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Abstract
1. Plant species can show considerable morphological and functional variation along 

environmental gradients. This intraspecific trait variation (ITV) can have important 
consequences for community assembly, biotic interactions, ecosystem functions 
and responses to global change. However, directly measuring ITV across many 
species and wide geographic areas is often infeasible. Thus, a method to predict 
spatial variation in a species’ functional traits could be valuable.

2. We measured specific leaf area (SLA), height and leaf area (LA) of grasses across 
California, covering 59 species at 230 sampling locations. We asked how these traits 
change along climate gradients within each species and used machine learning to 
predict local trait values for any species at any location based on phylogenetic posi-
tion, local climate and that species’ mean traits. We then examined how much these 
local predictions alter patterns of assemblage- level trait variation across the state.

3. Most species exhibited higher SLA and grew taller at higher temperatures and 
produced larger leaves in drier conditions. The random forests predicted spatial 
variation in functional traits very accurately, with correlations up to 0.97. Because 
trait records were spatially biased towards warmer areas, and these areas tend to 
have higher SLA individuals within each species, species means of SLA were up-
wardly biased. As a result, using species means over- estimates SLA in the cooler 
regions of the state. Our results also suggest that height may be substantially 
under- predicted in the warmest areas.

4. Synthesis. Using only species mean traits to characterize the functional composition 
of communities risks introducing substantial error into trait- based estimates of eco-
system properties including decomposition rates or NPP. The high performance of 
random forests in predicting local trait values provides a way forward for estimating 
high- resolution patterns of ITV without a massive data collection effort.
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1  | INTRODUC TION

All organisms face the challenge of allocating limited resources to 
competing demands (Enquist & Niklas, 2002; Smith & Fretwell, 1974; 
Westoby et al., 2002) including growth, defense and reproduction 
(Heckman et al., 2019; Tuller et al., 2018). How an individual ad-
dresses these trade- offs influences its fitness in a particular environ-
ment as well as its influence on its environment (Suding et al., 2008). 
These allocation strategies are expressed as functional traits, which 
describe a phenotypic feature of an individual that influences its fit-
ness in a particular environment (Violle et al., 2007). Species with 
traits that are poorly matched to their abiotic and biotic environ-
ments may be excluded from a community, a process often concep-
tualized as an environmental or biotic filter (e.g. Diaz et al., 1998; 
Kraft et al., 2015; Laughlin et al., 2012; Stahl et al., 2014). At the same 
time, the functional traits expressed by the species in an ecosystem 
can strongly influence ecosystem properties, such as productivity 
(Garnier et al., 2004; Pontes et al., 2007) and decomposition rates 
(Cornwell et al., 2008; Makkonen et al., 2012).

Most studies of functional traits in plants characterize each spe-
cies with a single value for each trait, typically the arithmetic or geo-
metric mean and often irrespective of the conditions where the traits 
were measured. However, individuals within a species can show 
marked intraspecific trait variation (ITV) reflecting both local adap-
tation and acclimation (Albert et al., 2011, 2012; Violle et al., 2012). 
Globally, ITV accounts for about 25% of trait variation within com-
munities and 32% between communities (Siefert et al., 2015). ITV 
can have important implications for environmental filtering (Laughlin 
et al., 2012; Siefert, 2012), species coexistence (Hart et al., 2016; 
Lichstein et al., 2007), ecosystem properties (Crutsinger et al., 2006) 
and restoration (Baughman et al., 2019). Furthermore, if trait values 
within a species vary along environmental gradients, applying one 
mean trait value to that species at all locations risks misestimating 
that species’ fitness in a particular environment as well as its influ-
ence on its environment across most of its distribution.

This potential misestimation between species’ mean traits and the 
traits they express in a particular context is particularly consequen-
tial in the coupling of dynamic global vegetation models (DGVMs) 
to climate models (Bloomfield et al., 2018; Scheiter et al., 2013). 
These models use functional traits of plants including specific leaf 
area (SLA) and height to estimate their ecosystem impacts (Bonan 
et al., 2003; Sato et al., 2007; Yang et al., 2015). Uncertainty in these 
trait measurements can have large consequences for model out-
puts, such as the carbon sink of the terrestrial biosphere (Verheijen 
et al., 2015). There has been substantial progress on estimating geo-
graphic patterns of functional traits, but the role of ITV in vegeta-
tion models has largely been ignored (Butler et al., 2017; Berzaghi 
et al., 2020, but see Sakschewski et al., 2015). Therefore, there is a 

need to understand ITV across climate gradients, but it is often in-
feasible to collect these kinds of measurements for large numbers of 
species and traits over the large geographic areas required.

