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Abstract

Large-Scale Real-World Robotic Manipulation Using Diverse Data

by

Frederik D. Ebert

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sergey Levine, Chair

Professor Chelsea Finn, Co-chair

Recent breakthroughs in computer vision and natural language processing have been largely
propelled by scaling up both dataset diversity as well as model capacity, leading to robust
generalization. In this thesis I am addressing the question of 1) whether for learning-based
robotic manipulation we can similarly scale up dataset diversity and model capacity in order
to achieve generalization and adaptation to new scenes and environments, new objects,
new tasks and even different types of robots, and 2) the question of how re-collecting data
from scratch for every new task and environment can be avoided, since this often leads to
poor generalization and performance. To answer these questions we propose two different
methodologies, a model-based reinforcement learning approach based on video-prediction,
and a model-free and imitation-learning-based approach. We collect several of the biggest
robotic interaction datasets to date, and show that by leveraging and effectively reusing
diverse prior datasets, we can allow an agent to generalize to never-before-seen objects,
learn new tasks based on only a handful of demonstrations, and even adapt to new robot
types.
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Chapter 1

Introduction

It has been an old dream of our civilization to develop machines that are able to follow a
person’s command to manipulate their environment with similar dexterity and intelligence
as humans [124, 182, 156]. However even after many decades of research and engineering
of robotic systems, the level of dexterity of even the most advanced robotic manipulation
systems is still a far cry from human capabilities. Traditionally, robots have used a pipe-lined
approach [17] where objects are detected in the scene, a plan is computed, e.g. through logical
inference [83], and the plan is executed on the robot, e.g. by using motion planning. However
such a pipe-lined approach requires engineers to precisely specify each component, i.e. the
object detector, the abstraction of the logical reasoning system and the motion planner,
resulting in poor scalability, since each of the modules often has to be adapted for every
single new use-case, often requiring accurate 3D-models of all objects in the environment,
which can become prohibitively difficult in unstructured environments such as a household
or a nursing home.

With the advent of end-to-end computer vision [95], a new paradigm of robotic control
and robot learning started, where we seek to learn as many parts of the decision making
system as possible. In unstructured environments this often has the advantage of being
more scalable since the system learns the correct features based on the data [105, 16], rather
than requiring labor-intensive engineering cycles, leading to both better generalization, e.g.
a system that is able to grasp objects never seen before, or better performance e.g. in the
case of autonomous car racing [180].

In this thesis we focus on the problem setting of learning-based robotic manipulation,
however many of the proposed methods can also be applied to other robotic domains, or
even outside of the field of robotics.

Most learning-based robotic control methods today require recollecting data from scratch
for every new task and environment. This is both inefficient and leads to poor generalization.
For example hundreds of demonstrations are needed [208] to reliably solve a task via imitation
learning when no prior data is used. We instead propose to reuse data by leveraging large and
diverse existing datasets of robotic experience to learn representations that allow learning
new tasks faster, i.e. with a smaller number of demonstrations. Both natural language
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processing (NLP) and computer vision recently experienced breakthroughs [18, 145] in terms
of generalization capabilities which is largely driven by the scale of the dataset and the size
of the model. We hypothesize that scaling up dataset and model sizes can similarly provide
a generalization boost in robotics.

Problem Statement The problem statement of this work is threefold 1) we aim to develop
robotic control algorithms that enable a robot to learn new tasks as efficiently as possible, e.g.
with the fewest number of human demonstrations or with the least amount of environment
interactions possible 2) to develop algorithms that allow skills to generalize to new, unseen
objects and 3) algorithms that allow skills to be adapted to held-out scenes and environments
as well as held-out robots.

We propose to solve these questions by pre-training algorithms on large and diverse robot
datasets and finetuning or jointly training with small amounts of target data which can come
from new domains or environments, contain new objects or even new robots.

In particular we study reuse of robotic data in two different settings — in the setting
where the data is collected by scripted random robot motions, pushing and picking objects
in a bin, and where the data is collected via human teleoperation, by using a VR-headset
and controlling the robot’s end-effector to solve a wide range of every-day-like kitchen tasks
various toykitchen environments. Both types of data have different advantages and shortcom-
ings: While data from random scripted policies is cheap to collect as it only needs minimal
human supervision, human teleoperated data is much more costly in terms of human effort.
However human teleoperation allows the robot to visit much more complex sequences of
states, e.g. opening a micro-wave and taking something out, which are virtually impossible
to visit by chance through a random scripted policy. Therefore a robot learning system
which uses random scripted data mainly learns to solve basic pushing and grasping motions,
whereas a system that uses teleoperated data is able to produce more complex behaviors as
long as a sufficient number of demonstrations is provided for a particular task. However at
the same time, since random scripted policies collect data much more cheaply, we are able
to obtain orders of magnitudes more data.

We found a model-based reinforcement learning approach to work well on the random
scripted data, while a model-free reinforcement learning and imitation learning approach has
become our method of choice the human-teleoperated robot data.

Structure and Contributions of the Thesis In Part I of this thesis I will introduce
visual foresight, our video-prediction-based model-based reinforcement learning algorithm
which learns a visual dynamics model from large amounts of data collected with a scripted
random policy and uses that model to plan a sequences of actions leading to a user-specified
goal.

In chapter 2, which is based on our paper [56], we describe deep neural network architec-
tures that are effective for predicting pixel-level observations amid occlusions and with novel
objects. We present several practical methods for specifying and evaluating progress towards
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the goal—including distances to goal pixel positions, registration to goal images, and success
classifiers—and compare their effectiveness and use-cases. Our evaluation on a real robot
includes manipulation of previously unseen objects, handling multiple objects, pushing ob-
jects around obstructions, handling clutter, manipulating deformable objects such as cloth,
recovering from large perturbations, and grasping and maneuvering objects to user-specified
locations in 3D-space. Our results represent a significant advance in the generality of skills
that can be acquired by a real robot operating on raw pixel values using a single model.

In chapter 3, which based on our paper [31], we describe how we expanded the dataset
with a number of additional robots (7 in total) gripper types, viewpoints and backgrounds
and we show that by applying visual foresight on this diverse data, it allows obtaining models
that generalize in zero shot to novel objects, novel viewpoints, and novel table surfaces. We
also show that, when these models are finetuned with small amounts of data (around 400
trajectories), they can generalize to unseen grippers and new robot platforms, and perform
better than robot-specific and environment-specific training. We believe that this work takes
an important step towards large-scale data-driven approaches to robotics, where data can
be shared across institutions for greater levels of generalization and performance.

In Part II, we use human-teleoperated robot data instead of trajectories of random,
scripted behavior, since it allows learning more complex tasks, that cannot be discovered with
random data alone. We found imitation-learning-based and offline reinforcement-learning-
based approaches to work better for teleoperated data, and we suspect that this is because
with teleoperated data, actions become highly correlated with states, as well as next states
leading to spurious correlations that render dynamics models inaccurate.

In chapter 4, which based on our paper [45], we introduce the bridge dataset which
consists of 7,200 human teleoperated demonstrations for 71 tasks in 10 environments, and
constitutes the largest public multi-domain, multi-task dataset of human demonstrations
published to date. We show that by jointly training an imitation learning agent on the
bridge dataset and a small amount of target data, we can obtain much better generalization
than when training on the target domain data alone. Moreover we show that jointly training
with bridge and target domain data provides for a way to boost the performance of an
entirely new skill. Our results suggest that accumulating and reusing diverse multi-task and
multi-domain datasets, at least when all data is collected with the same type of robot, may
make it possible for researchers to endow robots with generalizable skills using only a modest
amount of in-domain data for their desired task.

Finally in chapter 51, we reuse the same bridge data set and apply offline reinforcement
learning instead of imitation learning, and show that it allows for significantly higher success
rates. We use the CQL algorithm [97] in combination with multi-task pre-training to provide
a general offline RL-based initialization. To train on such diverse datasets with offline RL, we
propose a number of important design decisions, including neural net architectures that we
find particularly effective in this setting. Empirically, our results demonstrate that offline RL
pre-training followed by offline RL finetuning on individual tasks can significantly improve

1which is based on our recent conference pre-preprint
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over the performance of imitation learning methods as well as running joint training on
all tasks from scratch. This finding is significant because it indicates that, even though
both the prior dataset and the new task-specified demonstrations consist of expert human
demonstrations, can leverage such data more effectively than imitation learning and standard
offline RL methods.
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Part I

Large-Scale Model-Based Robot
Learning
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Chapter 2

Visual Foresight:
Video-Prediction-Based Control

2.1 Introduction

Humans are faced with a stream of high-dimensional sensory inputs and minimal external
supervision, and yet, are able to learn a range of complex, generalizable skills and behav-
iors. While there has been significant progress in developing deep reinforcement learning
algorithms that learn complex skills and scale to high-dimensional observation spaces, such
as pixels [164, 123, 107, 159], learning behaviors that generalize to new tasks and objects
remains an open problem. The key to generalization is diversity. When deployed in a nar-
row, closed-world environment, a reinforcement learning algorithm will recover skills that
are successful only in a narrow range of settings. Learning skills in diverse environments,
such as the real world, presents a number of significant challenges: external reward feedback
is extremely sparse or non-existent, and the agent has only indirect access to the state of
the world through its senses, which, in the case of a robot, might correspond to cameras and
joint encoders.

We approach the problem of learning generalizable behavior in the real world from the
standpoint of sensory prediction. Prediction is often considered a fundamental component of
intelligence [19]. Through prediction, it is possible to learn useful concepts about the world
even from a raw stream of sensory observations, such as images from a camera. If we predict
raw sensory observations directly, we do not need to assume availability of low-dimensional
state information or an extrinsic reward signal. Image observations are both information-rich
and high-dimensional, presenting both an opportunity and a challenge. Future observations
provide a substantial amount of supervisory information for a machine learning algorithm.
However, the predictive model must have the capacity to predict these high-dimensional
observations, and the control algorithm must be able to use such a model to effectively
select actions to accomplish human-specified goals. Examples of such goals are shown in
figure 2.1.
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Figure 2.1: Our approach trains a single model from unsupervised interaction that generalizes to
a wide range of tasks and objects, while allowing flexibility in goal specification and both rigid and
deformable objects not seen during training. Each row shows an example trajectory. From left to
right, we show the task definition, the video predictions for the planned actions, and the actual
executions. Tasks can be defined as (top) moving pixels corresponding to objects, (bottom left)
providing a goal image, or (bottom right) providing a few example goals. Best viewed in PDF.

We study control via prediction in the context of robotic manipulation, formulating
a model-based reinforcement learning approach centered around prediction of raw sensory
observations. One of the biggest challenges in learning-based robotic manipulation is gener-
alization: how can we learn models that are useful not just for a narrow range of tasks seen
during training, but that can be used to perform new tasks with new objects that were not
seen previously? Collecting a training dataset that is sufficiently rich and diverse is often
challenging in highly-structured robotics experiments, which depend on human intervention
for reward signals, resets, and safety constraints. We instead set up a minimally structured
robotic control domain, where data is collected by the robot via unsupervised interaction
with a wide range of objects, making it practical to collect large amounts of interaction data.
The robot collects a stream of raw sensory observations (image pixels), without any reward
signal at training time, and without the ability to reset the environment between episodes.
This setting is both realistic and necessary for studying RL in diverse real-world environ-
ments, as it enables automated and unattended collection of diverse interaction experience.
Since the training setting affords no readily accessible reward signal, learning by prediction
presents an appealing option: the supervision signal for prediction is always available even
in the stream of unsupervised experience. We therefore propose to learn action-conditioned
predictive models directly on raw pixel observations, and show that they can be used to
accomplish a range of pixel-based manipulation tasks on a real robot in the physical world
at test-time.

The main contributions of this work are as follows. We present visual MPC, a general
framework for deep reinforcement learning with sensory prediction models that is suitable
for learning behaviors in diverse, open-world environments (see figure 2.2). We describe deep
neural network architectures that are effective for predicting pixel-level observations amid
occlusions and with novel objects. Unlike low-dimensional representations of state, specify-
ing and evaluating the reward from pixel predictions at test-time is nontrivial: we present
several practical methods for specifying and evaluating progress towards the goal—including
distances to goal pixel positions, registration to goal images, and success classifiers—and
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Figure 2.2: Overview of visual MPC. (top) At training time, interaction data is collected au-
tonomously and used to train a video-prediction model. (bottom) At test time, this model is used
for sampling-based planning. In this work we discuss three different choices for the planning ob-
jective.

compare their effectiveness and use-cases. Finally, our evaluation shows how these compo-
nents can be combined to enable a real robot to perform a range of object manipulation
tasks from raw pixel observations. Our experiments include manipulation of previously
unseen objects, handling multiple objects, pushing objects around obstructions, handling
clutter, manipulating deformable objects such as cloth, recovering from large perturbations,
and grasping and maneuvering objects to user-specified locations in 3D-space. Our results
represent a significant advance in the generality of skills that can be acquired by a real robot
operating on raw pixel values using a single model.

This article combines and extends material from several prior conference papers [56, 47,
46, 187], presenting them in the context of a unified system. We include additional experi-
ments, including cloth manipulation and placing tasks, a quantitative multi-task experiment
assessing the performance of our method on a wide range of distinct tasks with a single
model, as well as a comprehensive, open-sourced simulation environment to facilitate fu-
ture research and better reproducibility. The code and videos can be found on the project
webpage1.

2.2 Related Work

Model-based reinforcement learning. Learning a model to predict the future, and then
using this model to act, falls under the general umbrella of model-based reinforcement learn-
ing. Model-based RL algorithms are generally known to be more efficient than model-free

1For videos & code: https://sites.google.com/view/visualforesight

https://sites.google.com/view/visualforesight
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methods [35], and have been used with both low-dimensional [33] and high-dimensional [106]
model classes. However, model-based RL methods that directly operate on raw image frames
have not been studied as extensively. Several algorithms have been proposed for simple, syn-
thetic images [177] and video game environments [42, 71, 133], but have not been evaluated
on generalization or in the real world, while other work has also studied model-based RL for
individual robotic skills [58, 207, 21]. In contrast to these works, we place special emphasis
on generalization, studying how predictive models can enable a real robot to manipulate
previously unseen objects and solve new tasks. Several prior works have also sought to
learn inverse models that map from pairs of observations to actions, which can then be used
greedily to carry out short-horizon tasks [2, 127]. However, such methods do not directly
construct longer-term plans, relying instead on greedy execution. In contrast, our method
learns a forward model, which can be used to plan out a sequence of actions to achieve a
user-specified goal.
Self-supervised robotic learning. A number of recent works have studied self-supervised
robotic learning, where large-scale unattended data collection is used to learn individual skills
such as grasping [141, 109, 23, 143], push-grasp synergies [204], or obstacle avoidance [84,
64]. In contrast to these methods, our approach learns predictive models that can be used
to perform a variety of manipulation skills, and does not require a success measure, event
indicator, or reward function during data collection.
Sensory prediction models. We propose to leverage sensory prediction models, such as
video-prediction models, to enable large-scale self-supervised learning of robotic skills. Prior
work on action-conditioned video prediction has studied predicting synthetic video game
images [133, 27], 3D point clouds [21], and real-world images [15, 54, 88], using both direct
autoregressive frame prediction [120, 54, 88] and latent variable models [8, 99]. Several works
have sought to use more complex distributions for future images, for example by using pixel
autoregressive models [88, 151]. While this often produces sharp predictions, the resulting
models are extremely demanding computationally. Video prediction without actions has
been studied for unstructured videos [120, 189, 175] and driving [114, 32]. In this work,
we extend video prediction methods that are based on predicting a transformation from the
previous image [54, 32].

