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Abstract 

Agent-based modeling is an advanced computational technique capable of representing complex and 
dynamic processes of human behavior in building performance simulation. Though the agent-based 
approach supports diverse applications concerning human behavior modeling within the built environment, 
there is no consensus on the optimal amount of information or level of granularity needed for occupant 
information representation. This paper attempts to formalize the level of details (LoD) needed for occupant 
behavior representation in agent-based environments. A novel framework, grounded on the concept of LoD, 
is proposed to select the required details in representing occupants in agent-based models. Ten attributes 
related to occupants’ presence, movement, behavioral processes, and repertoire are considered to define the 
LoD. The framework identifies use case parameters as the guiding principle and allows a hybrid approach 
for selecting varying degrees of occupant attributes to serve the purpose of simulation. A discussion on the 
pertinence of different occupant behavior LoDs in relation to the desired objective and simulation context 
is also presented. The study intends to support the occupant behavior research by advancing agent-based 
occupant modeling in building performance simulation.  

Keywords: level of detail, occupant behavior, agent-based model, building simulation, behavioral theory 

1. Introduction 

Human behavior is a complex subject influenced by multidisciplinary factors. Occupant behavior (OB) 
modeling is a growing field of interest in simulation research, especially since 2008 when the International 
Energy Agency’s Energy in Buildings and Communities (IEA EBC) Annex 53 [1], on “Total Energy Use 
in Buildings: Analysis and Evaluation Methods” started. The annex aimed to understand the driving factors 
influencing building energy use. Advanced occupant modeling techniques that capture human behavior 
properties such as stochasticity, diversity, and complexity can contribute to improving the reliability of 
building performance simulation (BPS) programs. Agent-based modeling (ABM) is one such method that 
has received significant attention in OB modeling, as it is capable of simulating complex human behavior 
as a time-dependent dynamic model. The fundamental feature of ABM is that it captures human behavior 
and behavior feedback, thereby representing the reasoning and decision making of the human–building 
interactions in building performance [2]. Moreover, it applies stochasticity to reflect dynamic and variable 
behavior and is flexible enough to incorporate new behavioral models. In certain use cases, ABM may be 
advantageous over other modeling techniques because it has the potential to capture emergent phenomena 
at the macro level arising out of the micro-level interactions among independent agents or occupants. 
Studies in the ABM context have covered implementation approaches (e.g., [3]), occupant-centric 
ontologies to represent OB (e.g., [4]), and simulation and co-simulation approaches for BPS (e.g., [5]). 
However, there is a paucity of research on the degree of detail or the level of abstraction needed for 
modeling OB and interactions in ABM. 
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With the growing availability of big data and high-performance computing resources, there is a tendency 
among researchers to develop detailed ABM in pursuit of higher accuracy and usefulness [6]. However, 
Abdou et al. [7] state that “At the extreme, if a model becomes as complicated as the real world, it will be 
just as difficult to interpret and offer no explanatory power”. In fact, the model has to be built at the right 
level of representation, using the right amount of details to serve its purpose while saving time and resources 
for the ABM users [8]. Stazi et al. [9] highlight that one of the biggest challenges in ABM for OB modeling 
is choosing an adequate level of spatial and temporal resolution, representation of processes, and 
interactions in relation to research aims. Similarly, in their 2020 review of ABM for building occupants, 
Berger and Mahdavi [5] highlighted the need to explore the influence of the resolution in agents’ behavioral 
repertoires, in addition to the spatial and temporal resolution on the outcomes of simulation. In practice, the 
level of details (LoD) choice for representing OB in ABM is often arbitrary and subject to the modeler’s 
judgment in the absence of practical guidelines for agent-based occupant modeling. For instance, modelers 
may develop detailed occupant models overloaded by information with little relevance or connection to the 
simulation’s aim. In parallel, using simple aggregated models that overlook important agents’ features (e.g., 
behavioral repertoire) could fail to achieve the desired simulation results. A suitable LoD to represent OB 
in ABM while supporting diverse use cases in building performance simulation is a subject matter worthy 
of investigation.  

Previous efforts on selecting OB models at an appropriate granularity for building simulation have been 
focused on the spatial and temporal dimension or occupant actions, presence, and movement. For instance, 
Mahdavi and Tahmasebi [10] explored the deployment of occupancy‐related models in relevance to the use 
cases of BPS. They developed a multidimensional conceptual framework incorporating building lifecycle, 
domain, performance indicators, and temporal resolution, among others, to assist practitioners in choosing 
an appropriate occupancy model. While Mahdavi and Tahmasebi explicitly focused on the occupancy-
related model selection, Gaetani et al. [11] also considered occupant actions when selecting OB models in 
BPS. Later, Gaetani et al. [12] developed a fit-for-purpose approach that offers a choice of representing 
occupants’ actions and presence through schedules, rule-based equations, probabilistic expressions, or 
agent-based models, to suit the specific use case. However, there are attributes of OB beyond occupants’ 
actions and presence that can significantly impact the simulation outcomes. Mahdavi [13] emphasizes the 
inclusion of occupants’ perceptual and behavioral processes in the computational representation of 
occupant agents for BPS. A fit-for-purpose approach may help assess whether ABM is required for a 
specific use case or not. However, to determine the level of semantic richness required to represent OB in 
an ABM, we need a holistic framework that integrates occupant actions and presence with the occupant’s 
behavioral repertoire. In summary, the fit-for-purpose approach helps users select the appropriate technique 
of OB modeling, among which ABM is one. However, the current study dives deeper into the OB modeling 
aspects within the agent-based method—especially in the occupant/agent’s decision making—that involves 
learning, reflecting, and inter-agent interactions and influencing.  

This paper attempts to address the following fundamental question: At what LoD should building 
occupants’ behavior be represented in agent-based occupant modeling? This study proposes a novel 
framework, grounded on the concept of LoD, for selecting an appropriate representation of OB in ABM. 
The study intends to formalize the LoD of OB in agent-based building models. The broader goal is to 
support the international research community by formulating modeling guidance for ABM of occupants 
in BPS. 

The paper is organized as follows. First, it reviews the literature on the OB representation in agent-based 
models within BPS. Then it provides an overview of the concept of LoD and how it relates to the built 
environment and occupant modeling. In Section 3, we develop a conceptual framework for selecting an 
appropriate LoD to model human behavior in ABM and describe the applicability of the proposed 



framework. Section 4 discusses the associated challenges in adopting the LoDs, limitations, and future 
scope of work. Lastly, a summary highlights this paper’s major contributions. The framework development 
and demonstration with use cases is a cross-task activity of Annex 79 [14] on “Occupant-centric building 
design and operation,” an international collaborative project under the IEA’s Energy in Buildings and 
Communities Programme. 