In addition to being of practical importance, understanding the 
drivers of ITV also promises to advance our fundamental under-
standing of plant adaptation and strategies. Theory based on plant 
physiology has been developed to predict how particular environ-
mental gradients should impose filters on plant community compo-
sition. For example, in conditions supporting a higher leaf area index 
(generally warmer and wetter climates), game theory predicts higher 
relative allocation to stem biomass and therefore greater plant 
heights and later reproduction (Falster & Westoby, 2003). Similarly, 
an economic model predicts that plants growing in drier environ-
ments should produce high concentrations of rubisco to maximize 
CO2 uptake while limiting stomatal water loss (Wright et al., 2003). 
Thus, we would expect plants growing in drier environments to 
have higher leaf nitrogen concentrations, a pattern which has been 
detected locally (e.g. Cornwell & Ackerly, 2009) and globally (e.g. 
Bruelheide et al., 2018; Sandel et al., 2016; Wright et al., 2005).

While such theory has typically been tested at the species level, 
most theories predict congruent within- species responses. For ex-
ample, if dry environments filter out species with low leaf N concen-
trations, it is likely that they also tend to filter out individuals within 
species that allocate relatively lower N concentrations to their 
leaves. Thus, quantifying trait variation within species across envi-
ronmental gradients can provide a new test for these predictions. 
In most cases, it appears that the directions of ITV match those of 
interspecific functional turnover (Ackerly & Cornwell, 2007; Carlucci 
et al., 2015; Derroire et al., 2018; Kumordzi et al., 2015; Lepš et al., 
2011; Sandel & Low, 2019), although exceptions exist (Kichenin 
et al., 2013; Lepš et al., 2011).

Our goal here is to characterize ITV among multiple species 
along climate gradients and to assess our ability to predict spatial 
variation in ITV. It is typically infeasible to collect detailed data 
on spatial patterns of ITV across many species, so a predictive 
model trained on whatever data are available is an attractive al-
ternative. However, ITV predictions may transfer poorly among 
species (Lajoie & Vellend, 2015). For example, some species in-
crease and others decrease their leaf N concentration along an el-
evational gradient in New Zealand (Kichenin et al., 2013). Similarly, 
environment- ITV relationships of grass species in a common gar-
den experiment varied substantially among species (Roybal & 
Butterfield, 2019). The apparent idiosyncrasy of environment- ITV 
relationships across species presents a substantial challenge to 
any predictive model. One possible solution is to use species- level 
characteristics such as mean traits or phylogenetic relationships 
in a machine learning context to determine whether the variation 
among species can be attributed to characteristics of each species. 

K E Y W O R D S

functional traits, grass, intraspecific trait variation, machine learning, Poaceae, specific leaf 
area
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That is, we might expect two species with similar evolutionary his-
tories and with similar mean functional traits to respond similarly 
to environmental gradients, while two distantly related species 
with very different functional strategies might not. We explore 
this possibility here.

As our focal group, we take California's grasses, a diverse and 
often- dominant group with high ecological and economic impor-
tance. There are roughly 450 species of wild grasses in the state, 
of which about half are naturalized non- native species. Grasslands 
cover 11% of the state (Davis et al., 1998) and span a wide range of 
climate conditions from hot, dry conditions in the Mojave Desert 
to Mediterranean conditions, to alpine meadows in the Sierra 
Nevada mountains. Specifically, we ask (a) how the traits of indi-
viduals within species vary along climate gradients, (b) how suc-
cessfully ITV patterns can be predicted and (c) how including ITV 
influences patterns of functional assemblage composition along 
gradients.

2  | MATERIAL S AND METHODS

2.1 | Trait data

We measured traits of grasses across California (Figure 1). These 
measurements were made for various other projects, and therefore 
varied somewhat in their temporal and spatial extents and sampling 
methods. At each site, functional trait data were collected from 3 to 
10 individuals of each species. We focus on three traits: specific leaf 
area (SLA), plant height and leaf area (LA). Height was measured as 

the length from the base of the plant to the highest, fully expanded 
leaf blade. If leaf blades were collected in the study, the blades were 
fully expanded, non- senescing and undamaged. Most of the stud-
ies excluded the ligule (Table S1). After collection, the leaf blades 
were oven- dried from 55 to 65°C for at least 48 hours before being 
weighed. For most samples, leaf area was obtained by photograph-
ing the leaf against a white background and using image analysis 
software such as ImageJ to determine the area. Some studies in-
stead directly scanned leaf blades to determine area (Table S1).

In total, we obtained trait information for 1,854 unique site- by- 
species combinations, across 59 species and 230 unique sampling 
locations. Thirty- one species were recorded from at least 10 differ-
ent sampling locations. SLA was available for nearly all of the site- 
by- species combinations (1,805), while LA was available for 1,371 
and Height for 1,231. Summaries of sample sizes and trait means and 
standard deviations for each species are shown in Table S2.