2.3 Overview

In this section, we summarize our visual model-predictive control (MPC) method, which is a
model-based reinforcement learning approach to end-to-end learning of robotic manipulation
skills. Our method, outlined in Figure 2.2, consists of three phases: unsupervised data
collection, predictive model training, and planning-based control via the model at test-time.
Unsupervised data collection: At training time, data is collected autonomously by ap-
plying random actions sampled from a pre-specified distribution. It is important that this
distribution allows the robot to visit parts of the state space that are relevant for solving the
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intended tasks. For some tasks, uniform random actions are sufficient, while for others, the
design of the exploration strategy takes additional care, as detailed in Sections 2.7 and 2.9.
Model training: Also during training time, we train a video prediction model on the
collected data. The model takes as input an image of the current timestep and a sequence of
actions, and generates the corresponding sequence of future frames. This model is described
in Section 2.4.
Test time control: At test time, we use a sampling-based, gradient free optimization
procedure, similar to a shooting method [12], to find the sequence of actions that minimizes
a cost function. Further details, including the motivation for this type of optimizer, can be
found in Section 2.6.

Depending on how the goal is specified, we use one of the following three cost functions.
When the goal is provided by clicking on an object and a desired goal-position, a pixel-
distance cost-function, detailed in Section 2.5, evaluates how far the designated pixel is from
the goal pixels. We can specify the goal more precisely by providing a goal image in addition
to the pixel positions and make use of image-to-image registration to compute a cost function,
as discussed in Section 2.5. Finally, we show that we can specify more conceptual tasks by
providing one or several examples of success and employing a classifier-based cost function
as detailed in Section 2.5. The strengths and weaknesses of different costs functions and
trade-offs between them are discussed in Section 2.5.

The model is used to plan T steps into the future, and the first action of the action
sequence that attained lowest cost, is executed. In order to correct for mistakes made by the
model, the actions are iteratively replanned at each real-world time step2 τ ∈ {0, ..., τmax}
following the framework of model-predictive control (MPC). In the following sections, we
explain the video-prediction model, the planning cost function, and the trajectory optimizer.

2.4 Video Prediction for Control

In visual MPC, we use a transformation-based video prediction architecture, first proposed
by Finn et al. [54]. The advantage of using transformation-based models over a model that
directly generates pixels is two-fold: (1) prediction is easier, since the appearance of objects
and the background scene can be reused from previous frames and (2) the transformations
can be leveraged to obtain predictions about where pixels will move, a property that is used
in several of our planning cost function formulations. The model, which is implemented as a
recurrent neural network (RNN) gθ parameterized by θ, has a hidden state ht and takes in a
previous image and an action at each step of the rollout. Future images Ît+1 are generated
by warping the previous generated image Ît or the previous true image It, when available,
according to a 2-dimensional flow field F̂t+1←t. A simplified illustration of model’s structure

2With real-world step we mean timestep of the real-world as opposed to predicted timesteps.
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Predicted Images
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Figure 2.3: Computation graph of the video-prediction model. Time goes from left to right, at are
the actions, ht are the hidden states in the recurrent neural network, F̂t+1←t is a 2D-warping field,
It are real images, and Ît are predicted images, L is a pairwise training-loss.

is given in figure 2.3. It is also summarized in the following two equations:

[ht+1, F̂t+1←t] = gθ(at, ht, It) (2.1)

Ît+1 = F̂t+1←t ⋄ Ît (2.2)

Here, the bilinear sampling operator ⋄ interpolates the pixel values bilinearly with respect
to a location (x, y) and its four neighbouring pixels in the image, similar to [209]. Note
that, as shown in figure 2.3, at the first time-step the real image is transformed, whereas at
later timesteps previously generated images are transformed in order to generate multi-frame
predictions. The model is trained with gradient descent on a ℓ2 image reconstruction loss,
denoted by L in figure 2.3. A forward pass of the RNN is illustrated in figure 2.4. We use
a series of stacked convolutional LSTMs and standard convolutional layers interleaved with
average-pooling and upsampling layers. The result of this computation is the 2 dimensional
flow-field F̂t+1←t which is used to transform a current image It or Ît. More details on the
architecture are provided in Appendix A.1.
Predicting pixel motion. When using visual MPC with a cost-function based on start
and goal pixel positions, we require a model that can effectively predict the 2D motion of
the user-selected start pixels

(1)
0 , . . . ,

(P )
0 up to T steps into the future3. More details about

the cost functions are provided in section 2.5. Since the model we employ is transformation-
based, this motion prediction capability emerges automatically, and therefore no external

3Note that when using a classifier-based cost function, we do not require the model to output transfor-
mations.
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Figure 2.4: Forward pass through the recurrent SNA model. The image from the first time step I0
is concatenated with the transformed images F̂t+1←t ⋄ Ît multiplying each channel with a separate
mask to produce the predicted frame for step t+ 1.

pixel motion supervision is required. To predict the future positions of the designated pixel
d, the same transformations used to transform the images are applied to the distribution
over designated pixel locations. The warping transformation F̂t+1←t can be interpreted as
a stochastic transition operator allowing us to make probabilistic predictions about future
locations of individual pixels:

P̂t+1 = F̂t+1←t ⋄ P̂t (2.3)

Here, Pt is a distribution over image locations which has the same spatial dimension as the
image. For simplicity in notation, we will use a single designated pixel moving forward, but
using multiple is straightforward. At the first time step, the distribution P̂0 is defined as
1 at the position of the user-selected designated pixel and zero elsewhere. The distribution
P̂t+1 is normalized at each prediction step.

Since this basic model, referred to as dynamic neural advection (DNA), predicts images
only based on the previous image, it is unable to recover shapes (e.g., objects) after they
have been occluded, for example by the robot arm. Hence, this model is only suitable for
planning motions where the user-selected pixels are not occluded during the manipulation,
limiting its use in cluttered environments or with multiple selected pixels. In the next
section, we introduce an enhanced model, which lifts this limitation by employing temporal
skip connections.
Skip connection neural advection model. To enable effective tracking of objects through
occlusions, we can add temporal skip connections to the model: we now transform pixels not
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only from the previously generated image Ît, but from all previous images Î1, ...Ît, including
the context image I0, which is a real image. All these transformed images can be combined
to a form the predicted image Ît+1 by taking a weighted sum over all transformed images,
where the weights are given by masks Mt with the same size as the image and a single
channel:

Ît+1 = M0(F̂t+1←0 ⋄ It) +
τ∑

j=1

Mj(F̂t+1←j ⋄ Îj). (2.4)

We refer to this model as the skip connection neural advection model (SNA), since it handles
occlusions by using temporal skip connections such that when a pixel is occluded, e.g., by
the robot arm or by another object, it can still reappear later in the sequence. Transforming
from all previous images comes with increased computational cost, since the number of
masks and transformations scales with the number of time-steps τ . However, we found that
in practice a greatly simplified version of this model, where transformations are applied only
to the previous image and the first image of the sequence I0, works equally well. Moreover
we found that transforming the first image of the sequence is not necessary, as the model
uses these pixels primarily to generate the image background. Therefore, we can use the
first image directly, without transformation. More details can be found in the appendix A.1
and [47].

2.5 Planning Cost Functions

In this section, we discuss how to specify and evaluate goals for planning. One näıve approach
is to use pixel-wise error, such as ℓ2 error, between a goal image and the predicted image.
However there is a severe issue with this approach: large objects in the image, i.e. the
arm and shadows, dominate such a cost; therefore a common failure mode occurs when the
planner matches the arm position with its position in the goal image, disregarding smaller
objects. This failure motivates our use of more sophisticated mechanisms for specifying
goals, which we discuss next.

Pixel Distance Cost

A convenient way to define a robot task is by choosing one or more designated pixels in
the robot’s camera view and choosing a destination where each pixel should be moved. For
example, the user might select a pixel on an object and ask the robot to move it 10 cm to
the left. This type of objective is general, in that it can define any object relocation task on
the viewing plane. Further, success can be measured quantitatively, as detailed in section
3.5. Given a distribution over pixel positions P0, our model predicts distributions over its
positions Pt at time t ∈ {1, . . . , T}. One way of defining the cost per time-step ct is by using
the expected Euclidean distance to the goal point dg, which is straight-forward to calculate
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from Pt and g, as follows:

c =
∑

t=1,...,T

ct =
∑

t=1,...,T

Ed̂t∼Pt

[
∥d̂t − dg∥2

]
(2.5)

The per time-step costs ct are summed together giving the overall planing objective c. The
expected distance to the goal provides a smooth planning objective and enables longer-
horizon tasks, since this cost function encourages movement of the designated objects into
the right direction for each step of the execution, regardless of whether the goal-position can
be reached within T time steps or not. This cost also makes use of the uncertainty estimates
of the predictor when computing the expected distance to the goal. For multi-objective
tasks with multiple designated pixels d(i) the costs are summed to together, and optionally
weighted according to a scheme discussed in section 2.5.

Registration-Based Cost

We now propose an improvement over using pixel distances. When using pixel distance
cost functions, it is necessary to know the current location of the object,

(1)
0 , . . . ,

(P )
0 at each

replanning step, so that the model can predict the positions of this pixel from the current step
forward. To update the belief of where the target object currently is, we propose to register
the current image to the start and optionally also to a goal image, where the designated pixels
are marked by the user. Adding a goal image can make visual MPC more precise, since when
the target object is close to the goal position, registration to the goal-image greatly improves
the position estimate of the designated pixel. Crucially, the registration method we introduce
is self-supervised, using the same exact data for training the video prediction model and for
training the registration model. This allows both models to continuously improve as the
robot collects more data.
Test time procedure. We will first describe the registration scheme at test time (see Fig-
ure 2.6(a)). We separately register the current image It to the start image I0 and to the goal
image Ig by passing it into the registration network R, implemented as a fully-convolutional

neural network. The registration network produces a flow map F̂0←t ∈ RH×W×2, a vector
field with the same size as the image, that describes the relative motion for every pixel
between the two frames.

F̂0←t = R(It, I0) F̂g←t = R(It, Ig) (2.6)

The flow map F̂0←t can be used to warp the image of the current time step t to the start
image I0, and F̂g←t can be used to warp from It to Ig (see Figure 2.5 for an illustration).
There is no difference to the warping operation used in the video prediction model, explained
in section 2.4, equation B.2:

Î0 = F̂0←t ⋄ It Îg = F̂g←t ⋄ It (2.7)
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Figure 2.5: Closed loop control is achieved by registering the current image It globally to the first
frame I0 and the goal image Ig. In this example registration to I0 succeeds while registration to Ig
fails since the object in Ig is too far away.

In essence for a current image F̂0←t puts It in correspondence with I0, and F̂g←t puts It
in correspondence with Ig. The motivation for registering to both I0 and Ig is to increase
accuracy and robustness. In principle, registering to either I0 or Ig is sufficient. While the
registration network is trained to perform a global registration between the images, we only
evaluate it at the points d0 and dg chosen by the user. This results in a cost function that
ignores distractors. The flow map produced by the registration network is used to find the
pixel locations corresponding to d0 and dg in the current frame:

d̂0,t = d0 + F̂0←t(d0) d̂g,t = dg + F̂g←t(dg) (2.8)

For simplicity, we describe the case with a single designated pixel. In practice, instead
of a single flow vector F̂0←t(d0) and F̂g←t(dg), we consider a neighborhood of flow-vectors
around d0 and dg and take the median in the x and y directions, making the registration
more stable. Figure 2.7 visualizes an example tracking result while the gripper is moving an
object.
Registration-based pixel distance cost. Registration can fail when distances between
objects in the images are large. During a motion, the registration to the first image typically
becomes harder, while the registration to the goal image becomes easier. We propose a
mechanism that estimates which image is registered correctly, allowing us to utilize only the
successful registration for evaluating the planning cost. This mechanism gives a high weight
λi to pixel distance costs ci associated with a designated pixel d̂i,t that is tracked successfully
and a low, ideally zero, weight to a designated pixel where the registration is poor. We use
the photometric distance between the true frame and the warped frame evaluated at d0,i
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Figure 2.6: (a) At test time the registration network registers the current image It to the start image
I0 (top) and goal image Ig (bottom), inferring the flow-fields F̂0←t and F̂g←t. (b) The registration
network is trained by warping images from randomly selected timesteps along a trajectory to each
other.

Figure 2.7: Outputs of registration network. The first row shows the timesteps from left to right of
a robot picking and moving a red bowl, the second row shows each image warped to the initial image
via registration, and the third row shows the same for the goal image. A successful registration in
this visualization would result in images that closely resemble the start- or goal image. In the first
row, the locations where the designated pixel of the start image d0 and the goal image dg are found
are marked with red and blue crosses, respectively. It can be seen that the registration to the start
image (red cross) is failing in the second to last time step, while the registration to the goal image
(blue cross) succeeds for all time steps. The numbers in red, in the upper left corners indicate the
trade off factors λ between the views and are used as weighting factors for the planning cost. (Best
viewed in PDF)
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and dg,i as an estimate for local registration success. A low photometric error indicates that
the registration network predicted a flow vector leading to a pixel with a similar color, thus
indicating warping success. However this does not necessarily mean that the flow vector
points to the correct location. For example, there could be several objects with the same
color and the network could simply point to the wrong object. Letting Ii(di) denote the
pixel value in image Ii for position di, and Îi(di) denote the corresponding pixel in the image
warped by the registration function, we can define the general weighting factors λi as:

λi =
||Ii(di)− Îi(di)||−12∑N
j ||Ij(dj)− Îj(dj)||−12

. (2.9)

where Îi = F̂i←t ⋄ It. The MPC cost is computed as the average of the costs ci weighted by
λi, where each ci is the expected distance (see equation B.4) between the registered point
d̂i,t and the goal point dg,i. Hence, the cost used for planning is c =

∑
i λici. In the case of

the single view model and a single designated pixel, the index i iterates over the start and
goal image (and N = 2).

The proposed weighting scheme can also be used with multiple designated pixels, as used
in multi-task settings and multi-view models, which are explained in section 2.8. The index
i then also loops over the views and indices of the designated pixels.
Training procedure. The registration network is trained on the same data as the video
prediction model, but it does not share parameters with it.4 Our approach is similar to the
optic flow method proposed by [121]. However, unlike this prior work, our method computes
registrations for frames that might be many time steps apart, and the goal is not to extract
optic flow, but rather to determine correspondences between potentially distant images. For
training, two images are sampled at random times steps t and t+h along the trajectory and
the images are warped to each other in both directions.

Ît = F̂t←t+h ⋄ It+h Ît+h = F̂t+h←t ⋄ It (2.10)

The network, which outputs F̂t←t+h and F̂t+h←t, see Figure 2.6 (b), is trained to minimize
the photometric distance between Ît and It and Ît+h and It+h, in addition to a smoothness
regularizer that penalizes abrupt changes in the outputted flow-field. The details of this loss
function follow prior work [121]. We found that gradually increasing the temporal distance
h between the images during training yielded better final accuracy, as it creates a learning
curriculum. The temporal distance is linearly increased from 1 step to 8 steps at 20k SGD
steps. In total 60k iterations were taken.

The network R is implemented as a fully convolutional network taking in two images
stacked along the channel dimension. First the inputs are passed into three convolutional
layers each followed by a bilinear downsampling operation. This is passed into three layers
of convolution each followed by a bilinear upsampling operation (all convolutions use stride

4In principle, sharing parameters with the video prediction model might be beneficial, but this is left for
future work.
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1). By using bilinear sampling for increasing or decreasing image sizes we avoid artifacts
that are caused by strided convolutions and deconvolutions.

Classifier-Based Cost Functions

An alternative way to define the cost function is with a goal classifier. This type of cost
function is particularly well-suited for tasks that can be completed in multiple ways. For
example, for a task of rearranging a pair objects into relative positions, i.e. pushing the first
object to the left of the second object, the absolute positions of the objects do not matter
nor does the arm position. A classifier-based cost function allows the planner to discover
any of the possible goal states.

