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Adsorption of imazamox in California agricultural soils and implications for 
branched broomrape (Phelipanche ramosa) management

Matthew Fatinoa , Katie Martinb, Franck Dayanb, and Bradley D. Hansona

aPlant Sciences, university of california, davis, california, uSa; bagricultural Biology, colorado State university, fort collins, colorado, uSa

ABSTRACT
Results of previous research on chemigated imazamox for control of branched broomrape 
(Phelipanche ramosa) in processing tomatoes suggested potential soil-type differences in imazamox 
availability. Over two years, there were differences in crop-injury between two sites less than 30-km 
apart: imazamox-treated tomatoes in the Davis location had relatively minor early season injury 
while tomatoes at the Woodland location were severely injured or killed. The following study was 
conducted to investigate imazamox sorption in four California soils to determine if differences in 
herbicide adsorption played a role in variable crop-injury observed in the field trials. To determine 
the sorption capacity of imazamox of each soil, a batch-equilibrium study was conducted. There 
were significant differences in sorbed imazamox: the clay soil had the highest adsorption (Robert’s 
Island: 742.5 pg µL−1 sorbed), followed by the sandy loam soil (Ripon: 723.9 pg µL−1 sorbed), while 
the loam soils from both trial sites (Davis: 704.2 pg µL−1 sorbed; Woodland: 699.9 pg µL−1 sorbed) 
had the lowest adsorption and were not significantly different from one another. Results from this 
study illustrate only minor differences in imazamox adsorption among the soils tested which 
suggests that soil type was likely not a major factor contributing to differences in crop-injury.

Introduction

Processing tomato (Solanum lycopersicum) is a major cash 
crop grown in the central San Joaquin and Sacramento val-
leys of California. In 2023, it was a top 10 agricultural com-
modity in the state worth $1.2 billion dollars.[1] Branched 
broomrape (Phelipanche ramosa) is a parasitic noxious weed 
that can parasitize a wide range of agricultural crops.[2] 
Branched broomrape is an obligate holoparasite that parasit-
izes a host plant’s root system, reducing plant vigor.[2] 
Tomatoes are highly susceptible to branched broomrape and 
yield loss in highly infested fields can be up to 80%.[3] 
Branched broomrape was first noted in California in the 
early 1900s.[4] After an industry driven eradication program 
utilizing methyl bromide fumigation that began in the 1960s, 
it was thought to have been eradicated from California by 
the 1980s.[5,6] It has reemerged in recent years, with several 
commercial fields having been reported since 2016.[7] 
Branched broomrape is currently an A-listed pest in the 
state requiring crop destruct and quarantine protocols which 
leads to massive economic losses to affected growers.[8]

Research began in 2019, to validate existing herbicide pro-
grams for broomrape management in processing tomato.[9] 
The programs were based on 20 years of research done by 
Israeli researchers for management of Egyptian broomrape 
(Phelipanche aegyptiaca) in their processing tomato systems.[10] 
These programs utilize acetolactate synthase (ALS) inhibitor 