2. Agent-based Modeling Literature Review 

This section presents a review of studies using agent-based approaches for occupant modeling in the built 
environment. The objective of conducting a literature search is to explore ABM applications in building 
performance assessment, identify key features of OB representation, and comprehend the amount of 
information and the level of granularity adopted for occupant modeling processes. It is important to note 
that this review is limited to the OB representation in agent-based models for BPS. The behavioral theories 
or implementation approaches adopted for OB modeling in agent-based environments are not within the 
scope of this work and have been reviewed elsewhere [5]. Specifically, studies related to the energy and 
environmental performance in the built environment are covered. 

The literature search process comprises  developing a search strategy, conducting database search and final 
screening for identification of relevant studies. Three bibliographic databases: Scopus, Web of Science, and 
Science Direct were utilized for the search. The inclusion criteria were set to studies published in English 
and those related to categories- Energy, Environmental Science and Engineering. A combination of 
keywords involving ("agent-based modeling” OR “agent-based simulation") AND (“occupant behavior" 
OR "human building interaction" OR "human behavior") AND ("building energy simulation" OR “indoor 
environment” OR "thermal comfort" OR "indoor environment") were selected for the inquiry. The database 
search involved scanning the title, abstracts and keywords of the articles according to the search strategy 
defined above. This keyword-based inquiry returned a total of 89 non-duplicate articles. A preliminary 
examination of the abstracts of the selected 89 studies was carried out to identify their suitability for 
exploring OB representation in agent-based models for BPS. Studies that were not relevant to OB modeling 
or representation were excluded. 45 studies were then selected for further evaluation that involved a 
thorough read of the full-text to ascertain their relevance to the objective of this review. During this final 
screening, 11 articles were excluded because 10 of them did not include any building performance analysis 
and one of the articles was a review study. The rest (34 studies) were reviewed for detailed analysis. 

The selected studies were conducted within the past 10 years (2011–2021), which seems appropriate 
because research on OB modeling gained momentum during the past decade. The studies span various 
building lifecycle phases, support varied modeling purposes, and include diverse sophistication of occupant 
modeling approaches. The spatial extent of these studies ranged from a single office zone investigating 
clothing and activity behavior [15] to a residential community evaluating heat pump usage behavior [16]. 
Table 1 shows the use case characteristics, OB actions and their modeling approaches, and the data sources 
for the 34 selected studies. 

In this study, we adopted the terminology of occupant modeling approaches from Gilani et al. [17], given 
the absence of a consistent language describing different OB modeling methods among researchers. The 
selected studies are categorized into four occupant modeling approaches: (1) static-deterministic, 
(2) dynamic-deterministic, (3) static-probabilistic, and (4) dynamic-probabilistic. Note that, in our 
adaptation of this terminology, the expression “deterministic” is not intended to carry any philosophical 
connotations [13]. As such, our use of this term does not imply that those using schedules and rules in 
occupant modeling assume that occupants behave in a strictly predictable manner. Rather, the term 
“deterministic” is used here to simply and exclusively denote the application of fixed schedules and rules 
for the representation of occupants’ presence and actions in buildings. The static-deterministic approach 



considers fixed schedules assuming an occupant’s behavior is not affected by their surroundings; for 
instance, a fixed window schedule may assume that windows are always open or closed. The dynamic-
deterministic approach considers that occupants are affected by and respond to the building and conditions 
[18]. An example of such an approach is a rule-based model for window adjustment that assumes an 
occupant closes windows when the outdoor temperature exceeds a certain threshold. In static-probabilistic 
approaches, stochasticity is introduced into static behavior through a probabilistic manner; for instance, a 
conditional probability model depicting the likelihood of a window being open during occupied and 
unoccupied hours. A dynamic-probabilistic approach adds randomness to the dynamic OB, such as a 
logistic regression model where the probability of window opening ranges from zero to one over a wide 
range of outdoor temperatures. 



 

Table 1: Review of ABM studies concerning energy and environmental performance of buildings 

Ref. Objective Building 
Typology 

OB Actions and Modeling Approaches 

Cognitive or 
Social Factors Data Sources 

 

Occupant 
Movement 

and Presence 
Window Blinds Thermostat Light HVAC Plug Loads Clothing 

Level Others 

Level of Detail 
Adopted* (based 
on the authors’ 

proposed 
framework) 

[15] 

To assess the effect of 
thermal adaptation in 
different seasons on 
annual thermal comfort 

University 
office Not mentioned       Dynamic-

probabilistic 
  Simulated data O-2.5 

[16] 

To predict dynamic 
energy consumption by 
estimating dynamic heat 
pump behavior in 
residential communities 

Residential  Dynamic-
probabilistic 

    Dynamic-
probabilistic 

   Social 
interactions 

Measured data 
and survey O-2.5 

[19] 

To develop an ABM 
using Performance 
Moderated Functions 
Server for commercial 
buildings and propose a 
method for validation 

University 
Office 

 

Dynamic-
deterministic 

Dynamic-
deterministic 

      
Thermal, visual 
comfort, and air 

quality 
perceptions 

Measured data 
and survey O-1.5 

[29] 

To analyze the impact of 
occupant behaviors on 
BPS using a co-
simulation approach 

       

[20] 

To estimate the energy 
consumption in 
commercial buildings by 
using the ABM 
approach 

Office   Dynamic-
deterministic 

 Dynamic-
deterministic 

 Dynamic-
deterministic 

 
Hot water: 

Static-
deterministic 

Word of mouth Simulated data O-1 

[21] 
To develop a program 
for co-simulating 
building occupant 
behavior in performance 
simulation 

Office Static-
probabilistic 

Static-
probabilistic 

 Static-
probabilistic 

   Dynamic-
deterministic 

Personal 
heater/fan: 

Static-
probabilistic 

Thermal 
comfort 

perception 
Simulated data O-1.5 

[30] 

[51] 

To develop an ABM of 
thermally adaptive 
office occupant behavior 
and validate it against 
one year of behavior 
field data 

[22] 

To develop an ABM 
approach for simulating 
multiple thermal 
behaviors and linking 
building energy 
simulators 

Office  Dynamic-
deterministic 

Dynamic-
deterministic 

    Dynamic-
deterministic 

Local 
fan/heater: 
Dynamic-

deterministic 

Behavioral, 
control, and 
normative 

beliefs. 