Unfortunately, a typical image classifier will require a large amount of labeled examples
to learn, and we do not want to collect large datasets for each and every task. Instead,
we aim to learn a goal classifier from only a few positive examples, using a meta-learning
approach. A few positive examples of success are easy for people to provide and are the
minimal information needed to convey a goal.

Formally, we consider a goal classifier ŷ = f(o), where o denotes the image observation,
and ŷ ∈ [0, 1] indicates the predicted probability of the observation being of a successful
outcome of the task. Our objective is to infer a classifier for a new task Tj from a few
positive examples of success, which are easy for a user to provide and encode the minimal
information needed to convey a task. In other words, given a dataset D+

j of K examples of
successful end states for a new task Tj: Dj := {(ok, 1)|k = 1...K}j, our goal is to infer a
classifier for task Tj.
Meta-learning for few-shot goal inference. To solve the above problem, we propose
learning a few-shot classifier that can infer the goal of a new task from a small set of goal
examples, allowing the user to define a task from a few examples of success. To train the
few-shot classifier, we first collect a dataset of both positive and negative examples for a
wide range of tasks. We then use this data to learn how to learn goal classifiers from a few
positive examples. Our approach is illustrated in Figure 2.8.

We build upon model-agnostic meta-learning (MAML) [52], which learns initial param-
eters θ for model f that can efficiently adapt to a new task with one or a few steps of
gradient descent. Grant et al. [67] proposed an extension of MAML, referred to as concept
acquisition through meta-learning (CAML), for learning to learn new concepts from positive
examples alone. We apply CAML to the setting of acquiring goal classifiers from positive
examples, using a meta-training data with both positive and negative examples. The result
of the meta-training procedure is an initial set of parameters that can be used to learn new
goal classifiers at test time.
Test time procedure. At test time, the user provides a dataset D+

j of K examples of
successful end states for a new task Tj: Dj := {(ok, 1)|k = 1...K}j, which are then used
to infer a task-specific goal classifier Cj. In particular, the meta-learned parameters θ are
updated through gradient descent to adapt to task Tj:
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Figure 2.8: We propose a framework for quickly specifying visual goals. Our goal classifier is
meta-trained with positive and negative examples for diverse tasks (left), which allows it to meta-
learn that some factors matter for goals (e.g., relative positions of objects), while some do not (e.g.
position of the arm). At meta-test time, this classifier can learn goals for new tasks from a few of
examples of success (right - the goal is to place the fork to the right of the plate). The cost can be
derived from the learned goal classifier for use with visual MPC.

Cj(o) = f(o; θ′j) = f
(
o; θ − α∇θ

∑
(on,yn)∈D+

j

L(yn, f(on; θ)
)

where L is the cross-entropy loss function, α is the step size, and θ′ denotes the parameters
updated through gradient descent on task Tj.

During planning, the learned classifier Cj takes as input an image generated by the video
prediction model and outputs the predicted probability of the goal being achieved for the task
specified by the few examples of success. To convert this into a cost function, we treat the
probability of success as the planning cost for that observation. To reduce the effect of false
positives and mis-calibrated predictions, we use the classifier conservatively by thresholding
the predictions so that reward is only given for confident successes. Below this threshold,
we give a reward of 0 and above this threshold, we provide the predicted probability as the
reward.
Training time procedure. During meta-training, we explicitly train for the ability to infer
goal classifiers for the set of training tasks, {Ti}. We assume a small dataset Di for each task
Ti, consisting of both positive and negative examples: Di := {(on, yn)|n = 1...N}i. To learn
the initial parameters θ, we optimize the following objective using Adam [90]:
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min
θ

∑
i

∑
(on,yn)∈Dtest

i

L(yn, f(on; θ
′
i))

In our experiments, our classifier is represented by a convolutional neural network, con-
sisting of three convolutional layers, each followed by layer normalization and a ReLU non-
linearity. After the final convolutional layer, a spatial soft-argmax operation extracts spatial
feature points, which are then passed through fully-connected layers.

When to Use Which Cost Function?

We have introduced three different forms of cost function, pixel distance based cost functions
with and without registration, as well as classifier-based cost functions. Here we discuss the
relative strengths and weaknesses of each.

Pixel distance based cost functions have the advantage that they allow moving objects
precisely to target locations. They are also easy to specify, without requiring any example
goal images, and therefore provide an easy and fast user interface. The pixel distance based
cost function also has a high degree of robustness against distractor objects and clutter,
since the optimizer can ignore the values of other pixels; this is important when targeting
diverse real-world environments. By incorporating an image of the goal, we can also add a
registration mechanism to allow for more robust closed-loop control, at the cost of a more
significant burden on the user.

The classifier-based cost function allows for solving more abstract tasks since it can
capture invariances, such as the position of the arm, and settings where the absolute positions
of an object is not relevant, such as positioning a cup in front of a plate, irrespective of where
the plate is. Providing a few example images takes more effort than specifying pixel locations
but allows a broader range of goal sets to be specified.

2.6 Trajectory Optimizer

The role of the optimizer is to find actions sequences a1:T that minimize the sum of the
costs c1:T along the planning horizon T . We use a simple stochastic optimization procedure
for this, based on the cross-entropy method (CEM), a gradient-free optimization procedure.
CEM consists of iteratively resampling action sequences and refitting Gaussian distributions
to the actions with the best predicted cost.

Although a variety of trajectory optimization methods may be suitable, one advantage of
the stochastic optimization procedure is that it allows us to easily ensure that actions stay
within the distribution of actions the model encountered during training. This is crucial to
ensure that the model does not receive out-of-distribution inputs and makes valid predictions.
Algorithm 1 illustrates the planning process. In practice this can be achieved by defining
admissible ranges for each dimension of the action vector and rejecting a sample if it is
outside of the admissible range.
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Algorithm 1 Planning in Visual MPC

1: Inputs: Predictive model g, planning cost function c
2: for t = 0...T − 1 do
3: for i = 0...niter − 1 do
4: if i == 0 then
5: Sample M action sequences {a(m)

t:t+H−1} from
N (0, I) or custom sampling distribution

6: else
7: Sample M action sequences a

(m)
t:t+H−1 from

N (µ(i),Σ(i))

8: Check if sampled actions are within
admissible range, otherwise resample.

9: Use g to predict future image sequences Î
(m)
t:t+H−1

and probability distributions P̂
(m)
t:t+H−1

10: Evaluate action sequences using a cost function c
11: Fit a diagonal Gaussian to the k action samples

with lowest cost, yielding µ(i),Σ(i)

12: Apply first action of best action sequence to robot

In the appendix A.3 we present a few improvements to the CEM optimizer for visual
MPC.

2.7 Custom Action Sampling Distributions

When collecting data by sampling from simple distributions, such as a multivariate Gaussian,
the skills that emerged were found to be generally restricted to pushing and dragging objects.
This is because with simple distributions, it is very unlikely to visit states like picking up and
placing of objects or folding cloth. Not only would the model be imprecise for these kinds of
states, but also during planning it would be unlikely to find action sequences that grasp an
object or fold an item of clothing. We therefore explore how the sampling distribution used
both in data collection and sampling-based planning can be changed to visit these, otherwise
unlikely, states more frequently, allowing more complex behavior to emerge.

To allow picking up and placing of objects as well as folding of cloth to occur more
frequently, we incorporate a simple “reflex” during data collection, where the gripper auto-
matically closes, when the height of the wrist above the table is lower than a small threshold.
This reflex is inspired by the palmar reflex observed in infants [157]. With this primitive,
when collecting data with rigid objects about 20% of trajectories included some sort of grasp.
For deformable objects such as towels and cloth, this primitive helps increasing the likelihood
of encountering states where cloths are folded. We found that the primitive can be slightly
adapted to avoid cloths becoming tangled up. More details are provided in Appendix A.2.
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It is worth noting that, other than this reflex, no grasping-specific or folding-specific
engineering was applied to the policy, allowing a joint pushing, grasping and folding policy
to emerge through planning (see figure A.4 in the appendix). In our experiments, we evaluate
our method using data obtained both with and without the grasping reflex, evaluating both
purely non-prehensile and combined prehensile and non-prehensile manipulation.

2.8 Multi-View Visual MPC

Webcams

Object Bin

Robot

Viewing 
Direction

Figure 2.9: Robot setup, with 2 standard web-
cams arranged at different viewing angles.

The visual MPC algorithm as described so
far is only able to solve manipulation tasks
specified in 2D, like rearranging objects on
the table. However, this can impose severe
limitations; for example, a task such as lift-
ing an object to a particular position in 3D
cannot be fully specified with a single view,
since it would be ambiguous. We use a com-
bination of two views, taken from two cam-
eras arranged appropriately, to jointly define
a 3D task. Figure 2.9 shows the robot setup,
including two standard webcams observing
the workspace from different angles. The
registration method described in the previ-
ous section is used separately per view to
allow for dynamic retrying and solving tem-
porally extended tasks. The planning costs
from each view are combined using weighted
averaging where the weights are provided by the registration network (see equation 2.9).
Rows 5 and 6 of figure 2.12 show a 3D object positioning task, where an object needs to be
positioned at a particular point in 3D space. This task needs two views to be fully specified.

2.9 Experimental Evaluation

In this section we present both qualitative and quantitative performance evaluations of visual
MPC on various manipulation tasks assessing the degree of generalization and comparing
different prediction models and cost functions and with a hand-crafted baseline. In Figures
2.1 and 2.12 we present a set of qualitative experiments showing that visual MPC trained fully
self-supervised is capable of solving a wide range of complex tasks. Videos for the qualitative
examples are at the following webpage5. In order to perform quantitative comparisons, we
define a set of tasks where the robot is required to move object(s) into a goal configuration.

5Videos & code: https://sites.google.com/view/visualforesight/

https://sites.google.com/view/visualforesight/
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moved imp.
± std err. of mean

stationary imp.
± std err. of mean

DNA [56] 0.83 ±0.25 -1.1 ± 0.2
SNA 10.6 ± 0.82 -1.5 ± 0.2

Table 2.1: Results for multi-objective pushing on 8 object/goal configurations with 2 seen
and 2 novel objects. Values indicate improvement in distance from starting position, higher
is better. Units are pixels in the 64x64 images.

For measuring success, we use a distance-based evaluation where a human annotates the
positions of the objects after pushing allowing us to compute the remaining distance to the
goal.

Comparing Video Prediction Architectures

We first aim to answer the question: Does visual MPC using the occlusion-aware SNA video
prediction model that includes temporal skip connections outperform visual MPC with the
dynamic neural advection model (DNA)[56] without temporal skip-connections?

To examine whether our skip-connection model (SNA) helps with handling occlusions,
we devised a task that requires the robot to push one object, while keeping another object
stationary. When the stationary object is in the way, the robot must move the target object
around it. This is illustrated on the left side of Figure A.5 in the appendix. While pushing
the target object, the gripper may occlude the stationary object, and the task can only be
performed successfully if the model can make accurate predictions through this occlusion.
These tasks are specified by selecting one starting pixel on the target object, a goal pixel
location for the target object, and commanding the obstacle to remain stationary by selecting
the same pixel on the obstacle for both start and goal.

We use four different object arrangements with two training objects and two objects
that were not seen during training. We find that, in most cases, the SNA model is able to
find a valid trajectory, while the DNA model, that is not able to handle occlusion, is mostly
unable to find a solution. The results of our quantitative comparisons are shown in Table 2.1,
indicating that temporal skip-connections indeed help with handling occlusion in combined
pushing and obstacle avoidance tasks.

Evaluating Registration-Based Cost Functions

In this section we ask: How important is it to update the model’s belief of where the target
objects currently are? We first provide two qualitative examples: In example (5)-(6) of
Figure 2.12 the task is to bring the stuffed animal to a particular location in 3D-space on
the other side of the arena. To test the system’s reaction to perturbations that could be
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Short Long

Visual MPC + predictor propagation 83% 20%
Visual MPC + OpenCV tracking 83% 45%
Visual MPC + registration network 83% 66%

Table 2.2: Success rate for long-distance pushing experiment with 20 different object/goal config-
urations and short-distance experiment with 15 object/goal configurations. Success is defined as
bringing the object closer than 15 pixels to the goal, which corresponds to around 7.5cm.

encountered in open-world settings, during execution a person knocks the object out of the
robot’s hand (in the 3rd frame). The experiment shows that visual MPC is able to naturally
perform a new grasp attempt and bring the object to the goal. This trajectory is easier to
view in the supplementary video.

In Figure A.3 in the appendix, the task is to push the bottle to the point marked with the
green dot. In the beginning of the trajectory the object behaves differently than expected,
it moves downwards instead of to the right. However the system recovers from the initial
failure and still pushes the object to the goal.

The next question we investigate is: How much does tracking the target object using the
learned registration matter for short horizon versus long horizon tasks? In this experiment,
we disable the gripper control, which requires the robot to push objects to the target. We
compare two variants of updating the positions of the designated pixel when using a pixel-
distance based cost function. The first is a cost function that uses our registration-based
method, trained in a fully self-supervised fashion, and the second is with a cost function that
uses off-the shelf tracking from OpenCV [9]. Additionally we compare to visual MPC, which
uses the video-prediction model’s own prior predictions to update the current position of the
designated pixel, rather than tracking the object with registration or tracking.

We evaluate our method on 20 long-distance and 15 short-distance pushing tasks. For
long distance tasks the initial distance between the object and its goal position is 30cm
while for short distance tasks it is 15cm. Table 2.2 lists quantitative comparisons showing
that on the long distance experiment visual MPC using the registration-based cost not only
outperforms prior work [47], but also outperforms the hand-designed, supervised object
tracker [9]. By contrast, for the short distance experiment, all methods perform comparably.
Thus, theses results demonstrate the importance of tracking the position of the target object
for long-horizon tasks, while for short-horizon tasks object tracking appears to be irrelevant.

Evaluating Classifier-Based Cost Function

The goal of the classifier-based cost function is to provide an easy way to compute an
objective for new tasks from a few observations of success for that task, so we compare
our approach to alternative and prior methods for doing so under the same assumptions:
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Figure 2.10: Object arrangement performance of our goal classifier with distractor objects and
with two tasks. The left shows a subset of the 5 positive examples that are provided for inferring the
goal classifier(s), while the right shows the robot executing the specified task(s) via visual planning.

pixel distance and latent space distance. In the latter, we measure the distance between the
current and goal observations in a learned latent space, obtained by training an autoencoder
(DSAE) [58] on the same data used for our classifier. Since we are considering a different
form of task specification incompatible with user-specified pixels, we do not compare the
classifier-based cost function to the cost function based on designated pixels.

To collect data for meta-training the classifier, we randomly select a pair of objects from
our set of training objects, and position them in many different relative positions, recording
the image for each configuration. Each task corresponds to a particular relative positioning
of two objects, e.g. the first object to the left of the second, and we construct positive
and negative examples for each task by labeling the aforementioned images. We randomly
position the arm in each image, as it is not a determiner of task success. A good classifier
should ignore the position of the arm. We also include randomly-positioned distractor objects
in about a third of the collected images.

We evaluate the classifier-based cost function in three different experimental settings. In
the first setting, the goal is to arrange two objects into a specified relative arrangement.
The second setting is the same, but with distractor objects present. In the final and most
challenging setting, the goal is to achieve two tasks in sequence. We provide positive examples
for both tasks, infer the classifier for both, perform MPC for the first task until completion,
followed by MPC for the second task. The arrangements of the evaluation tasks were chosen
among the eight principal directions (N, NE, E, SE, etc.). To evaluate the ability to generalize
to new goals and settings, we use novel, held-out objects for all of the task and distractor
objects in our evaluation.

