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Exact reconstruction of gene regulatory
networks using compressive sensing
Young Hwan Chang1, Joe W Gray2 and Claire J Tomlin1,3*

Abstract

Background: We consider the problem of reconstructing a gene regulatory network structure from limited time
series gene expression data, without any a priori knowledge of connectivity. We assume that the network is sparse,
meaning the connectivity among genes is much less than full connectivity. We develop a method for network
reconstruction based on compressive sensing, which takes advantage of the network’s sparseness.

Results: For the case in which all genes are accessible for measurement, and there is no measurement noise, we
show that our method can be used to exactly reconstruct the network. For the more general problem, in which
hidden genes exist and all measurements are contaminated by noise, we show that our method leads to reliable
reconstruction. In both cases, coherence of the model is used to assess the ability to reconstruct the network and to
design new experiments. We demonstrate that it is possible to use the coherence distribution to guide biological
experiment design effectively. By collecting a more informative dataset, the proposed method helps reduce the cost
of experiments. For each problem, a set of numerical examples is presented.

Conclusions: The method provides a guarantee on how well the inferred graph structure represents the underlying
system, reveals deficiencies in the data and model, and suggests experimental directions to remedy the deficiencies.

Keywords: Gene regulatory networks, Inference, Compressive sensing

Introduction
Mathematical modeling of biological signaling pathways
can provide an intuitive understanding of their behavior
[1-3]. However, since typically only incomplete knowl-
edge of the network structure exists and the system
dynamics is known to be sufficiently complex, the chal-
lenge has become to show that the identified networks
and corresponding mathematical models are enough to
adequately represent the underlying system. In the last
years, many data-driven mathematical tools have been
developed and applied to reconstruct graph represen-
tations of gene regulatory networks (GRNs) from data.
These include Bayesian networks, regression, correla-
tion, mutual information and system-based approaches
[4-10]. Also, these approaches either focus on static or on
time series data. The latter approach has the advantage
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of being able to identify dynamic relationships between
genes.
However, data-driven reconstruction of the network

structure itself remains in general a difficult problem;
nonlinearities in the system dynamics and measurement
noise make this problem even more challenging. For lin-
ear time invariant (LTI) systems, there exist necessary
and sufficient conditions for network reconstruction [11].
However, for time-varying or nonlinear systems, there
has not been as yet any statistical guarantee on how
well the inferred model represents the underlying sys-
tem [12-15]. The recent work [16] addresses the prob-
lem of data-driven network reconstruction, together with
measurement noise and unmodelled nonlinear dynam-
ics, yet this work points out that these complications
impose a limit on the reconstruction, and with strong
nonlinear terms the method fails. Additionally, identify-
ing whether important nodes in the graph structure are
missing, how many are missing, and where these nodes
are in the interconnection structure remains a challenging
problem.
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Moreover, in order to continue to have an impact in sys-
tems biology, identification of the graph topology from
data should be able to reveal deficiencies in the model
and suggest new experimental directions [17]. For exam-
ple, Steinke et al. [18] presented a Bayesian method for
identifying a gene regulatory network from micro-array
measurements in perturbation experiments and showed
how to use optimal design to minimize the number of
measurements.
Since biological regulatory networks are known to be

sparse [19-23], meaning that most genes interact with only
a small number of genes compared with the total number
in the network, many methods [12-15,24-27] take advan-
tage of the sparsity. The methods typically use l1-norm
optimization, which leads to a sparse representation of the
network and improves the ability to find the actual net-
work structure. Even though many methods [14,15] show
that the reconstruction results are fairly good, the meth-
ods cannot guarantee exact recovery. This stems from the
fact that the so-called incoherence condition is typically
not satisfied for the matrix � in a linear measurement
model Y = �q, where q is the signal to be recon-
structed, Y is the measurement, and � is known as the
sensing matrix. In this paper, we construct Y and � from
time series protein or gene expression data with candi-
date basis functions or kinetic features, and q reflects
the (unknown) underlying GRN structure to be recon-
structed. Roughly, incoherence is a measure of the corre-
lation between columns of the sensing matrix. Since the
incoherence condition of the sensing matrix provides a
metric of performance, this is one of the motivating fac-
tors for the use of compressive sensing (CS) [28] in GRN
reconstruction. CS is a signal processing technique for
efficiently acquiring and reconstructing a signal by taking
advantage of the signal’s sparsity and allowing the entire
signal to be determined from relatively fewmeasurements
under a certain condition, i.e., it requires that the incoher-
ence condition to be satisfied. In the Human Epidermal
Growth Factor Receptor2 (HER2) positive breast cancer
signaling pathway that we studied in [29,30], time series
data sets consist of only 8 time point measurements of 20
protein signals, and we would like to use this limited data
to identify a graph structure which could have 20 × 20 or
400 edges.
In this paper, we consider reconstruction of biochem-

ical reaction networks (protein-protein interaction) or
GRNs (including mRNA, transcription factors). Biolog-
ical processes in cells are properly performed by gene
regulation, signal transduction and interactions between
proteins and thus, the network structure that we con-
sider is an abstraction of the system’s biochemical reaction
dynamics, describing the manifold ways in which one
substance affects all the others to which it is connected.
Thus, we are interested in directed graph representations

of signaling pathways and propose models of biochemi-
cal reaction networks or GRNs as a set of basis functions
or features that best explain a set of time series observa-
tions such as protein expression or gene expression time
series data. We develop a new algorithm for GRN recon-
struction based on CS. First, we focus on sparse graph
structures using limited time series data with all nodes
accessible and no measurement noise. We test the net-
work reconstruction algorithm on a simulated biological
pathway in which the structure is known a priori. We
explain the limitation of the proposed method’s perfor-
mance when the dataset naturally has high coherence and
propose a way to overcome this limitation by designing
additional effective experiments. Thus, one big part of
the whole study is the method for proposing new exper-
iments. As systems biology matures, experimental study
design becomes more important in systems biology rather
than simply building computational models of experimen-
tal data. Thus, the proposed method can be useful for
experimental design. By revealing deficiencies in the data
and model, the method can suggest experimental direc-
tions to remedy the deficiencies. By doing this, we can
minimize the number of experiments and reduce the cost
of experiments.
Next, the proposed algorithm is extended to a more

general problem: we consider partially corrupted data
with data inconsistencies due to model mismatch, and
measurement noise affecting all the data. Typically, data
inconsistencies may result from missing nodes in the
model; or in some cases arbitrary data corruption may
result from human errors such as mislabeling or the
improper use of markers or antibodies. The question is
whether one can still recover the graph structure reliably
under these conditions. Inspired by a robust error correc-
tionmethod [31], the exact recovery of the graph structure
can be guaranteed under suitable conditions on the node
dynamics, provided that hidden nodes can affect relatively
few nodes in the graph structure. Also, a set of numerical
examples is provided to demonstrate the method, includ-
ing some from an RPPA (Reverse Phase Protein Array)
dataset [32] collected from HER2 positive breast cancer
cell lines.
In this paper, the main contributions are the following.

• The CS framework uses the coherence of the sensing
matrix as a performance index, which allows us to
assess and optimize mathematically network
reconstruction.

• Coherence also provides a guideline for optimizing
experiment design for network reconstruction.

• By utilizing an error correction method in
conjunction with the CS framework, network
reconstruction may be performed even when there
are hidden nodes and measurement noise.
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Background
Overview: compressive sensing
Consider measurements Y ∈ R

m of a signal q ∈ R
n:

Y = �q (1)

where � ∈ R
m×n is called the sensing matrix.

One key question [33] is howmanymeasurementsm are
needed to exactly recover the original signal q from �:

• Ifm > n and � is a full rank matrix, then the
problem is overdetermined. Ifm = n and � is a full
rank matrix, the problem is determined and may be
solved uniquely for q.

• Ifm < n, the problem is underdetermined even if �
has full rank. We can restrict q ∈ R

n to the subspace
which satisfies Y = �q. However, q cannot be
determined uniquely.

