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Abstract
The brain in conjunction with the body is able to adapt to new
environments and perform multiple behaviors through reuse of
neural resources and transfer of existing behavioral traits. Al-
though mechanisms that underlie this ability are not well un-
derstood, they are largely attributed to neuromodulation. In
this work, we demonstrate that an agent can be multifunctional
using the same sensory and motor systems across behaviors,
in the absence of modulatory mechanisms. Further, we lay out
the different levels at which neural reuse can occur through
a dynamical filtering of the brain-body-environment system’s
operation: structural network, autonomous dynamics, and tran-
sient dynamics. Notably, transient dynamics reuse could only
be explained by studying the brain-body-environment system
as a whole and not just the brain. The multifunctional agent we
present here demonstrates neural reuse at all three levels.
Keywords: multifunctionality; neural reuse; neural networks;
dynamical systems theory; brain-body-environment systems

Introduction
A crucial aspect to adaptation in cognitive beings is their abil-
ity to exploit regularities in the environment and reuse ex-
isting resources across multiple behaviors. Extensive em-
pirical evidence shows that neural resources optimized dur-
ing the course of learning one behavior are reused for oth-
ers (Anderson, 2010). This multi-functional ability of neu-
ral circuits has been demonstrated in the small nervous sys-
tems of the nematode worm Caenorhabditis elegans (302
neurons) (Hobert, 2003) as well as in the macro scale of
the human brain (100 billion neurons) (Lizier et al., 2011).
The mechanisms that facilitate this phenomenon have largely
been attributed to neuromodulation and synaptic plastic-
ity (Briggman & Kristan, 2008; Getting, 1989; Morton &
Chiel, 1994).

The goal of this work is to show a concrete example of how
the interaction between brain, body and environment enables
neural networks to perform multiple behaviors and elucidate
the dynamical aspects that lead to it. Reuse in embodied re-
current neural networks unfold over three levels: structural
network, autonomous dynamics of the neural network, and
transient dynamics of the neural network (Fig. 1). Structure
is defined by the neural circuit itself, the intrinsic parameters
of the neurons, and the synaptic strength of connectivity be-
tween them. While it is possible that an agent possesses spe-
cialized circuits for performing different behaviors (Fig. 1A),
reuse at this level involves utilizing overlapping circuits to
produce multiple behaviors (Fig. 1B,C,D). The next level,
when structure is reused, is that of the neural network’s au-
tonomous dynamics isolated from the body. Each behavior

Figure 1: Three levels of neural reuse in multifunctional
agents: structure (blue), autonomous dynamics (green), and
transient dynamics (orange). [A] Dedicated circuits for
each behavior: non-overlapping structures, and thus non-
overlapping autonomous or transient dynamics. [B-D] Multi-
functional circuits: overlapping structures (i.e., shared neural
resources for multiple behaviors). [B] Autonomous dynam-
ics are unique to each behavior, and thus transient dynamics
are also unique (i.e., different set of attractors for each behav-
ior). [C] Autonomous dynamics are shared across multiple
behaviors, but transient dynamics are unique to each behav-
ior (i.e., overlapping set of attractors for multiple behaviors,
but different dynamics when coupled with the body and envi-
ronment). [D] Both autonomous and transient dynamics are
shared across multiple behaviors (i.e., overlapping set of at-
tractors and similar overall dynamics when coupled with the
body and environment for multiple behaviors).

is associated with a set of phase-portraits corresponding to
the inputs the agent experiences while performing them. The
sets of phase-portraits (and the attractors therein) could be
overlapping (Fig. 1C,D) or could be unique to each behavior
(Fig. 1B). The set of all attractors from all phase-portraits cor-
responding to a behavior are also referred to as the attractor
set of the behavior in this paper. The third level of reuse is
that of ongoing transient dynamics as the agent is in continu-
ous closed-loop interaction with the environment. When there
is attractor reuse from the previous level, it is possible that
multiple behaviors navigate different transients around those
attractors (Fig. 1C) or, they might be reused too (Fig. 1D).
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We show, for the first time to our knowledge, that reuse of
transients, namely indistinguishable neural activity, can pro-
duce starkly distinct behaviors in embodied dynamical neural
networks. We also show that this can only be observed when
the brain is studied in conjunction with the closed-loop inter-
action between the body and the environment. Specifically,
we optimized embodied agents with dynamical neural con-
trollers to perform two tasks (object categorization and pole-
balancing). We then analyzed the best agent to reveal how
neural resources are reused across the three aforementioned
levels to perform the two tasks.