We qualitatively visualize the tasks in Figure 2.10. On the left, we show a subset of the five
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Figure 2.11: Quantitative performance of visual planning for object rearrangement tasks across
different goal specification methods: our meta-learned classifier, DSAE [58], and pixel error. Where
possible, we include break down the cause of failures into errors caused by inaccurate prediction or
planning and those caused by an inaccurate goal classifier.

images provided to illustrate the task(s), and on the left, we show the motions performed by
the robot. We see that the robot is able to execute motions which lead to a correct relative
positioning of the objects. We quantitatively evaluate the three cost functions across 20
tasks, including 10 unique object pairs. A task was considered successfully completed if
more than half of the object was correctly positioned relative to the other. The results,
shown in Figure 2.11, indicate that the distance-based metrics struggle to infer the goal of
the task, while our approach leads to substantially more successful behavior on average.

Evaluating Multi-Task Performance

One of the key motivations for visual MPC is to build a system that can solve a wide variety
of different tasks, involving completely different objects, physics and, objectives. Examples
for tasks that can be solved with visual MPC are shown in Figure 2.1 and 2.12. Task 1 in
Figure 2.1 shows a “placing task” where an object needs to be grasped and placed onto a
plate while not displacing the plate. Task 2 is an object rearrangement tasks. The example
shown in Task 4 and all examples in Figure 2.10 show relative object rearrangement tasks.
Examples 5 and 6 show the same 3D object positioning tasks from different views. In Task
7, the goal is to move the black object to the goal location while avoiding the obstacle in the
middle which is marked with a designated- and goal pixel. We also demonstrate that visual
MPC – without modifications to the algorithm – solves tasks involving deformable objects
such as a task where a towel needs to be wrapped around an object (Task 3), or folding a
pair of shorts (Task 8). To the best of our knowledge this is the first algorithm for robotic
manipulation handling both rigid and deformable objects. For a full illustration of each of
these tasks, we encourage the reader to watch the supplementary video.

The generality of visual MPC mainly stems from two components — the generality of
the visual dynamics model and the generality of the task definition. We found that the
dynamics model often generalizes well to objects outside of the training set, if they have
similar properties to the objects it was trained with. For example, Task 8 in Figure 2.12
shows the model predicting a pair of shorts being folded. We observed that a model, which
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Figure 2.12: Visual MPC successfully solves a wide variety of tasks including multi-objective
tasks, such as placing an object on a plate (row 5 and 6), object positioning with obstacle
avoidance (row 7) and folding shorts (row 8). Zoom in on PDF.

was only provided videos of towels during training, generalized to shorts, although it had
never seen them before. In all of the qualitative examples, the predictions are performed by
the same model. We found that the model sometimes exhibits confusion about whether an
object follows the dynamics of a cloth or rigid objects, which is likely caused by a lack of
training data in the particular regime. To overcome this issue we add a binary token to the
state vector indicating whether the object in the bin is hard or soft. We expect that adding
more training data would remove the need for this indicator and allow the model to infer
material properties directly from images.

The ability to specify tasks in multiple different ways adds to the flexibility of the pro-
posed system. Using designated pixels, object positioning tasks can be defined in 3D space,
as shown in Task 1 and 2 in Figure 2.1 and task 5-6 in Figure 2.12. When adding a goal im-
age, the positioning accuracy can be improved by utilizing the registration scheme discussed
in Section 2.5. For tasks where we care about relative rather than absolute positioning, a
meta-learned classifier can be used, as discussed in Section 2.5.

Next, we present a quantitative evaluation to answer the following question: How does
visual MPC compare to a hand-engineered baseline on a large number of diverse tasks?
For this comparison, we engineered a simple trajectory generator to perform a grasp at the
location of the initial designated pixel, lift the arm, and bring it to the position of the goal
pixel. Camera calibration was performed to carry out the necessary conversions between
image-space and robot work-space coordinates, which was not required for our visual MPC
method. For simplicity, the baseline controller executes in open loop. Therefore, to allow for
a fair comparison, visual MPC is also executed open-loop, i.e. no registration or tracking is
used. Altogether we selected 16 tasks, including the qualitative examples presented earlier.
The quantitative comparison is shown in Table 2.3, illustrating that visual MPC substantially
outperforms this baseline. Visual MPC succeeded for most of the tasks. While the baseline
succeeded for some of the cloth folding tasks, it failed for almost all of the object relocation
tasks. This indicates that an implicit understanding of physics, as captured by our video
prediction models, is indeed essential for performing this diverse range of object relocation
and manipulation tasks, and the model must perform non-trivial physical reasoning beyond
simply placing and moving the end-effector.
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% of Trials with
Final Pixel Distance < 15

Visual MPC 75%
Calibrated Camera Baseline 18.75 %

Table 2.3: Results for a multi-task experiment of 10 hard object pushing and grasping
tasks, along with 6 cloth folding tasks, evaluating using a single model. Values indicate the
percentage of trials that ended with the object pixel closer than 15 pixels to the designated
goal. Higher is better.

Discussion of Experimental Results

Generalization to many distinct tasks in visually diverse settings is arguably one of the biggest
challenges in reinforcement learning and robotics today. While deep learning has relieved us
from much of the problem-specific engineering, most of the works either require extensive
amounts of labeled data or focus on the mastery of single tasks while relying on human-
provided reward signals. From the experiments with visual MPC, especially the qualitative
examples and the multi-task experiment, we can conclude that visual MPC generalizes to a
wide range of tasks it has never seen during training. This is in contrast to many model-free
approaches for robotic control which often struggle to perform well on novel tasks. Most of
the generalization performance is likely a result of large-scale self-supervised learning, which
allows to acquire a rich, task-agnostic dynamics model of the environment.
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Chapter 3

RoboNet: Leveraging Data from
Multiple Robots

3.1 Introduction

In the previous chapter we have introduced a model-based reinforcement learning algorithm
to plan a sequence of actions by using a dynamics model trained on data collected by a
single robot in a single environment. While the system is able to execute a range of pushing
tasks, and even generalize to new objects, it is unable to generalize to new viewpoints,
environments, or new robots. In this chapter we will extend the system to use more diverse
data — data from multiple robots, backgrounds, and camera viewpoints to enable these
generalization capabilities.

The background and motivation for this is as follows: Two of the most commonly raised
criticisms of machine learning applied to robotics are the amount of data required per en-
vironment due to limited data-sharing, and the resulting algorithm’s poor generalization
to even modest environmental changes. A number of works have tried to address this by
developing simulations from which large amounts of diverse data can be collected [152, 7],
or by attempting to make robot learning algorithms more data efficient [33, 34]. However,
developing simulators entails a deeply manual process, which so far has not scaled to the
breadth and complexity of open-world environments. The alternative of using less real-world
data often also implies using simpler models, which are insufficient for capturing the many
details present in complex real-world environments such as object geometry or appearance.

Instead, we propose the opposite – using dramatically larger and more varied datasets
collected in the real world. Inspired by the breadth of the ImageNet dataset [37], we in-
troduce RoboNet, a dataset containing roughly 162,000 trajectories with video and action
sequences recorded from 7 robots, interacting with hundreds of objects, with varied view-
points and environments, corresponding to nearly 15 million frames. The dataset is collected
autonomously with minimal human intervention, in a self-supervised manner, and is designed
to be easily extensible to new robotic hardware, various sensors, and different collection poli-
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Sawyer Time Franka Time WidowX Time

Baxter Time Fetch Time

Google Robot Time

Kuka Time

Figure 3.1: A glimpse of the RoboNet dataset, with example trajectories, robots, and view-
points. We collected data with Sawyer, Franka, WidowX, Kuka, and Baxter robots, and aug-
mented the dataset with publicly-available data from a robot from Google [55], a Fetch [202],
and a Sawyer [49]. We use RoboNet to study the viability of large-scale data-driven robot
learning, as a means to attain broad generalization across robots and scenes.

cies.
The common practice of re-collecting data from scratch for every new environment es-

sentially means re-learning basic knowledge about the world — an unnecessary effort. In
this work, we show that sharing data across robots and environments makes it possible to
pre-train models on a large dataset of experience, thus extracting priors that allow for fast
learning with new robots and in new scenes. If the models trained on this data can acquire
the underlying shared patterns in the world, the resulting system would be capable of ma-
nipulating any object in the dataset using any robot in the dataset, and potentially even
transfer to new robots and objects.

To learn from autonomously-collected data without explicit reward or label supervision,
we require a self-supervised algorithm. To this end, we study two methods for sharing data
across robot platforms and environments. First, we study the visual foresight algorithm [57,
49], a deep model-based reinforcement learning method that is able to learn a breadth of
vision-based robotic manipulation skills from random interaction. Visual foresight uses an
action-conditioned video prediction model trained on the collected data to plan actions that
achieve user-specified goals. Second, we study deep inverse models that are trained to predict
the action taken to reach one image from another image, and can be used for goal-image
reaching tasks [2, 115]. However, when trained in a single environment, robot learning
algorithms, including visual foresight and inverse models, do not generalize to large domain
variations, such as different robot arms, grippers, viewpoints, and backgrounds, precluding
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the ability to share data across multiple experimental set-ups and making it difficult to share
data across institutions.

Our main contributions therefore consist of the RoboNet dataset, and an experimental
evaluation that studies our framework for multi-robot, multi-domain model-based reinforce-
ment learning based on extensions of the visual foresight algorithm and prior inverse model
approaches. We show that, when trained on RoboNet, we can acquire models that generalize
in zero shot to novel objects, novel viewpoints, and novel table surfaces. We also show that,
when these models are finetuned with small amounts of data (around 400 trajectories), they
can generalize to unseen grippers and new robot platforms, and perform better than robot-
specific and environment-specific training. We believe that this work takes an important
step towards large-scale data-driven approaches to robotics, where data can be shared across
institutions for greater levels of generalization and performance.

3.2 Related Work

Deep neural network models have been used widely in a range of robotics applications [65,
205, 26, 204, 10, 78]. However, most work in this area focuses on learning with a single robot
in a single domain, while our focus is on curating a dataset that can enable a single model
to generalize to multiple robots and domains. The multi-task literature [36, 5], lifelong
learning literature [165, 166], and meta-learning literature [53, 4] describe ideas that are
tightly coupled with this concept. By collecting task-agnostic knowledge in wide variety of
domains, a robotic system should be able to rapidly adapt to new, unseen environments
using relatively little target domain data.

Large-scale, self-supervised robot learning approaches have adopted a similar viewpoint [142,
110, 68, 57, 204, 2, 136, 49]. Unlike these methods, we specifically consider transfer across
multiple robots and environments, as a means to enable researchers to share data across
institutions. We demonstrate the utility of our data by building on the visual foresight ap-
proach [57, 49], as it further enables generalization across tasks without requiring reward
signals. This method is related to a range of recently proposed techniques that use predictive
models for vision-based control [22, 167, 177, 100, 130]. Further, we also study how we can
extend vision-based inverse models [2, 136, 202, 115] for generalizable robot-agnostic control.

A number of works have studied learning representations and policies that transfer across
domains, including transfer from simulation to the real world [152, 169, 80], transfer across
different dynamics [28, 203, 139, 7], transfer across robot morphologies with invariant feature
spaces [69] and modularity [38], transfer across viewpoints through recurrent control [153],
and transfer across objects [60, 79], tasks [44] or environments [29] through meta-learning.
In contrast to these works, we consider transfer at a larger scale across not just one factor of
variation, but across objects, viewpoints, tasks, robots, and environments, without the need
to manually engineer simulated environments.

Outside of robotics, large and diverse datasets have played a pivotal role in machine
learning. One of the best known datasets in modern computer vision is the ImageNet



CHAPTER 3. ROBONET: LEVERAGING DATA FROM MULTIPLE ROBOTS 32

dataset [37], which popularized an idea presented earlier in the tiny image dataset [171]. In
particular, similar to our work, the main innovation in these datasets was not in the quality
of the labels or images, but in their diversity: while prior datasets for image classification
typically provided images from tens or hundreds of classes, the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) contained one thousand classes. Our work is inspired by
this idea: while prior robotic manipulation methods and datasets [55, 196, 25, 68, 117, 49,
155] generally consider a single robot at a time, our dataset includes 7 different robots and
data from 4 different institutions, with dozens of backgrounds and hundreds of viewpoints.
This makes it feasible to study broad generalization in robotics in a meaningful way.

3.3 Data-Driven Robotic Manipulation

In this work we take a data-driven approach to robotic manipulation. We do not assume
knowledge of the robot’s kinematics, the geometry of objects or their physical properties,
or any other specific property of the environment. Instead, basic common sense knowledge,
including rigid-body physics and the robot’s kinematics, must be implicitly learned purely
from data.

Problem statement: learning image-based manipulation skills. We use data-
driven robotic learning for the task of object relocation – moving objects to a specified
location either via pushing or grasping and placing. However, in principle, our approach is
applicable to other domains as well. Being able to perform tasks based on camera images
alone provides a high degree of generality. We learn these skills using a dataset of trajectories
of images I0:T paired with actions a0:T , here T denotes the length of the trajectory. The
actions are sampled randomly and need to provide sufficient exploration of the state space,
which has been explored in prior work [49, 188]. This learning and data collection process is
self-supervised, requiring the human operator only to program the initial action distribution
for data collection and to provide new objects at periodic intervals. Data collection is
otherwise unattended.

Preliminaries: robotic manipulation via prediction. We build on visual fore-
sight [57, 49], a method based on an action-conditioned video prediction model that is trained
to predict future images, up to a horizon h, from on past images: Ît+1:t+h = f(It, at:t+h−1),
using unlabeled trajectory data such as the data presented in the next section. The video
prediction architecture used in visual foresight is a deterministic variant of the SAVP video
prediction model [103] based heavily on prior work [55]. This model both predicts future
images and the motion of pixels, which makes it straightforward to set goals for relocating
objects in the scene simply by designating points d0,i (e.g., pixels on objects of interest), and
for each one specifying a goal position dg,i to which those points should be moved. We refer
to d0,i as designated pixels. These goals can be set by a user, or a higher-level planning algo-
rithm. The robot can select actions by optimizing over the action sequence to find one that
results in the desired pixel motion, then executing the first action in this sequence, observ-
ing a new image, and replanning. This effectively implements image-based model-predictive
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control (MPC). With an appropriate choice of action representation, this procedure can au-
tomatically choose how to best relocate objects, whether by pushing, grasping, or even using
other objects to push the object of interest. Full details can be found in Appendix B.1 and
in prior work [49].

Preliminaries: robotic manipulation via inverse models. To evaluate RoboNet’s
usefulness for robot learning beyond use with the visual foresight algorithm, we evaluate a
simplified version of the inverse model in [115]. Given context data, {. . . , (It−2, at−2), (It−1, at−1)},
the current image observation It, and a goal image It+T , the inverse model is trained to pre-
dict actions at, . . . , at+T−1 (where T is a given horizon) that are needed to take the robot
from the start to the goal image. Our experiments train a one-step inverse model where
T = 1, which can be trained with supervised regression. At test time, the model takes as
input 2 context frame/action pairs, the current image, and a goal image and then will predict
an action which ought to bring the robot to the goal. This process is can be repeated at the
next time-step, thus allowing us to run closed loop visual control for multiple steps.

3.4 The RoboNet Dataset

To enable robots to learn from a wide range of diverse environments and generalize to new
settings, we propose RoboNet, an open dataset for sharing robot experience. An initial
set of data has been collected across 7 different robots from 4 different institutions, each
introducing a wide range of conditions, such as different viewpoints, objects, tables, and
lighting. By having only loose specifications1 on how the scene can be arranged and which
objects can be used, we naturally obtain a large amount of diversity, an important feature of
this dataset. By framing the data collection as a cross-institutional effort, we aim to make
the diversity of the dataset grow over time. Any research lab is invited to contribute to it.