2.2 | Climate data

We obtained 30- year normal 800m resolution rasters of annual 
precipitation (AP) and mean annual temperature (MAT) from PRISM 
(PRISM Climate Group, 2018). We then extracted the values of AP 
and MAT at each sampling location. We also considered seasonal 
averages of temperature and precipitation, but these were generally 
well correlated with their annual means (r > 0.73, except winter tem-
perature [r = 0.56] and summer precipitation [r = 0.40]).

2.3 | Other trait data

To supplement our database of local grass trait measurements, we 
also used a global grass trait database compiled from literature re-
view (see Sandel et al., 2016, and references in Appendix S1) and 
several trait databases including TRY (Kattge et al., 2011) and the 
Tundra Trait Team (Bjorkman et al., 2018). We aimed to obtain es-
timates of species mean SLA, Height and LA for as many California 
grass species as possible. These values would be used to derive 
estimates of spatial patterns of grass traits, even in the absence 
of detailed local measurements (see Predicting ITV below). Of 457 
grass species in California, we were able to obtain mean SLA val-
ues for 264, Height values for 280 and LA for 202. Data coverage 
was slightly better for annual than perennial species (e.g. for SLA 
67% coverage among annuals and 53% among perennials). In addi-
tion, some (n = 85) of the georeferenced trait measurements in this 
database fall within California and were used as additional local trait 
records in this study (Table S1).

2.4 | Jepson distributional data and synonymy

For each grass species in California, we obtained distributional in-
formation from the Jepson Flora Project (Jepson Flora Project (eds.), 

F I G U R E  1   Map of sampling locations. The background map is a 
hill- shaded topographic map, showing the division into ecoregions 
as defined by the Jepson Flora Project (see text for details)
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2019. Jepson eFlora, http://ucjeps.berke ley.edu/eflor a/ [accessed 
on 9/16/2019]). The description for each species includes its pres-
ence or absence in each of 35 ecoregions and the elevational range 
where it is known to occur. We divided each ecoregion of California 
into 100 m elevational bands using a 1km resolution DEM (from 
worldclim, Hijmans et al., 2005), producing 666 discrete elevational 
bands across the state. A species was considered to be present in a 
band if it is known from that region and occurs in at least some of 
the 100 m elevational range (e.g. a species with an elevational range 
from 0 to 1,250 m was considered to be present in a band spanning 
1,200– 1,300 m).

The Jepson Flora recognizes 461 grasses in California. We 
matched these names to the Kew Gardens GrassBase (Clayton 
et al., 2006 onwards) nomenclature, which in most cases is con-
gruent with Jepson. However, some genera are treated differently. 
For example, GrassBase separates some members of Stipa (includ-
ing the widespread Stipa pulchra) into several genera including 
Nassella, Piptochaetium, Piptatherum and Ampelodesmos, Jepson's 
members of the genus Festuca are divided into three genera in Kew 
(Festuca, Lolium and Vulpia), Elymus is divided into Elymus, Leymus 
and Taeniatherum, and some members of Bouteloua are assigned to 
the genus Chondrosum. In addition, some species divisions in Jepson 
are not recognized in GrassBase, such as Panicum capillare and P. 
hillmanii, which GrassBase treats together as P. capillare. Removing 
these duplicated names produced 459 distinct names. On the other 
hand, Kew recognizes Gastridium ventricosum and Gastridium phleoi-
des as separate species, while G. ventricosum is treated by Jepson 
as a subspecies of G. phleoides, and Kew separates Lolium perenne 
and Lolium multiflorum, while Jepson treats them together as Festuca 
perennis. Because we therefore lack distributional information for G. 
ventricosum and L. multiflorum, we followed the Jepson delineation 
in those two cases and merged each species pair. Whenever species 
were merged, we took the union of all bands where each merged 
species was listed to occur. Thus, our final species list includes 457 
grass species.

2.5 | Phylogeny

We sought to estimate the phylogenetic relationships among as 
many of these species as possible. Following the approach in Sandel 
and Tsirogiannis (2016), we began with a large tree of grasses by 
Edwards et al. (2010) containing 2,684 taxa. We matched the no-
menclature to GrassBase, randomly added missing species within 
their genera, and removed all non- California species. In total, this 
produced a tree with 445 species (of 457 total species in California), 
of which 232 were originally found on the Edwards tree and 213 
were grafted into their genera.

This resulting tree was neither dated nor ultrametric. To date 
interior nodes, we used a smaller phylogeny of grasses that had 
been dated with both macrofossil and microfossil evidence (Christin 
et al., 2014). We identified matching nodes between the two trees 
and applied the dates from the Christin et al. tree to our California 

tree at any matched nodes. We then forced our tree to be ultra-
metric, constrained by these node dates, using penalized likelihood 
(Paradis, 2013; Sanderson, 2002), implemented in the chronos() 
function (package ape 3.0– 11; Paradis et al., 2004). This resulting 
final tree has the same topology as the original California tree, but is 
dated and ultrametric.