For the underdetermined case, the least squares solu-
tion q∗ = argminq ‖q‖ l2 = �∗(��∗)−1Y is typically used
as the “best guess” in many applications. However, if q is
known to be sparse, meaning that many of its components
are zero, one might expect that fewer than n measure-
ments are needed to recover it. It is thus of interest to
obtain a good estimator for underdetermined problems
in which q is assumed to be s-sparse, meaning that s of
the elements of q are nonzero. In principle, the theory
of compressive sensing (CS) asserts that the number of
measurements needed to recover q ∈ R

n is a number pro-
portional to the compressed size of the signal (s), rather
than the uncompressed size (n) [34]. To be able to recover
q, CS relies on two properties: sparsity, which pertains to
the signals of interest, and incoherence, which pertains to
the sensing matrix.

Proposition 1. [33]. Suppose that any 2s columns of an
m × n matrix � are linearly independent (this is a rea-
sonable assumption if m ≥ 2s). Then, any s-sparse signal
q ∈ R

n can be reconstructed uniquely from �q.

The proof [33] of the above proposition also shows how
to reconstruct an s-sparse signal q ∈ R

n from the mea-
surement Y = �q where q is the unique sparsest solution
to Y = �q:

q∗ = argmin
q

‖q‖l0 subject to Y = �q (2)

and ‖q‖l0 := ∑n
i=1 I(qi �= 0) is the cardinality of q.

However, the l0-minimization is computationally
intractable (NP-hard in general). Recent breakthroughs
enable approximating l0-optimization by using l1-
minimization which is a convex optimization problem

and can be solved in a simple but effective way by linear
programming:

q∗ = argmin
q

‖q‖l1 subject to Y = �q (3)

The l1-minimization in Equation (3) requires mild over-
sampling, more specifically, m ≥ c · μ(�,�)2 · s log n for
some positive constant cwhere � can be decomposed as a
product of a sparsity basis � , and an orthogonal measure-
ment system � [28]. We have m measurement in the �

domain (sensing modality) under bases � (signal model)
and μ represents the coherence defined as follows:

Definition 1. [28]. The coherence of a matrix � is given
by

μ(�) = max
j<k

|〈�j,�k〉|∥∥�j
∥∥
2‖�k‖2

where�j and�k denote columns of�. In plain English, the
coherence measures that the largest correlation between
any two columns in �.

Several theoretical results [35] ensure that the l1-
minimization guarantees exact recovery whenever the
sensing matrix � is sufficiently incoherent. For example,
we can say that � is incoherent if μ is small. Coherence
is a key property in the compressed sensing framework
because if two columns are closely correlated, it would be
very difficult to distinguish whether the influence from
the components in the sparse signal comes from one or
the other (recall that the measurement Y(= �q) is a lin-
ear combination of each columns of the sensing matrix �

with the components in q as coefficients). Also, numerical
experiments suggest that in practice, most s-sparse sig-
nals are in fact recovered exactly once m ≥ 4s [28]. Here,
“exact recovery” means that we find the sparsest solution
(q) such that Y = �q.
Therefore, if the sensing matrix � satisfies the incoher-

ence condition (m ≥ c · μ(�,�)2 · s log n, or in practice,
m ≥ 4s), a sufficiently sparse signal q can be exactly recov-
ered from the limited dataset without any prior knowledge
of the number of nonzero elements, their locations, and
their values. On the other hand, if the condition is not
satisfied, exact recovery cannot be guaranteed [17,34].
However, it is possible to use the property of coherence to
guide biological experiment design, basically to collect a
more informative dataset. As we will discuss in this paper,
this can be done by inhibiting or stimulating certain genes
to manipulate the gene expression.

CS can help reconstruct GRNs
In graph theory, a digraph can be represented by G =
(V ,E) where V and E represent nodes and edges respec-
tively. For GRNs, each node represents a gene and each
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edge represents an influence map which models how
genes affect each other. For example, the interactions
could be how genes inhibit or stimulate each other. Since
the connectivities of GRNs are typically unknown, often
the best we can do is to select a set of possible candi-
date functions encoding possible unknown connectivities
between genes.
In this section, we formulate a data-driven network

identification problem into CS framework: first, we define
a dynamical model of gene regulatory network. Then, we
encode system dynamics into the sensing matrix (�) and
denote unknown connectivities between genes by q, a
signal to be recovered.

A dynamical model of gene regulatory networks (GRNs)
We consider a dynamical system described by:

ẋ = f(x) + u + g(xh) + w (4)

where x ∈ R
n denotes the concentrations of the rate-

limiting species which can be measured in experiments;
ẋ = [ẋ1 ẋ2 . . . ẋn]	 ∈ R

n is a vector whose ele-
ments are the change in concentrations of the n species
over time; f(·) : R

n → R
n represents biochemical

reactions, such as those governed by mass action kinet-
ics, Michaelis-Menten, or Hill kinetics. Thus, f(·) can
include functions of known form such as product of
monomials, monotonically increasing or decreasing Hill
functions, simple linear terms, and constant terms [24].
u ∈ R

n denotes the control input which could rep-
resent inhibitions and stimulations; For example, if we
consider protein-protein interaction, u represents drug-
induced perturbation such as inhibition and stimulation.
For a GRN, we consider the use of siRNA as a control
input to the system for gene knockdown; g(·) : Rnh →
R
n represents influence from hidden nodes xh ∈ R

nh ,
which cannot be measured in experiments; nh is the
number of hidden nodes and unknown; and w ∈ R

n

represents energy-bounded process noise or measure-
ment noise. Here x, ẋ and u is assumed to be known
where x can be measured in experiments and ẋ may
not be measured directly in experiments but we could
calculate these quantities by interpolating x and using
numerical derivatives. In [36], the authors pointed out
that although data on time derivative can be difficult to
obtain especially in the presence of noise, it is possible
to estimate the gene expressions relatively accurately by
repeating measurement with careful instrumentation and
statistics [37].
Since we do not know whether important nodes in the

gene regulatory network are missing, how many missing
nodes there are, and how they affect system dynamics
(i.e., xh, nh and g(xh)), we denote a vector of (unknown)

influence from hidden nodes’ dynamics by v(� g(xh));
Also, without loss of generality, since we know u, we
define y as follows:

y � ẋ − u = f(x) + v + w (5)

Formulating a dynamical system as a GRN
The nonlinear function f(x) can be decomposed into a lin-
ear sum of scalar basis functions, fb,i(x) ∈ R, where we
select the set of possible candidate basis functions:

f(x) =
N∑
i=1

fb,i(x)

⎡
⎢⎢⎣
qi1
qi2
. . .

qin

⎤
⎥⎥⎦ (6)

where N is the number of possible candidate basis func-
tions and qij are unknown parameters which reflect
underlying structure, i.e., influence of fb,i(x) on the
j-th state (ẋj). Typically, we may choose a larger set than
necessary, and allow the CSmethod to indicate the impor-
tance of each function, as we shall describe. Thus the
Equation (5) can be written as follows:

y = SqFb(x) + v + w (7)

where Sq =
⎡
⎣ q11 . . . qN1

. . . . . . . . .

q1n . . . qNn

⎤
⎦ =

⎡
⎣ q	

1
. . .

q	
n

⎤
⎦ ∈ R

n×N

reflects the (unknown) underlying GRN structure, qi =[
q1i q2i . . . qNi

]	 ∈ R
N and Fb(x) = [

fb,1(x), . . . ,
fb,N (x)

]	 ∈ R
N is the vector field which includes possi-

ble candidate basis functions. In this way, any biochem-
ical reactions can be represented by a linear map Sq
and a function Fb(x) where Sq encodes the underlying
graph structure and Fb(x) includes all possible candi-
date functions that could be included in the biochemical
reactions.
In practice, we can construct Fb(x) by selecting themost

commonly used candidate basis functions to model GRNs
or protein-protein interaction, for example, all monomi-
als, binomials, other combinations and Hill function.