Data Collection Process

All trajectories in RoboNet share a similar action space, which consists of deltas in position
and rotation to the robot end-effector, with one additional dimension of the action vector
reserved for the gripper joint. The frame of reference is the root link of the robot, which need
not coincide with the camera pose. This avoids the need to calibrate the camera, but requires
any model to infer the relative positioning between the camera and the robots’ reference
frames from a history of context frames. As we show in Section 3.5, current models can do
this effectively. The action space can also be a subset of the listed dimensions. We chose an
action parametrization in end-effector space rather than joint-space, as it extends naturally
to robot arms with different degrees of freedom. Having a unified action space throughout
the dataset makes it easier to train a single model on the entire dataset. However, even
with a consistent action space, variation in objects, viewpoints, and robot platforms has a
substantial effect on how the action influences the next image.

1Specifications can be found here: http://www.robonet.wiki

http://www.robonet.wiki
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In our initial version of RoboNet, trajectories are collected by applying actions drawn
at random from simple hand-engineered distributions. We most commonly use a diagonal
Gaussian combined the automatic grasping primitive developed in [46]. More details on the
data collection process are provided in Appendix B.2.

The Diverse Composition of RoboNet

The environments in the RoboNet dataset vary both in robot hardware, i.e. robot arms
and grippers, as well as environment, i.e arena, camera-configuration and lab setting, which
manifests as different backgrounds and lighting conditions (see Figure 3.1 and 3.2). In theory,
one could add any type (depth, tactile, audio, etc.) of sensor data to RoboNet, but we stick
to consumer RGB video cameras for the purposes of this project. There is no constraint on
the type of camera used, and in practice different labs used cameras with different exposure
settings. Thus, the color temperature and brightness of the scene varies through the dataset.
Object sets also vary substantially between different lab settings. To increase the number of
tables, we use inserts with different textures and colors. To increase the number of gripper
configurations, we 3D printed different finger attachments. We collected 104.4k trajectories
for RoboNet on a Sawyer arm, Baxter robot, low-cost WidowX arm, Kuka LBR iiwa arm,
and Franka Panda arm. We additionally augment the dataset with publicly available data
from prior works, including 5k trajectories from a Fetch robot [202] and 56k trajectories from
a robot at Google [55]. The full dataset composition is summarized in Table 3.1.

Using and Contributing to RoboNet

The RoboNet dataset allows users to easily filter for certain attributes. For example, it
requires little effort to setup an experiment for training on all robots with a certain type
of gripper, or all data from a Sawyer robot. An overview of the current set of attributes
is shown in Table 3.1, and image examples are provided in Figure 3.2. We provide code
infrastructure and common usage examples on the project website.2

Scripts for controlling common types of robots, for collecting data, and for storing data
in a standard format are available on the project website. On the same webpage we are
also providing a platform that allows anyone to upload trajectories. After data has been
uploaded we will perform manual quality tests to ensure that the trajectories comply with
the standards used in RoboNet: the robot setup should occupy enough space in the image,
the action space should be correct, and the images should be of the right size. After passing
the quality test, trajectories are added to the dataset. An automated quality checking
procedure is planned for future work.

2The project webpage is at http://www.robonet.wiki/

http://www.robonet.wiki/
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Example viewpoints and scenes

End-effector grippers types

Example object types

Example robots

Figure 3.2: Qualitative ex-
amples of the various at-
tributes in the RoboNet
dataset.

Robot type
Sawyer (68k), Baxter (18k),
WidowX (5k), Franka (7.9k),
Kuka (1.8k), Fetch (5k) [202],
GoogleRobot (56k) [55]

Gripper type

Weiss Robotics WSG-50,
Robotiq, WidowX,
Baxter, Franka, Kuka

Arena types 7
Arena inserts 10
Gripper configurations 10
Camera configuration 113
Lab environments 4

Table 3.1: Quantitative overview of the various attributes in
the RoboNet dataset, including the 7 different robot arms
and 7 different grippers.

3.5 Robot-Agnostic Visual Control: Model Training

and Experiments

A core goal of this paper is to study the viability of large-scale data-driven robot learning as
a means to acquire broad generalization, across scenes, objects, and even robotic platforms.
To this end, we design a series of experiments to study the following questions: (1) can
we leverage RoboNet to enable zero-shot generalization or few-shot adaptation to novel
viewpoints and novel robotic platforms? (2) how does the breadth and quantity of data
affect generalization? (3) do predictive models trained on RoboNet memorize individual
contexts or learn generalizable concepts that are shared across contexts? Finally, we evaluate
a simple inverse model to test if RoboNet can be used with learning algorithms other than
visual foresight.

Visual Foresight: Experimental Methodology

For our visual foresight robot experiments, we evaluate models in terms of performance on
the object relocation tasks described in Section 3.3. A task is defined as moving an object
not in the training set to a particular location in the image. After running the learned
policy or planner, we measure the distance between the achieved object position and the goal
position. We judge a task to be successful if the operator judges the object is mostly covering
the goal location at the end of the rollout. Models within an experiment are compared on
the same set of object relocation tasks. We use this evaluation protocol through the rest of
the experiments. Please refer to Appendix B.4 for some images of the testing environments.
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Note that results should not be compared across different experiments, since task difficulty
varies across robots and human operators.

Visual Foresight: Zero-Shot Generalization to New Viewpoints
and Backgrounds

In this section, we study how well models trained on RoboNet can generalize, without any
additional data, to novel viewpoints and held-out backgrounds with a previously seen robot.
Generalizing to a new viewpoint requires the model to implicitly estimate the relative po-
sitioning and orientation between the camera and the robot, since the actions are provided
in the robot’s frame of reference. We attempt five different object relocation tasks from two
views in order to compare a model that has been trained on 90 different viewpoints against a
model that was only trained on single viewpoint. The arrangement of the cameras is shown
in Appendix B.4. In Table 3.2, we show object relocation accuracy results for both of these
models when testing on both the seen viewpoint (left) and a novel viewpoint (right). The
results show that the model trained on varied viewpoints achieves lower final distance to the
goal on the benchmark tasks for both views, thus illustrating the value of training on diverse
datasets.

We tested the same multi-view model on a similar set of tasks in an environment substan-
tially different from the training environment. In Figure 3.3 we show a successful execution
of a pushing task in this new environment. The multi-view model achieves an average final
distance of 14.4 ± 2 cm (std. error) in the new setting. This performance is comparable
to that achieved by the multi-view model in a novel viewpoint, which suggests the model is
also able to effectively generalize to novel surroundings.

t = 0 t = 3 t = 6 t = 9 t = 12

Goal position
Starting position

Final position

Goal specification Final image

Predicted 
trajectory

Actual 
trajectory

Figure 3.3: Zero-shot generalization to new
backgrounds with a model trained across
multiple views.

Avg. dist. (cm)
seen view

Avg. dist. (cm)
held-out view

single view 14.8 ± 3.8 23.2 ± 2.6
multi-view 9 ± 2.2 16.2± 2.9

Table 3.2: Evaluation of viewpoint gen-
eralization, showing the average distance
to the goal after executing the action
sequence and standard error. A model
trained on multiple views can better gen-
eralize to a new viewpoint.

Visual Foresight: Few-Shot Adaptation to New Robots

When evaluating on domains that differ more substantially from any domain present in the
dataset, such as settings that contain an entirely new robotic arm, zero-shot generalization
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is not possible. In this section, we evaluate how well visual foresight can adapt to entirely
new robots that were not shown to the model during training. This is one of the most
challenging forms of generalization, since robots have not only different appearances, but
also different dynamics when interacting with objects, different kinematics, and different
work-space boundaries.

To test our hypothesis, we collect a small number (300-400) of random trajectories from
the target robot environment. Models are then pre-trained on the entirety of RoboNet, but
holding out the data from the target robot. These models are then fine-tuned using the
aforementioned collected trajectories. We compare to a separate model that is trained from
scratch on those trajectories. Additionally, for the Franka experiments another model is
trained on all the Franka data in RoboNet, and for the Baxter experiment one model is
pre-trained on just Sawyer data in RoboNet and fine-tuned to Baxter. The R3 and Fetch
were also not included in the pre-training data due to computational constraints.

Kuka Experiments
Success
rate

Random Initialization
Train on N=400 10%
Random Initialization
Train on N=1800 30%
Pre-train on RoboNet
w/o Kuka, R3, Fetch
Finetune on N=400 40%

Table 3.3: Results for adapta-
tion to an unseen Kuka robot.
The model pre-trained on
RoboNet without the Kuka,
R3, and Fetch data, achieves
the best performance when
fine-tuned with 400 trajecto-
ries from the test robot.

Franka Experiments
Success
rate

Random Initialization
Train on N=400 20%
Random Initialization
Train on N=8000 35%
Pre-train on RoboNet
w/o Franka, R3, Fetch
Finetune on N=400 40%

Table 3.4: Results for adap-
tation to an unseen Franka
robot. The model pre-
trained on RoboNet with-
out the Franka, R3, and
Fetch data, achieves the best
performance when fine-tuned
with 400 trajectories from the
test robot.

Baxter Experiments
Success
rate

Random Initialization
Train on N=300 33%
Pre-train on Sawyer
Finetune on N=300 83%
Pre-train on RoboNet
w/o Baxter
Finetune on N=300 58%

Table 3.5: Evaluation results
for adaptation to an unseen
Baxter robot. The model
pre-trained on RoboNet’s
Sawyer data, achieves the
best performance when fine-
tuned with 300 trajectories
from the test robot.

The quantitative results are summarized in Table 3.3, Table 3.4, and Table 3.5. The
results show that RoboNet pre-training provides substantial improvements over training
from scratch, on all three test robots. In the Kuka and Franka experiments, a model fine-
tuned on just 400 samples is able to outperform its counterpart trained on all of RoboNet’s
data from the respective robot. These results suggest that RoboNet pre-training can offer
large advantages over training tabula rasa, by substantially reducing the number of samples
needed in a new environment. Figure 3.4 shows a successful rollout of visual foresight on a
challenging task of positioning a plastic cup to a desired location.



CHAPTER 3. ROBONET: LEVERAGING DATA FROM MULTIPLE ROBOTS 38

In the Baxter experiment, we also find that pre-training on specific subsets of RoboNet
(in this case the Sawyer, which is visually more similar to the Baxter than other robots) can
perform significantly better than training on the entire dataset. Hence, this experiment (as
well as the Robotiq gripper generalization experiment in Appendix B.5) demonstrates that
increased diversity during pre-training can sometimes hurt performance when compared to
pre-training on a subset of RoboNet. We hypothesize that more specific pre-training works
better, because our models under-fit when trained on all of RoboNet, which we study in
more detail in the next section.

t = 0 t = 3 t = 6 t = 9 t = 12

Goal position
Starting position

Final position

Goal specification Final image

Predicted 
trajectory

Actual 
trajectory

Figure 3.4: Example task of grasping and moving
a thin plastic cup with the Franka robot, using vi-
sual foresight pre-trained on RoboNet w/o Franka
and fine-tuned on 400 trajectories from the Franka
robot.

Visual Foresight:
Model Capacity Experiments

When training video prediction models on
RoboNet, we observe clear signs of under-
fitting. Training error and validation error
are generally similar, and both plateau be-
fore reaching very high performance on the
training sequences. During test time, inac-
curate predictions are often the cause of poor
performance on the robot. Thus, we perform
an additional experiment to further validate
the underfitting hypothesis. We train two
large models, using a simplified determinis-
tic version of the network architecture pre-
sented in [174], on RoboNet’s Sawyer data:
one model has 200M parameters and the other
has 500M parameters. The 200M parameter model has 0.104 ± 0.057 average ℓ1 per-pixel
error on a held out test set, whereas the 500M model has 0.0847± 0.045 ℓ1 per-pixel error.
These results suggest that current visual foresight models – even ones much larger than the
5M - 75M parameter models used in our control experiments – suffer from underfitting, and
future research on higher capacity models will likely improve performance.

Inverse Model: Multi-Robot
and Multi-Viewpoint Reaching

Inverse Model Success

Sawyer Reaching
Front View 4/5
Sawyer Reaching
Unseen View 5/5
Franka Reaching
Front View 4/5

Table 3.6: Inverse model results
on 5 reaching tasks.

To evaluate RoboNet’s applicability to different control al-
gorithms, we train a simple version of the inverse model
from [115] (refer to Section 3.3 for details) on a subset of
RoboNet containing only Sawyer and Franka data. The
same model is evaluated on both robots: the Sawyer experi-
ments also contain a held-out view. We evaluate model per-
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formance on simple reaching tasks. Tasks are constructed
by supplying a goal image, by taking an image of the grip-
per in a different reachable state. After task specification,
the model runs continuously, re-planning each step until a
maximum number of steps is reached. Success is determined by a human judge. This model
is able to perform visual reaching tasks on both robots, including from a novel viewpoint not
seen during training. However, because of its comparatively greedy action selection proce-
dure, we observe that it tends to perform poorly on more complex tasks that require object
manipulation.

3.6 Discussion

We presented RoboNet, a large-scale and extensible database of robotic interaction experi-
ence that combines data from 7 different robots, multiple environments and backgrounds,
over a hundred camera viewpoints, and four separate geographic locations. We demonstrated
two example use-cases of the dataset by (1) applying the visual foresight algorithm [49] and
(2) learning vision-based inverse models. We evaluated generalization across many different
experimental conditions, including varying viewpoints, grippers, and robots. Our experi-
ments suggested that fine-tuning models pretrained on RoboNet offers a powerful way to
quickly allow robot learning algorithms to acquire vision-based skills on unseen robot hard-
ware.

Our experiments further found that video prediction models with ≤ 75M parameters
tend to heavily underfit on RoboNet. While much better, we even observe underfitting on
500M-parameter models. As a result, prediction models struggle to take advantage of the
breadth and diversity of data from multiple robots, domains, and scenes, and instead seem
to perform best when using a subset of RoboNet that looks most similar to the test domain.
This suggests two divergent avenues for future work. On one hand, we can develop algorithms
that automatically select subsets of the dataset based on various attributes in a way that
maximizes performance on the test domain. In the short term, this could provide considerable
improvements with our current models. However, an alternative view is to instead research
how to build more flexible models and policies, that are capable of learning from and larger
and more diverse datasets across many robots and environments. We hope that the RoboNet
dataset can serve as a catalyst for such research, enabling robotics researchers to study such
problems in large-scale learning. Next, we discuss limitations of the dataset and evaluation,
and additional directions for future work.

Limitations. While our results demonstrated a large degree of generalization, a number
of important limitations remain, which we aim to study in future work. First and foremost,
the tasks we consider are relatively simple manipulation tasks such as pushing and pick-and-
place, with relatively low fidelity. This is an important limitation that hinders the ability of
these models to be immediately of practical use. However, there are a number of promising
recent works that have demonstrated how predictive models of observations can be used
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for solving tasks of greater complexity such as tool use [188] and rope manipulation [100],
and tasks at greater fidelity such as block mating [130] and die rolling [167]. Further, one
bottleneck that likely prevents better performance is the quality of the video predictions. We
expect larger, state-of-the-art models [178, 174] to produce significantly better predictions,
which would hopefully translate to better control performance.

Another limitation of our current approach and dataset is the source of data being from
a pre-determined random policy. This makes data collection scalable, but at the cost of
limiting more complex and nuanced interactions. In future work, we plan to collect and
solicit data from more sophisticated policies. This includes demonstration data, data from
modern exploration methods that scale to pixel observations [11, 20, 135], and task-driven
data from running reinforcement learning on particular tasks. As shown in prior work [188],
improving the forms of interactions in the dataset can significantly improve performance.

In selecting how and where to collect additional data, our experiments suggest that
adaptation to new domains is possible with only modest amounts of data, on the order of a
few hundred trajectories. This suggests that prioritizing variety, i.e. small amounts of data
from many different domains, is more important than quantity in future collection efforts.