Our goal is to use an individual's phylogenetic position as a pre-
dictor for its local trait values (see below for model details). To that 
end, we calculated a set of variables describing a species’ phyloge-
netic position: phylogenetic eigenvector maps (PEM, Guénard et al., 
2013), implemented in the R package mpsem (Guénard, 2013). Each 
such PEM is a vector analogous to a principle component analysis 
(PCA) axis and summarizes one dimension of phylogenetic relation-
ships among species. We retained the first five PEMs to use in the 
predictive modelling below. This approach does not assume phylo-
genetic conservation of traits or trait– environment relationships, but 
takes advantage of it if it exists.

2.6 | Analysis

2.6.1 | Trait– trait and trait– climate relationships

For each pair of traits, we computed the correlation between species 
mean values. We then computed this correlation within each species 
for which there were at least 10 pairwise complete local records.

For each species with sufficient data, we fit an ordinary least 
squares (OLS) linear model predicting variation in each of the three 
traits from annual precipitation (AP), mean annual temperature 
(MAT) and their interaction (AP:MAT). To be used, a species had to 
meet four criteria: trait records from at least 10 sampling locations, 
sampling locations spanning at least 2 degrees of MAT and 100 mm 
of AP, and a correlation between AP and MAT of no more than 0.8. 
These criteria were used to prevent fitting models with extreme 
slopes when all measurements were made over a narrow range of 
climate values, or when AP and MAT were highly collinear. Twenty- 
two species met all four criteria for at least one of the three focal 
traits. Note that across all samples, annual precipitation and annual 
temperature were hardly correlated (r = 0.03).

All three trait values were log- transformed before analysis to im-
prove linearity and normality of model residuals.

It is possible that some variation in sampling schemes among 
the datasets we collected would lead to different trait measures. 
To assess this possibility, we also fit a linear mixed effects model 
equivalent to the OLS regression described above, but also includ-
ing the dataset as a random factor. We asked whether the coeffi-
cients from these models are similar to those from OLS regression 
models.

We then sought to understand variation in the AP- trait and 
MAT- trait relationships across species. We related among- 
species variation in coefficients to each species’ taxonomic tribe, 
mean SLA, Height and LA, and whether the species was annual 
or perennial. To test the hypothesis that species with different 

http://ucjeps.berkeley.edu/eflora/
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distributions in climate space might show different trait responses 
along environmental gradients, we also computed the mean MAT 
and mean AP across all Jepson bands where the species occurs 
within California. These predictor variables were related to the 
model coefficients relating each trait to AP, MAT and the AP:MAT 
interaction using linear models with a bidirectional stepwise model 
selection.

2.6.2 | Predicting ITV

Our goal was to build a predictive model to estimate the spatial 
pattern of ITV for any given grass species. For this purpose, we 
chose random forests, a machine learning approach that is well- 
suited to modelling complex interactions and nonlinear responses 
(Breiman, 2001; Cutler et al., 2007) and that is related to tech-
niques that have been useful in relating plant traits to fitness (Pistón 
et al., 2019). We began by exploring model performance using dif-
ferent subsets of predictor variables, then built a simplified model to 
predict spatial variation in ITV for each grass species with a minimum 
of local information. We did not exclude any species from this model 
building.

We began by computing, for each site- by- species combination 
a ‘delta- trait’ value; this is the difference between the trait value 
of that species at that site and its mean overall trait value. Thus, 
each species has a mean delta- trait value of 0, and positive values 
indicate trait values higher at a particular location than the aver-
age trait value for the species. This was done to place the emphasis 
on training a model to explain ITV, rather than between- species 
trait differences.

We grouped predictor variables into five categories: climate (AP 
and MAT), species mean traits (SLA, Height and LA) and life span 
(annual or perennial), other local trait measurements (e.g. if predict-
ing SLA, the LA and Height of each local population of that species), 
phylogenetic position (the first five PEMs) and species identity. A 
full model containing all five variable groupings would therefore 
be capable of modelling climate- ITV relationships that change as a 
function of species mean traits, or that vary among phylogenetic 
groupings.

We explored the possibility of replacing raw climate variables 
at each sampling location with delta- climate values, giving the dif-
ference between the MAT or AP at a location and the mean for a 
species across a range. This would model the possibility that species 
show different responses to climate depending on the mean climate 
where they occur. Random forests trained in this way displayed 
nearly identical predictive performance, so our further analysis fo-
cused only on models using raw climate values.