Example 1. Consider the simple nonlinear ordinary dif-
ferential equations (ODEs):

y1 = ẋ1 = γ1x1 + k1
xnact2

1 + xnact2

y2 = ẋ2 = γ2x2 + k2
1

1 + xnihb3

y3 = ẋ3 = γ3x3 + k3
1

1 + xnihb1

(8)
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where xi denotes the concentration of the i-th species, ẋi
is the change in concentration of the i-th species, the γi
denotes protein decay rate, the ki denotes the maximum
promoter/inhibitor strength. Here, there is no input (u = 0),
no hidden node (v = 0) and no process noise (w = 0).
Also, nact represents positively cooperative binding (acti-
vation) and nihb represents negative cooperative binding
(inhibition). The set of ODEs corresponds to a topology
where gene 1 is activated by gene 2, gene 2 is inhib-
ited by gene 3, and gene 3 is inhibited by gene 1 as
shown in Figure 1(A). We can write Equation (8) as
follows:

y=
[y1
y2
y3

]
=
[ẋ1
ẋ2
ẋ3

]
=
[

γ1 0 0 0 k1 0
0 γ2 0 0 0 k2
0 0 γ3 k3 0 0

]
︸ ︷︷ ︸

Sq

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
1

1+xnihb1
xnact2

1+xnact21
1+xnihb3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=SqFb(x)

where Sq ∈ R
3×6 represents the influence map.

We can also consider a version of Equation (8) in which
there exists a hidden node (xh) affecting (x1) as shown in
Figure 1(B), as well as process noise.

y =
⎡
⎣ ẋ1
ẋ2
ẋ3

⎤
⎦ = SqFb(x) + v + w

where v = [v1, 0, 0]	 and w = [w1,w2,w3]	.

Formulating GRN into the CS framework
Suppose the time series data are sampled from a real
experimental system at discrete time points tk . By taking
the transpose of both sides of Equation (7), we obtain

y(tk)	 = F	
b (x(tk))q + v(tk)	 + w(tk)	 (9)

where q = S	
q = [q1 q2 . . . qn] ∈ R

N×n. Assuming that
M successive data points are sampled, then define:

y �
[
y1 . . . yn

] =

⎡
⎢⎢⎣
y1(t1) . . . yn(t1)
y1(t2) . . . yn(t2)
. . . . . . . . .

y1(tM) . . . yn(tM)

⎤
⎥⎥⎦ ∈ R

M×n

� �

⎡
⎢⎢⎣

fb,1(x(t1)) . . . fb,N (x(t1))
fb,1(x(t2)) . . . fb,N (x(t2))

. . . . . . . . .

fb,1(x(tM)) . . . fb,N (x(tM))

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
F	
b (x(t1))

F	
b (x(t2))

. . .

F	
b (x(tM))

⎤
⎥⎥⎦ ∈ R

M×N

[v1 . . . vn] �

⎡
⎢⎢⎣

v(t1)	
v(t2)	

. . .

v(tM)	

⎤
⎥⎥⎦ ∈ R

M×n

[w1 . . . wn] �

⎡
⎢⎢⎣

w(t1)	
w(t2)	

. . .

w(tM)	

⎤
⎥⎥⎦ ∈ R

M×n

(10)

This leads to n independent equations:

yi = �qi + vi + wi (i = 1, . . . , n) (11)

where yi = [
yi(t1), yi(t2), . . . , yi(tM)

]	 ∈ R
M repre-

sents theM successive data points, � ∈ R
M×N consists of

N possible candidate bases which are functions of given
time series data x and qi ∈ R

N represents the unknown
influence map corresponding to the i-th species. Since a
biochemical reaction network is typically sparse, as a con-
sequence, qi is sparse and we have N � M for � because
we assume the limited time series data and may choose a
larger set of basis functions than necessary.
Although we formulate n independent linear regression

problems in Equation (11), we consider n independent

Figure 1 A graph representation of nonlinear ODEs. (A) (Example 1, n = 3, Sq ∈ R
3×6): among 18(= 3 × 6) components, only 6 components

are non-zero (B) (Example 1 with hidden node and measurement noise) there exists hidden node xh affecting x1 and process noisew.



Chang et al. BMC Bioinformatics  (2014) 15:400 Page 6 of 22

equations in Equation (11) together by stacking yi as
follows:

Y =

⎡
⎢⎢⎣

y1
y2
. . .

yn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

� O . . . O
O � . . . O
. . . . . . . . . . . .

O O . . . �

⎤
⎥⎥⎦
⎡
⎢⎢⎣

q1
q2
. . .

qn

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

v1
v2
. . .

vn

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
w1
w2
. . .

wn

⎤
⎥⎥⎦

� �

⎡
⎢⎢⎣

q1
q2
. . .

qn

⎤
⎥⎥⎦ + v + w

(12)

Now, Equation (12) is in the form of the CS formula-
tion in Equation (1) where Y ∈ R

n·M is the measurement,
� ∈ R

n·M×n·N is the sensing matrix which consists
of basis functions for the given time series data, v �
[v1; v2; . . . ; vn] ∈ R

n·M represents possibly large corrup-
tion from hidden nodes and w � [w1; w2; . . . ; wn] ∈
R
n·M represents process or measurement noise.
In this paper, we make the following assumptions:

Assumption 1. We consider two cases:

• (ideal case) We assume that we can measure all
states x (i.e., there is no hidden node (xh), thus
v = 0) and there is no measurement noise
(w = 0). Also, there are enough columns in �

in Equation (11) to represent the underlying
system in Equation (6).

• (extension) We consider hidden node (xh) where
v(= g(xh)) is assumed to be sparse, and process
noise (w �= 0). Here, we can also consider the case
where the columns (also known as the dictionaries
in the CS literature [28]) of � may not be able to
represent the underlying system. In this case, we
consider the influence from the missing
dictionaries as v.

We first consider the ideal case for simplicity in explain-
ing the main results, and then extend the proposed
method to the more general case.

Results and discussion
Formulating GRN identification problem into CS
Many existing algorithms [16,24] consider the n indepen-
dent linear regression problems in Equation (11) sepa-
rately. Since the columns of matrix � are composed of
time series data as in Equation (10), it is difficult to a priori
guarantee low correlation and sometimes � even suffers
rank deficiency. Also, Pan et al. [24] pointed out that cor-
relation between the columns of � is usually high (μ(�)

is close to 1).

Intuitively, if two columns of the sensing matrix are
highly correlated, it is hard to distinguish the corre-
sponding components in the sparse signal q (note that
the measurement Y is a linear combination of each col-
umn of the sensing matrix with the components in q
as coefficients). In order to deal with high coherence in
Equation (11), many method combines CS with different
techniques such as Bayesian formulation [24], Kalman fil-
ter [25], andGranger causality [26]. Also, it is a well known
problem in the lasso formulation of network inference: if
there is high coherence in the sensing matrix, one can
use an elastic net which combines the l1 and l2 norms.
Although each reconstruction result [24-26] might be the
optimal solution in the sense of its formulation (i.e., max-
imum likelihood), the identified graph may not represent
the underlying GRN. In other words, if the data set is not
informative enough to fully explore the underlying sys-
tem, while the identified graph structure based on the
given data set may be an optimal solution of the partic-
ular optimization problem, it may not represent the true
system.
In this paper, our goal is to get the smallest data infor-

mative enough to recover the underlying graph structure
exactly. Since the proposed method maintains the CS
framework by reducing coherence of the sensing matrix,
the method is fundamentally different than any other
methods which make use of different techniques in con-
junction with the l1 optimization [24-26] which leads to
a sparse representation of the network. Hence, we use
all the properties of CS in order to access the ability to
exactly reconstruct the underlying graph structure, reveal
deficiencies in the data and model, and design new exper-
iments to remedy the deficiencies if necessary.
While maintaining the CS framework, in order to deal

with high coherence, we formulate Equation (12) instead
of Equation (11) since we have strongly uncorrelated
columns in �. In other words, since � has many inde-
pendent columns, we have more degrees of freedom to
reduce coherence of�. We will show that by using a trans-
formation, the components of the sensing matrix can be
made more uniformly distributed so that we could reduce
coherence.
Moreover, since each qi has different degrees of spar-

sity in general, if we consider n independent equations
in Equation (11), � should satisfy the incoherence con-
dition M ≥ 2maxi

(‖qi‖0) stated in Proposition 1.
On the other hand, � only needs to satisfy the con-
dition M · n ≥ 2 · ∑n

i=1 ‖qi‖l0 . Since the averaged

sparsity
(

=
∑n

i=1‖qi‖l0
n ≤ maxi

(‖qi‖l0)
)

is smaller than

maxi
(‖qi‖l0), we can reduce the required number of sam-

ples (M). Also, in case of rank deficiency, we can simply
remove the corresponding rows (note that the rank defi-
ciency is more likely caused by the row since N � M).
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Optimal design of sensing matrix
Reducing coherence by transformation
In order to reduce coherence, first we rearrange � with
respect to a spatial information, and then we consider
the transformation in order to reduce coherence (see
Method: Rearranging the sensingmatrix for mathemat-
ical details):

Z �

⎡
⎢⎢⎣

z̄(1)
z̄(2)
. . .

z̄(M)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

�s
1(In ⊗ �1,:)

�s
2(In ⊗ �2,:)

. . .