Simulated data 

O-1.5 



[23] 

To evaluate the impact 
of load shedding on 
occupants’ heterogenous 
comfort and adaptive 
behavior 

Office   Dynamic-
deterministic 

 Dynamic-
deterministic 

  Dynamic-
deterministic 

Local 
fan/heater: 
Dynamic-

deterministic 

Thermal and 
lighting 

perception 

Measured data 
and survey O-1.5 

[24] 

To develop an agent-
based occupancy 
simulation model to 
accurately simulate 
stochastic occupancy 
schedules 

Office Dynamic-
probabilistic 

   

Static-
probabilistic 

    

 Simulated data O-2.5 

[52] 

To study the feasibility 
of installing lighting 
occupancy sensors in 
building renovation 
through the ABM 
approach 

       

[25] 

To assess the usability 
of building designs 
using a human-centered 
ABM framework 

Office     Static-
probabilistic 

   
Shading 
control: 
Static-

probabilistic 

Lighting 
perception and 

preferences 
Survey O-2.5 

[26] 

To develop an ABM 
framework capable of 
testing and optimizing 
occupancy interventions 
(namely, energy 
feedback methods) for 
any building stock 

Office    Static-
probabilistic 

Static-
probabilistic 

 Static-
probabilistic 

  
Energy 

feedback and 
peer effect 

Historical data 
and survey O-2 

[27] 

To investigate the 
diffusion of energy-
saving policies among 
the occupants and its 
impact on energy use 

Office          
Peer feedback 
and word-of- 

mouth  
Simulated data O-1.5 

[28] 

To investigate human-
building-appliance 
interactions and estimate 
determinants of energy 
waste in buildings 

Office Static-
deterministic 

   Dynamic-
deterministic 

Dynamic-
deterministic 

Dynamic-
deterministic 

  Energy literacy 
levels Simulated data O-2 

[32] 

To quantify the impact 
of uncertainties in 
human behavior on BPS 
using an ABM approach 

Office    Static-
deterministic 

Dynamic-
deterministic 

 Dynamic-
deterministic 

   Simulated data O-1.5 

[33] 

To develop an agent-
based occupancy 
simulator for co-
simulation 

Office 

Dynamic-
probabilistic 

         Simulated data 

O-3 

[35] 

To evaluate the 
performance of an 
agent-based building 
occupancy simulation 
model using the 
occupancy simulator 

University 
Office 

         Field 
observations 

[34] To simulate and 
visualize occupant Office Dynamic-

probabilistic 
Static-

probabilistic 
 Dynamic-

deterministic 
Static-

probabilistic 
Static-

probabilistic 
Dynamic-

deterministic 
   Simulated data Varies 

O-2 to O-3  



behavior in a new 
detailed and visual way 
to assess its impact on 
energy use in buildings 

and Static-
probabilistic 

and Static-
probabilistic 

[36] 

To develop a stochastic 
agent-based model for 
estimating the number 
of people present in a 
building 

Office Dynamic-
probabilistic 

         Field data (Video 
image data) O-3 

[37] 

To propose a co-
simulation ABM 
environment for 
accounting for 
occupants’ actions in 
smart homes for energy 
management. 

Residential Static-
deterministic 

Dynamic-
deterministic 

 Dynamic-
deterministic 

Dynamic-
deterministic 

Dynamic-
deterministic 

Dynamic-
deterministic 

  

Psychological 
state and 
perceived 

environmental 
values 

Simulated data O-1.5 

[38] 

To propose an ABM 
interacting with the 
building information 
modeling (BIM) 
accounting for multiple 
residents’ attributes 

Residential   Dynamic-
deterministic 

Dynamic-
deterministic 

 Dynamic-
deterministic 

Dynamic-
deterministic 

Dynamic-
deterministic 

  

Environmental 
awareness, 

awareness about 
building 
systems, 
comfort 

priority, social 
behavior 

Measured data 
and interviews O-1.5 

[39] 

To model occupants’ 
interactions with 
thermostats in 
residential buildings in 
the heating season for 
demand response 
management 

Residential Static-
probabilistic 

         Historical data O-2 

[40] 

To assess the impact of 
occupant behavior and 
occupants’ interactions 
with building systems in 
response to overheating 

Residential Static-
probabilistic 

Static-
probabilistic 

   Static-
probabilistic 

   Hierarchical 
negotiation Simulated data O-2.5 

[41] 

To identify energy-
saving strategies for 
reducing energy 
consumption in student 
residences 

Student 
Dormitories 

Static-
probabilistic 

   Static-
probabilistic 

Static-
probabilistic 

Static-
probabilistic 

  
Energy habits, 
awareness, and 
willingness to 

save 

Measured data 
and survey O-2.5 

[42] 

To evaluate the 
influence of household 
habits on household 
energy consumption 
(HEC) for clean energy 
promotion policies 

Residential 
district 

      Dynamic-
deterministic 

  Behavioral 
change Historical data O-1 

[43] 

To assess a household- 
and urban-scale load 
curve using multi-agent 
simulation of human 
activity 

Residential 
district 

Dynamic-
probabilistic 

     Dynamic-
probabilistic 

  
Energy 

knowledge and 
preferences 

Historical data O-1.5 



[44] 

To couple realistic 
occupant behaviors with 
building energy 
simulation through a 
Functional Mockup 
Interface 

Residential Dynamic-
probabilistic 

       

Not 
specified: 
general 

household 
activities 

Thermal 
comfort 

perception 
Simulated data O-1.5 

[46] 

To couple a pedestrian 
flow model with energy 
simulation to predict the 
HVAC energy demands 
in transitional 
environments 

Airport Dynamic-
probabilistic 

         Simulated data O-3 

[47] 

To incorporate dynamic 
spatial and social factors 
in occupant movement 
patterns within hospitals 

Hospital Dynamic-
probabilistic 

         Measured data 
and interviews O-2.5 

[48] 

To integrate 
organizational issues of 
energy management into 
office energy 
consumption 

University 
Office 

Static-
probabilistic 

     Static-
probabilistic 

  
Energy saving 
intentions and 

awareness 

Measured data 
and survey O-2.5 

[49] 

To evaluate the 
performance of a built 
environment using an 
ABM framework 

University 
campus 

Dynamic-
probabilistic 

  Dynamic-
deterministic 

Dynamic-
deterministic 

 Dynamic-
deterministic 

Dynamic-
deterministic 

  Simulated data O-1.5 

[50] 

To analyze the impact of 
occupant behaviors and 
crowd effect on the 
lighting energy usage in 
different sized office 
buildings 

Office Not mentioned    Static-
probabilistic 

     
Simulated data, 
Lighting model 
adopted from 

previous research 

O-1.5 

*Refer to Section 4.2 for the definition of different levels of detail and the OB attributes covered.  



Among the 34 articles, 20 studies were conducted within office environments for applications within the 
building design, operation, and retrofit stages. Researchers adopted ABM approaches to study the impact 
of office OB on energy use and occupant comfort [15], [19]–[22], load shedding events [23], the 
performance of lighting occupancy sensors [24], and the assessment of building design performance [25]. 
ABMs in office environments also have been applied to assess the influence of occupant interactions for 
evaluating energy feedback methods [26], diffusion of energy-saving policies [27], and estimating 
determinants of energy waste in buildings [28]. In addition, some studies in office environments introduced 
novel implementation approaches to couple ABM with BPS [29]–[31]. Papadopoulos and Azar [32] 
evaluated the impact of uncertainty in OB in building operations through a co-simulation framework, while 
Jia and Srinivasan [29] and Langevin et al. [30] proposed different coupling approaches to integrate 
occupant-centric ABMs with building performance simulation. Table 1 depicts the commonly considered 
occupant actions in ABMs that include window use, blind adjustment, thermostat adjustments, lighting 
operations, and heating or cooling operations. A few ABM studies also have looked into personal heater or 
fan use, shading controls, and hot water use. In addition to occupant actions, agent-based approaches to 
model stochasticity in occupants’ presence and movement have been introduced. For instance, Chen et al. 
[33], [34] developed an agent-based occupancy simulator and demonstrated its application in simulating 
and visualizing office occupant behavior. Later, Luo et al. [35] evaluated its performance in a prototype 
office building using a co-simulation approach. Liao et al. [36] proposed an agent-based method with 
graphical modeling for simulating building occupancy. The authors acknowledged the need for different 
resolutions of occupancy models for different aims, hinting towards the various levels of detail in occupant 
modeling. 
 