We trained models on different subsets of these variable groups 
and evaluated their performance. All combinations of these five 
groups were considered, producing 31 models (25 –  1, removing 
the empty model with no predictor variables). In each case, we ran-
domly selected 80% of the data to train the model and reserved the 
remaining 20% to test predictive performance. We calculated four 

measures of model performance. Two were the correlation between 
predicted and observed delta- trait values for the training dataset 
and the same for the testing dataset. Then, we converted predicted 
delta- trait value into predicted trait values by adding each delta- trait 
value to its species mean and computed the training and testing cor-
relations between observed trait values and predicted trait values as 
the other two measures of model performance. We replicated this 
entire process 100 times and computed the average of each perfor-
mance measure across these 100 replicates.

For each predictor variable group, we computed the average dif-
ference in each performance measure between each pair of models 
with and without that variable group. This serves as a measure of 
that variable group's overall importance.

Our ultimate goal was to build a model that can predict local trait 
measurements of a species from an unmeasured population. Two 
variable groups considered above are largely incompatible with that 
goal— other local trait measurements and species name. That is, it 
would not be particularly useful to have a model that could predict 
local SLA of a grass, but only if given the local Height and LA of 
that grass, or a model that could only work for the specific named 
species for which it had been trained. Thus, for our final predictive 
model, we built a random forest using only climate, species mean 
traits and phylogenetic position. Additionally, for the species- level 
traits we used only the mean of the focal trait and the species’ life 
span so that the prediction for local trait values of one trait would 
not depend on the availability of another trait. These models have 
the potential to predict trait values for species in locations where its 
traits have not been measured if climate- ITV relationships are trans-
ferable among close phylogenetic relatives or among species with 
similar mean traits. As above, each model was trained on 80% of the 
data for each trait, and tested on the remaining 20%.

2.6.3 | ITV influences on patterns of grass functional 
composition

The above procedure produced three final trained random forests: 
one for each of the traits considered here. Given local AP and MAT 
measures, the phylogenetic position of a species, its life span and its 
mean SLA, LA or Height, these three models can then predict the 
local SLA, LA or Height expected for a species at a particular site.

Within each Jepson band, we computed the mean AP and MAT 
and extracted the PEMs and mean traits of all species occurring in 
that band. We then used the three trained random forests to obtain 
predictions for SLA, LA and Height of each species in each band. For 
each estimate, we also obtained a standard error using a jackknifing 
approach (Wager et al., 2014), implemented in the R package ranger 
(Wright & Ziegler, 2017).

For each band, we computed measures of the mean and varia-
tion in traits of species present in that band. We used the geometric 
mean and geometric standard deviation, computed either using the 
local trait estimates of each grass species in that band, or using the 
species mean trait values.
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3  | RESULTS

3.1 | Trait– trait and trait– climate relationships

Among species, mean SLA and Height were negatively correlated 
(r = −0.29, p = 0.03) and LA and Height were positively correlated 
(r = 0.70, p < 0.001). SLA and LA were not significantly related 
(p = 0.46). Within species, SLA and Height tended to be slightly posi-
tively correlated (in 20 of the 27 species with at least 10 records, and 
a median r = 0.13). SLA and LA were generally positively correlated 
(in 25 of 29 species, median r = 0.27) and LA and Height were posi-
tively correlated (in 25 of 27 species, median r = 0.57).

There was substantial variation among species in the ITV re-
sponses to AP and MAT, although some responses were fairly con-
sistent among species (Figure 2; Table 1). For example, a majority of 
species exhibited higher SLA values at higher temperatures (although 
Avena fatua and Hordeum murinum showed the opposite trend), grew 
taller at higher temperatures (with Briza minor being the main ex-
ception) and produced larger leaves in drier conditions (Vulpia micro-
stachys was the exception). Interactions between AP and MAT were 
fairly common. For both Height and LA, the interactions tended to 

be negative, indicating that the effects of AP on these traits tended 
to become more negative at higher values of MAT (and vice versa). 
There was wide variation in model R2, ranging from 0.02 to 0.85, with 
mean R2 about 0.24 (Table 1). Annual species tended to have slightly 
lower R2 values than perennial species, by an average of 0.035.