�s
M(In ⊗ �M,:)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

q1
q2
. . .

qn

⎤
⎥⎥⎦
⎡
⎢⎢⎣

v̄(1)
v̄(2)
. . .

v̄(M)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

w̄(1)
w̄(2)
. . .

w̄(M)

⎤
⎥⎥⎦ � �̄

⎡
⎢⎢⎣

q1
q2
. . .

qn

⎤
⎥⎥⎦ + v̄ + w̄

(13)

where ⊗ represents the Kronecker producta, �̄ ∈
R
M·n×N ·n represents the rearranged sensing matrix mul-

tiplied by the transformation �s
j , and z̄(j), v̄ and w̄ are

defined in Equation (20). We want to find �s
j (j = 1,

. . . ,M) to minimize

minμ(�̄) where �̄ =

⎡
⎢⎢⎣

ψ s
11�1,: ψ s

12�1,: . . . ψ s
1n�1,:

ψ s
21�2,: ψ s

22�2,: . . . ψ s
2n�2,:

. . . . . . . . . . . .

ψ s
M1�M,: ψ s

M2�M,: . . . ψ s
Mn�M,:

⎤
⎥⎥⎦

has full row rank
(14)

where ψ s
ij ∈ R

n represents the j-th column of �s
i . In this

paper, we propose a heuristic approach and a novel way to
find �s

i by solving the optimization iteratively to reduce
coherence (seeMethod: Section ‘Randomly chosenmatrix
� ’ and ‘Finding the optimal transformation’ for details).

Example 2. (reducing coherence for a linear system) con-
sider a simple linear system (ẋ = Ax) where n = 5,
N = 5,M = 4, s = 10 (note that n · M ≥ 2s), and the
elements of A are randomly chosen such that there is no
isolated node. Figure 2 shows the sensing matrix for both
� (top left) and the transformed sensing matrix (top right,
denoted by �� ). By reducing coherence, the components of
the transformed sensing matrix (top right) are more uni-
formly distributed and the coherence is reduced by up to
0.6 although μ(�) is close to 1 (bottom left) in Figure 2(A).
Also, Figure 2(B) shows the result of the inferred graph
structure based on given time series data without any a
priori information where the x-axis represents indices of
the influence map (i.e., the 1st , 2nd, . . . , nth rows of influ-
ence map Sq; note that for a linear system, Sq = A).
Here, there are 5 states (n = 5) in a linear system so the
influence map A has 25 elements. Although L1 and L2b

norm minimizations fail to recover the exact signal, CS
in Equation (17) (see Recovery of gene regulatory net-
works for details) recovers the exact signal (bottom right)
by reducing coherence of the sensing matrix. Note that (L1)
solves the n independent equations in Equation (11) with-
out reducing coherence and (L2) solves Equation (12) with
l2-regularization.

Example 3. (reducing coherence for a nonlinear system,
n = 3, N = 9, M = 5, s = 6) consider simple nonlinear
ODEs as follows:

ẋ1 = γ1x1 + k+12
xnact2

1 + xnact2

ẋ2 = γ2x2 + k−23
1

1 + xnihb3

ẋ3 = γ3x3 + k+13
xnact1

1 + xnact1
(15)

where (γ1, γ2, γ3) = (−0.3,−0.25,−0.35), k+12 = 1.2,
k+13 = 0.9, k−23 = 2.2, nact = 4 (activation Hill coeffi-
cient) and nihb = 4 (inhibition Hill coefficient). The set of
ODEs corresponds to a topology (x2 → x1 → x3 � x2) as
shown in Figure 3(A). Figure 3(B) shows that we can reduce
the coherence by up to 0.8 and (C) shows that only CS
recovers the exact graph structure, and L2 regularization
does not encourage sparsity but distributes the coefficients
to be more similar to each other.

Designing effective experiments
Consider the case where the sensing matrix is not inco-
herent. If the coherence condition (M · n > cμ(�̄)2 ·
s log(N ·n)) is not satisfied, exact recovery cannot be guar-
anteed [34]. We use the transformation (�s

i or P = P	P
in Equation (24); see Method section ‘Reducing coher-
ence by transformation’) in order to reduce the coherence
but obviously, sometimes we might have inherent limits
to how much the coherence can be reduced. There are
possible reasons:

• Since we solve the relaxed problem in Equation (24)
iteratively, Pmight be sub-optimal.

• If the time series data of two different gene
expressions, xi and xj are highly correlated, it might
be difficult to reduce coherence. In this case, we need
to design a new experiment to remedy deficiencies in
the data.

As wementioned, the incoherence of the sensing matrix
can be used not only as a good metric to guarantee exact
recovery but also as a guideline for designing new exper-
iments. For example, from the coherence distribution, we
can identify which columns of the sensing matrix have
high coherence, i.e., fb,i(x) and fb,j(x) in Equation (6). Intu-
itively, in order to reduce ambiguities from the highly
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Figure 2 Reducing coherence for a linear system. (Example 2) (A) the sensing matrix � ∈ R
20×25, without (top left) and with transformation �

(top right) and the corresponding coherence distribution (bottom) (B) reconstruction result (left) L1 (middle) L2 with � (right) l1 optimization with
�� (CS) where x-axis represents indices of q ∈ R

25 and y-axis represents coefficient of q (a.u). By reducing coherence of the sensing matrix with
transformation, we can recover the exact structure in (B) (right). However, both L1 and L2 fail to recover the exact structure.

correlated columns of the sensing matrix, we should per-
turb either fb,i(x) or fb,j(x). Thus, it is possible to use
this property of coherence to guide biological experiment
design, to collect a more informative dataset. By doing
this, we can minimize the number of experiments and
reduce the cost of experiments.

Example 4. (limitation of reducing coherence by � , lin-
ear dynamics, n = 5,N = 5,M = 4, s = 10) In Figure 4,
Exp#1 represents the original experimental data set which
has the limitation of reducing coherence by � . Since we
consider linear dynamics, i.e., fb,i(x) = xi and fb,j(x) = xj,

we found that x2 and x4 cause high coherence as shown in
Figure 4 (circle marker). Thus, in order to reduce this high
coherence, we should perturb either x2 or x4.
To show the effectiveness of the new experiment, we

design two different experiment sets and compare the
reconstruction results with each other; for Exp#2, we per-
turb x3 and for Exp#3, we perturb x2. As we mentioned
earlier, intuitively, we expect that Exp#3 to be amore infor-
mative experiment to identify the graph structure since we
would like to reduce the coherence between x2 and x4. As we
expected, in Exp#3, we can reduce the coherence more than
that of Exp#2 as shown in Figure 4, and recover the exact
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Figure 3 Reducing coherence for a nonlinear system. (Example 3) (A) Time series of x1, x2, x3 for model in Equation (15) (B) the sensing matrix
without (top left) and with transformation � matrix (top right) and the corresponding coherence distribution (bottom) (C) reconstruction results. By
constructing the sensing matrix � ∈ R

n·M×n·N where n = 3,N = 9,M = 5 and s = 6, we recover the s-sparse signal in (B) (right). However, both L1
and L2 fail to recover the exact structure q.
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Figure 4 Guideline for designing new experiment based on coherence distribution. (Example 4) coherence distribution of the original �
based on Exp#1 show that x2 and x4 cause high coherence. Thus, in order to reduce this high coherence, we should perturb either x2 or x4. We
design two different experiment sets; for Exp#2, we perturb x3 and for Exp#3, we perturb x2. As we expected, Exp#3 is a more effective experiment
to reduce the coherence between x2 and x4 and we recover the exact graph structure as shown in Figure 5. On the other hand, the coherence of
Exp#2 remains almost the same as that of Exp#1 and we fail to recover the exact graph structure in Figure 5.

graph structure as shown in Figure 5. On the other hand,
the coherence of Exp#2 remains almost the same as that of
Exp#1 and we fail to recover the exact graph structure. This
numerical example illustrates that by using the property of
coherence, we can guide biological experiment design more
effectively.