Methods

Agent

The agent design is identical to that introduced in earlier
work (Beer, 1996). The agent is circular with a diameter of
30 units and is equipped with 7 sensory rays radiating from
its center, equally distributed over an angle of π/6. The rays
constitute the “eye” of the agent and have a range of 265 units.
Each sensory ray feeds into a sensory neuron, and the magni-
tude of input is inversely proportional to the distance at which
that ray is intersected by an object (Fig. 2). The sensory neu-
rons are stateful units that are governed by the following dy-
namics τsṡi =−si + Ii where i ∈ [1,7], τs is the time-constant,
fixed to be the same across all 7 neurons, si is the state of the
neuron, and Ii is the sensory input received from the corre-
sponding ray. Neuron output is oi = σ(−gs(si + θs)) where
σ(x) = 1/(1+ exp(−x)) is the sigmoid function of the state
with a gain, gs, and bias θs, that are also fixed to be the
same across all sensory neurons. The sensory neurons are
fully connected to an interneuron layer, made up of a fully
recurrently connected continuous-time recurrent neural net-
work (CTRNN). The interneurons are governed by

τiṡi =−si +
N

∑
j=1

w jiσ(g j(s j +θ j))+
7

∑
k=1

wkiok (1)

where τi is the time-constant of interneuron i, si is its state, N
is the number of interneurons, w ji is the weight from neuron
j to neuron i, g j is the gain from incoming neuron j, s j is its
state and θ j its bias. The last term refers to the input to in-
terneuron i defined as the weighted sum of the outputs of the
sensory neurons, ok, with the weight from the kth sensory neu-
ron being wki. The interneurons project to two motor neurons
that take on dynamics similar to the interneurons. However,
unlike the interneurons they are not recurrently connected.
The motor neurons control the effective acceleration of the
agent, a, as follows a = gm(σ(sr + θm)−σ(sl + θm)) where
gm refers to the gain, sr and sl are the internal state variables
for the right and left motor neurons respectively, σ is the stan-
dard sigmoidal activation function and θm is the common bias
term for both motor neurons. The agent and environment are
continuous time systems, simulated using Euler integration
with a step size of 0.1.

A B C

Figure 2: Agent design and task setup. [A] 7 rays of vision
feed into sensory neurons (black). These neurons are fully
connected to the recurrent interneuron layer (red), that in turn
feed the left and right motor neurons (grey). [B] Categoriza-
tion task with circle and line trial. The falling object needs to
be caught if it is a circle and avoided if it is a line. [C] Pole-
balancing task. The pole attached to the agent’s center is ex-
pected it to keep balanced within the rays.

Object categorization

We replicated the categorization task first introduced in Beer
(1996). The task involves discriminating between the shape
of falling objects (circles and lines) by moving towards one
(circles) and away from the other (lines). The circles’ di-
ameter and the line’s length were both set at 30 units. To
encourage generalization, each evaluation of the agent’s per-
formance was conducted over 8 different trials for each type
of object, with the objects’ initial horizontal offset from the
agent uniformly distributed in the range [−50,50]. The ob-
jects fall with a constant velocity of 0.3 units per second. Per-
formance in this task was quantified by averaging over 1−|di|
for the circle trials and |di| for the line trials; where di is the
normalized distance between the center of the agent and the
center of the object when the vertical offset between the agent
and the object reaches 0 (offset of over 45 units was clipped
at 45).

