0) + (<1>0 - <I> 6) (5) 

<1>0 IS the potential of the solution just outside the diffuse layer which would be 

determined by a reference electrode of a given kind if there were no concentration 

gradients across the boundary layer, but the same current distribution prevailed. The 

second term on the right in equation 5 is the ohmic potential drop between the surface 
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and the bulk calculated using Laplace's equation, assuming the conductivity is constant 

and equal to the bulk solution value, 1\,00. Thus, the ohmic-potential term is given by 

A A • rrro . 
,6.cP h = CPo - CPb = , -- = z Rfl (6) 

a m 41\,00 

where i is related to the total current, 1= rrr5 i, and Rfl IS III ohm·cm2
. Finally, a 

breakdown of the total cell potential is illustrated schematically III figure 1, and 

equation 2 can be rewritten 

A 

VIol = V + (CPo - cpo) + i Rfl + ,6.CPLJ , (7) 

and will be used later to yield the total electrochemical impedance. Use of a primary 

resistance value for Rfl ignores the realities of a nonuniform current distribution on the 

disk electrode. 18•Q1 

3. Electrochemical Impedance Determination 

The governing equations, boundary conditions, and a detailed breakdown of the 

total cell potential have been presented that fully specify the kinetic and transport 

problem to a rotating disk in concentrated solutions. Once the concentration and 

potential profiles are determined, the current can be calculated using a linear-response-

analysis, which then allows the electrochemical impedance to be predicted. Let us next 

briefly review the linear-response analysis procedure and then discuss the numerical 

procedure that is used to solve the macroscopic impedance problem. 

3.1. Linear-Response Analysis 

A linear-response analysis is used here to determine the total impedance. A linear 

response is accomplished experimentally by applying a small perturbation signal about a 



-> -
c -c 
Q) -o 
a. 

rvery thin diffuse double loyer 
ot electrode surface 

. /potential ~f working electrode 

~ • . • I. • • 0 • 0 

m /potential in solution vs. a given 
reference electrode ot z = 0 

<%>0 • • , I· . . , , , 

" <%>0 

• 
I 

Potential in solution at z = 0 
(Laplace's equation) 

I 
• 
I' 
I 

/
potential in solution 

at z = eX) , , . I' ' , 
I 

, , /. , 

Diffusion ' 
Layer I 

Bulk 
Solution 

14 

}v 
fiU -K~)dZ 

+ ~<%> diff 

z=o z = 8 z=b z = co 

Distance from Working Electrode 

Figure 1. Breakdown of VIOl into a number of tractable components. 
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steady-state polarization point (Vtot , i). The electrochemical system of interest is 

disturbed by superimposing a low amplitude alternating-potential perturbation, 

OVtot = I v'o, I cos (wt), of frequency w onto a steady-state potential, V. The system 

responds to this sinusoidal-potential by relaxing to a new pseudo-steady state. The 

small alternating-current output, i = I i I cos (w t - if», will be at the same frequency 

of perturbation, but will be phase shifted and have an amplitude different from the 

input signal. 

The total impedance Ztot of the electrochemical system 1S the ratio of the 

alternating voltage to the current response and is given by 

V 
Ztot = ~ = I Ztot I exp(jif» = Re { Ztot } + jIm { Ztot } 

I 

when phasor notation is used. The magnitude of the total impedance 

(8) 

(9) 

is expressed in ohm ·cm2, and the phase shift between the current and the potential is 

given by if> = arctan (1m { Ztot } / Re { Ztot }). 

3.2. Computational Procedure 

Each variable in the problem, concentrations of all the species and the potential, 

takes the form t of X = X + oX, where oX = X exp(j w t). The governing equations, as 

described in table 1, therefore can be split into a set of dc equations for the steady-state 

variables X and a similar set of ac equations for the time-independent, frequency-

t Strictly speaking, one takes the real part of such complex expreSS10ns: 
X = X + Re { X exp(jwt) }. 
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domain phasors, X. 