herbicides in various combinations and application methods. 
There are several program regimes depending on broomrape 
infestation level; however, most of them utilize preplant 
incorporated sulfosulfuron followed by several in-season 
applications of imazapic applied via chemigation. Currently, 
neither sulfosulfuron or imazapic are labeled for use in toma-
toes in California and there are differences in tomato produc-
tion practices and primary broomrape species between 
California and Israel. Therefore, to validate and adapt the 
Israeli programs under California conditions and to generate 
the necessary data to support potential herbicide registration 
for this pest, a series of field studies were designed and 
implemented. In 2019 and 2020, experiments focused on 
evaluation of preplant incorporated sulfosulfuron and chemi-
gated imazapic for their crop safety in California tomatoes 
and their efficacy for branched broomrape management.[9] 
After two seasons of field research, it became clear that 
imazapic faced insurmountable barriers to registration in 
California, and focus shifted from imazapic to imazamox as 
the chemigation component. Imazamox, a sister compound to 
imazapic in the imidazolinones class, already has a label in 
California on other crops such as alfalfa, making it a better 
candidate for potential registration on tomatoes in California. 
Beginning in 2021, field studies continued the evaluation of 
Israeli-based herbicide programs with imazamox as the 
chemigation component for crop safety on tomatoes and effi-
cacy for branched broomrape management.[11]
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The mechanism of action of imazamox is the inhibition 
of acetolactate synthase, a critical enzyme in the synthesis of 
branched chain amino acids.[12] Imazamox uptake occurs in 
both leaves and roots, and it is translocated in both the 
xylem and phloem.[12] It was first marketed in the United 
States in 1997 for use in soybeans and subsequently received 
a reduced risk pesticide designation due to its low mamma-
lian toxicity and its favorable environmental fate.[13] It is 
widely used in the United States for postemergence control 
of annual broadleaf and grass weeds in agricultural and 
aquatic systems, including imidazolinone-resistant (IR) crop 
systems. Currently, postemergence uses of imazamox are 
registered in California as Clearfield/Beyond on several IR 
crops, as well as Raptor in alfalfa.[14,15] Soil adsorption has 
been extensively studied in the imidazolinones herbicides, 
particularly those with preemergence soil activity such as 
imazethapyr, imazapyr, and imazaquin.[16–18] However, there 
are relatively few reports on imazamox soil adsorption, likely 
due to its primary use as a postemergence or aquatic herbi-
cide. Among three imidazolinones evaluated, imazamox had 
the lowest soil sorption, followed by imazethapyr then 
imazaquin and that all three herbicides had lower sorption 
at pH 7 than at pH 5.[19] Soil amended with biochar did not 
increase the sorption of any of the herbicides tested, includ-
ing imazamox.[20] The authors concluded this was likely due 
to the fact that biochar has a net-negative charge and all 
herbicides tested were anionic. Another recent publication 
by Hu et  al.[21] also evaluated imazamox adsorption in lake 
sediment; however, herbicide fate could be substantially dif-
ferent in the aerobic and irrigated environment of an agri-
cultural field.

After two field seasons of crop safety and efficacy studies, 
it became clear that chemigated imazamox had the potential 
to cause crop injury in tomatoes at our higher rate regimes.[11] 
Interestingly, tomatoes at the field site near Davis, CA, had 
only minor early season injury in 2021 and no injury in 
2022, while tomatoes at the grower field site near Woodland, 
CA, were severely injured in 2021 and 2022 and did not 
recover by the end of the season. The discrepancy in crop 
injury observed in plots treated with chemigated imazamox 
across studies and study sites led us to investigate potential 
contributing factors. The differences between the two trial 
sites included soil type, irrigation tape depth, fertility, and 
irrigation practices. We hypothesized that soil type differ-
ences between the two sites may have influenced the amount 
of plant-available imazamox and led to differences in crop 
injury among trial sites. To evaluate this, batch equilibrium 
studies were conducted in late 2022 to determine if there 
were differences in imazamox soil adsorption among four 
California soils, including soil from the two trial sites.  

In addition, an experiment was conducted to determine the 
sorption coefficient of imazamox for each soil.

Materials and methods

Field collection

Soil was collected from four agricultural fields within the 
California tomato production region for batch equilibrium 
experiments. Collection sites included the Davis field site 
(38°31’48.1"N 121°47’01.1"W), a field adjacent to the 
Woodland field site that was not under broomrape quaran-
tine control (38°45’29.1"N 121°46’15.0"W), a field near 
Ripon, CA, (37°43’03.4"N 121°12’05.0"W) to represent a 
sandy soil type, and a field near Roberts Island, CA 
(37°52’39.8"N 121°22’46.7"W) to represent a higher organic 
matter soil (Table 1). Soil was collected from the A-horizon 
in the top 7 cm, air dried, and sieved with a 2 mm screen. 
Field capacity and bulk density of each soil were calculated. 
Laboratory analyses of these soils were conducted at the 
Colorado State University Weed Science Lab in Fort 
Collins, CO.