Ten studies were conducted in a residential environment, and most focused on evaluating the influence of 
OB during building design and operation phases. Kashif et al. [37] simulated the dynamic OB in smart 
homes to predict energy trends and reduce energy waste. They considered multiple occupant activities, 
social elements of interactions, and negotiations to optimize power savings while maintaining inhabitants’ 
comfort levels. Micolier et al. [38] integrated an agent-based occupant model, Li-BIM, with a building 
information model to quantify the impact of occupants’ social and cognitive behavior on energy 
consumption and comfort. The Li-BIM model integrates the occupant dimension in evaluating early 
building design choices.  

ABMs have also been used in residential use cases to evaluate thermostat adjustment behavior for demand 
response analysis [39], analyze heat pump usage behavior to predict regional dynamic electricity loads [16], 
incorporate dynamic OB for estimating energy consumption during summer overheating [40], and evaluate 
energy management strategies in student residences [41]. Urban-scale residential applications of ABM 
include assessing the impact of increased income and technological advancements on household behavior 
for clean energy policy planning [42] and simulating household activities to generate household and urban-
scale load curves [43]. Vellei et al. [39] considered diversity in occupant presence and activity behavior, as 
well as dynamic thermal perceptions to develop a stochastic model of occupant-thermostats interactions for 
informing the design and control of setpoint modulations. Chen et al. [16] incorporated interactions among 
household members and dynamic occupancy profiles for simulating stochastic heating behavior in 
residential buildings. Most of the ABMs concerning residential studies include single or multiple occupant 
actions related to window opening, household appliance usage, lighting usage, and air-conditioner usage. 
Unlike office buildings, studies in residential environments that demonstrate novel ABM implementation 
approaches are scarce. Plessis et al. [44] demonstrated a co-simulation framework to couple an OB model 
implemented in the agent-based tool SMACH with a single-family building energy model to determine 



heating, ventilation, and air conditioning (HVAC) energy demand. Later, a multi-agent model of occupant 
activities and decision making using the SMACH platform was developed along with a validation approach 
[43], [45]. In addition to office and residential building settings, agent-based occupant models have been 
applied in an airport for estimating cooling energy demand [46], a hospital for estimating energy 
consumption [47], administrative offices within schools to account for the impact of organizational issues 
on energy consumption [48], and a university campus for identifying an optimal HVAC strategy [49].  

The sophistication in modeling occupant actions within agent-based environments varies significantly 
across the reviewed studies. For instance, Azar and Menassa [20] adopted fixed light use profiles based on 
occupancy for simulating energy use in offices. In contrast, Wang et al. [50] modeled individual-light 
switch behavior using a conditional probability model based on workplane illuminance and occupancy 
events. A detailed light-use model enabled Wang to identify a phenomenon of crowd effect in energy usage. 
At the same time, Azar and Menassa’s fixed schedule served their purpose of comparing occupant 
archetypes having different energy consumption habits. Langevin et al. [51] and Lee and Malkawi [22] both 
considered the predicted mean vote model as the behavioral trigger driving OB actions in their respective 
ABMs. However, the choice of the model representing occupant clothing levels varied, and was primarily 
driven by the availability of data. Langevin et al. developed a logistic regression model involving morning 
outdoor temperature and thermal preference of occupants for determining initial clothing insulation based 
on the data collected from a longitudinal office field study. In contrast, and in the absence of occupant data, 
Lee and Malkawi [22] adopted standard clothing values for different seasons from ASHRAE’s thermal 
comfort standard to estimate occupants’ initial clothing value. 
 
In addition to occupant actions, occupants’ presence and movements are also represented with varying 
degrees of detail in agent-based models. Most ABMs intended for energy demand estimation typically 
consider a high-resolution occupancy model to capture randomness in movement and presence. For 
instance, Vellei et al. [39] adopted stochastic occupancy models to capture occupant diversity in thermostat 
behavior in residential buildings. Likewise, Sinha et al. [46] implemented an agent-based passenger flow 
model for estimating HVAC demand in a terminal building. Azar et al. [49] also introduced stochasticity 
in their occupancy model to identify energy management strategies for a university campus. Aggregated 
probabilistic occupancy models have also been implemented for other purposes. For instance, Norouziasl 
et al. [52] developed a probabilistic occupancy model for analyzing the feasibility of different lighting 
occupancy sensors in offices. Zhang et al. [48] implemented a random normal distribution for modeling 
occupant presence to identify energy management strategies. While the choice of OB model representation 
appears to be influenced by factors such as the objective of the simulation or data availability, there is no 
consensus or justification regarding the level of representation for modeling occupants’ presence, 
movement, or actions in agent-based models. 
 
Another significant aspect of ABM is the underlying behavioral characteristics that define how an occupant 
interacts with building systems and other occupants. Researchers have adopted various factors to depict 
occupants’ behavior in ABMs, such as the perception of comfort, peer interaction and word of mouth 
effects, energy literacy, or perceived environmental values (see Table 1). For instance, Ding et al. [41] 
developed a full ABM based on students’ motivations and intentions gathered from an occupant survey to 
analyze energy behavior in student residences. Langevin et al. [51] developed an ABM to depict thermally 
adaptive office OB based on the indoor environment, adaptive actions, and thermal comfort perceptions 
data collected from a longitudinal field study. However, due to the unavailability of subjective occupant 



data related to the psychological, social, and cognitive determinants of OB, most ABM studies either adopt 
certain assumptions or rely on historical data to develop ABMs. For instance, in the absence of relevant 
occupant data related to perception and value systems, Jia et al. [19] presumed a decision-making model 
for occupants’ actions. The authors later validated the model using data collected by sensor nodes and a 
paper-based survey [27]. While investigating the application of Bass diffusion theory on office occupants’ 
behavior, Bastani et al. [27] assumed certain procedures/parameters for simulating the word-of-mouth 
effect in the absence of real data. Similarly, Lee and Malkawi [22] proposed an ABM based on behavioral, 
control, and normative beliefs. The authors assumed weight coefficients to represent the agent’s beliefs and 
developed a cost function that drives their decision making.  
 
The findings of the review show that ABM of OB supports diverse use cases spanning across different 
building typologies and lifecycle stages. The OB representation in agent-based models varies across 
different studies and is influenced by the simulation objective, desired performance indicator, or the 
availability of reliable data. However, little is known about the optimal degree of details required in 
representing OB in ABMs to optimize the modeling effort and accuracy of simulation results. This study 
attempts to bridge this knowledge gap by formulating a guiding framework for selecting OB 
representational details in ABM applications for supporting building performance assessment. 