Pole-balancing

We adapted the original pole-balancing task (Barto et al.,
1984) such that the agent has the pole attached to its cen-
ter and senses it through the same rays used for sensing the
falling objects (Vasu & Izquierdo, 2017). The sensory input,
as the pole sweeps across a ray at angle φ◦, increased lin-
early from 0 at (φ− 1)◦ reaching the maximum value at φ◦

and falling back to 0 at (φ+ 1)◦ and vice verse. Note that
the agent sensed the pole only when it intersected a ray but
it “disappeared” from view while passing between rays. The
pole was considered dropped if it fell beyond the rays, or if
the agent moved farther than 45 units on either side from its
starting position. Performance in this task was calculated by
averaging cosine(θ ∗ 6) at each time step of the 500s evalua-
tion duration, where θ is the pole angle with the vertical axis.
To promote generalization of the behavior, performance was
averaged over 16 trials with the pole starting from 4 different
angles on either side of the agent in [−9◦,9◦] with angular
velocity -0.1 or 0.1.
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Evolutionary optimization
An evolutionary search algorithm was used to optimize
the parameters of the agent: time-constant, gain and bias
for sensory neurons (3), weights from sensory layer to N-
interneurons (N ∗ 7), recurrent weights between interneu-
rons (N2), bias and time-constant for each interneuron (2N),
weights from interneurons to motor neurons (2N) and gain,
bias and time-constant for motor neurons (3): totaling D =
3 + 7N + N2 + 2N + 2N + 3 parameters. A search started
with a random population of 100 solutions encoded as D-
dimensional genotype vectors with each element in [-1,1].
These elements were scaled and mapped on to the different
parameters to build the agent. Gains are scaled to be in [1,20],
time constants in [1,2], biases in [-4,4] and all weights were
scaled to be in [-5,5]. The fitness of agents was evaluated
based on their performance in each task. Based on fitness,
an elitist fraction of the top 4% solutions were retained while
their copies were subject to a Gaussian mutation noise with
mean 0 and variance 0.3 to produce a new population of so-
lutions. This repeated for a fixed number of generations.

Since optimization is stochastic, 100 independent runs
were carried out for the single and multi-task scenarios. For
the individual tasks, optimization was carried out for 1000
generations in each run. In the multi-task setting, these ex-
periments were conducted in three different task presenta-
tion paradigms: (1) evolved for both categorization and pole-
balancing for 2000 generations, (2) evolved only for pole-
balancing for the first 500 generations, and then evolved for
both tasks for 1500 generations and (3) evolved for catego-
rization for the first 1000 generations, and then for both tasks
for another 1000. The 500 generation limit for paradigm 2
and 1000 for 3 was based on the number of generations re-
quired to acquire good performance in each task when opti-
mized individually. Agents were reset between all trials of all
tasks. In the multifunctional cases, the product of the individ-
ual task fitnesses was used as opposed to sum or average be-
cause it guarantees good performance in both tasks, while still
keeping the fitness in [0,1]. All three optimization paradigms
gave similar results.

Results
Minimal neural resource requirement for each task
In order to evaluate the level of reuse in the multifunctional
networks, we first systematically explored the minimal re-
sources required to solve each task individually. 100 inde-
pendent evolutionary runs were performed for networks of
different sizes for each task. The smallest network that could
perform pole-balancing had 2 interneurons. The best of these
agents achieved 98.44% fitness and was able to move the
pole to its upright position from a broad range of initial po-
sitions and keep it balanced for an extended duration of time
(Fig. 3A). The smallest network that could perform the cat-
egorization task also had 2 interneurons. The best of these
agents had a fitness of 98.5% and was able to successfully
catch all circles and avoid all lines falling from the full range

of starting positions (Fig. 3D).
In order to address multifunctionality using these two tasks,

it is important to demonstrate that they indeed require their
own set of sensorimotor transformations. In other words, cir-
cuits that solve one task, should not be able to solve the other
task, and vice versa. To demonstrate this, all agents that were
optimized to perform one task were evaluated on the other.
Agents that were trained to balance the pole were as good as
random agents at the categorization task (Fig. 3B,E). Agents
that were trained to categorize could balance the pole only
slightly better than random controllers (Fig. 3C,E). This sug-
gests each task requires its own unique set of sensorimotor
transformations and that ultimately solving one task does not
guarantee good performance in the other.