In some cases, much of this variation among species could be 
explained by species mean traits and taxonomic tribes. Species with 
larger leaves had more negative AP– SLA relationships (R2 = 0.22). 
Perennials had more positive MAT– SLA relationships, and members 
of tribes Stipeae and Danthonieae tended to have more negative re-
lationships than other groups (R2 = 0.58). The AP:MAT interaction 
effect on SLA tended to be more positive for small- statured grasses 
(R2 = 0.23). AP– Height relationships were most negative for large- 
leaved species in the Danthonieae (R2 = 0.69), and MAT– Height re-
lationships were most positive for perennial species (R2 = 0.25). The 
AP:MAT interaction was negative for most species, but especially 
those with large leaves (R2 = 0.36). AP– LA relationships were espe-
cially negative for species with large mean leaf size, annuals and spe-
cies from wet areas of the state (R2 = 0.68). None of the species- level 
descriptors were significantly related to MAT– LA coefficients, but 
the AP:MAT interaction effect was particularly negative for species 

F I G U R E  2   Relationships between 
locally measured trait values for specific 
leaf area (SLA), Height and leaf area (LA) 
and mean annual temperature or annual 
precipitation. Each species is colour 
coded, with a fitted bivariate regression 
line. Blue symbols and lines represent 
perennial species, while reds and oranges 
indicate annuals
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in warm areas of the state, with large average leaf sizes and in the 
Danthonieaea (R2 = 0.67).

Model coefficients from linear mixed effects models where 
dataset was treated as a random factor produced similar coeffi-
cient estimates (Figure S1). In most cases, the coefficients showed 
correlations >0.8, although the correlation for the MAT– Height 
relationship was lower due to three species with large coefficient 
uncertainties.

3.2 | Modelling ITV

Across all specifications of the random forest models, performance 
scores were very similar on the training and testing data subsets (on 
average, differing by <0.03, Table S3), suggesting little overfitting. 
Training and testing performance were particularly similar when 
species names were not used in the model, resulting in mean differ-
ences <0.01. When applied to the testing dataset, random forests 
containing all five predictor groups predicted values that were well Sp
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F I G U R E  3   Improvements in model performance when adding 
variable groupings. Model performance was measured as the 
correlation between observed and predicted delta- trait values in 
the testing dataset. For each variable group, we take the mean 
performance of all models that included that variable group minus 
the mean performance for all models that excluded that variable. 
Climate variables were mean annual temperature and annual 
precipitation, local traits were local measures of specific leaf area 
(SLA), Height or leaf area (LA) at a site, excluding the predicted 
measures (e.g. models predicting SLA were trained on Height and 
LA), species traits were the overall species means of SLA, Height 
and LA, Phylogeny was the first five phylogenetic eigenvector 
maps, and species name is a categorical variable giving the species 
name
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correlated with the observed trait values (for delta- SLA: 0.90, SLA: 
0.91, delta- Height: 0.92, Height = 0.96, delta- LA: 0.93, LA: 0.96, 
Table S3). Across all subsets of variable groups, other local traits (val-
ues of the non- focal trait from the local population, e.g. when pre-
dicting SLA, the Height of the plants) and to a lesser extent climate 
were the most important groups for model performance (Figure 3). 
Species mean traits and phylogeny had smaller contributions to 
model fit, while species identity tended to hurt model predictive 
performance. The performance of one such random forest, exclud-
ing the species predictor variable, is shown in Figure 4. The corre-
lation between observed and predicted values is strong for both 
training and testing datasets. However, the observed– predicted re-
lationships deviated somewhat from the 1:1 line, particularly for the 
delta- trait predictions. Standard major axis (SMA) regression slopes 
were less than 1, ranging from 0.65 to 0.73 for delta- trait models and 
0.82 and 0.92 for the final local trait predictions. These deviations 
indicate that these models tend to predict less extreme values for 
the most extreme trait observations.

A model including other local trait measurements and species 
names would be of limited use for predicting trait values of a plant 

in an unmeasured location. In contrast, the climate of that location is 
readily available, and phylogenetic relationships are known for most 
species. Thus, we focused on a reduced model including just these 
two variable groups and two species- level traits: the species mean 
value for the focal trait and its life span. Removing species names 
from the model had little impact (Table S3), but removing other 
local traits reduced model performance (Figure 5). For example, 
predicted- observed correlations for SLA, Height and LA dropped 
to 0.85, 0.93 and 0.92. This likely reflects the fact that other local 
trait measurements can provide insight into local conditions that are 
not captured by our two broad climate predictors. Despite this mod-
est reduction, model performance for this simplified model was still 
fairly high.

3.3 | Predicting ITV

These three final random forests can make predictions for the 
trait value expected for an unknown species in an unmeasured 
location, provided the climate conditions at that location and the 

F I G U R E  4   Model fit for random 
forests predicting local trait values from 
climate, other local traits, species mean 
traits and phylogenetic position. Each 
point represents a sample of a grass 
species from a particular location. Error 
bars indicate standard errors for the 
predictions. Models predicting delta- trait 
values are attempting to predict deviation 
of an individual from its species mean (left 
column). Adding the species means to 
these predictions gives an overall estimate 
of the trait value for an individual (right 
column)
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mean traits and phylogenetic relationships of the species. This al-
lows us to map a species’ expected ITV pattern across its entire 
distribution in the state (see Figures S2– S17, e.g. with 16 common 
species).