Example 5. (limitation of reducing coherence by� , non-
linear dynamics, n = 3, N = 9, M = 5, s = 9) consider the
following set of ODEs:

ẋ1 = γ1x1 + k+12
xnact2

1 + xnact2
+ k+13

xnact3
1 + xnact3

ẋ2 = γ2x2 + k−21
1

1 + xnihb1
+ k−23

1
1 + xnihb3

ẋ3 = γ3x3 + k−31
1

1 + xnihb1
+ k−32

1
1 + xnihb2

where (γ1, γ2, γ3) = (−0.25,−0.23,−0.26), k+12 = 1.2,
k+13 = 1.25, k−21 = 2.8, k−23 = 2.1, k−31 = 2.7,
k−32 = 1.8, nact = 4 (activation Hill coefficient) and
nihb = 4 (inhibition Hill coefficient). The corresponding
topology is shown in Figure 6(B) (note that we intentionally

choose the symmetric structure and similar parameters).
The reconstruction error using Exp#1 data is shown in
Figure 6(A) (left, bottom) and the reconstruction error
illustrates difficulties of resolving ambiguities from x2 and
x3. This can be captured by the coherence distribution
of the sensing matrix based on the Exp#1 dataset; the
correlation between the columns corresponding to x1 and
x2 is close to the correlation between the columns cor-
responding to x1 and x3. Based on the coherence distri-
bution, we design two trials; for Exp#2, we perturb x1
and for Exp#3, we perturb x2. As we expected, Exp#2
is not an effective experiment in terms of information.
On the other hand, by using Exp#3, we can reduce both
the maximum coherence and the averaged coherence,
and reconstruct the exact graph structure as shown in
Figure 6(A).

Both Examples 4 and 5 illustrate that if the transformed
sensing matrix is not incoherent enough to guarantee
exact recovery, we can design a new experiment based on
the distribution of coherence. Also, we show that the pro-
posed experiment can help to reduce coherence more and
thus reconstruct the exact graph structure. For a fair com-
parison, we use the same number of time points asM here.
However, in practice, we can also stack all the experimen-
tal data sets together if we assume that the linear map Sq
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Figure 5 Design effective experiment for a linear system. (Example 4) Reconstruction results based on different experiments: Exp#1 represents
the original experimental dataset which has limitation to reduce coherence; Exp#2 represents non-effective experimental dataset; and Exp#3
represents the effective experimental dataset (A) the sensing matrix and reconstruction result (B) coherence distribution comparison. This example
demonstrates that if there is a limitation to reduce coherence in the original dataset, we can also design a more effective experiments based on the
coherence distribution. By revealing deficiency in the data, the proposed method can help reduce the cost of experiments.

and the set of basis functions Fb(x) does not change for
different experiment:

⎡
⎣ Z1

. . .

Zk

⎤
⎦ =

⎡
⎣ �̄1

. . .

�̄k

⎤
⎦
⎡
⎢⎢⎣

q1
q2
. . .

qn

⎤
⎥⎥⎦ +

⎡
⎣ v̄1

. . .

v̄k

⎤
⎦ +

⎡
⎣ w̄1

. . .

w̄k

⎤
⎦ (16)

where the subscript Zi, �̄i, v̄i, w̄i represents the i-th exper-
iment. As the number of measurements increase (M), one
may be able to reduce the coherence. However, one can
reduce the coherence only if the additional measurements
provide us more useful information. As a trivial example,
one could stack exactly the same data on top of the first,

and increase M to 2M, however the coherence is exactly
the same as that of the original dataset.

Recovery of gene regulatory networks
In this section, we present reconstruction of the exact
graph structure and show how the condition for exact
recovery will be used. First, we consider the ideal case
where there are no hidden nodes and no measurement
noise. Second, we extend the ideal case to the more gen-
eral case.

Reconstructing gene regulatory networks (ideal case)
In Equation (13), q represents the s-sparse network
structure which we want to reconstruct from the
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Figure 6 Design effective experiment for a nonlinear system. (Example 5) Reconstruction result based on different experiment (nonlinear case):
Exp#1 represents the original experimental dataset which has limitation to reduce coherence; Exp#2 represents non-effective experimental dataset
(inhibit x1); and Exp#3 represents the effective experimental dataset (inhibit x2) (A) the time series of x1, x2, x3 for each experiment (top), the
reconstruction error (bottom left) and coherence comparison for each experiment (bottom right) (B) the corresponding topology (C) coherence
distribution of the sensing matrix. In Exp#3, we reduce the coherence below 0.8.
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time series gene expression by solving the l1-norm
optimization:

min ‖q‖ l1 s.t. Z̃ = �̃q (CS) (17)

where Z̃ � PZ, �̃ � P�̄ and P is the optimal transfor-
mation in Equation (24).

Proposition 2. If the sensing matrix �̃ constructed from
time series data, multiplied by the optimal transformation,
P , has 2s linearly independent columns, then any s-sparse
network structure q can be reconstructed uniquely from
Z̃ = �̃q.

Proof. (Suppose not), then there are two s-sparse graph
structures q1,q2 with �̃q1 = �̃q2 (or �̃(q1 − q2) = 0).
However, q1 − q2 is 2s-sparse, so there is a linear depen-
dence between 2s columns of �̃ (contradiction).

The requirement of 2s linearly independent columns in
Proposition 2 may be translated to an incoherence con-
dition on the sensing matrix. That is, if the unknown
s-sparse signal q is reasonably sparse, it is possible to
recover q under the incoherence condition on the sensing
matrix. Although the sensing matrix consists of redun-
dant dictionaries, the coherence of the sensing matrix can
be reduced. In a heuristic way, we multiply the redun-
dant dictionaries �k,: by a randomly chosen matrix �s

k at
each time step k and iterate this step until the coherence
is decreased. Or, we can find the optimal transforma-
tion P(or P) in Equation (24) to reduce the coherence. In
the previous numerical examples, we illustrated that the
coherence of the sensing matrix is decreased by trans-
formation and showed the exact reconstruction of graph
structure.

Example 6. (Statistics) Here, we compare the success
rate of the proposed method with other methods such as L1
and L2. Figure 7 shows statistics of 50 trials for a simple
linear case (for each trial, we randomly generate the influ-
ence map). Here, we count the number of successes of each
method when any of the methods recover the exact struc-
ture. By reducing coherence, we can improve the success
rate as shown in Figure 7(A). Also, L2-regularization does
not encourage sparsity but distributes the coefficients to be
more similar to each other as shown in Figure 7(B).