Structural network reuse: Fully overlapping circuits
were used to perform both behaviors

The highest level of reuse is that of structure - an agent per-
forming more than one behavior could acquire specialized cir-
cuitry to perform each behavior or could share neural circuits
between them. In order to test this, using the same evolution-
ary optimization approach described previously we evolved
networks of different sizes to perform both behaviors. Inter-
estingly, agents with networks no larger than the ones that
could solve the individual tasks could also solve both tasks.
The best 2-interneuron multifunctional agent could perform
categorization with a fitness of 95.8% and pole-balancing
with a fitness of 95.4%. The optimization scheme that led
to this agent was composed of evolving for pole-balancing
for the first 500 generations, followed by evolving for both
tasks. This agent used the same circuit to successfully catch
circles while avoiding lines and also balance a pole (Fig. 4).
It is to be noted that the agent had no external signal indi-
cating which task to solve. Furthermore, the agent also had
no synaptic plasticity or neuromodulatory signals that could
be responsible for re-configuring the circuit for the different
tasks. Since performing each task individually required at
least 2 interneurons, it follows that the multifunctional agent
used fully-overlapping structural networks to perform both.

Autonomous dynamics reuse: Overlapping sets of
attractors were used to perform both behaviors

Given that the circuit is the same across the two behav-
iors (object categorization and pole-balancing), we wanted
to evaluate if there was reuse in the autonomous dynamics
of the neural network of this agent. In order to do this, we
first constructed the phase-portraits for several inputs across
each task. A phase-portrait for a particular input can have
one or more attractors. The set of phase-portraits associated
with a behavior (say circle catching) can be obtained by fixing
the inputs to what the agent experiences during that behavior
(circle at fixed positions relative to the agent), and allowing
the network to settle into its attractors from different initial
states. The three sets of phase-portraits corresponding to cir-
cle catching, line avoiding and pole-balancing were compared
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Figure 3: Behavior and performance on individual tasks.
[A] Best agent from 100 runs of optimizing for pole-
balancing alone. The agent was able to bring the pole to
the center and keep it balanced from different initial pole an-
gles. [B] Best pole-balancer shown in A is unable to cat-
egorize circles (red) from lines (orange) and avoids both.
[C] Best agent from 100 runs evolved for categorization alone
is unable to balance the pole. [D] Best categorization agent
shown in C, demonstrating its ability to catch circles (red)
while avoiding lines (orange). [E] Optimizing for one task
results in performance similar to a random agent on the other
task. Fitness distribution from 100 runs of agents evolved
for pole-balancing (blue) in pole-balancing and categoriza-
tion, and similarly that of the agents evolved for categoriza-
tion only (green) in pole-balancing and categorization, and
random agents (salmon) on both tasks.

based on attractor composition, basins of attraction, and loca-
tion of attractors to evaluate reuse.

Attractor compositions refers to the type of attractors that
were present in the set of phase-portrait for each behavior
(i.e. fixed-points, limit-cycles etc.). In this agent, all phase-
portraits associated with all behaviors in the best multifunc-
tional agent were only composed of fixed-point attractors.
Even though attractor composition is the same across behav-
iors, they could have different basins of attractions around
those attractors. This could lead to different behaviors oper-
ating in its own region of the phase-space. However, for this
agent, since only one fixed-point attractor existed in all phase-
portraits, there exists only one basin of attraction which is the

Figure 4: Behavior of the best multifunctional agent from 100
runs. [A] The agent was able to bring to center and balance
the pole starting from different pole angles. [B] The same
agent, using the same neural network was also able to catch
the circles (red) while avoiding lines (orange).

same across all behaviors. Thus, with same attractor compo-
sition and basins of attraction, the phase-portraits were quali-
tatively similar across all behaviors (i.e. no bifurcation).