3. The level of detail concept 

A level of detail (LoD) technique essentially permits different representations of an object at various 
resolutions [53]. The concept was first proposed in the field of computer graphics by Clark (1976) to 
regulate the amount of detail required in geometric modeling to represent the virtual world [54]. The 
selection of a particular LoD was based on factors such as mesh simplification and specification of the 
number of polygons per LoD to reduce the geometrical complexity [55]. Since then, the concept of LoD 
has been adapted by researchers for various domains such as software development [56], [57] virtual reality 
systems [58], geoinformatics [59], and building information modeling (BIM) [60]. It is important to 
mention that the LoD should not be confused with a similar concept of “Level of Development” in BIM 
that determines the degree to which the element’s geometry and attached information should be delivered 
by the various stakeholders during the design and construction stages [61]. 

The LoD technique has been extensively implemented in built environment studies, such as 3D city 
modeling or urban building energy modeling (UBEM) [62]. The City Geography Markup Language 
(CityGML) standard defines five LoDs that principally indicate the geometric detail of the buildings for 
virtual 3D city models [63]. The simplified granularity within CityGML is represented at LoD 0, comprising 
the 2D footprint of the building, while the finest LoD 4 encompasses an architecturally detailed model with 
windows and doors and indoor features. Biljecki et al. [64] redefined these levels to overcome the generic 
nature of LoDs that fall short in defining the complexity of the city models. A set of 16 refined LoDs were 
put forward that indicate the spatial-semantic complexity, and they could be applied to any 3D building 
modeling format. Biljecki et al. [65] formalized the concept of LoD in 3D city models and defined LoD as 
the degree of its adherence to its corresponding subset of reality. An application-driven LoD approach also 
has been developed to help derive specific LoDs suited for particular applications of 3D building models 
[66]. Recently, Mathur et al. [67] extended the concept of LoD from 3D city modeling to UBEM and 
considered characteristics such as occupancy, geometry, context, modeling methodology, and calibration 
for defining the LoDs. However, to the authors’ knowledge, the LoD technique has not yet been used in the 



OB domain despite researchers highlighting the substantial influence of OB representation at various 
resolutions and complexity on building performance results [68]. 

An important concern while adopting the LoD technique is determining the suitable resolution. Biljecki et 
al. [64] argue that a higher LoD is not a universal solution for improving accuracy in spatial analysis. 
Similarly, for UBEMs, Strzalka et al. [69] recommended a low geometric detail for urban modeling to 
forecast energy demand. Johari et al. [70] suggest that the importance of having a higher LoD in UBEM is 
secondary because the error due to a coarse LoD can be compensated by using some data as nongeometrical 
attributes of the geometry. Mathur et al. [67] further recommended that the selection of LoD for UBEM 
should be based on the use case, building location, and desired accuracy, as well as data and computing 
resources. Researchers quantifying the impact of LoDs suggest that the intended results may vary depending 
on the LoD attributes such as geometric details, modeling approaches, and the specific use case. For 
example, Nouvel et al. [71] examined the influence of geometric LoDs on the annual heating demand of a 
German district and observed a difference of 7.3% in mean error. In parallel, Strzalka et al. [72] found a 
deviation in heating demand of up to 12% at two LoDs in six different building configurations. Cerezo et 
al. [73] compared the influence of LoDs regarding modeling approaches on urban energy use and observed 
a variation of 15% in mean error. The results from these studies highlight that there is no universal rule to 
choose a specific LoD within built environment applications, and it rather depends on the specific use case.  
 
To sum up, LoD is an effective technique for representing model information at various levels of 
granularity, but the selection of LoD must be carefully done to balance practicality with accuracy. In the 
present study, we borrow and adapt the LoD concept, already established in 3D city modeling and UBEM, 
to describe the OB representation in ABM. We define the LoD of an agent-based model as the degree of 
details used to represent complex human behavior for accurate simulation in building performance 
assessment. The formalized LoDs emphasize the level of behavioral dynamics and semantic richness of 
occupant behavior. 

4. Occupant Behavior Representation Framework  
 
4.1. Representation Framework  

A framework underlying the concept of LoD is proposed to formalize the LoDs in occupant representation 
in ABM. It is important to clearly define the terminology adopted in this framework since terms such as 
“complicatedness” and “complexity” are often used interchangeably in ABM domains. We adopt the 
nomenclature proposed by Sun et al. [6] to describe the model complicatedness and model complexity in 
agent-based models. Model complicatedness denotes the details of model structure related to the spatial and 
temporal resolution, number and types of agents, representation of processes, and interactions via logical 
rules and/or quantitative relationships. Model complexity, on the other hand, relates to the model behavior 
and describes how agent interactions at a micro level affect their actions and produce emergent effects at 
the macro level [74],[75]. The purpose of this framework is to capture the level of complicatedness and 
complexity in ABMs, collectively referred to as the “Level of Detail” for simulating OB in building 
performance assessment.  

The model structure of the proposed framework is described using the parameters concerning occupant 
presence and actions, such as occupant type and spatial location, or the modeling approach. Five such 
influential attributes demonstrating model complicatedness are identified from OB modeling research under 



the IEA’s Annex 66 and Annex 79 projects [14], [76], [77], such as the fit-for-purpose modeling approach 
[12]. The model behavior is described using the widely accepted overview, design concepts, and details 
(ODD) protocol that provides a standardized way for describing ABM [78]. We borrow the model 
complexity attributes from the ‘Design Concepts’ elements of the ODD protocol that describe the principles 
and rationale underlying the design of the ABM. Five such elements pertaining to occupant processes such 
as interactions, learning or sensing are selected for depicting the model behavior in the proposed framework. 
Other elements of the ‘design concepts’ such as observation, basic principles or emergence that do not relate 
specifically to occupants or agents modeling are not considered.  

In brief, the LoD for OB representation comprises of 10 occupant-centric attributes related to ABM. We 
classify these attributes according to their impact on the model outcomes. The first five attributes relate to 
model structure and represent the complicatedness of the model. The other five attributes are related to 
model behavior and reflect the complexity. Each of the attributes is described below: 

i. Representation: The occupants may be represented in simpler models at an aggregated level 
depicting average user behavior, at a group of occupants sharing specific characteristics, or at an 
individual level with distinct characteristics.  

ii. Heterogeneity: The occupant’s characteristics such as preferences, attitudes, or hierarchical levels 
that affect their decision-making behavior can be modeled by introducing occupant heterogeneity. 
A model may or may not have heterogeneity among the occupants.  

iii. Zoning: The location of occupants in the environment could be represented at the whole building 
level for simpler models, or based on floor levels such as core or perimeter for commercial 
buildings. A complicated model can have internal space or sub-space level zoning, for example, at 
desk level in an open office.  

iv. Occupant presence and movement (Occupancy): Occupancy representation could range from 
schedules or rule-based models for simpler models to stochastic processes reflecting the 
randomness and uncertainty for complicated models.  