Future Directions. This work takes the first step towards creating learned robotic
agents that can operate in a wide range of environments and across different hardware.
While in this work, we explored two particular classes of approaches, we hope that RoboNet
will inspire the broader robotics and reinforcement learning communities to investigate how
to scale model-based or model-free RL algorithms to meet the complexity of the real world,
and to contribute the data generated from their experiments back into a shared community
pool. In the long term, we believe this process will iteratively strengthen the dataset, and
thus allow the algorithms derived from it to achieve greater levels of generalization across
tasks, environments, robots, and experimental set-ups.
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Part II

Large-Scale Model-Free Robot
Learning
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Chapter 4

Bridge Data: Imitation Across Tasks
and Domains

4.1 Introduction

In Part I we have addressed how we can construct a model-based reinforcement learning
system that can generalize to new objects, and be fine-tuned to new robots, and scenes.
However the system is not able to learn new tasks, outside the scope of pushing and simple
pick-place motions, due the fact that it collects data with random scripted motions. In Part
II we will introduce imitation learning and offline reinforcement learning-based methods
that leverage large amounts of human demonstration data which contains a variety of more
complex tasks such as turning a faucet or flipping a pot upright. Data for such tasks would
be impossible to collect with random scripted motions.

Humans and animals can generalize a learned skill to a wide variety of contexts without
needing to relearn the skill every time. Endowing robots with the same capability would be
a significant advance toward making robots more applicable to a range of real-world settings.
However, the prevailing paradigm of robot learning is to repeat data collection and policy
training from scratch for every new task and environment. Learning policies in isolation not
only increases the costs of data collection, but also limits the policy’s scope of generalization.

In other fields, such as computer vision [95] and natural language processing (NLP) [39],
utilizing large, diverse datasets has shown considerable success in enabling generalization to
new problems or domains with a small amount of data (e.g., via pretraining and finetuning).
However, in robotics, datasets are usually collected with a specific robotic platform and
domain in mind, typically by the same researcher who intends to use that dataset. What
would it take to make datasets reusable in robotics in the same way as large supervised
datasets are reused (e.g., ImageNet [37])? Each end-user of such a dataset might want their
robot to learn a different task, which would be situated in a different domain (e.g., a different
laboratory, home, etc.). It is currently an open question whether such reuse is feasible in
robotics, and we posit that any such dataset would need to cover both multiple different
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Toy Sink 2

Toy kitchen 1: Flip pot upright

Toy sink 1: Put spoon into pan

Toy sink 2: Put carrot on plate Toy sink 3: Put lid on pot

Toy kitchen 2: Put potato into pot

Toy kitchen 3: Turn faucet to the right

Real Kitchen 1: Wipe plate with sponge

Toy kitchen 4: Put banana in pot

Toy sink 4: Put cup in drying rack Toy sink 5: Put carrot on plate

Figure 4.1: Illustration of our bridge dataset. The dataset includes demonstrations in 10 en-
vironments (4 toy kitchens and 5 toy sinks and 1 real kitchen), collected using a WidowX250
robot controlled via an Oculus Quest2 VR device, and consists of 7200 demonstrations. The
red arrows indicate the desired movement of the target object.

tasks and multiple different domains. To this end, the aim of our paper is to investigate the
degree to which such a multi-task and multi-domain dataset, which we refer to as a bridge
dataset, can enable a new robot in a new domain (which was not seen in the bridge data) to
more effectively generalize when learning a new task (which was also not seen in the bridge
data), as well as to transfer tasks from the bridge data to the target domain. We also propose
a new dataset that enables this goal in the context of kitchen-themed tasks with a low-cost
robotic arm and is intended to be reused by other researchers.

The notion that multi-task data can speed up learning or improve generalization has been
studied in many prior works [198, 85]. However, unlike this paper, the focus in these prior
works, as we discuss in Section 4.2, is not on enabling new users to quickly train generalizable
skills in a new setting or domain, but rather to utilize multi-task learning to lower the data
requirements of acquiring a pre-defined set of tasks. More closely related to our work,
RoboNet [31] contains data from multiple robots and domains, but this data is collected
using random motions, and does not provide examples of multiple different tasks that can be
used for more complex task-directed manipulation. We discuss other datasets in Section 4.2;
but in summary, no existing dataset covers both multiple tasks and multiple domains in a
way that is suitable to study our central hypothesis: can prior data be used to improve the
generalization of new tasks in new domains? We will call this the bridge data hypothesis.
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We believe this is a critical requirement for effective data reuse in robotics, where different
labs and researchers can all bootstrap from the same shared datasets. To study this, we
collected a new multi-domain manipulation dataset with 7,200 demonstrations of 71 distinct
and semantically meaningful tasks, themed around household tasks in kitchen environments.
The data was collected across 10 distinct “toy” kitchens, as shown in Figure 4.1. This data
is suitable for imitation learning, which is the focus of our work, though it could also be
repurposed for offline RL and other algorithms in the future. We present our new dataset,
and then use it to evaluate the bridge data hypothesis that is stated above, using three types
of transfer scenarios: (1) When the user needs to train an existing task in a new domain,
does the inclusion of bridge data boost performance? This roughly corresponds to a standard
domain adaptation setting. (2) After the user has collected some data for a few tasks in a
new domain, can their robot then perform other tasks that were not seen in the new domain,
but are only present in the bridge data (i.e., can it “import” tasks from the bridge data)?
(3) When the user collects some data in a new domain for a task that was not seen in the
bridge data, can the performance and generalization of this task be boosted by including the
bridge data in training? Scenario (3) directly evaluates our central hypothesis, while the
other scenarios illustrate other potential uses for bridge data.

The main contributions of our work consist of an empirical evaluation of the bridge data
hypothesis and a practical example of a bridge dataset with 7,200 demonstrations for 71
tasks in 10 environments, which we have released publicly on the project website1. To the
best of our knowledge, our work is also the first to demonstrate transfer scenarios (2) and
(3) above. This is significant, because (2) provides users with a low-cost way to “import”
all of the skills in the bridge dataset into their own domain with just a small number of
demonstrations in their domain, while (3) provides for a way to boost the performance of
an entirely new skill with previously collected reusable bridge data. Our results suggest
that accumulating and reusing diverse multi-task and multi-domain datasets, at least when
all data is collected with the same type of robot, may make it possible for researchers to
endow robots with generalizable skills using only a modest amount of in-domain data for
their desired task.

4.2 Related Work

While most prior work on deep visuomotor learning trains a single task in a single domain
[60, 44, 77, 201, 113, 154, 66, 168, 208], our goal is not to develop better learning methods,
but rather to illustrate how generic multi-domain, multi-task datasets can be used with
existing algorithms to boost the generalization of new tasks in new domains. Prior work
on multi-task reinforcement learning [85] has shown that data from other tasks can boost
generalization of new tasks, however this study is carried out in a single domain.

Existing robot learning datasets do not exhibit the right properties for boosting the
generalization of new tasks in new domains or zero-shot transferring skills from the prior

1https://sites.google.com/view/bridgedata

https://sites.google.com/view/bridgedata
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Dataset # Tasks # Trajec. # Domains
suitable

for BC/IL

DAML [201] > 100 2.9k 1 ✓
MIME [155] 22 8.2k 1 ✓
RoboNet [31] N/A 162k 7 ✗
RoboTurk [117, 118] 3 2.1k 1 ✓
Vis. Imit. Made [195] 2 2k 50 ✓
Ours 71 7.2k 10 ✓

Figure 4.2: Comparison of our dataset and prior works. Our dataset has by far the most
tasks, and is the only dataset with more than 2 tasks that has many domains. This is critical
for evaluating the bridge data hypothesis.

dataset to a target domain. We provide an overview of the most related datasets in Figure 4.2.
Most existing robot datasets, such as MIME [155], DAML [201], RoboTurk [117, 118], and
many others [142, 57, 110, 87, 50, 206, 85] only feature a single domain, making them difficult
to use for boosting the generalization in other domains. Merging multiple existing datasets
into one multi-domain dataset is difficult due to inconsistencies in data collection protocols,
time discretization, robot morphologies, and sensors. Learning from multiple robots has
been studied with RoboNet [31], which provides a dataset with 7 different robots in different
domains. Here the data is generated with random motions which do not produce semantically
meaningful tasks. This limits task complexity to pushing and basic grasping, and makes the
data poorly suited for imitation learning.

Some prior works have also used datasets collected by humans without a robot, across
multiple domains. For example, Young et al. [195] presents results on data across many
more domains than our bridge data, collected via a hand-held gripper, but only presents two
grasping tasks.

4.3 Bridge Datasets

In this section, we describe the basic principles behind bridge datasets and how they can be
used to boost generalization. Then, we present a description of the specific bridge dataset
that we collected using teleoperation of a low-cost robotic arm for a range of kitchen-themed
manipulation tasks. We use the term bridge dataset to refer to a large and diverse dataset of
robotic behaviors collected in a range of settings (e.g., different viewpoints, lighting condi-
tions, objects, and scenes), for a range of different tasks, so as to make it possible to “bridge”
gaps in the generalization that arise when the user provides a small to medium amount of
data in their specific target domain. We define the term “target domain” to refer to the
environment where the robot must perform the desired task. This target domain is distinct
from any of the settings seen in the bridge dataset: the intent is for the same large bridge
dataset to be used by all users for whichever target domain they require.
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Oculus Quest 2 
Headset

WidowX 250s
(6dof)

1 Camera fixed
relative to robot

Oculus Quest 2 
Controller

4 Cameras on
flexible rods

Figure 4.3: Demonstration data collection setup using VR Headset. The scene is captured
by 5 cameras simultaneously. While one of the cameras is fixed, the others are mounted on
flexible rods.

Boosting Generalization via Bridge Datasets

We consider three types of generalization in our experiments, though other modes may also
be feasible:
(1) Transfer with matching behaviors, where the user collects some small amount of
data in their target domain for tasks that are also present in the bridge data (e.g., around
50 demos per task), and uses the bridge data to boost the performance and generalization of
these tasks. We illustrate this scenario in Figure 4.4. This scenario is the most conventional,
and resembles domain adaptation in computer vision, but it is also the most limiting, since
it requires the user’s desired tasks to be present in the bridge data. However, as we will
show, bridge data can enable very significant performance and generalization boosts in this
setting.
(2) Zero-shot transfer with target support, where the user utilizes data from a few
tasks in their target domain to “import” other tasks that are present in the bridge data
without additionally collecting new demonstrations for them in the target domain. For
example, the bridge data contains the tasks of putting a sweet potato into a pot or a pan,
the user provides data in their domain for putting brushes in pans, and the robot is then



CHAPTER 4. BRIDGE DATA: IMITATION ACROSS TASKS AND DOMAINS 47

Toy Kitchen 1

Toy Sink 1

Toy Sink 2

Bridge-Data

Joint 
Bridge-Target 

ImitationToy  Kitchen 
2

Rollout in Target Domain for Turn Lever Task

Turn Lever Task

Target Domain Data: Toy Sink 3

Figure 4.4: Scenario (1): transfer with matching behaviors. In this setting, bridge data is
used to improve the performance and generalization of tasks in the target domain for which
the user has collected some amount of data. These tasks must also be present in the bridge
data. In this example, the user demonstrates the “turn lever,” “squash into pot,” and “flip
cup” tasks in the target domain, and these tasks are also present in several domains in the
bridge data. After including the bridge data in training, the performance and generalization
of these tasks in the target is significantly higher.

able to both put brushes as well as put sweet potatoes in pans. We illustrate this scenario
in Figure 4.5. This scenario increases the repertoires of skills that are available in the
user’s target environment, simply by including the bridge data, thus eliminating the need to
recollect data for every task in every target environment.
(3) Boosting generalization of new tasks, where the user provides a small amount of
data (50 demonstrations in practice) for a new task that is not present in the bridge data,
and then utilizes the bridge data to boost generalization and performance of this task. This
scenario, illustrated in Figure 4.6, most directly reflects our primary goals, since it uses the
bridge data without requiring either the domains or tasks to match, leveraging the diversity
of the data and structural similarity to boost performance and generalization of entirely new
tasks.

To enable this kind of generalization boosting, we conjecture that the key features that
bridge datasets must have are: (i) a sufficient variety of settings, so as to provide for good
generalization; (ii) shared structure between bridge data domains and target domains (i.e., it
is unreasonable to expect generalization for a construction robot using bridge data of kitchen
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Toy Kitchen 1

Toy Sink 1

Toy Sink 2

Target Domain Data: Toy Sink 3

Toy Kitchen 2

Roll out Put sweet potato in pot in Toy Sink3

Put sweet potato in pot

Put sweet 
potato in 
pot not 
included.

Transfer

Joint 
Bridge-Target 

Imitation

Bridge-Data

Figure 4.5: Scenario (2): zero-shot transfer with target support. In this setting, the goal is
to “import” a task from the bridge data that was not seen in the target domain. The user
provides a few tasks in the target domain that are used to connect to the bridge data, and
then asks the robot to perform a task that they did not provide, but which was seen in the
bridge data. In this case, the “put sweet potato in pot” task is present in the toy kitchen 1
domain in the bridge data, but is not demonstrated by the user in the target domain. After
training with user-provided data for other tasks, the robot is able to perform “put sweet
potato in pot” in the target domain.

Bridge-Data

Improved Generalization for “Put Brush in Pan” Task

Target Task (not in Bridge Data)

Joint 
Bridge-Target 

Imitation

Figure 4.6: Scenario (3): boosting generalization of new tasks. The user provides some data
for a new task that was not seen in the bridge data, and the bridge data is included in
training to boost performance and generalization for this new task.
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tasks); (iii) a sufficient range of tasks that breaks unwanted correlations between tasks and
domains. Analogously to how the ImageNet dataset [37] provides broad coverage that makes
it possible to boost generalization for a range of computer vision tasks, the broader a bridge
dataset is, the more likely target tasks receive a generalization boost in a particular target
domain.

A Bridge Dataset of Large-Scale Kitchen Tasks

We instantiate a bridge dataset based on the principles above as follows:
Robotic system overview. Since our dataset is likely the most useful for users with the
same or similar type of robot, we chose to use a low-cost and widely available robot, a 6-
dof WidowX250s (US$2900), which many other users of our dataset are likely to be able to
obtain. The total cost of the setup is less than US$3600 (excluding the computer). To collect
demonstrations, we use an Oculus Quest headset, where we put the headset on a table as
illustrated in Figure 5.1 next to the robot and track the user’s handset while applying the
user’s motions to the robot end-effector via inverse kinematics. We capture images from 3 to
5 cameras concurrently, using standard webcams as well as Intel RealSense depth cameras.
Data collection protocol. Our proposed bridge dataset, illustrated in Figure 4.1 consists
of a total of 7200 demonstrations for 71 different tasks, collected in 10 different environ-
ments, focusing on the theme of household kitchen tasks. Each task has between 50 and
300 demonstrations. We opted to use kitchen and sink ”play sets” for children, since they
are smaller than real-world kitchens and therefore ideal for small-scale robots, and they
are comparatively robust and low-cost, while still providing settings that resemble typical
household scenes. During data collection we randomize the kitchen position (translations of
0-20cm) and the camera positions (translations of 0-10cm and rotations of 0-30 degrees) for
all cameras on flexible rods every 25 trajectories. The positions of distractor objects (i.e.
objects not needed for a task) are randomized at least every 5 trajectories. All environments
except toy sink 4, toy sink 5, and kitchen 3 were collected at Institution 1 and use Logitech
C920 webcams, the three remaining environments were collected at Institution 2 and use
Intel RealSense RGB-D cameras. The trajectories collected at Institution 2 randomize all
camera positions once every 50 trajectories. Instructions for how users can reproduce our
setup and collect data in new environments can be found on the project website.2

4.4 Using Bridge Data in Imitation Learning

As a proof-of-concept to illustrate the utility of bridge datasets for boosting generalization
in robot learning, we will present experimental results for an imitation-based approach that
utilizes this data, although the data could also be used with a variety of other robotic learning
algorithms such as offline RL and model-based planning.