To investigate the importance of ITV in driving functional com-
positional changes across the state, we computed the mean trait 
value and standard deviation of all species occurring in each band. 
The trait values for each species were obtained in one of two ways: 
(a) as is traditional, by simply applying the species mean trait to each 
species, or (b), by using our predictive models to estimate the local 
trait values for each species.

Using local estimates of grass SLA led to lower estimates of 
band- mean SLA across most of the state, and in some cases pro-
duced a substantial change (Figure 6). For Height, a strong tendency 
to predict taller plants within each species in warmer areas pro-
duced a marked increase in the predicted band- mean Height in warm 
parts of the state, including the southern coast, Mojave Desert and 
Central Valley (Figures 6 and 7). Including ITV typically lead to a 
slight increase in estimated LA, particularly in drier parts of the state. 
Including ITV had a relatively minor effect on the variation of traits 
within assemblages, but consistently decreased it across the state 

for LA. SLA variation decreased somewhat in most bands, while 
Height variation tended to increase (Figure S18).

4  | DISCUSSION

Many recent studies indicate that intraspecific trait– environment 
relationships can differ among species (Lajoie & Vellend, 2015; 
Laughlin et al. 2012; Roybal & Butterfield, 2019). Our results 
corroborate this. For each of the six combinations of trait and 
climate variable, there was at least one species that showed a sig-
nificant positive response and at least one with a significant neg-
ative response. On its face, this result is daunting for achieving 
generality. However, in some cases a large part of this variation 
among species may be attributed to phylogenetic position and 
species mean traits. For example, perennial species tended to 
have more positive temperature– Height relationships, and larger- 
leaved species tended to have more negative precipitation– leaf 
area relationships. With respect to the phylogeny, grasses in 
tribe Danthonieae often responded differently than other tribes 
(Figure S19). Thus, there is hope that, for sufficiently large 

F I G U R E  5   Model fit for random 
forests using only mean traits and 
phylogeny and trained on the entire 
dataset. Each point represents a sample of 
a grass species from a particular location. 
Error bars indicate standard errors. 
Models predicting delta- trait values are 
attempting to predict deviation of an 
individual from its species mean (left 
column). Adding the species means to 
these predictions gives an overall estimate 
of the trait value for an individual (right 
column)
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datasets, we can begin to understand the underlying drivers of 
among- species variation of ITV- climate responses. Building theo-
retical expectations for variation in these responses, and testing 
them with new independent datasets, is an important challenge 
for the future.

Our random forest models exhibited good predictive perfor-
mance. This is especially true when other local trait measurements 
were included in predictions. In part, this was driven by covariation 
of Height and LA both among and within species. This probably re-
flects allometric relationships between these two traits, whereby 
taller individuals tend to have larger leaves. However, no such simple 
relationships existed between SLA and Height or LA, yet the local 
values of these traits also substantially improved SLA predictions. 
This may reflect the fact that local trait measurements may be in-
fluenced by local environmental conditions that are not captured 
by broad climate variables. Models still performed fairly well even 
without other local trait values, suggesting that they can be usefully 
applied to areas where no measurements exist.

The idiosyncratic trait– climate relationships observed within 
species are somewhat predictable. However, there is a limit to the 
flexibility of a random forest to model very different responses in 
functionally similar and phylogenetically closely related species. 
The species pair of Vulpia myuros and Vulpia microstachys provides 
a good example. These two species are fairly similar in their mean 
Height, SLA, LA and life span. They are also very close relatives. 
However, some of their trait– climate relationships differed and 
the random forest models were not able to predict these differ-
ent responses (Figures S16 and S17); the spatial patterns of trait 
predictions for the two species were moderately to strongly cor-
related (SLA r = 0.60, Height r = 0.90, LA r = 0.53). These species 
may be separable along other axes not studied here, or this may 
represent a limit to the predictability of trait– climate relationships 
across species.

The overall magnitude of ITV was high. For SLA, only 34% of the 
variation is attributable to species, but for Height and LA 63% and 
68% were explained by species. Within one well- sampled species 

F I G U R E  6   Maps of assemblage mean trait values based on species means (column a), local estimates for each species (b) and the 
difference between them (c). Also shown are the mean standard error of local estimates (d), indicating areas with greater uncertainty in 
predictions for local species trait values



12  |    Journal of Ecology SANDEL Et AL.

(Avena barbata, n = 184), SLA varied from 5.8 to 81.7 m2/kg, Height 
varied from 15 to 106 cm and LA varied from 0.18 to 9.2 cm2. Thus, 
there is a large potential for ITV to drive important changes at the 
ecosystem level. For example, we estimate that using species means 
results in an overestimation of assemblage mean SLA by about 2– 4 
m2/kg for much of the state. Higher assemblage- level SLA is associ-
ated with a number of ecosystem properties, including higher flam-
mability (Grootemaat et al., 2017) and faster decomposition rates 
(Liu et al., 2018), so failing to account for ITV in large- scale models of 
these processes will lead to biased estimates.