v. Modeling formalism: The choice of an occupant to perform a particular action is determined by the 
decision-making process. The representation of such a process could be as simple as a set of logical 
rules or as detailed as an elaborate model based on the planned behavior theory reflecting the 
underlying intentions of occupants and their perceived controls. 

vi. Interactions: The local interactions among the occupants affecting their behavior could be modeled 
as direct processes (such as encounters or communications) or indirect processes (such as 
approaching a mediator). A simpler model may not assume any occupant-occupant interaction 
effects. 

vii. Learning: Occupants or a group of occupants may learn from previous experience and change their 
decision-making rules over time. For instance, an occupant may shift towards passive energy-
saving measures over a period of time after learning about their efficacy.  

viii. Sensing: This is the occupants’ capability to sense internal and environmental variables for 
consideration in decision making. For instance, the occupants sense their indoor environmental 
parameters to determine if they are thermally comfortable or not, which may eventually dictate 
their decision to use spacing conditioning devices.  

ix. Prediction: Occupants often need to anticipate future consequences of their decisions for successful 
decision making. A model may or may not assume the prediction characteristic in occupant 
behavior.  

x. Collectives: The aggregation of agents may lead to a group that exhibits a specific behavior or 
performs a particular action. Such a behavioral attribute is characterized as collectives, which may 
lead to emergent effects. Collectives should not be confused with heterogeneity, as the agents 



constituting the group do not exhibit such behavior at the individual level. In simpler models, the 
collectives may not be defined. 

A novel framework is put forward to select suitable LoDs to represent OB in ABM for building 
performance. The conceptual framework presented in Figure 1 comprises different use case parameters that 
collectively guide the choice of ABM attributes and their degree of details for formulating OB LoDs. The 
classification of occupancy and modeling formalism is done according to the four OB modeling approaches 
discussed in Section 2.  The framework allows the combination of ABM attributes at different granularities 
to suit the specific use cases. For instance, dynamic-deterministic models of occupant actions could be 
combined with group-level agent representation, along with learning and sensing capabilities. However, 
the framework must be adopted with caution because it considers model complexity and complicatedness 
concurrently. In reality, the model complexity has a nonlinear relationship with the complicatedness of 
model structure. In other words, a slight increase in the degree of detail of model complexity may lead to a 
drastic change in simulation results at the same level of complicatedness in the model structure. 
Additionally, the cross mixing of attributes should be carefully done to avoid overloading the model 
structure or behavior without any significant improvements to the outcomes. For example, representing 
individual agents at whole building level with fixed lighting schedules may not be useful because individual 
actions would be aggregated, reflecting average OB. In addition, the increased complicatedness may not 
improve the accuracy of model outcomes while still increasing the time and effort needed for model creation 
and initialization. The hybrid approach of selecting varying granularity of ABM attributes is particularly 
useful for use cases where different sub-models (such as occupancy, window use, and thermostat 
operations) require different degrees of details to suit the aim of the simulation. Overall, the choice of 
optimal LoD is case and context-specific. The following section defines four distinct LoDs that can guide 
the work of researchers applying the proposed framework.  

 

Figure 1: Framework on Level of Details for occupant behavior representation in ABM 

 



4.2. Defining the Levels of Detail  

Agent-based models representing OB in existing literature could be classified according to varying levels 
of granularity In this subsection, we define four LoDs for OB representation consisting of ABM attributes 
discussed in the previous section. The naming convention adopted here contains the abbreviation “LoD” 
followed by the occupant information level represented as “O-X” where “O” denotes the occupant 
information and “X” denotes the degree of detail. For instance, LoD O-1 represents the LoD for occupant 
representation at a granularity of level 1. This naming convention ensures that the OB LoDs are not 
confused with the standardized BIM LoDs [79]. We chose to organize OB LoDs into four categories 
primarily because the OB representation in traditional BPS models is guided by four modeling approaches 
as discussed in Section 2. Additionally, the four OB LoDs are comprehensible and distinctive enough to 
make it easier for modelers to choose the desired model attributes and their degree of detail. Furthermore, 
instead of defining a more detailed LoDs system, we introduce a hybrid approach to capture the varied 
combinations of model structure and model behavior elements adopted in existing OB literature (see Table 
1). The cross-mixing of OB attributes through the hybrid approach imparts flexibility for practical 
applications in different use cases. However, this LoD classification may be expanded or refined in the 
future to accommodate new use cases. 

The proposed LoDs range from the simplest level of representation at LoD O-0 to a comprehensive level 
corresponding to LoD O-3, as shown in Table 2. LoD O-0 comprises homogeneous user behavior 
represented through static-deterministic models such as fixed schedules with no elements of model 
complexity such as sensing, learning, or prediction. Nutkiewicz et al. [80] adopted such a model for 
exploring design parameters for optimal thermal comfort in informal settlements. The authors incorporated 
building level zoning with fixed occupancy schedule, and the other OB influences were not considered. In 
principle, LoD O-0 does not require any ABM because behavior is not considered dynamic, nor does it 
involve any complex systems. However, some LoD O-0 attributes can serve in combination with higher 
LoDs using the hybrid approach.  

Table 2: Four levels of detail for representing occupant behavior 
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LoD O-0 Average 
Occupant 

None Building 
Level 

Static-deterministic Static-deterministic No No No No No 

LoD O-1 Average 
Occupant 

None Floor Level Dynamic-
deterministic 

Dynamic-
deterministic 

No No Yes Yes No 

LoD O-2 Group of 
Occupants 

Yes Detailed 
Space Type 

Static-probabilistic Static-probabilistic Yes Yes Yes Yes No 

LoD O-3 Individual 
Occupant 

Yes Individual 
Space 

Dynamic-
probabilistic 

Dynamic-
probabilistic 

Yes Yes Yes Yes Yes 

 



LoD O-1 is an aggregated level of ABM representing average OB and human building interactions using 
dynamic-deterministic models such as rule-based schedules or simple equations. Occupants are structured 
as homogeneous agents similar to LoD O-0, however complexity in model structure is introduced by 
considering that the agents have capabilities to sense environmental parameters and predict the future 
consequences of their actions. LoD O-1 is particularly useful for studies on decision making at a macro 
level, such as policy making at the urban scale, where a typical user behavior with basic complexity 
attributes would be sufficient for fulfilling the objective of the simulation. LoD O-1 can also be applied for 
exploratory studies on OB, such as the application of certain behavioral theories or methods. Bastani et al. 
[27] adopted a similar LoD to investigate the applicability of Bass diffusion theory for energy-saving 
policies. 

LoD O-2 offers a relatively detailed approach for OB representation by introducing agent heterogeneity, 
static-probabilistic models for modeling occupancy, and decision-making process. The interaction among 
occupants is also incorporated in this LoD scheme. At LoD O-2, the occupants’ complex behavior system 
reflects learning and capabilities to model the emergent effects. The purpose of this LoD is to serve use 
cases where the focus is on the different types of agents, their interactions effects, and/or the representation 
of their dynamics. An example of such a case is the ABM developed by Carmenate et al.[81] , to capture 
the human-building-appliance interactions among office building occupants. The purpose of the model was 
to investigate the impacts of energy literate and illiterate occupants’ behavior on the total energy 
expenditure. 