The steady-state form of the equations found in table 1 has been solved by Pollard 

and Newman,[ll! without including the effect of migration. For the problem at hand, 

the set of steady-state equations (8cJ8t = 0) can be cast into a one-dimensional, finite-

difference form and resolved using Newman's BAND and MATINV[2! subroutines, with 

the appropriate boundary conditions given in table 4. 

An iterative procedure is necessary for the solution to the steady-state problem, 

and therefore initial guesses for the concentration and potential profiles are required. 

Thus, the supporting electrolyte species profiles are assumed to be equal to their bulk 

concentrations. The minor species, however, typically vary rather significantly across 

the boundary layer. For a metal dissolution reaction, the concentration profile of the 

product species is assumed to take the form 

c p(z) = C P,O exp (- 1-) 
p 

The Nernst diffusion-layer thickness, 

_ _ Sj "[ I 6j 
and C j,O = C j,co - -

nF Dj 

6j = r( 4/3) OJ, was given earlier 

(10) 

In the paper. 

Finally, the kinetic expressIOn given In table 4 IS simplified, specifically for a metal 

dissolution reaction, to 

QaF -] _ -QcF -
~ _ _ k_a_e_x_p~R_T_V-,-_-_k_c_c_p_,_co_ex_p~_R_T_-.J...V 
n F - 6p [- QcF _] 

1 + Dp kc exp RT V 

(11) 

where the surface concentration cp,o has been eliminated from the equation using the 

Nernst diffusion-layer approximation. 
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The set of governing equations in table 1 is changed from the time domain to the 

frequency domain by replacing a cd a t with j wei. Then the complex potential and 

concentration phasors, represented by X = Re { X } + jIm { X}, are split into their 

real and imaginary parts, yielding twice as many, frequency-coupled linear equations. 

Linearity makes the numerical computation of the ac problem simpler; furthermore, the 

finite-difference matrix of coefficients (see appendix of reference 2) is identical to that for 

the properly linearized dc part except for the additional terms arising from the time 

derivatives. 

4. Total Impedance 

Let us now turn our attention to the determination of the total electrochemical 

impedance. The governing equations in the Stefan-Maxwell model, described above, can 

be solved numerically yielding the real and the imaginary parts of the concentrations 

and the potential, which in turn can be used to determine the complex impedance using 

the following expression: 

v + (4)0 - $0) 
Z/o/ =... - +Rn 

if + jwq 
(12) 

(An alternative expression for ZtOI is given in appendix B In terms of the surface and 

concen tration overpoten tials). 

The total cell potential V'o, is given by equation 7 and consists of three ac 

components: again, V is the kinetic driving force across the interface, 4>0 - $0 is the 

potential difference across the diffusion layer (and includes the diffusion potential and 

·the ohmic drop due to variations in the conductivity), and the last term in equation 12, 

the primary solution resistance R n, gives rise to the ohmic potential drop. The liquid-
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junction potential has no ac component by definition. 

The resulting total alternating current density is the sum of the faradaic current 

density and the charging current density (ic = jwq replaces 8qf8t). The ac faradaic 

current density, i I = E i /,1 = FE zjvf ctl , is a function of the kinetic potential 
I i 

difference V and the time-independent alternating part of the concentration Ci,O of all 

species just outside the diffuse part of the double layer. Linearization of the modified 

Butler-Volmer rate equation glven 1D table 4 using a Taylor expansion around the 

steady-state values of ~i,O and V yields 

I 1,1 [
8' ]1 - ::..!..L!.. 1 V + E 
8V c,l- -

Cjl) V 
I ' 

[~]I -1 C i,O 
8ci V - -

1 C,.I) V 

(13) 

The partial derivatives are functions of the kinetics of reaction t. Therefore, they 

cannot be determined until a specific reaction mechanism is chosen for the glven 

electrochemical system. 

The alternating charge density, q, can be determined using a Taylor series similar 

to equation 13 for i /,1, 

I 

q - [.k]1 V + E 
8V cl - -

, C I) v 
I '. 