Graph reconstructionwith hidden nodes
The main contributions of the proposed method in the
previous section is the conversion of the problem of infer-
ring graph structure into the CS framework. Then, we
demonstrate that one could recover sparse graph struc-
tures from only a few measurements. However, for prac-
tical use, the proposed method needs to be able to deal

with both sparsely corrupted signals (v = g(xh)) and
measurement noise (w) in Equation (5).
In general, the assumption of accessibility or observ-

ability of all nodes [17] is not satisfied. Thus, we focus
on the case in which the hidden node affects observ-
able nodes directly as shown in Figure 1(B). Also, without
loss of generality, the hidden node dynamics could be any
arbitrary dynamic model. Or, even if there is no hidden
node, a small portion of the biological experiment dataset
could be in practice contaminated by large error result-
ing from, for example, mislabeling, or improper use of
markers or antibodies. Moreover, all biological datasets
are contaminated by at least a small amount of noise from
measurement devices. Therefore, the proposed method
should be robust. We note this goes beyond the results
in [11] due to the consideration of hidden node dynamics
with measurement noise.
Here, the question is whether it is still possible to

reconstruct the graph structure reliably when measure-
ments are corrupted. Since hidden nodes and measure-
ment noise are considered, the number of time points is
assumed to be greater than that of the previous case [17]
(i.e., no corruption and no measurement noise). Thus, the
number of rows of the sensing matrix is assumed to be
greater than the number of columns. If the number of the
time pointsM(< N) is limited, then we can stack z̄(j)with
different �s

k or including different dataset as described in
Equation (16).
In CS literature [31], two decoding strategies for recov-

ering the signal from a corrupted measurement are
introduced, where the corruption includes both a pos-
sible sparse vector of large errors and a vector of
small error affecting all the entries. It is shown that
two decoding schemes allow the recovery of the sig-
nal with nearly the same accuracy as if no sparse large
errors occurred. Our contribution is converting the prob-
lem of inferring the graph structure with hidden nodes
into the highly robust error correction method frame-
work [31] (see Method: Section ‘Two-step refinements’)
and showing how this can improve the reliability of
reconstruction.

Example 7. (arbitrary corruption with no measurement
noise) Consider nonlinear ODEs as follows:

ẋ1 = −γ1x1 + α13hact(x3) + v1
ẋ2 = −γ2x2 + α21hact(x1) + v2
ẋ3 = −γ3x3 + α34hact(x4) + β32hihb(x2) + v3
ẋ4 = −γ4x4 + β41hihb(x1) + v4 (18)

where hact , hihb represents Hill functions for activation
and inhibition respectively, and vi represents arbitrary
corruption shown in Figure 8(A) and assumed to be sparse
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A B

Figure 7 Comparison L1, L2, and CS. (Example 6, linear case) statistics of success rate and error among 50 trials: (A) success rate (blue bar) and
reconstruction error (red bar) (B) component-wise reconstruction error. By reducing coherence, we can improve the success rate as shown in
Figure 7(A). Also, since L2-regularization does not encourage sparsity but distributes the coefficients to be more similar to each other,
component-wise errors are distributed as shown in (B).

(at each time step, we choose card(v(j)) = 1). The magni-
tude of vi are about 50% of the magnitude of ẋ. Since we
consider arbitrary corruption, we need more time points
(M > N). By using two-step refinements, first we estimate
sparse large corruption v as shown in Figure 8(B) (top) and
then, we reconstruct q (bottom).

In practice, a specific node is corrupted by a hid-
den node and a small portion of the dataset can be
largely corrupted by human error. Also, since we choose
the set of possible candidate basis functions of the
sensing matrix in Equation (6), the columns of the sens-
ing matrix may not be able to represent the under-
lying system (i.e., missing dictionaries). Then, we can
consider the influence from these missing dictionaries
as v.

Example 8. (Arbitrary corruption with measurement
noise) Recall a model in Equation (18) with different
parameters and consider sparse large corruption v and
small magnitude noise w (1% of the magnitude of ẋ).
Figure 9 shows the time series data and reconstruction
result.

Geometric view
In Equation (17), since we assume all nodes are accessi-
ble and perfect measurement (meaning that there is no
hidden node, v = 0 and no measurement noise, w = 0),
we can solve Equation (27) directly without filter-
ing out the unmodelled dynamics in Equation (26)
(i.e., Z = �̄q in Equation (27)). If there exist hidden nodes
or measurement noise, we can still provide an unam-
biguous indication of the existence of these corruption
(e �= 0).

The intuition is that Z(= �̄q + �̄e) can be decom-
posed as the superposition of an arbitrary element in
V (= Z − QQ∗e) and of an element in V⊥(= QQ∗e) as
shown in Figure 10. In other words, Z can be decomposed
as the superposition of modelled dynamics and anoma-
lies caused by hidden node or unmodelled dynamics. This
geometric view enables us to understand how we could
reveal deficiencies in our model:

• Z̄ = Q∗Z = 0: there is no hidden node
=⇒ Z ∈ R(�̄)

• Z̄ �= 0: Z cannot be represented by �̄q so there might
be hidden nodes or our dictionaries in the sensing
matrix �̄ are not sufficient to represent Z (revealing
deficiencies in our model or dictionaries).

HER2 Overexpressed breast cancer
We apply the proposed algorithm to study a breast can-
cer signaling pathway by reconstructing the graph struc-
ture using an RPPA dataset [32] as shown in Figure 11
(see also Additional file 1: Figure S1, S2, and S3 for
details: each figure presents the RPPA dataset and the
result of graph reconstruction compared with L1, L2-
optimization). Here, we choose small networks which
are composed of 3 nodes and known to be sparsely
connected, i.e., PI3K → PDK → Akt and PDK →
Akt → mTOR in order to satisfy our assumption such
that the influence on observable nodes from a hidden
node should be sparse (i.e., v is sparse). The graph
structures identified by the proposed method are con-
sistent with the current understanding of the networks,
whereas those found using L1- and L2-optimizations
fail to reconstruct the known structure as shown in
Figure 12.
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Figure 8 Arbitrary corruption with nomeasurement noise. (Example 7) Reconstruction with corrupted signal. (A) time series of x, y, v (B)
reconstruction results of v and q where each circle represents sampled time points (n = 4,M = 25, N = 12, s = 9). By using two-step refinements,
first we estimate sparse large corruption v and then, we reconstruct q. Note that since we consider arbitrary corruption, we have more time points
(M > N).

Also, an abstract model of the breast cancer signal
pathway proposed by M. Moasser [38] is considered, as
shown in Additional file 1: Figure S3(B) where PHLPP iso-
forms are a pair of protein phosphatases, PHLPP1 and
PHLPP2, which are important regulators of Akt serine-
threonine kinases (Akt1, Akt2, Akt3) and conventional
protein kinase C (PKC) isoforms. PHLPP may act as a
tumor suppressor in several types of cancer due to its abil-
ity to block growth factor-induced signaling in cancer cells
[39]. PHLPP dephosphorylates Ser473 (the hydrophobic
motif ) in Akt, thus partially inactivating the kinase [40].
Unfortunately, in our RPPA dataset, we do not have PHLPP

so we simply consider three nodes (AktpT308,AktpS473 and
mTOR). Figure 11(right) shows the result of the pro-
posed method using the RPPA dataset. The reconstructed
graph structure matches up to the known structure
(Additional file 1: Figure S3(B)). Specifically, our result can
capture the partial inactivating characteristics of PHLPP
(i.e.,mTOR(→ PHLPP) � AktpS473).

Discussion
Many network inference algorithms use l1-norm opti-
mization to find the actual network structure, but they
cannot guarantee exact recovery. In this paper, we propose
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Figure 9 Arbitrary corruption with measurement noise. (Example 8) Reconstruction with corrupted signal. (A) time series of x, y, v (B)
reconstruction results of v and q where each circle represents sample time points (n = 4,M = 40, N = 12, s = 9). Here we consider arbitrary large
corruption with measurement noise. By choosing the parameters ε1, ε2 properly in Equation (30), we can recover the graph structure q within the
small error bound.

a novel approach to reconstruct GRNs based on compres-
sive sensing with a dynamic system model. We demon-
strate that the incoherence condition is essential for
exact recovery. This is not properly considered in infer-
ence methods based on l1-norm optimization. Also, we
illustrate how the incoherence condition can be used
to design new experiments effectively. Finally, we con-
sider a more general setting, in which hidden genes exist
and all measurements are contaminated by noise, and

we show that the proposed method leads to reliable
reconstruction.
We compare all the results with l1- and l2-norm opti-

mization, since l1-norm optimization is widely used in
network inference and many inference methods combine
the l1- and l2-norms (for example, elastic net). We high-
light the improvement by the proposed method compared
with these commonly used methods. Our use of the
method to propose new experiments, and its extension
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Figure 10 Geometric view of two-step refinement. A geometric view of two consecutive l1-norm optimizations. By using two-step refinements,
first we estimate sparse large corruption v and then, we reconstruct q. For the ideal situation with no unobservable species (genes) or noise, we
directly reconstruct q without estimating v.