LoD O-3 represents complicated models with individual-level behavioral granularity and a detailed 
representation of complex systems influencing OB. At LoD O-3, dynamic-probabilistic models such as 
Markov chain or survival models are employed to simulate occupant presence, movement, and actions. 
Moreover, model behavior reflects occupants as collectives that have aggregated effects on the built 
environment. LoD O-3 is useful for developing case-specific models supported by empirical data and where 
the detailing of agent behavior would make a difference to the outcomes of the model’s objective. The 
empirically rich and complicated models can also be utilized for validation and verification. It is important 
to note that the implementation of LoD O-3 must be carried out with utmost attention, since the complicated 
models may be difficult to initialize and lack transparency and completeness [51]. An example of a 
relatively complicated ABM in the BPS domain was developed by Sinha et al. [46] to estimate HVAC 
energy demand in an airport terminal building. The model features individual-level granularity, detailed 
internal zoning, and stochastic decision-making models (LoD O-3) that affect passenger density and, in 
turn, the zones’ HVAC demand. However, the mentioned model only focuses on the occupants’ presence 
and movement, while other attributes, such as occupant interactions or learning, are muted.  

4.3. Use case parameters influencing the choice of OB LoD 

The choice of LoD for occupant behavioral representation is primarily guided by the desired objective of 
the model and the quantitative metrics or key performance indicators (KPIs) measuring its attainment. In 
addition to the model’s objective, building typology and spatial scale of the simulation may also affect the 
selection of an LoD or a particular attribute within the LoD scheme. Figure 2 entails a few examples 
illustrating the influence of use case parameters on the choice of OB LoD.  A discussion on how each use 
case parameter impacts the choice of OB LoD is presented below: 

• Objectives and KPIs: The guiding principle for adopting a particular LoD must be linked primarily to 
the purpose of the simulation model. As identified from the literature review presented in Section 2, 
ABM could support a variety of use cases in the building lifecycle, such as design, building controls 



and operations, or retrofit. LoD O-1, which depicts average OB, would be suited for ABM applications 
related to building design and retrofit requiring an aggregate level analysis. For instance, while 
comparing design options during the design stage analysis, a coarser level, such as LoD O-1, would 
suffice to estimate and compare relative energy performance for different design options using KPIs 
such as energy use intensity or ENERGY STAR score, which is based on annual aggregated energy 
performance. Implementing a higher LoD by simulating individual-level behavior may unnecessarily 
burden the model because the individual contribution to whole-building level performance indicators 
is likely to be negligible. However, if occupant-centric KPIs, such as peak kilowatts (kW)/person or 
annual kWh/person, are expected from the simulation output, a relatively higher LoD, such as LoD O-2 
or a hybrid LoD O-1.5 may be appropriate because of the sensitivity of occupant representation and 
their behavioral repertoire on the desired performance metric.  

Finer LoDs may be suited for building operation applications, such as demand response management 
in an office building, to simulate individual-level or group-level behavior with some model 
complicatedness (e.g., to estimate peak in energy demand). For system-level KPIs, such as lighting 
energy use or HVAC energy use on the basis of per occupant or per occupied hours, simulating 
stochasticity in occupant actions at LoD O-2 or O-2.5 would serve the simulation’s purpose. In contrast, 
for aggregated analysis in demand response management, such as load shape analysis, a hybrid 
LoD O-1.5 would be suitable to depict group-level behavior and interaction among occupants with 
limited learning and sensing capabilities.  

LoD O-2.5 or O-3, which comprise semantically rich ABMs in terms of both model complexity and 
model structure, may be useful for operations or control stages where occupant presence and behavioral 
repertoire have a significant impact on building performance. An example of such application could be 
the development, implementation, and evaluation of occupant-centric controls for improving comfort 
and reducing energy use. A relatively high LoD would aid in capturing the random appearance of 
individual-level actions and behavioral complexity aspects, such as learning, adaptation, or prediction, 
which are essential for occupant-centric controls studies. The usefulness of higher LoDs in design, 
operation, and control of low or net-zero energy buildings, where technology solutions alone may not 
achieve the desired energy-saving goals, cannot be overstated. The energy performance of such 
buildings is known to be influenced by occupants’ lifestyles, awareness, or expectations. Translating 
such behavioral aspects into occupant models for building performance assessment requires a greater 
LoD. The highest LoDs may also support use cases that require occupant-centric KPIs, such as the 
degree-occupant-hour criterion partial occupancy demand performance. In addition, finer LoDs can be 
advantageous for use cases relating to interdisciplinary studies that integrate human values or norms 
such as occupants’ energy saving intentions with behavioral actions for building performance. 

• Building typology and spatial scale: The type of building serving the use case may also affect the 
selection of OB LoD or a particular attribute within the LoD scheme. Each building typology offers 
different levels of human–building interaction and underlying factors affecting occupant actions, which 
the OB LoD must consider. For instance, personal choices are known to be a major driver of energy 
use in residential buildings, which offer more options for personalization than in commercial buildings 
(e.g., by allowing occupants to adjust their indoor environment) [82]. Moreover, most residents pay 
their own energy bills and perceive building energy consumption differently than occupants within 
commercial buildings [83]. Therefore, an ABM at LoD O-1 without occupant behavioral complexity 
may be inadequate for estimating the energy demand or peak loads in residential buildings. In 
comparison, the same model may suffice for retail or restaurant building types, where occupants have 
limited control over their indoor environment. Use cases such as senior living or disadvantaged 
community housing that focus on a specific user group may have nuances in OB that are crucial to the 



simulation objective. The LoD selection in such cases should be intended at capturing the key 
behavioral attributes of the target population. We take an example of comparing retrofit strategies for 
improving energy efficiency in resource-constrained residential communities. Though a coarse LoD 
may suit the purpose of comparing options for retrofit, the peculiarity in resource-constrained user 
behavior towards the acceptance of a certain retrofit strategy would require the ABM to include model 
complexity elements corresponding to LoD O-1.5 or O-2. 

For educational facilities, such as schools or university buildings, profiling students and defining 
patterns may be easier, and thus occupant heterogeneity may be an aspect to focus on. In contrast, for 
hospital buildings, simulating zone-level OB may not have a significant impact given the process-
driven environment and specialized needs. In transient buildings, such as airports, the occupants’ 
presence and movement patterns may be a crucial attribute that influences the heating and cooling 
demands. A finer occupancy model at LoD O-2 or above would improve the desired results, while 
model complexity attributes such as learning or interaction may not be important for this particular use 
case. Along with the building type, building systems and user interfaces also influence the choice of 
LoD for developing an agent-based model. Detailed OB representation may be required in 
environments offering a higher degree of human-building interaction. One such example is a naturally 
ventilated residential or office building where occupants undertake passive measures to maximize their 
comfort, driven by underlying behavioral processes. In contrast, for controlled environments, such as 
auditoriums or retail stores, where occupants’ interaction with buildings is minimal, a simpler ABM 
would be suitable.  