Sorption capacity

Batch equilibrium methods were used to determine the 
sorption capacity of imazamox in each soil.[22] A stock solu-
tion was prepared with 0.6 µg mL−1 imazamox in a 0.02 M 
CaCl2 solution. This concentration mimicked the field rate 
of imazamox used in chemigation applications in field trials 
conducted California and Chile.[11] Five grams of air-dried 
soil was added to a 50 mL centrifuge tube and brought to 
field capacity with the imazamox solution and was allowed 
to sit overnight at room temperature. The next day, 5 mL of 
0.02 M CaCl2 (aq) was added to the centrifuge tube, tubes 
were vortexed, then centrifuged for 10 min at 2,500 rpm 
(Legend X1R centrifuge, Thermo Fisher Scientific, Waltham, 
MA). A 2 mL aliquot of the supernatant was filtered through 
a 0.2 µm PVDF filter and injected into a Shimadzu 8040 
LC-MS/MS system for quantification (Shimadzu Corporation, 
Kyoto, JP). This experiment had five 5 grams soil replica-
tions for each of the 4 soils, for a total of 20 samples.

Herbicide soil adsorption

To determine imazamox sorption coefficients for each soil, 
a batch equilibrium method was used.[22] Ten grams of 
each soil was placed in a 50 mL centrifuge tube, followed 
by 10 mL of 10 µg mL−1 imazamox and water solution.  

Table 1. Soil properties of soil collected from four california processing tomato fields and used in imazamox batch equilibrium experiments.

no3-n olsen-P na K ca mg
cEc 

(estimated) om (loi) pH Sand Silt clay Soil class

Site ppm meq 100 g-1 % %

davis 47.7 19.0 26 553 6.35 10.11 18.0 1.85 7.40 44 36 20 loam
Woodland 179.3 83.2 101 296 9.55 7.91 18.7 2.13 7.20 48 33 19 loam
ripon 320.1 129.0 69 594 10.81 3.83 16.5 6.47 6.20 75 19 6 Sandy loam
robert’s island 74.9 62.0 262 154 21.32 7.81 30.7 4.06 6.72 21 37 42 clay
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The centrifuge tubes were loaded on a reciprocal shaker and 
shaken for 24 h at room temperature. The tubes were centri-
fuged at 2500 rpm for 10 min. A 2 mL aliquot of the super-
natant was filtered through a 0.2 µm PVDF filter and injected 
into a LC-MS/MS.[23] This experiment had five replications 
of each soil, for a total of 20 samples.

The adsorption coefficient (Kd) of each soil was calculated 
using Eq. (1).[22]
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Koc (organic carbon-water partition coefficient) was calcu-
lated using Eq. (2).[24]

 K K F x1
oc d oc
=( )/ 00 (2)

Foc (soil organic carbon mass-fraction 100 g soil−1) was cal-
culated using Eq. (3).

 F SOM
oc
= / .1 72 (3)

Where 1.72 is a conversion factor to estimate organic carbon 
from soil organic matter.[24]

Quantification

Soil capacity and soil adsorption experiments were analyzed 
using a Shimadzu 8040 LC-MS/MS system. The LC was 
equipped with a C18 column (100 mm x 4.6 mm x 5 µm 
Phenomenex Corporation, Torrance, CA) heated to 40 C. A 
gradient mobile phase was run over an 8-min run time 
(Table 2). Solvent A was HPLC grade water with 0.1% for-
mic acid and solvent B was HPLC grade acetonitrile with 
0.1% formic acid. The ionization source was electrospray 

ionization. The flow rate was set to 0.4 mL min−1 and the 
injection volume was 1 µL. Under these conditions, ima-
zamox retention time was 3.43 min. The mass spectrometer 
was run in positive mode with multiple reaction monitoring 
(MRM) optimized for imazamox analysis.[23]

Soil analysis

All four soils were air dried and sieved with a 2 mm screen. 
Two samples of each soil were sent to the UC Davis 
Analytical Laboratory (Davis, CA) for analysis. Soils were 
analyzed for physical and chemical properties including 
sand/silt/clay percentages, pH, cation exchange capacity 
(estimated), and organic matter content (loss on ignition 
method) (Table 1).