to a more general setting goes beyond the results in any
network inference methods.
From the lessons learned from the numerical study

using both synthetic datasets and real RPPA datasets of
HER2 overexpressed breast cancer signaling pathways,
the proposed method can be applied to sub-networks in
order to satisfy our assumption about the number of hid-
den nodes relative to the network size, and has great
potential for reconstructing GRN by designing effective
experiments. Note that the proposed method is not lim-
ited to the network size itself but rather by this assumption
and the incoherence condition. In the ideal case with no
unobservable species (genes) and no noise, the method
can be applied to entire networks if the incoherence con-
dition is satisfied (i.e., n · M ≥ 2s, practically n · M ≥
4s) where n is the number of nodes, M is the number
of time points and s represents the sparsity of the net-
work structure. For example, suppose we only have one
time point measurement (M = 1) and then, the proposed
method cannot be applicable for any network (n > 2
where n is the number of nodes) since it is impossible to
satisfy the incoherence condition. As an example, if we
consider n nodes which are simply connected (i.e., s =
n − 1), then n · M < 2s. With a reasonable number of
time points (M), the incoherence condition could be sat-
isfied. Similarly, in the practical case with unobservable
species (genes) and measurement noise, in order to guar-
antee the exact recovery of the graph structure, we should

satisfy Assumption 1 for a given network (hidden node
only affects relatively few nodes in the given network) and
the incoherence condition. Suppose we choose a small
sub-network where a hidden node or unobservable node
affects all nodes in the chosen sub-network: then, it is
impossible to infer the exact structure of the sub-network.
However, if a hidden node only affects relatively few nodes
in the given network, we can still reconstruct the exact
structure of the sub-network by inferring the hidden node
influence first. Therefore, the proposedmethod is not lim-
ited to the network size itself but rather by Assumption 1
and the incoherence condition. In practice, we can work
on a sub-network at a time and integrate the identified
sub-networks.
Finally, we evaluate performance with respect to the size

of the problem under typical parameters (the number of
genes, the number of kinetic features and connectivity)
in (Additional file 1: Table S1) which provides us a brief
guideline of application, e.g., for an n-genes network with
certain kinetic features, how many time points/how much
resolution are appropriate for the reconstruction.
In this paper, we do not consider any a priori knowl-

edge of connectivity. However, since we may have partial
information of connectivity, we can also use prior knowl-
edge of connectivity in the form of known nonzero ele-
ments in q allowing fewer experiments to be performed.
Also, here we only consider protein expression or gene
expression levels but we can also consider many other

Figure 11 HER2+ overexpressed breast cancer. CS reconstruction result using Reverse Phase Protein Array data (SKBR3 cell line, Serum [32]). See
Additional file 1: Figure S1, S2 and S3 for further details (red: activation, blue: inhibition). Here, we choose small networks which are composed of 3
nodes and known to be sparsely connected in order to satisfy our assumption such that the influence on observable nodes from a hidden node
should be sparse. The identified graph structures are consistent with the current understanding of the networks.
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Figure 12 Sub networks inferred for the HER2/3 signaling network from Reverse Phase Protein Array data. The columns show the networks
inferred by L1-optimization, L2-optimization, and CS. The network structures identified by CS agree with the current understanding of the network,
whereas those found using L1 and L2 optimization do not. See Additional file 1: Figure S1, S2 and S3 for further details (red: activation, blue: inhibition).

types of useful information that can be incorporated into
the network reconstruction process, such as sequence
motifs and direct binding measurements (e.g., ChIP-chip
and ChIP-seq). Since it has been shown that ChIP-seq
signals of Histone modification are more correlated with
transcription factor motifs at promoter sites in com-
parison to RNA level, time series Histone modification
ChIP-seq could provide a more reliable inference of GRNs
in comparison to method based on expression level. We
are interested in continuing this research direction for
large-scale networks.

Conclusion
We proposed a method for reconstructing sparse graph
structures based on time series gene expression data with-
out any a priori information. We demonstrated that the
proposed method can reconstruct graph structure reli-
ably. Also, we illustrated that coherence in the sensing
matrix can be used as a guideline for designing effective
experiments.
Second, the proposed method is extended to the cases

in which dynamics is corrupted by hidden nodes and the
measurement is corrupted by human error in addition to
the measurement noise. Using a two-step refinement pro-
cedure, we demonstrate good performance for the recon-
struction of graph structure. A set of numerical examples
is implemented to illustrate the method and its perfor-
mance. Also, a biological example of HER2 overexpressed
breast cancer using an RPPA dataset is studied. We are

currently applying our method to recover the HER2 sig-
naling pathway, where a significant part of the network is
currently unknown.

Method
Reducing coherence by transformation
Rearranging the sensingmatrix
Define z(j) as a vector of each component of yi at the j-th
time point:

z(j) �

⎡
⎢⎢⎣
y	
1 ej
y	
2 ej
. . .

y	
n ej

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
y1(tj)
y2(tj)
. . .

yn(tj)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

�j,:q1
�j,:q2
. . .

�j,:qn

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
v1(tj)
v2(tj)
. . .

vn(tj)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
w1(tj)
w2(tj)
. . .

wn(tj)

⎤
⎥⎥⎦

= (In ⊗ �j,:)

⎡
⎢⎢⎣

q1
q2
. . .

qn

⎤
⎥⎥⎦ + v(j) + w(j)

(19)

where �j,: represents the j-th row of �. Consider �s
j ∈

R
n×n and multiply Equation (19) by �s

j :

z̄(j) � �s
jz(j) = �s

j (In ⊗ �j,:)

⎡
⎢⎢⎣

q1
q2
. . .

qn

⎤
⎥⎥⎦ + v̄(j) + w̄(j) (20)
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where v̄(j) � �s
jv(j), w̄(j) � �s

jw(j) and rank
(
�s

i
(In ⊗ �i,:)

) = rank
(
�s

i
)
since rank(In ⊗ �i,:) = rank(In) ·

rank(�i,:) = n. By stacking z̄(j),

Z �

⎡
⎢⎢⎢⎣

z̄(1)
z̄(2)
. . .

z̄(M)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

�s
1(In ⊗ �1,:)

�s
2(In ⊗ �2,:)

. . .

�s
M(In ⊗ �M,:)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

q1
q2
. . .

qn

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

v̄(1)
v̄(2)
. . .

v̄(M)

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

w̄(1)
w̄(2)
. . .

w̄(M)

⎤
⎥⎥⎥⎦ � �̄

⎡
⎢⎢⎢⎣

q1
q2
. . .

qn

⎤
⎥⎥⎥⎦ + v̄ + w̄

(21)

Randomly chosenmatrix�

The optimization problem in Equation (14) is not triv-
ial because of the constraint. One simple and heuristic
approach is that we select �s

i by (normalized) randomly
chosen matrix with independent identically distributed
(i.i.d.) random variable where �̄ has full row rank, cal-
culate μ(�̄) and run this with several times to reduce
coherence. Since the randomly chosenmatrix,�s

i , spreads
out the component of �i,: uniformly, we can reduce
coherence.

Finding the optimal transformation
This heuristic approach may not be enough to reduce the
coherence. Consider a nonsingular matrix P ∈ R

M·n×M·n
and �̃ = P�̄ where �̄ is constructed by heuristic way, i.e.,
randomly chosen matrix.