The choice of OB LoD may also be governed by the model’s spatial scale. For urban-scale use cases 
aiming at estimating yearly or monthly energy use or carbon emissions for an urban area, a lower LoD 
(e.g., LoD O-1) may be adequate because the detailed OB may not be significant due to the averaging 
effects. However, if the desired outcome of urban-scale ABM requires a higher temporal resolution, 
such as one that enables estimation of thermal resilience during extreme weather events, LoD O-1.5 or 
O-2 may be suitable to incorporate improved schedules for occupant presence, movement, and actions. 
Finer urban-scale agent-based models may be useful for incorporating changes in population 
demographics, shifts in behavior over time, and occupants’ adaptation to economic or environmental 
changes [84]. Moreover, utmost attention should be paid while selecting higher OB LoD for urban-
scale ABMs since the computational burdens at such a scale may be excessive [85]. Though a detailed 
ABM corresponding to LoD O-2 or O-3 may be conceivable for simulating a neighborhood or a district, 
overloading the model with occupant attributes that do not add value to the model objective must be 
avoided.  
 



 

Figure 2: Use case parameters influencing the choice of OB LoD 

 
5. Discussion 

This work is a first step towards formalizing OB representation in agent-based models. It is intended to 
support the international research community by providing modeling guidance for selecting adequate OB 
LoD in ABMs for building simulation. However, it is not suggested that the proposed approach can be 
readily implemented in terms of an automated LoD selection algorithm. Rather, the intention is to raise the 
level of awareness concerning the factors influencing the proper choice of an LoD for a specific 
computational inquiry that employs ABM. As such, the conceptual framework may require further 
refinement and advancements for use by practitioners to determine which occupant attributes meet the 
project goals and at what LoD they need to be developed. An effort is underway to demonstrate the proposed 
framework to reflect upon the overall impact of ABM LoDs on BPS. Several case studies implementing 
the ABM LoD for occupant modeling are being designed and will be conducted as part of follow-up work 
under the related IEA EBC Annex 79 activities [14]. Results from these case studies will be reported in the 
future and used to fine-tune the ABM LoDs and the proposed framework to make them clearer and more 
usable. The incremental impact of LoD attributes on the BPS results is also a subject worthy of investigation 
since the model structure and model complexity are known to have a nonlinear relationship. Developing an 
OB schema and a corresponding ontology to standardize occupant modeling in agent-based environments 
is also an area of future development that could offer a customized approach for researchers that suits their 
specific needs or use cases.  

The proposed LoD framework sets the purpose of the simulation as the guiding principle to identify the 
optimal LoD comprising 10 occupant-centric ABM attributes for OB representation. However, apart from 
the use case parameters, the selection of OB LoD may also be influenced by data availability, computational 
requirements, or time required for model development. A parsimonious modeling approach [86] that 
involves finding a compromise between the available data, the different modeling levels of detail, the 
expected output, and the computation time must be applied to select the most relevant and adequate OB 
LoD. This of course requires a certain level of expertise and experience from the user. 

One of the major challenges in implementing finer OB LoDs is the paucity of sufficiently detailed and 
representative empirical data [13]. ABMs may require high-resolution measured data to quantify occupant 
actions and program occupants’ behavioral repertoire from sources such as post-occupancy evaluation 



surveys or behavioral programs. It is imperative to map the data requirements and the required level of 
resolution for each LoD. The existing efforts to improve data availability for OB modeling, such as the 
recently developed ASHRAE Global Occupant Database under the IEA’s Annex 79 project [14] and the 
ASHRAE Global Thermal Comfort Database [87], could be leveraged for this purpose. Moreover, 
balancing the data acquisition efforts required for any particular LoD scheme and the extent to which LoD 
can improve a model’s performance is critical. An additional level of complicatedness or complexity that 
would require a larger dataset and higher computation time should only be incorporated to the model if 
there is a significant incremental change in the simulation outcomes. Adequate attention also must be paid 
to the errors resulting from the simulation at a particular LoD and the influence of those errors on the 
consistency of KPI values.  

Mapping the formalized OB LoDs presented in this paper to building information modeling (BIM) and 
building energy modeling (BEM) frameworks is required. BIMForum, the U.S. chapter of buildingSMART 
International, defines the LoD for BIM by relating it with the progression of a model’s graphic 
representation and the various building phases such as design, construction, or operations [79]. The LoDs 
for BEM are not as standardized as the BIM LoDs, and as discussed previously, the existing body of 
research that relates the concept of LoD with energy modeling is focused upon the urban scale [67]. These 
BEM LoDs are essentially linked with the geometrical representation of buildings and elements such as 
windows, roofs, and ducts. The matching of ABM LoDs with BIM and/or BEM tools can improve 
interoperability among the three environments and assist in the better integration of OB. This process can 
be implemented through various methods of coupling or co-simulation and could reduce model 
development time by reusing the data stored in BIM and BEM. Furthermore, the choice of ABM LoD for 
occupant modeling must be consistent with the considerations of LoDs for BIMs and LoDs of BEM, as the 
final simulation results depend on the integrated representation of details and how they exchange 
information across the spatial, temporal, and occupant scales. 

6. Conclusions 
Agent-based modeling (ABM) has received increasing attention in the building performance domain 
because of its formal potential to represent complex occupant behavior (OB). However, an important 
question that needs to be addressed for advancing agent-based occupant modeling is the appropriate level 
of granularity at which OB should be represented within such models. This present contribution is an 
attempt to formalize the levels of detail (LoD) to describe OB within ABM environments for building 
performance simulation. A detailed literature review on previous studies adopting the ABM approach laid 
the foundation for the study. A novel conceptual framework was developed to determine the degree of 
details required to represent human behavior in agent-based environments. The framework comprises 10 
occupant-centric attributes related to the model structure (spatial and temporal resolution, number and types 
of agents, and representation of processes and interactions) and model complexity (occupant behavioral 
repertoire). Four LoDs of OB comprising varying degrees of model structure and complexity were defined 
to support diverse ABM use cases in BPS. A hybrid LoD approach was put forward to offer guidance in 
adopting the adequate OB LoD depending on the purpose of the simulation model, desired performance 
indicator, spatial scale, or building typology. Furthermore, a discussion on the applicability of the 
framework and its related challenges, such as data availability, is presented, and the importance of 
parsimony of principle, which considers the trade-offs between model complexity/complicatedness and 
accuracy is discussed. This study directly contributes to the OB research community by providing modeling 
guidance towards optimal levels of occupant representation. The proposed framework is scalable and could 



be expanded easily to finer LoD classifications involving significantly more complex behavioral rules or 
more detailed model structures. However, the pragmatism and need for such a framework remains 
questionable. Other relevant aspects of ABMs that were not within the scope of the current study and present 
important opportunities for future research include calibration and validation approaches, implementation 
methods, and the computational resources required for each LoD. 
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