Statistical analysis

Final concentrations of imazamox from each soil were ana-
lyzed with a one-way analysis of variance followed by means 
separations using Tukey’s HSD test using the agricolae pack-
age in RStudio (R version 4.1.2).

Results and discussion

There were significant differences in imazamox availability in 
the Ripon and Robert’s Island soils when compared to Davis 
and Woodland soils (Figure 1). However, there was no sig-
nificant difference in imazamox sorption between the Davis 
and Woodland soils (Figure 1). Sorbed herbicide was calcu-
lated as the difference between the initial concentration of 
the imazamox solution applied (847 pg µL−1) and the ima-
zamox concentration in the extracted soil solution (847 pg 
µL−1). The greatest amount of herbicide sorption was in soil 
from Robert’s Island (742.5 pg µL−1), followed by the Ripon 
soil (723.9 pg µL−1). The Davis and Woodland soil had simi-
lar amounts of sorption (704.2 pg µL−1 and 699.9 pg µL−1, 
respectively). The organic matter content of Davis and 
Woodland soils was very similar (1.85% and 2.13%, respec-
tively) and much lower than the Ripon (6.47%) and Robert’s 
Island (4.06%) soils (Table 1). Herbicide sorption was higher 
in soils with greater organic matter concentrations (Table 1). 
Soils from the two test sites had very similar organic matter 
concentrations and similar levels of imazamox adsorption 

Table 2. Quantification parameters from lc-mS/mS analysis used in imazamox 
soil adsorption studies.

time (min) % Solvent a† % Solvent B†

0 70 30
4 10 90
6 10 90
6.1 70 30
8 70 30

mrm (m/z)
dell time 

(ms)
Q1 pre-bias 

(v)
collision 

Energy (v)
Q-3 

pre-bias  (v)

306.05 > 69.1 100 −30.0 −35.0 −24.0
306.05 > 261.1 100 −14.0 −24.0 −27.0
306.05 > 86.15 100 −30.0 −31.0 −16.0
†Solvent a, 0.1% formic acid in water and solvent B, 0.1% formic acid in 

acetonitrile.
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(Table 1, Figure 1). The pH of the Ripon and Robert’s Island 
soils (pH 6.2-6.7) was lower than Davis and Woodland (pH 
7.2-7.4). However, because the pKa of imazamox is 3.3, the 
majority of the herbicide would be in similar ionic form in 
all the tested soils and sorption likely was not strongly 
affected by these pH differences.[19] Sorption coefficients (Kd) 
were higher for Robert’s Island and Ripon soils, which had 
higher organic matter contents and higher CEC (Table 2). 
The Davis and Woodland site had similar Kd and KOC values, 
likely due to their very similar soil organic matter and CEC.