(14) 

where q is a function of the potential difference V and the concentrations Ci,O' The 

differential double-layer capacity C is defined by the first partial derivative on the right, 

where both partial derivatives in equation 14 are functions of the double-layer structure 

and cannot be determined until a detailed microscopic model lI61 of the interface is 

specified. However, the purpose of this paper is to present a macroscopic framework for 
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the electrochemical impedance; thus, a complex model of the double layer, e.g.] the work 

of Appel,1171 accounting for the effect that concentration variations have on the diffuse 

layer, is not incorporated in the present treatment. Instead, linearized diffuse-layer 

theory (see appendix A) can be applied. 

The complex impedance can be obtained after multiplying equation 8 by the 

complex conjugate of the current density, i-, which yields the following generalized 

form of the real and the imaginary parts of the total impedance: 

{ } 
Re { V'o, } Re { i } + 1m { V'o, } 1m { i } 

Re Ztot = --
Re2 { i } + 1m 2 { i } 

(15) 

and 

{ } 
Re { i } 1m { V'o, } - 1m { i } Re { V'o, } 

1m Ztot = --
Re2 { i } + 1m 2 { i } 

(16) 

Let us now briefly discuss the components of the total impedance that are contained 

within equation 12 for Ztot. 

Historically, the faradaic impedance is defined by Z f = V / if and is the kinetic 

contribution to the total impedance accounting for variations in the surface 

concentrations of all speCies III solution. The solution impedance, 

Zsoln = (~o - ~o)/ i + Ho, arises from the potential difference across the diffusion layer 

and consists of two terms. The first results from the establishment of a diffusion 

potential and ohmic drop (accounting for the variable conductivity) due to 

concen tration gradien ts across the diffusion layer. This term is typically neglected in 

other ac-impedance treatments. The second contribution to Zsoln' Ho, is the ohmic 

resistance given by equation 6. 
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5. Conclusions 

In this paper, we have presented a macroscopic model for electrode kinetics and 

electrolytic mass transfer adjacent to a rotating disk. Additionally, the governing 

equations associated with the total impedance of a given electrochemical system have 

been discussed. The theoretical treatment accounts for concentrated-solution theory, 

incorporating the Stefan-Maxwell multicomponent transport equations, and an arbitrary 

number of homogeneous and heterogeneous reactions, as well as a finite Schmidt number 

and interfacial velocity. Detailed breakdowns of the various potentials were included in 

the text and in appendix B. This approach gives rise to impedance terms typically 

neglected in other theoretical treatments of the impedance. Thus, this work makes it 

possible to see where certain assumptions have been made in the electrochemical 

literature. It is hoped that this analysis will help clarify the impedance definitions that 

are sometimes confusing and not universally recognized. 

The model presently does not account for porous salt or oxide films at the 

electrode surface or specific adsorption, although incorporation of linearized diffuse 

double-layer theory into the electrode boundary condition is discussed in appendix A. In 

future papers, the Stefan-Maxwell model is to be used to predict the frequency-response 

of a copper rotating disk, a system that does not have surface films or a significant 

amount of specifically adsorbed ions. 
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Appendix A. The Linearized Diffuse-Layer Boundary Condition 

The governing equations within the electrical double layer serve as the electrode 

boundary condition to the macroscopic problem discussed in this paper. A simplified 

theoretical framework for the case of no specific adsorption is presented here, although a 

microscopic model l18J of the double layer is necessary to describe the detailed electrode-

electrolyte interfacial phenomena. The double layer and the mass-transport boundary 

layer are shown schematically in figure 2. The concept of separating the diffusion layer 

and the double layer has been rigorously justified by Newman Jl9J using a perturbation 

analysis. 

The double layer is the small region, enclosed by y = ° and z = 0, where a large 

electric field and a nonzero charge density exist. The outer Helmholtz plane (OHP), 

denoted by Yz, is the plane of closest approach of nonspecifically adsorbed ions and splits 

the double layer into two regions: the inner or compact region and the diffuse layer. 