2https://sites.google.com/view/bridgedata

https://sites.google.com/view/bridgedata
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Incorporating bridge data. While a variety of transfer learning methods have been
proposed in the literature for combining datasets from distinct domains, we found that a
simple joint training approach is effective for deriving considerable benefit from bridge data.
For each of the scenarios outlined in Section 4.3, we take the user-provided demonstrations
in the target domain and combine them with the entire bridge dataset for training. Since
the sizes of these datasets are significantly different, we rebalance the datasets by weighting
each datapoint, as discussed at the end of this section. Imitation learning then proceeds
normally, simply training the policy with supervised learning on the combined dataset using
the architecture described in the following paragraph. It is also possible to incorporate bridge
data in other ways, for example by pretraining and finetuning. We found pretraining to be
significantly less effective than joint training in our experiments, a finding that is consistent
with prior works [110], but we emphasize that bridge datasets can be combined with target
domain data in a variety of ways. Policy architecture. We use task-conditioned behavioral
cloning (BC) with an additional task-id input to the policy, which is used to distinguish tasks
during training and testing. In some cases, a task cannot be uniquely determined by only
observing the input image, and a one-hot vector representing the task will solve this issue.
The images are first fed into a 34-layer ResNet [73] and the resulting feature maps are
passed through a spatial softmax [59, 108], which extracts a set of spatial positions of the
relevant features. The spatial features are then concatenated with the one-hot task-id vector,
and are fed into 3 layers of fully-connected networks by which the final action prediction is
produced. During training, for a batch of training data containing tuples of task ids, images,
and ground-truth actions, the network is trained by minimizing the standard ℓ2-error between
the ground-truth actions and the predicted actions given by the policy provided the task id
and the image observation as the input.

Training details. Since the amount of target domain data is usually significantly less
than the amount of bridge data, we rebalance the two datasets during training. In the
matching behaviors and zero-shot transfer with target support scenarios, the ratio between
the number of trajectories in the bridge and target data is roughly 10:1, and we rebalance
the data such that 70% of the dataset is bridge data and 30% is target domain data. In the
“boosting generalization of new tasks” scenario the imbalance is more severe, roughly 60:1,
and so we rebalance such that 90% of the dataset is bridge data and 10% is target domain
data. Lower rebalancing ratios of bridge data and target domain data tend to produce
overfitting when the amount of target domain data is as low as 50 demonstrations.

4.5 Experimental Results

Our experimental evaluation aims to study how well bridge data can facilitate general-
ization in scenarios (1), (2), and (3), as outlined in Section 4.3. We utilize the bridge
dataset described in Section 4.3. We evaluate generalization on a set of new target do-
mains with limited target domain data for each of the generalization scenarios, and compare
the performance of learned policies with and without bridge data. Videos of the experi-
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Figure 4.7: Comparisons of joint training with bridge data (blue) and other approaches for
each type of scenario. The black vertical lines on the average success rate bar denote the
standard error of the mean across different tasks for that scenario. Left: Performing joint
training on bridge and target data leads to improved performance, here the task is included
both in the bridge and target dataset. Middle: Using target domain data from other tasks
helps transferring tasks from the bridge dataset to the target domain. Right: Joint training
with the bridge data and a target task that is not contained in the bridge dataset enables
significant generalization improvement compared to only training on the target task alone.
Tasks with an asterisk (*) uses objects that are not part of the bridge dataset.

ments are included in the supplementary materials and on the project webpage, which we
encourage the reader to view to get a clearer sense for the diversity of the tasks: https:

//sites.google.com/view/bridgedata

Quantitative metrics. All quantitative evaluations use 10 trials per task,varying object
positions and distractors on every trial and varying the position of the robot relative to the
environment every 5 trials. This ensures that all test configurations are unique and different
from any condition seen in training, providing a measurement of generalization performance
for the policy. When the experiments in toy kitchen 1-3 and toy sink 1-3 were conducted,
the bridge dataset only comprised 4700 trajectories. Other experiments use the full dataset
with 7200 trajectories total.
Scenario (1): transfer with matching behaviors. Figure 4.7 (left) shows results for the
transfer learning with matching behaviors scenario, where the user provides some data for a
set of tasks in the target domain (which are also present in the bridge data), and we evaluate
whether including bridge data during training improves performance and generalization. For
comparison, we include the performance of the policy when trained only on the target domain
data, without bridge data (Target Domain Only), a baseline that uses only the bridge data
without any target domain data (Direct Transfer), as well as baseline that trains a single-

https://sites.google.com/view/bridgedata
https://sites.google.com/view/bridgedata
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Figure 4.8: Examples of successful trajectories performed by the policy jointly trained with
prior data and target domain data. Left: put pot in sink (scenario 1); middle: put carrot
on plate (scenario 2); Right: wipe plate with sponge (scenario 3).

task policy on data in the target domain only (Single Task). The Toy Kitchen 2 (tk2) target
domain has 6 tasks, and Toy Sink 3 (ts3) has 10 tasks, each with 50 demonstrations.

As can be seen in the results, jointly training with the bridge data leads to significant
gains in performance (66% success averaged over tasks) compared to the direct transfer (14%
success), target domain only (28% success) and the single task (18% success) baseline. This
is not surprising, since this scenario directly augments the training set with additional data
of the same tasks, but it still provides a validation of the value of including bridge data in
training (for a qualitative example see Figure 4.8, left).
Scenario (2): zero-shot transfer with target support. In the next experiment, we
evaluate tasks in the target domain for which the user did not provide any data. Instead,
the user only collected data for other tasks in the target domain. This experiment evaluates
whether bridge data can be used to “import” tasks into the target domain. We provide a
qualitative example for this scenario in Figure 4.8 middle, which shows an experiment where
we transfer the “put carrot on plate” task into the Toy Sink 1 target domain using the
bridge data and target domain data consisting of 10 other tasks. Due to space constraints,
We provide a visualization of these other tasks on the project webpage.

Since there is no target domain data for these tasks, we cannot compare to a baseline
that does not use bridge data at all, since such a baseline would have no data for these tasks.
However, we do include the “direct transfer” baseline, which utilizes a policy trained only
on the bridge data. Note that this comparison is non-trivial: it is not at all clear a priori
that target domain data for other tasks should boost transfer performance of tasks that are
only present in the bridge data. The results, shown in Figure 4.7 (middle), indicate that
the jointly trained policy which obtains 44% success averaged over tasks indeed attains a
very significant increase in performance over direct transfer (30% success), suggesting that
the zero-shot transfer with target support scenario offers a viable way for users to “import”
tasks from the bridge dataset into their domain.
Scenario (3): boosting generalization of new tasks. The last generalization scenario,
which most directly evaluates the bridge data hypothesis, aims to study how well bridge data
can boost the generalization of entirely new tasks in the target domain, which are not present
in the bridge data. To study this question, we collected data for 10 different unique tasks in 4
different environments and excluded them from the bridge data to simulate a user collecting
their own unique task in their new target environment. Figure 4.8 right illustrates one of
these scenarios, where we collected 50 demonstrations for the “wipe place with sponge” task
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in the the real kitchen 1 target domain. Neither data from the target domain nor this task
or this object are present in the bridge data. After jointly training with both bridge and
target data we obtain a significant generalization boost when running the policy in the target
domain, compared to a policy trained on only the single-task target domain data. Direct
transfer is impossible here, because the bridge data does not contain this task. The results
are presented in Figure 4.7 (right), and show that training jointly with the bridge data leads
to significant improvement on 6 out of 10 tasks across three evaluation environments, leading
to 50% success averaged over tasks, whereas single task policies attain around 22% success
– a 2× improvement in overall performance (the asterisks denote in which experiments the
objects are not contained in the bridge data). The significant improvements obtained from
including the bridge data suggest that bridge datasets can be a powerful vehicle for boosting
generalization of new skills, and that a single shared bridge dataset can be utilized across
a range of domains and applications. Of course, structural similarity between environments
and tasks is important, and all of these evaluations use other toy kitchen or sink setups. We
expect the applicability of a bridge dataset to increase as the breadth of domains and tasks
in the dataset increases. When does bridge data help? In Figure C.1 we provide a list of
example scenarios where the bridge data helps and where it does not (the first 7 rows). More
qualitative results, including videos of these tasks and additional discussion, are provided
on the project https://tinyurl.com/rt3uwwebsite due to space constraints. Qualitatively,
we observed that the tasks that most consistently benefit from the inclusion of bridge data
contain objects that visually resemble those seen in the bridge data (e.g., there are gains for
‘put pear in bowl,’ where the pear resembles the vegetables in the bridge data, but no gains
in ‘flip orange pot upright,’ since the orange pot looks very different from any container in
the bridge data), contain behavior that physically is related to behavior seen in the bridge
data (e.g., in ‘put detergent in dry rack,’ the bridge data helps since the motion resembles
the pick-and-place motions in the prior data, whereas in ‘open box flaps’ bridge data does
not help since the type of pushing motions involved in this task are very rare in the bridge
data), and take place in domains that are visually and structurally related to those in the
bridge data (e.g., the bridge data helps with ‘wipe plate with sponge’ in Figure 4.8 in a real
kitchen, but does not help with ‘pick screwdriver from tool chest task,’ since the scene does
not resemble the toy kitchens in the bridge data). Unfortunately, it is difficult to provide a
more precise and formal treatment of when transfer learning succeeds in general, though we
expect this would be an exciting direction for future research.

4.6 Conclusion

We show how a large, diverse bridge dataset can be leveraged to improve generalization in
robotic learning. Our experiments demonstrate that including bridge data when training
skills in a new domain can improve performance across a range of scenarios, both for tasks
that are present in the bridge data and, perhaps surprisingly, entirely new tasks. This
means that bridge data may provide a generic tool to improve generalization in a user’s
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target domain. In addition, we showed that bridge data can also function as a tool to import
tasks from the prior dataset to a target domain, thus increasing the repertoires of skills a user
has at their disposal in a particular target domain. This suggests that a large, shared bridge
dataset, like the one we have released, could be used by different robotics researchers to boost
the generalization capabilities and the number of available skills of their imitation-trained
policies.

Both our experimental evaluation and our technical approach do have a number of limita-
tions. While we carefully set up our experiments to reflect a likely real-world usage scenario,
where the target domain is distinct from the bridge data (i.e., to reflect what would happen
if someone else were to use our bridge data for their robot in their lab), we still only evaluate
in a few distinct settings, namely in 5 different environments at Institution 1.

However, our imitation learning results do illustrate the benefits of diverse bridge data,
and we hope that by releasing our dataset to the community, we can take a step toward
generalizing robotic learning and make it possible for anyone to train robotic policies that
readily generalize to varied environments without repeatedly collecting large and exhaustive
datasets.
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Chapter 5

Pre-training For Robots: Offline RL
on Diverse Data

5.1 Introduction

The previous chapter discussed how a simple behavioral cloning algorithm can be used to
leverage diverse multi-domain multi-task data to learn new tasks in new domains more
efficiently and to transfer tasks from one domain to the other. In this chapter we will focus
on applying offline-reinforcement learning to the same problem and show that success rates
are significantly improved. The rationale for applying offline RL to this problem is as follows:

Robotic reinforcement learning (RL) algorithms aim to learn skills via trial-and-error
interaction with the real world [91, 140]. While reinforcement learning algorithms have led
to impressive robotic demonstrations [108, 86, 85, 3, 195], running trial-and-error learning
from scratch often limits the capabilities of these algorithms. This is because training on
large diverse datasets is crucial for obtaining neural network policies that can generalize well,
but the human effort, wall-clock time, and safety challenges associated with trial-and-error
reinforcement learning make it difficult for a robot to autonomously collect diverse experience
in a scalable manner. This in turn prevents a trial-and-error style RL algorithm from learning
generalizable policies. A natural way to circumvent this limitation is to incorporate existing
diverse robotic datasets into the training pipeline of a robotic RL algorithm.

An appealing paradigm for incorporating large and diverse datasets into robotic RL with-
out the need to constantly recollect large datasets in the real world is to employ offline RL,
where a large previously collected dataset can be used to bootstrap a policy for a particular
task. This paradigm bears the promise of inducing effective generalization capabilities by
training highly expressive neural networks on large amounts of diverse, robotic experience,
aiming to mimic the success of deep learning in computer vision [43] and NLP [18, 39]. How-
ever, in practical robotic learning settings, we typically want the robot to perform a task
with new objects that are not illustrated in the prior data. Can we develop a framework for
robotic reinforcement learning where large amounts of prior data for other objects and tasks
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are used in conjunction with much more limited amounts of task-specific data to enable the
robot to learn to manipulate new objects efficiently?

In this paper, we develop a robotic system that can utilize general-purpose robotic
datasets along with small amounts of task-specific data to learn policies that can solve a
downstream task with novel objects. Our robotic system relies on offline pre-training via
offline RL methods, followed by finetuning. In the first phase, our approach extracts a gen-
eralist policy by running offline multi-task RL on large robotic datasets, labeling the offline
dataset with sparse binary rewards. This kind of large-scale multi-task training requires be-
ing able to utilize large, highly expressive deep neural networks, which presents a challenge
for offline RL methods [14], and we find some practical architectural design choices that allow
us to train highly-expressive ResNets successfully with offline RL. In the second phase, we
convert this generalist policy into a specialist policy for a given target task by finetuning on
limited amounts of data for the downstream task. This finetuning can be performed entirely
offline, only using between 10 to 50 demonstrations from the target task, without needing to
repeat the entire offline RL process or utilizing any sophisticated tools from prior work [104].

Our main contribution is pre-training for robots, or PTRin short, a robotic learning sys-
tem that can utilize diverse robotic datasets to pre-train a general-purpose initialization for
downstream task learning. PTR combines several previously proposed ideas into a complete
robotic learning system, using the CQL algorithm [97] in combination with multi-task pre-
training to provide a general offline RL-based initialization. We use large datasets, such as
the Bridge dataset [45] and extended versions thereof. To train on such diverse datasets with
offline RL, we discuss a number of important design decisions, including neural net architec-
tures that we find particularly effective in this setting. Empirically, our results demonstrate
that offline RL pre-training followed by offline RL finetuning on individual tasks can sig-
nificantly improve over the performance of imitation learning methods proposed in prior
work [45] as well as running joint training on all tasks from scratch. This finding is signifi-
cant because it indicates that, even though both the prior dataset and the new task-specified
demonstrations consist of expert human demonstrations, PTRcan leverage such data more
effectively than imitation learning and standard offline RL methods.

5.2 Related Work

A number of prior works have proposed algorithms for offline RL [63, 98, 97, 94, 93, 184,
81, 61, 158]. Our goal is not to develop new offline RL methods, but to devise a complete
robotic learning system based on offline RL pre-training from multi-task datasets and fine-
tuning to downstream tasks. Prior works that study finetuning have examined parameter
sharing [181, 134, 163, 51, 75, 198, 191, 194, 162, 85, 197], applying some form of data
sharing or relabeling strategy [197, 6, 199, 85, 186], and utilizing diverse multi-task data
for representation learning [116, 193, 192, 129]. Our focus is on developing an offline RL
system for real-world robotic learning, which can specifically be used to pre-train on a diverse
multi-task dataset and then specialize the policy to one or multiple downstream tasks.
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Offline RL Fine-tuning on Target Data + Bridge DataOffline RL Pretraining on Bridge Dataset

10 domains 
100 tasks 

12k demos

Put Sushi in Pot, Task ID:

Put Eggplant on Plate, Task ID:

Put Eggplant on Plate, Task ID:

put corn in bowl, Task ID:

Target dataset

1. Pre-train on bridge data 2. Fine-Tune on Mix of Bridge Data and Target Data

Batch-mixing bridge and target data

Figure 5.1: Overview of the proposed system, PTR: We first perform general offline pre-
training on diverse multi-task robot data and subsequently finetune on one or several a
target tasks while mixing batches between the prior data and the target dataset using a
batch mixing ratio of τ .