μ̃i,j �

∣∣∣〈�̃i, �̃j
〉∣∣∣∥∥∥�̃i

∥∥∥
2

∥∥∥�̃j

∥∥∥
2

=
∣∣〈P�̄i,P�̄j

〉∣∣∥∥P�̄i
∥∥
2
∥∥P�̄j

∥∥
2

�

∣∣∣�̄	
i P�̄j

∣∣∣√(
�̄

	
i P�̄i

) (
�̄

	
j P�̄j

)
(22)

where P � P	P = P	 ∈ S
M·n is positive definite and

�̃i denote the i-th column of �̃. Note that if P	P = I,
μ̃i,j = |〈�̃i,�̃j〉|∥∥∥�̃i

∥∥∥
2

∥∥∥�̃j
∥∥∥
2

= |〈�̄i,�̄j〉|∥∥�̄i
∥∥
2
∥∥�̄j

∥∥
2
� μ̄i,j. Therefore, our goal

is finding P(= P	P) ∈ S
+ such that

minμ(�̃) = min
P

max
j<k

μ̃j,k = min
P

‖
‖∞ (23)

where 
 ∈ R(n·N)C2 can be defined as follows:


 �

⎡
⎢⎣ tr

(
P�̄1�̄

	
2 P	

)
∥∥∥P�̄1�̄

	
2 P	

∥∥∥
F

. . .
tr
(
P�̄1�̄

	
N ·nP	

)
∥∥∥P�̄1�̄

	
N ·nP	

∥∥∥
F

×
tr
(
P�̄2�̄

	
3 P	

)
∥∥∥P�̄2�̄

	
3 P	

∥∥∥
F

. . .
tr
(
P�̄N ·n−1�̄

	
N ·nP	

)
∥∥∥P�̄N ·n−1�̄

	
N ·nP	

∥∥∥
F

⎤
⎥⎦

	

In practice, we ignore the denominator and solve the
following problem:

min
P=P	�0

∥∥∥∥ [vec(�̄1�̄
	
2

)
. . . vec

(
�̄1�̄

	
N ·n

)
. . . vec

(
�̄N ·n−1�̄

	
N ·n

)]	
vec(P)

∥∥∥∥∞

(24)

We can also combine ‖·‖∞ and ‖·‖1 to reduce the coher-
ence. Note that for ‖·‖∞, we minimize the maxim coher-
ence and for ‖·‖1, we minimize the sum of the all possible
combinations of the columns of �̄, i.e., μ̃ij. Thus, if certain
bases are highly correlated, P or P makes the components
of the sensing matrix spread out enough to differenti-
ate the influences from those bases. Since we ignore the
denominator, the optimal solution of Equation (24) may
be suboptimal. Thus, we can also combine heuristic way
and Equation (24) iteratively to reduce coherence of the
sensing matrix in practice.

Two-step refinements
Sparse large corruptionwith nomeasurement noise
Recall Equation (13) where w̄ = 0:

Z = �̄

⎡
⎢⎢⎣

q1
q2
. . .

qn

⎤
⎥⎥⎦ + diag

{
�s

1,�
s
2, . . . ,�

s
M
}
⎡
⎢⎢⎣

v(1)
v(2)
. . .

v(M)

⎤
⎥⎥⎦

= �̄

⎡
⎢⎢⎣

q1
q2
. . .

qn

⎤
⎥⎥⎦ + �̄v

(25)

where �̄ � diag
{
�s

1,�
s
2, . . . ,�

s
M
}
and v(j) represents

sparse large corruption at the j-th time point, that could
result from the existence of hidden nodes.We assume that
the influence from hidden nodes is sparse and unknown
(i.e., v(j) is assumed to be sparse). In other words, hidden
nodes can affect only a few nodes’ dynamics (intuitively,
if hidden nodes affect all nodes, there is no way to
reconstruct the graph structure). Then, we consider the
reconstruction of graph structure q from the corrupted
signal Z.
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Since we assume the number of rows of the sensing
matrix �̄ is greater than the number of columns (M ·
n > N · n), we consider Q∗ which annihilates the sens-
ing matrix �̄ on the left (Q∗�̄ = 0) where Q∗ is any
(M · n−N · n) ×M · nmatrix whose kernel is the range of
�̄ in R

M·n (rank(Q∗) + nullity(Q∗) = M · n):

Z̄ � Q∗Z =����
0

Q∗�̄ ·

⎡
⎢⎢⎣

q1
q2
. . .

qn

⎤
⎥⎥⎦ + Q∗�̄v

Then, the following two-step optimization problem
enables us to compute q:

• Filter unmodelled dynamics out from the
measurement:

v̂ = argmin ‖v‖l1 s.t. Z̄ = Q∗�̄v (26)

• Reconstruct q :

min‖q‖ l1 s.t. Z − �̄v̂ = �̄q

or Z̃=P(Z−�̄v̂)=P�̄q=�̃q (P in Equation (23))
(27)

If we could somehow get an accurate estimate v̂ from
Equation (26), Equation (27) represents the problem of
reconstructing the graph structure q. The intuition is that
Z(= �̄q+�̄v) can be decomposed as the superposition of
modelled dynamics and anomalies caused by hidden node
or unmodelled dynamics.
The two step convex optimization problems in

Equation (26) and Equation (27) are l1-norm optimiza-
tion problems in CS. Thus, if the sensing matrix Q∗�̄
and �̄ (or P�̄) satisfy the incoherence condition, signals
v and q can be recovered exactly [17,34]. Here, there
are many possible choices of Q∗ but we have to choose
Q∗ to satisfy the incoherence condition for the exact
recovery of v [17]. To choose such a Q∗, we observe
that �̄ can be denoted as follows using Singular Value
Decomposition (SVD):

�̄ = [U1 U2]
[

� 0
0 0

] [
V	
1

V	
2

]
= U1�V	

1 (28)

where U1 ∈ R
M·n×r ,U2 ∈ R

M·n×(M·n−r),� ∈ Rr×r ,V1 ∈
R
N ·n×r , V2 ∈ R

N ·n×(N ·n−r) and r is the rank of �̄. Suppose
we chooseQ∗ such thatQ∗ = �U	

2 . Then:

Q∗Z = Q∗�̄q + Q∗�̄v

Z̄ =
(
�U	

2

)
U1�V	

1 q +
(
�U	

2

)
�̄v

Z̄ =
(
�U	

2

)
�̄v

where � can be used as a tuning matrix for satisfying
the incoherence condition. A geometric view in Results
and discussion: Section ‘Geometric view’. enables us to
understand howwe could reveal deficiencies in ourmodel.

Sparse large corruptionwithmeasurement noise
While considering influence from hidden nodes is inter-
esting, it still may not be realistic to assume that except
for hidden nodes, one is able to measure the node dynam-
ics with infinite precision. A better model would assume
that there is measurement noise. Consider the problem of
recovering the graph structure q from the vector Z which
is corrupted by measurement noise w̄ in Equation (13):

Z = �̄

⎡
⎢⎢⎣

q1
q2
. . .

qn

⎤
⎥⎥⎦ + �̄

⎡
⎢⎢⎣

v(1) + w(1)
v(2) + w(2)

. . .

v(M) + w(M)

⎤
⎥⎥⎦

= �̄

⎡
⎢⎢⎣

q1
q2
. . .

qn

⎤
⎥⎥⎦ + �̄

⎡
⎢⎢⎣

e(1)
e(2)
. . .

e(M)

⎤
⎥⎥⎦

(29)

where e(j) = v(j) + w(j), w is Gaussian noise N (0, σ)

assumed to be bounded ‖w‖ l2 ≤ ε. In general, we can
consider any corruption decomposed into sparse large
error v and small magnitude error w [31]. Then, modified
two-step refinements can be applied as follows:

Z̄ = Q∗�̄q + Q∗�̄e = Q∗�̄(v + w)

v̂ = argmin ‖v‖ l1 s.t
∥∥Z̄ − Q∗�̄v

∥∥
l2 ≤ ε1

q = argmin ‖q‖l1 s.t.
∥∥Z − �̄q − ê

∥∥
l2 ≤ ε2, ê = �̄v̂

(30)

where the parameters ε1, ε2 above depend on the magni-
tude of the small errors ε, which can be determined as in
[31].

Endnotes
aIf A is anm × nmatrix and B is a p × qmatrix, then

the Kronecker product product A ⊗ B is themp × nq
block matrix:

A ⊗ B =
⎡
⎢⎣

a11B · · · a1nB
...

. . .
...

Am1B · · · amnB

⎤
⎥⎦

bWe compare the performance of CS with the
performance of the L1 and L2 optimization as follows:

min
qi

‖qi‖1 subject to yi = �qi (i = 1, . . . , n) (L1)

min
q

‖q‖2 subject to Y = �q (L2)
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