These qualitatively similar phase-portraits could further be
quantitatively compared based on the location of attractors in
them. Differentiated by their location, each behavior could
have a unique set of attractors or they could overlap to dif-
ferent extents; the exact locations of the fixed-point attractors
on all phase-portraits of different behaviors do not have to be
the same. Upon analyzing their locations we discovered that
the multifunctional agent reused attractors identical in loca-
tion between these behaviors (Fig. 5). This reuse was only
partial since each behavior also had its own set of unique at-
tractor locations that were not shared. Reusing the same at-
tractors means that different inputs from different behaviors
were mapped to the same phase-portrait, which suggests that
there is an inherent degeneracy between the sensory inputs
and the requisite behavioral pattern.

Transient dynamics reuse: Phases of the behaviors
reused the same transient dynamics
Our analysis started at the level of structural reuse and went
on to discover reuse at the level of autonomous dynamics in
the best multifunctional agent. The next level is that of ongo-
ing dynamics as the nervous system coupled with its body and
environment performs the behaviors. Note that in the previ-
ous level, attractors were identified by fixing the relative po-
sition of the agent with the object and then allowing the dy-
namics of the network to settle to their attractors. However,
during behavior, both the agent and the object are in constant
movement. Therefore, at any given time, for a particular rela-
tive positioning of the agent and the object, the sensory input
might change before the network settles into the attractor as-
sociated with that fixed input. As a result, dynamics of the
network are in constant transient movement across the phase-
portraits (and the attractors therein) associated with that be-
havior. Since attractors in the same location were partially
reused in this agent, the relevant question to explore reuse at
the next level is whether multiple behaviors have unique tran-
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Figure 5: Attractor reuse. Locations of attractors from the
three sets of phase-portraits corresponding to circle-catching
(red), line-avoiding (orange) and pole-balancing (blue) tasks
are overlapped. This shows that each behavior has its own set
of unique attractors as well as shares them with other behav-
iors.

sients or if they could be shared.
Transient dynamics were shared partially between the

circle-catching and pole-balancing tasks in the best multi-
functional agent. In order to understand the behavioral im-
plications of this, we evaluated the entire sensorimotor loop
as this agent performed both behaviors. While in each case
there were times when their transients were different, for a
particular phase during these behaviors, the dynamics almost
exactly matched (Fig. 6A). Inputs to the interneurons, their
outputs, and motor neuron outputs were all identical. This
suggests that the agent’s nervous system does not differen-
tiate between these phases of the two behaviors. This leads
to two interesting questions: (1) Are the two behaviors in-
distinguishable during this phase? (2) If not, where does the
difference come from?

Although the transient dynamics in the inter-neurons were
identical, the behaviors were different in the circle-catching
and pole-balancing tasks. In the former, the agent received
oscillatory inputs only along ray 1, meaning that the agent ori-
ented itself so as to track the circle along ray 1 before catching
it (Fig. 6B). In contrast, the sensory inputs during the same
transient dynamics in the pole-balancer shows that the agent
maintains the pole oscillating around ray 3 bringing it across
4,5 and 6. This is an interesting outcome demonstrating that
neural activity that is completely indistinguishable can still
produce behaviors starkly different from each other. The dif-
ference arises from the parts of the behavior leading up to this
shared transient phase, where the agent has its own unique
dynamics for each behavior through its interaction with the
environment. Note that the weights to the interneurons from
sensory rays 1 and 3 are not the same. Thus, transient reuse
emerges purely from brain-body-environment interaction.

Related work
The work presented here builds on previous work using brain-
body-environment computational models for multiple tasks
(Izquierdo & Buhrmann, 2008; Williams & Beer, 2013; Ag-

Figure 6: Transient/Driven dynamics reuse. [A] Activity of
inter-neurons for the circle-catching (red) and pole-balancing
(blue) tasks, time-shifted to show identical neural activity.
[B] Sensory inputs to the 7 rays showing that although neural
activity is indistinguishable, the agent tracks the circle along
ray 1(red) but the pole is along rays 3 and 4 (blue).