The potential difference across the double layer, V = 4>m - 4>0' can be split according to 

(AI) 

where V = 4>m - 4>z is the Frumkin1zoJ corrected kinetic potential driving force. When 

4>z - 4>0 
the potential at the OHP, 4>." is small such that / « 1, linearized diffuse-layer 

- RT F 

theory can be used. Therefore, the capacity of the diffuse layer, defined by 

Cd = -( f)q2/ f)4>z), can be approximated by 

-qz 
Cd=----.,;..;~ 

4>z - 4>0 
(A2) 

The diffuse charge density qz accumulates due to adsorbed ions in the diffuse part of the 

double layer and is related to the surface concentrations of these species by 
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Figure 2. Schematic of the double layer without specific adsorption. 



q2 = F E Zjrj,d . 
j 

The material balance for a species within the diffuse layer was given in table 4 

arj,d = N~ct) _ N(C = 0) at I I" , 
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(A3) 

(A4) 

where the fluxes Nt) and Nj(O) = Jj(O) + Cj,OVO were discussed III the text. Here, we 

present linearized diffuse-layer theory for no specific adsorption that enables rj,d to be 

characterized in terms of the variables used in the macroscopic model, Vand Cj o. , 

-The surface concentration rj d of species £ in the diffuse layer is defined by , 

(AS) 

where a linearized form of the Boltzmann distribution 

[ 
-zF 1 

Cj(Y) = Cj,O exp R~ <I>(y) (A6) 

is used to obtain the right side of equation AS. The position Y3 is equivalent to Z = 0, 

the inner limit of the diffusion layer. 

The determination of the potential as a function of distance IS possible usmg 

equation 52-10 in reference [2] 

·2 
Y - y" = J d <I> = A In <1>2 

- <liE <1>' 
(A7) 

where E is given as a function of <I> by equation 52-8. The resulting equation on the 

right is obtained by linearizing E. The Debye length A characterizes the thickness of the 

diffuse layer and is given by 
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[ 
€RT ]1/2 

A = z z ' 
F ~ zi ci,O 

l 

(A8) 

where € is the permittivity. Rearrangement of equation A7 yields 

(A9) 

such that the integral in equation AS can now be evaluated. The resulting surface 

concentration is given by 

F<pz 
r,d=-Z'C'oA--

l, l l, RT 

Equation A3 for the charge in the diffuse layer can be rewritten 

Elimination of <1>2 between equations AlO and All yields 

ZiCi,O AZ F qz 
F ~" q2 = zici,O -;- RT 

L.JZjCj,O 
r'd = l, 

j 

(AlO) 

(All) 

(AI2) 

The definition of the Debye length (equation AS) is used to obtain the second expression 

on the right. 

The interfacial regIOn as a whole is electrically neutral; thus, with no specific 

adsorption, q2 = -q, where q is the charge density that exists on the metal side of the 

interface. Gauss's law can be written at the metal side of the interface yielding 

€M-2 .J 
q = -- (<I> - <1>,.,) = C'f .., v y" m _ Jt -. , 

(AI3) 

where CM- 2 is the capacitance of the lllner part of the double layer. Substitution of 

equations A2 and AI3 into equation AI, with rearrangement, yields 

[ 1 1 r1 

q= --+- V. 
CM- 2 Cd 

(AI4) 
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Finally, the surface concentration given by equation A12 can be rewritten 

A2 F V [1 1 r1 

rj,d = -ZjCj,O ~ RT C
M

-
2 

+ Cd (A15) 

giving the necessary equation for treating ion adsorption within the diffuse part of the 

double layer. This equation, in turn, couples the transient macroscopic mass-transfer 

and kinetic problem. 
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Appendix B. Alternative Breakdown of the Total Impedance 

'-, An alternative to the total impedance Ziol is obtained by breaking down the 

potential VIOl as follows: 1211 

A A 

ViOl = (<I>m - <l>s,o) + (<I>s,o - <l>s,o) + (<I>s,o - <l>S,b) + (<I>s,b - <l>RR) , (Bl) 

where <I> s is the potential of a reference electrode of the same type as the working 

electrode reaction I. The subscripts 0 and b refer to the position just outside the diffuse 

A A 

layer and 1U the bulk, respectively. <l>s,o is similar to the potential <1>0 defined in the 

text, but IS determined in the absence of concentration gradients by a reference 

electrode of the same kind as the working electrode, as opposed to a reference electrode 

of a given kind. 