These results did not support the original hypothesis that 
inconsistent imazamox injury between the Davis and 
Woodland field sites may have been related to differences in 
the amount of available imazamox due to soil binding char-
acteristics. Additional factors differed between the two trial 
sites: the irrigation drip tape placement was between 
15-25 cm at the Woodland site, below or at the low end of 
recommended depth for tomato production, while the Davis 
site was uniformly 30 cm deep.[25] The Davis field site was 
on a very intensively managed research farm, while the 
Woodland site was managed as its own 1.2-hectare subplot 
within a much larger 40+ hectare block with its own irriga-
tion and fertigation system. Because of its standalone nature, 
the Woodland site was less intensively managed by the 
cooperating grower and differences in irrigation and fertil-
ization frequency were noted. The Woodland site received 
less in-season fertigation applications and was irrigated 
more inconsistently compared to the ETo-based irrigation 
schedule used at the UC Davis research farm, which has its 
own California Irrigation Management Information System 
weather monitoring site.[26] It is possible that non-uniform 
and shallow irrigation tape depth could have resulted in 
poor water and herbicide distribution uniformity; coupled 
with inconsistent irrigation and reduced post-chemigation 
line flush times chemigated herbicides may have been 
too  shallow or too concentrated at the Woodland site. 

The  deeper  and more uniform irrigation tape depth and 
consistent irrigation sets and flush time at the Davis site 
could have led to better distribution uniformity of the 
chemigated herbicide, reducing the effective dose of ima-
zamox to which tomato plants were exposed and leading to 
less serious injury.[27] Some or many of these factors could 
have led to differences in crop injury between the two sites 
and were not addressed with this research. Ultimately, due 
to the unpredictable and low margin of safety of imazamox 
in this use pattern, it will not be pursued as a chemigation 
material from branched broomrape management in 
California processing tomato [11] so the precise cause off 
differences in tomato injury may not be determined.

Conclusion

Our results fit within the limited existing literature on ima-
zamox adsorption in both agricultural soils and sediment. 
Imazamox adsorption in sediment was dependent on the 
organic carbon content of sediment[21] and adsorption was 
more dependent on clay content than organic carbon con-
tent in Lithuanian agricultural soils.[28] In our results, Kd of 
imazamox among the four soils was as follows: Robert’s Isla
nd > Ripon > Woodland > Davis. Robert’s Island had by far the 
highest CEC at 30.7 meq/100g, while Davis and Woodland 
had the lowest at 18.0 and 18.7 meq/100g, respectively 
(Tables 1, 3). These results support Sakaliene et  al.[28] 

Figure 1. Sorbed imazamox in four california soils. Sorbed imazamox was calculated by the following: initial imazamox solution concentration (847.7 pg µl−1) - 
final soil solution concentration. Error bars represent 95% confidence intervals.

Table 3. imazamox adsorption coefficients from a 2022 study evaluating ima-
zamox adsorption in four california agricultural soils.

cEc 
(estimated) om (loi) Kd Koc

Site meq 100 g-1 % pH 10.0 µg ml-1 10.0 µg ml-1

davis 18.0 1.85 7.40 0.21 19.89
Woodland 18.7 2.13 7.20 0.10 8.10
ripon 16.5 6.47 6.20 0.31 8.17
robert’s island 30.7 4.06 6.72 0.43 18.20
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findings that clay content impacted adsorption. Robert’s 
Island and Ripon also had higher OM contents than Davis 
and Woodland, 4.06/6.47 and 1.85/2.13 respectively, which 
support Hu et  al.’s[21] findings that imazamox adsorption was 
dependent on soil carbon content.

While there were statistical differences in imazamox sorp-
tion among the four soils tested, imazamox sorption in soils 
from the two experimental sites in Davis and Woodland 
were similar to one another. These results indicate that soil 
type likely was not a factor in the discrepancy in injury 
between the two trials. The low margin of crop safety 
observed in previous and ongoing field work for chemigated 
imazamox in processing tomato does not make imazamox a 
promising alternative as an in-season chemigation mate-
rial.[9,11] Future research will focus on refining application 
protocols for a recently-approved chemigation protocol for 
another ALS-inhibiting herbicide, rimsulfuron, and continue 
to evaluate other chemistries and practices for managing and 
reducing the spread of branched broomrape.[29] While the 
initial research question remains unanswered, our results 
add to the limited literature available on imazamox adsorp-
tion and can help to inform management decisions regard-
ing imazamox in agricultural soils.
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