mon & Beer, 2014) by developing a computational model of
a brain-body-environment system that performs multiple be-
haviors using the same sensory and motor capacities. In the
work by Izquierdo et. al. (2008), the same neural network
without any changes in parameters was shown to perform two
qualitatively different behaviors while placed in two different
bodies. Williams et. al. (2013) showed that when different
motor systems are used for different tasks, the qualitative dif-
ference in environmental feedback drives the same network
differently to produce different behaviors. Agmon et. al.
(2014) presented a model where different sensory apparatus
in the agent, sensitive to different stimuli, performed different
associated behaviors using the same motor control systems.
In these models, although the neural network remained the
same, the body was changing. The model presented in this pa-
per, used the same sensory and motor control mechanisms for
the two tasks - object categorization and pole-balancing. We
also show through dynamical analysis that reuse to the level
of transient dynamics can be observed when the brain, body,
environment and their interaction are taken into account.

Discussion
To summarize, we first evolved embodied recurrent neural
networks to perform object categorization, pole-balancing
and then both. We then systematically explored the differ-
ent levels of neural reuse in the evolved circuits. We discov-
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ered reuse of neural circuits at the structural level, followed
by reuse of autonomous dynamics with qualitative sharing of
phase-portraits, overlapping basins of attraction and reuse of
attractors identical in the location of their fixed-points. Fur-
thermore, we discovered partial reuse of transient dynamics
in the best multifunctional agent. The two main contributions
of our work are as follows: (1) the same neural circuit can
perform multiple behaviors using the same sensory and mo-
tor systems in the absence of explicit task identifying signals
or processes such as neuromodulation; (2) indistinguishable
neural activity, displaying reuse to the level of transient dy-
namics, can still produce completely different behaviors.

The rationale behind transient reuse in this multifunctional
agent can be explained by analyzing the environment-body
relationship and transient dynamics. The similarity in dynam-
ics arises out of the agent’s ability to generalize between the
two behaviors by learning to align an object along a single
ray - pole along center ray and circle along corner ray (Fig. 4
and 6). Generalization requires learning to use only one ray
because the pole only intersects one ray at a time. The circle
had to be balanced along the corner ray because otherwise it
would intersect multiple rays and the pole needs to be bal-
anced along the center ray to maximize fitness. The differ-
ence in behavior, however, arises out of the unique transient
dynamics prior to shared transient phase of the behaviors. The
unique dynamics in circle-catching orients the falling object
along the corner ray even if the circle starts from the cen-
ter, whereas in pole-balancing it brings the pole to the center,
thereby setting up the system to perform generalized object
tracking along a single ray for both behaviors (Fig. 4B). This
is possible because of the structure provided by the environ-
ment and the body. Objects intersect only one ray or multiple
rays, yet the agent is required to align with the object in both
cases. Multifunctionality in this agent is made possible by
the closed-loop interaction between brain, body, and environ-
ment – a possibility that is not typically taken into considera-
tion in the literature (Briggman & Kristan, 2008). Therefore,
our results expand the list of possible mechanisms that enable
multifunctionality in living organisms.

Due to experimental limitations, the study of multifunc-
tionality has been mostly concerned with motor neuron
circuits capable of generating multiple patterns of activ-
ity (Briggman & Kristan, 2008). Here we extend this frame-
work to circuits that are behaviorally multifunctional: from
sensory input, through interneurons, to motor neurons respon-
sible for generating actions. We demonstrate that multifunc-
tionality can result from the closed-loop interaction between
brain, body, and environment. Therefore, our results expand
the list of mechanisms that can result in multifunctionality to
include closed-loop interactions. Ultimately, this mechanism
can coexist with previously described mechanisms, including
neuromodulation and synaptic plasticity.

The three-level framework presented is rooted in dynam-
ical systems theory and has the potential to explain neural
reuse in any behavioral system, biological or artificial. We in-

tentionally focused on a small neural controller and a simple
set of behavioral tasks. However, the possibilities uncovered
in this system should be available to larger neural networks
solving more complicated tasks. Ultimately, embodied neural
reuse offers a distinct perspective on several topics of interest
to understanding cognition, including modularity in brain or-
ganization, localization of cognitive functions, and more gen-
erally the mapping between brain structure and function.
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