Newman l21 defines the total overpotential at the electrode as 

A 

TIl = <I> - <l>s 0 = TI I + TI I m , I, C, (B2) 

This is the sum of the first two terms on the right III equation B1. The surface 

overpotential, Tl8,1 = <l>m - <l>s,o, is associated with the heterogeneous electrode reaction 

A 

I, and the concentration overpotential, Tlc,1 = <l>s,o - <l>s,o, is associated with 

concentration changes in the diffusion layer. 

The total cell potential given by equation Bl can be rewritten 

VIOl = Tl8,1 + Tlc,1 + ~<i>ohm + u'(/RR , (B3) 

where each of these potential differences is illustrated in figure 3. It should be pointed 

out that one should be careful when a reactant or product is absent in the bulk solution 

since then Tlc,l and U;/RR go to plus and minus infinity in a way that their sum remains 

finite. For such a case, the previous breakdown of potential (given by equation 7 in the 

text) should be applied since it avoids this problem. 
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Figure 3. Alternative breakdown of VIol In terms of the surface and concentration 
overpotentials. 
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A A 

Ll <I> ohm = <I> S,O - <I> S,b = i R 0 is the ohmic drop from the electrode surface to the 

bulk solution, when there are no concentration variations, and Ro again is the 

calculated primary resistance. The last term in equation B3 is the cell potential of 

reaction / relative to a real reference electrode, 

(B4) 

and contains both a thermodynamic and a junction potential. The thermodynamic cell 

potential of reaction I relative to a given reference electrodet is given by 

rr' U8 U8 RT I eel-,8at RT" I 
ui/RG = I - RG + -F n I - -F ~ si,1 n 

Po nl i 
(B5) 

where the reference electrode of a given kind is specified to be a saturated (4.1 M) 

calomel electrode. Additionally, the first three terms in this expression yield the 

thermodynamic equilibrium constant In KI for an electrochemical reaction and was 

given in table 5. 

The alternating total voltage can be written as 

,..... - - "':"" -n 
V tot = TJ"I + TJc,1 +, Ro + U1/ RR , (B6) 

where the last term is zero since it has no ac component due to being evaluated at the 

bulk conditions. This alternative breakdown of the total cell potential is convenient if a 

Bu tler-Volmer kinetic expression is used 

t Using a reference electrode of a given kind lends itself to a thermodynamic 
equilibrium potential difference, «/RG, (denoted by a single prime) because any liquid­
junction potential which might exist between the solution in question and that within 
the reference-electrode compartment is corrected for by definition of the ideal reference 
electrode. "Corrected for liquid-junction potentials" means making the requirement 

that the electrical states of the two solutions be equal.i21 ,1181 
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. . [ [ a aF 1 [a cF lJ '/,1 = '0,1 exp RT TJB,I - exp - RT TJB,I , (B7) 

where io,1 is the exchange current density and is given by 

a
c 

a a a 
. _ Fk(a.+aclk(a.+~clII (a.+~clIIc(a.+~cl 
~O,I - n, [,I b,1 ci,O i,O 

(BS) 

This equation is obtained by setting i[,1 = 0 in table 5 in the text and noting that 

V = TJB,I + U,/RG,O' Linearization of the Butler-Volmer equation B7 with respect to TJs,1 . 

and ck,O yields the alternating faradaic current density. The resulting expression for T [ 

is similar to equation 13 in the text for a modified Butler-Volmer kinetic expression. 

Finally, the total im pedance can be rewritten 

Z = 28 •1 + 77c.!. 
101 .- + Ro , 

i [ + jwq 
(B9) 

and should be compared to equation 12 in the text for Z'O" It should be pointed out 

that the convective-Warburg impedance Zw given by Homsy et al.l22! is 

Zw 
-_!I..#-, [ = E [ Su r [v ll/2 [3Dill/3 RT { -1 } 

n,F n av ci,oDi 0'(0) 
(BlO) 

which is valid for dilute solutions, no migration, and an infinite Schmidt number. 

Double-layer-charging effects are not included in the definition of Zw. 