The relationships between mean annual temperature and trait 
values were largely congruent between and within species. This 
supports the idea that trait– climate relationships predicted at the 
inter- species level can often be transferred to the intra- species level 
(Sandel & Low, 2019). For example, warmer regions tended to con-
tain species with higher mean SLA and Height, and within those spe-
cies, the individuals with relatively high SLA and Height. Still, there 
was substantial variation among species, and some species displayed 
opposite ITV patterns. Patterns with respect to precipitation were 
less clear. As in a previous study of interspecific trait variation in 
California grasses (Sandel & Dangremond, 2012), we found fairly 
weak relationships between annual precipitation and trait means. In 

contrast, woody plants in California show stronger relationships be-
tween precipitation and plant Height or SLA in some cases (Harrison 
et al., 2020). Interspecific trait– precipitation relationships were 
somewhat scattered, with some positive and negative relationships, 
but there was a hint of an overall tendency towards positive relation-
ship between precipitation and SLA.

At a global scale, taller grass species with larger leaves tend to 
be found in warmer and wetter climates (Jardine et al., 2020; Sandel 
et al., 2016). Globally, high SLA has also been weakly associated with 
warmer temperatures (Sandel et al., 2016), although a different ap-
proach revealed essentially no relationship (Jardine et al., 2020). In 
contrast, within California we found that temperature was consis-
tently more important than precipitation, and that SLA increases 
with temperature at both inter-  and intraspecific levels. The rel-
atively weak responses to precipitation may reflect variation in 
drought response strategies among species, such as avoidance ver-
sus tolerance strategies (Vaughn et al., 2011).

Some of this discrepancy might stem from the features of 
California's climate. Most of the samples used here are from 
Mediterranean climates, characterized by cool wet winters and 
warm dry summers. The growing season is in the winter and is 
limited by water availability— thus higher evaporative water losses 

F I G U R E  7   The relationships between 
annual temperature or precipitation and 
assemblage mean traits based on species 
means (blue circles) or local estimates (red 
triangles). For local estimates, the error 
bars show the mean standard error across 
all species’ trait estimate in that location. 
Fitted lines are lowess regressions
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associated with higher temperatures lead to shorter growing sea-
sons in grasslands (Chiariello, 1989). Low- SLA leaves have higher 
production costs for a given area but compensate with longer 
leaf life spans (Wright et al., 2004). However, this investment 
might be wasted in warmer regions with short growing seasons. 
Thus, warmer regions will tend to have high- SLA leaves which are 
cheaper but shorter- lived. However, while this effect might be ex-
pected to be strongest for annual species, which tend to pursue 
a drought- avoidance strategy (Vaughn et al., 2011), a species’ life 
span was not a significant predictor of its ITV response to precipi-
tation for any of the traits.

The relationships between precipitation and Height were some-
what surprising. Ignoring ITV and considering only the influence of 
turnover in species composition, there was nearly no AP– Height 
relationship. This contrasts with results for all plants at global and 
continental scales (Bruelheide et al., 2018; Moles et al., 2009; 
Šímová et al., 2018), and with grasses at a global scale (Jardine 
et al., 2020; Sandel et al., 2016) and regional scale (Forrestel et al., 
2017). However, it is consistent with a previous study of California 
grasses (Sandel & Dangremond, 2012) and grasses within the San 
Francisco Bay Area (Sandel & Low, 2019). Temperature, however, 
exerted strong positive influences on Height at both inter-  and 
intraspecific levels. Thus, it is possible that the weak and incon-
sistent responses to precipitation were largely due to covariance 
with temperature within each species, rather than a direct effect 
of precipitation itself.

An important limitation of our approach here is that we used 
long- term climate averages to describe each site. However, plants 
may express different traits from year to year as conditions change, 
for example producing higher SLA leaves during a wet year (Dwyer 
et al., 2014). This might be particularly true for annual species. If this 
is the case, we should expect poorer model fits for annual species, 
and there was some indication that this was the case. In general, we 
expect that further efforts will benefit from refining the fairly coarse 
climate descriptions used here.

5  | CONCLUSIONS

Plant species can show remarkable variation in functional traits along 
climate gradients. Paired with uneven spatial sampling, this can lead 
to strongly biased estimates of species mean trait values and the 
misrepresentation of these species in ecosystem models. Patterns 
of trait variation within species may initially seem idiosyncratic, but 
can be fairly well explained by their phylogenetic position, functional 
strategies and climate. This predictability provides a means to cor-
rect biased species- level estimates, improving the precision of mod-
els that rely on such estimates.
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