,-
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List of Sym boIs 

,-, 

a 0.51023 

b -0.61589 

cr total solution concentration, including the solvent, mol/cm3 

c· I concentration of species z', mol/cm3 

ci,O concentration of species i at the electrode surface, mol/cm3 

ci,oo bulk concentration of species i, mol/cm3 

c· I steady-state concentration of species i, mol/cm3 

-c· I alternating concentration phasor of species i, mol/crn3 

CM- 2 capacitance of the compact. region of the double-layer, F /crn2 

Cd capacitance of the diffuse part of the dou ble layer, F / crn 2 

Cdl integral double-layer capacitance, F /cm 2 

C differential double-layer capacitance, F /crn 2 

D· I dilute-solution diffusion coefficient of species i, cm 2/ s 

D' k I, diffusion coefficient for interaction of species i and k, cm 2js 

e symbol for the electron 

hn molar activity coefficient of species i relative to species n 

F Faraday'S constant, 96,487 Cjequiv 

i current density, A/cm 2 

, steady-state current density, A/cm 2 

171 amplitude of current perturbation, A/crn2 



, 1,1 

, 1,1 

, I 

J 

M· I 

total faradaic current density of reaction I, A/cm2 

faradaic current density of reaction I, A/cm2 

alternating faradaic current density of reaction I, A/cm2 

alternating total faradaic current density, A/cm 2 

exchange current density, A/cm2 

= v=t, imaginary number 

molar flux relative to the mass-average velocity, mol/cm 2·s 

anodic and cathodic rate constant for a charge transfer 
reaction, variable units 

forward and back rate constant for heterogeneous reaction I, 
variable units 

forward and back rate constant for homogeneous reaction I, 
variable units 

thermodynamic equilibrium constant for electrochemical 
reaction I, (mol/kgfBI 

concentration thermodynamic equilibrium constant for 

electrochemical reaction I, (mol/cm3r BI 

thermodynamic equilibrium constant for homogeneous 
reaction I, (mol/kgfVI 

concentration thermodynamic equilibrium constant for 

homogeneous reaction I, (mol/cm3r v1 

molality of species i, mol/kg 

molecular weight of species i, glmol 

average molecular weight of the solution, weighted by mole 
fractions and including the solvent, glmol 

number of electrons involved in electrode reaction 1 
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..... , 



R 

R' o 

R/ 

Se 

T 

molar flux of species i through the interface due to 
electrochemical charge-transfer reactions, moll cm 2·s 

radius of disk electrode, cm 

rate of heterogeneous reaction I, moll cm 2·s 

universal gas constant, 8.3143 J/mol-K 

rate of homogeneous production of species i, moljcm3·s 

rate of homogeneous reaction I, mol/cm3·s 

experimental solution resistance obtained from the infinite­

frequency limit of the total im pedance, ohm ·cm 2 

primary solution resistance, ohm·cm2 

calculated effective solution resistance, ohm ·cm 2 

charge-transfer resistance, ohm ·cm2 

low-frequency limit of the mass-transfer impedance Zo, 
ohm·cm 2 

stoichiometric coefficient of species i in electrode reaction / 

stoichiometric coefficient parameter for electrode reaction I 

Schmidt number 

time, s 

transference num her of species i with respect to the velocity of 
the solvent 

absolute temperature, K 

standard thermodynamic potential of reaction / relative to the 
standard hydrogen reference electrode, V 

standard thermodynamic potential difference between reaction 
/ and the reference electrode reaction of a given kind RG, V 
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U;/RG 

U:/RR 

v 

v· , 

v 

I vi 

x· , 

y 

z 

thermodynamic cell potential difference between reaction 
and a reference electrode reaction of a given kind RG, V 

cell potential difference between reaction I and the real 
reference electrode reaction RR, V 

mass-average velocity, cm/s 

velocity of species i, cm/s 

velocity through the interface, cm/s 

normal velocity for rotating disk, cm/s 

kinetic driving force (electrode potential relative to gIven 
reference electrode placed just outside double layer), V 

steady-state part of kinetic potential driving force, V 

amplitude of the potential perturbation relative to gIven 
reference electrode, V 

total cell potential (electrode potential relative to a real 
reference electrode placed in the bulk solution), V 

steady-state part of total cell potential, V 

amplitude of the potential perturbation relative to a real 
reference electrode, V 

mole fraction of solvent water 

mole fraction of species i 

normal distance from surface in double layer, cm 

position at outer Helmholtz plane 

normal distance from surface in transport boundary layer, cm 

charge number of species i 

complex total electrochemical impedance, ohm-cm2 

complex solution impedance, ohm-cm 2 
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..... 



Greek symbols: 

aa,1 

ac,1 
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r· d I, 

r(4/3} 

6· 1 

"b. 
1 

~<I>LJ 

A 

~<I> ohm 

complex faradaic impedance, ohm-cm2 

complex mass-transfer part of faradaic impedance, ohm-cm2 

complex convective-Warburg impedance, ohm-cm2 

anodic transfer coefficient for reaction / 

cathodic transfer coefficient for reaction / 

symmetry factor for reaction 1 

surface concentration of species £, mol/cm2 

surface concentration of species i in the diffuse layer, mol/cm2 

0.89298, the gamma function of 4/3 

scaling factor for the diffusion layer of species £, cm 

Nernst diffusion-layer thickness for species £, cm 

standard Gibbs free energy of formation for homogeneous 
reaction I, J/mol 

liquid-junction potential, Y 

ohmic potential drop, Y 

permittivity within the inner part of the double layer, F /cm 
or C/Y·cm 

permittivity within the diffuse double layer, F /cm or C/Y·cm 

dimensionless axial distance for rotating disk 

complex, time-independent phasor of the surface 
overpotential, Y 
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T/ c,l 

-ljfl(o) 

v 

Po 

, 
Po 

~max 

complex, time-independent phasor of the concentration 
overpotential, V 

complex, dimensionless, convective-Warburg impedance 
function 

conductivity,ohm-1·cm-1 

Debye thickness of the diffuse double layer, cm 

electrochemical potential of species i, J/mol 

kinematic viscosity, cm 2/ s 

density of pure solvent, g/cm3 

density of pure solvent, kg/cm3 

dimensionless axial distance for rotating-disk convective­
diffusion equation for species i 

dimensionless axial distance for rotating-disk convective­
diffusion equation for the reference species R 

dimensionless boundary-layer thickness for rotating-disk 

3.141592654 

phase angle 

electrostatic potential, V 

potential of the metal electrode, V 

potential of a reference electrode of the same kind as the 
working electrode, V 

potential of a reference electrode of the same kind as the 
working electrode placed just outside the double layer as if 
there were no concentration gradients across the boundary 
layer, V 
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<PRG 

x 

x 

I xl 

w 

n 

subscripts: 

a 

b 

potential of a hypothetical reference electrode of a gIven 
kind, V 

potential of a hypothetical reference electrode of a given 
kind placed just outside the double layer, V 

potential of a reference electrode of a given kind placed just 
outside the double layer as if there were no concentration 
gradients across the boundary layer, V 

potential of a hypothetical reference electrode of a given 
kind placed at the outer Helmholtz plane of the double 
layer, V 

potential of a hypothetical reference electrode of a given 
kind placed in the bulk of the solution, V 

potential of a real reference electrode placed in the bulk of 
the solution, V 

dummy variable 

steady-state part of X 

complex, time-dependent part of X 

complex, time-independent phasor of X 

amplitude of perturbation X 

dimensionless set potential 

perturbation frequency, rad/s 

angular rotation speed of disk, rad/s 

anodic 

back reaction 
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c 

f 

m 

2 

o 

b 

00 

LJ 

R 

RG 

RR 

s 

superscripts: 

cathodic 

forward reaction 

at the metal electrode surface 

in the diffuse part of the double layer 

just outside the diffuse part of the double layer 

in the bulk electrolyte, where there are no concentration 
variations 

in the bulk electrolyte, where there are no concentration 
variations 

liquid junction 

principal reactant 

reference electrode of a given kind 

real reference electrode placed in the bulk solution 

reference electrode of the same kind as the working electrode 

time-average or steady-state part 

complex, time-independent part 

assumes constant conductivity equal to that In the bulk 
electrolyte 

38 
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