Methods for online finetuning from offline RL initialization [126, 93, 104] focus on im-
proving policies learned from offline datasets with minimal online interaction. Unlike these
works, we consider the setting where the offline dataset does not need to include data nor
rewards for the downstream task. This resembles the problem setting considered by offline
meta-RL methods [111, 41, 122, 144, 112]. However, we consider notably more complex tasks
(e.g., grasping objects from image observations on a real robot) than these prior works.

In the field of robotic learning, quite a few prior works have sought to utilize offline
datasets [142, 50, 57, 68, 116, 30, 147, 96, 119, 160, 161, 183, 129, 150] to avoid trial-and-
error learning, some building on offline RL methods [1, 176, 97, 137, 200]. Prior works
have also sought to utilize offline datasets in conjunction with some task-specific online
interaction, primarily focusing on the single-task setting [148, 138, 173, 92, 70, 128, 126, 93,
101, 104, 119]. Some prior works do consider the multi-task setting, but the offline dataset
already contains skills needed to solve the target task [89, 125, 160, 3]. In our setting, the
offline dataset does not necessarily have to contain the skill needed to solve the downstream
task, and this skill can be acquired during the process of finetuning. A number of prior
methods have sought to apply online RL to robotic control by utilizing simulated training,
with various methods for transfer into the real world [76, 149]. This work is distinct and
partly complementary to ours: our method could also use simulated prior data, but our focus
is specifically on developing methods that don’t require online RL, thus removing the need
for hand-engineered simulators all together.

Most closely related to our work are prior methods that run model-free offline RL on
diverse real data and then finetune to new tasks [160, 85, 82, 24, 101]. We propose a multi-
task pre-training scheme followed by finetuning to one or multiple target tasks with a small
amount of data. In contrast, these prior methods use significantly more data for the new



CHAPTER 5. PRE-TRAINING FOR ROBOTS: OFFLINE RL ON DIVERSE DATA 58

task than our system: PTR can learn a new task with as few as 10 demonstrations, while
prior works use several thousand trials for the new task [24, 85] or multiple hours or even
days of online collection [82, 101]. Our work also shows that it is possible to pre-train on
a previously-collected multi-task and multi-domain dataset, in contrast to prior work that
uses data from a single environment [160, 85, 24] or a single task [82]. We also show that
pre-training and finetuning with offline RL exceeds the performance of imitation learning,
even when all data consists of demonstrations, unlike prior work that showed imitation
to perform better in such settings [119] and unlike prior RL work that uses high-coverage
scripted data [160, 85, 82, 24].

5.3 Preliminaries and Problem Statement

Robotic RL methods are derived under the formal model of a Markov decision process
(MDP), which is defined as a tuple M = (S,A, T, r, µ0, γ), where S,A denote the state
and action spaces, and T (s′|s, a), r(s, a) represent the dynamics and reward function respec-
tively. µ0(s) denotes the initial state distribution, and γ ∈ (0, 1) denotes the discount factor.
The policy π(a|s) learned by RL agents must optimize the long-term cumulative reward,
maxπ J(π) := E(st,at)∼π[

∑
t γ

tr(st, at)].
Problem statement. Our goal is to learn general-purpose initializations from a broad,
multi-task offline dataset and then finetune these initializations to specific downstream tasks.
We denote the general-purpose offline dataset by D, which is partitioned into k chunks. Each
chunk contains data for a given robotic task (e.g., picking and placing a given object) collected
in a given domain (e.g., a particular kitchen). See Figure 5.1 for an illustration. Denoting
the task/domain abstractly using an identifier i, the dataset can be formally represented as:
D = ∪k

i=1 (i,Di), where we denote the set of training tasks concisely as Ttrain = [k]. Chunk Di

consists of data for a given task identifier i, and consists of a collection of transition tuples,
Di = {(sij, ai

j, r
i
j, s
′i
j )}nj=1 collected by a demonstrator on task i. Our goal is to utilize this

multi-task dataset D, to find the best possible policy for one or multiple target tasks (denoted
without loss of generality as task Ttarget = {k+1, · · · , n}), for which no experience is observed
in D. While the diverse dataset D does not contain any experience for the target tasks,
we are provided with a very small dataset of demonstrations D∗ := {D∗k+1,D∗k+1, · · · ,D∗n}
corresponding to each of the target tasks. Note that the size of D∗ is extremely small: in
our experiments we consider between 10 to 50 demonstrations for a given target task, such
that a policy that simply ignores the diverse offline dataset is unlikely to succeed. Our goal
is to attain the best possible policy for tasks Ttarget at the end.
Background and preliminaries. The Q-value of a given state-action tuple Qπ(s, a) for a
policy π is the long-term discounted reward attained by executing action a at state s and
following policy π thereafter. The Q-function of any policy in an MDP satisfies the Bellman
equation Qπ(s, a) = r(s, a) + γEs′,a′ [Qπ(s′, a′)]. Typical model-free offline RL methods [98,
63, 81, 97, 61] alternate between estimating the Q-function of a fixed policy π using the offline
dataset D and then improving the policy π to maximize the learned Q-function. Our system,
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PTR, utilizes one such model-free offline-RL method, conservative Q-learning (CQL) [97].
We will discuss how we adapt CQL for general-purpose pre-training on diverse data followed
by single-task finetuning in Section 5.4.
Tasks and domains. Our problem statement involves pre-training on data from many
tasks and domains, which we source from the bridge dataset [45], and finetuning to a new
task in a new domain. This is only viable when the domains and tasks have something
in common. Our terminology for “task” and “domain” follows ebert2021bridge: a task
corresponds to a skill-object pair, such as “put potato in pot” and a domain corresponds
to a particular environment, which in the case of the bridge dataset consists of different
toy kitchens, potentially with different viewpoints and robot placements. We assume the
new tasks and environments resemble the ones seen in training (i.e., come from the same
distribution), but are not seen in the prior data. We describe the specific tasks in Section 5.5.

5.4 Learning Specialist Policies for New Tasks from

Diverse Data Pre-training

To effectively solve new tasks from diverse offline datasets, a robotic learning system must:
(1) extract useful skills out of the diverse robotic dataset, and (2) rapidly specialize the
learned skills towards an unseen target task, given only a minimal amount of experience
from this target task. In this section, we present our system, PTR, that provides these
benefits by training a single, highly-expressive deep neural network policy on the diverse
robotic dataset via multi-task offline RL, and then specializes it on the target task with a
small amount of data. We will first present the key components of our robotic system in
Section 5.4 and then discuss some practical design choices that are crucial for attaining good
performance in Section 5.4.

The Components of PTR

To satisfy both requirements (1) and (2) from above, our robotic system uses a multi-
task offline RL approach, where the policy and value function are conditioned on a task
identifier. This allows us to share a single set of weights for all possible tasks in the diverse
offline dataset, providing a general-purpose pre-training procedure that can use diverse data.
We would expect this multi-task training to replicate the generalization benefits of training
highly-expressive neural network models via supervised learning, but in the context of robotic
RL. Once a policy is obtained via this generalist pre-training process, we adapt this policy for
solving a new target task by utilizing a very small amount of target task data. We describe
the two phases (pre-training and fine-tuning) below:

Phase 1: Generalist multi-task offline RL pre-training. In the first phase, our
system learns a single Q-function and policy for all tasks i ∈ Ttrain conditioned on the task
identifier i, i.e., Qϕ(s, a; i) and πθ(a|s, i), via multi-task offline RL. We use a one-hot task
identifier that imposes minimal assumptions on the task structure. For multi-task offline
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RL, we use the conservative Q-learning (CQL) [97] algorithm, extending it to the multi-task
setting. This amounts to training the multi-task Q-function against a temporal difference
error objective along with a regularizer that explicitly minimizes the expected Q-value under
the learned policy πθ(a|s; i), to prevent overestimation of Q-values for out-of-distribution
actions, which can lead to poor offline RL performance [98]. Formally, the training objective
for our multi-task Q-function, as prescribed by CQL, is given by:

min
ϕ

α

 E
i∼Ttrain,
s∼Di,a∼π

[Qϕ(s, a; i)]− E
i∼Ttrain,
s,a∼D

[Qϕ(s, a; i)]

+
1

2
E

i∼Ttrain,
s,a,s′∼D
a′∼π

[(
Qθ(s, a; i)− r − γQ̄(s′, a′)

)2]
,

Q̄ denotes a target Q-network, which a delayed copy of the current Q-network. We train ϕ
by running gradient descent on the above objective, and then optimize the learned policy to
maximize the learned Q-values, along with an additional entropy regularizer as shown below:

max
θ

Ei∼Ttrain,s∼Di

[
Ea∼πθ(·|s;i)[Qϕ(s, a; i)]

]
+ βH(πθ).

At the end of this multi-task offline training phase, we obtain a policy πoff
θ and Q-function

Qoff
ϕ , that are ready to be finetuned to a new downstream task.

Phase 2: Fine-tuning πoff
θ and Qoff

ϕ to target tasks Ttarget. In the second phase,
our system attempts to learn a policy to solve one or more downstream tasks by adapting
πoff
θ , using a limited set of user-provided demonstrations that we denote D∗. Our method

for adaptation is simple yet effective: we incorporate the new target task data into the
replay buffer of the very same offline multi-task CQL algorithm from the previous phase
and resume training from Phase 1. However, näıvely incorporating the target task data into
the replay buffer might still not be effective since this scheme would hardly ever train on
the target task data during adaptation due to the large imbalance between the sizes of the
few target demonstrations and the large pre-training dataset. To address this imbalance, we
propose to create minibatches that contain a higher proportion of data from the target task
compared to the pre-training dataset during fine-tuning. Specifically, each minibatch passed
to multi-task CQL during offline fine-tuning consists of a τ fraction of transitions from bridge
demonstration data and 1 − τ fraction of transitions from the target dataset. By setting τ
to be sufficiently small, we are able to prioritize multi-task CQL to look at target task data
frequently, enabling it to make progress on the downstream task(s) without overfitting.
Handling task identifiers. The description of our system so far has assumed that the
downstream test tasks are identified via a task-identifier. In practice, we utilize a one-hot
vector to indicate the index of a task. While such a scheme is simple to implement, it is
not quite obvious how we should incorporate new tasks with one-hot task identifiers. In
our experiments, we use two approaches for solving this problem: first, we can utilize a
larger one-hot encoding that incorporates tasks in both Ttrain and Ttarget, but never train
the network corresponding to Ttarget. The Q-function and the policy are trained on these
placeholder task identifiers only during fine-tuning in Phase 2.
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Another approach for handling new tasks is to not use unique task identifiers for every
new task, but rather “re-target” or re-purpose existing task identifiers for new target tasks
in the fine-tuning phase. PTRprovides the option: we can simply assign an already existing
task identifier to the target demonstration data before fine-tuning the learned Q-function
and the policy. For example, in our experiments in Section 5.5 we re-target the put sushi in
pot task which uses orange transparent pots to instead put the sushi into a metal pot, which
was never seen during training.

A complete overview of our system is shown in Figure 5.1. We use a value of α = 10.0 in
multi-task CQL and τ = 0.7 for mixing the pre-training dataset and the target task dataset
in most of our experiments in the real-world, without requiring any domain-specific tuning.
Additional details of our system can be found in Appendix D.4.

Crucial Design Choices and Practical Considerations

Beyond the components in Section 5.4, we need to make some important design decisions,
including the reward functions for offline pre-training, neural network architectures to be
able to learn from diverse data, and cross-validation metrics to identify policies we expect to
be effective after finetuning. We present our design choices below, and present supporting
analysis in Appendix D.5.

ResNet34

Action vector duplicated

Task ID

Learned 
spatial 

embeddings

Output ResNet

Featuremaps


Fully-connected Layers

Figure 5.2: The Q-function architecture for
PTR. The encoder is a ResNet34 with group
normalization along with learned spatial em-
beddings (left). The decoder (right) is a multi-
layer perceptron with the action vector dupli-
cated and passed in at each layer. A one-hot
task identifier is also passed into the input of
the decoder.

Reward specification. In this work, we
pre-train on the bridge dataset [45], which
consists of human-teleoperated demonstra-
tion data. The demonstration data, how-
ever, does not come annotated with rewards.
Perhaps an obvious choice is to label the last
transition of a trajectory as a success, and
give it +1 binary reward. However, in sev-
eral of the datasets we use, there can be a
0.5-1.0 second lag between task completion
and when the episode is terminated by the
data collection. To ensure that a successful
transition is not incorrectly labeled as 0, we
utilized the practical heuristic of annotating
the last n = 3 transitions of every trajec-
tory with a reward of +1 and and annotated
other states with a 0 reward. We show in
Appendix D.3, this provided the best results.
Policy and Q-function architectures.
To succeed at rapid finetuning, πoff and Qoff need to extract features useful for learning
other tasks. This necessitates the use of high-capacity neural network models for repre-
senting the policy and the Q-function and requires us to stably train them. We experi-
mented with a variety of standard (high-capacity) architectures for vision-based robotic RL.



CHAPTER 5. PRE-TRAINING FOR ROBOTS: OFFLINE RL ON DIVERSE DATA 62

This includes standard convolutional architectures [160] and IMPALA architectures [51].
However, we observed that these models were unable to effectively handle the diversity
of the pre-training data. Then, we attempted to utilize standard ResNets [74] (ResNet-
18, Resnet-34, and their adaptations to imitation problems from ebert2021bridge) to rep-
resent Qϕ, but faced divergence challenges similar to prior efforts [14, 13]. We found
that by simply replacing batch normalization layers — known to be notoriously hard to
train with TD-learning [13] — with group normalization layers [185], we were able to sta-
bly train ResNet Q-functions. We also observed that choosing an appropriate method
for converting the 3-dimensional feature-map tensor produced by the ResNet into a one-
dimensional embedding plays a crucial role for learning accurate Q-functions and obtaining
functioning policies. Simply computing global average pooling (as used in many classi-
fication architectures) performs similarly poorly as using a spatial softmax. Instead we
point-wise multiply the learned feature-map with a 3-dimensional parameter tensor be-
fore computing sums over the spatial dimensions which allows the network to explicitly
encode spatial information. An illustration of this architecture is provided in Figure 5.2.

Zero Shot Q-Values Chosen Finetuned Checkpoint Q-ValuesOverfitted Finetuned Checkpoint Q-Values

Figure 5.3: Top: PTR policy rollout of task
“put sushi in pot” re-targeted to metal-pot.
Bottom: left: Q-value over time for a target
task trajectory before fine-tuning begins (zero-
shot), middle: Q-values for a checkpoint that
has started to overfit after being trained for
long and exhibits drastic changes in Q-values
over the course of a trajectory, and right: Q-
values for a checkpoint that attains high per-
formance.

Next, we found that a Q-function
Qϕ(s, a) obtained by running näıve multi-
task CQL tends to not use the action in-
put a effectively, due to strong correlations
between s and a in the offline data. As a re-
sult, policy improvement against such a Q-
function overfits to these correlations, pro-
ducing poor policies. To resolve this issue,
we modified the architecture of Q-network,
to pass a as input at each fully connected
layer, which (as shown in Figure 5.2 and Ap-
pendix D.5), greatly alleviates the issue.

Our policy is also represented via an
identical architecture as the Q-function, ex-
cept that it predicts |A|-dimensional actions
as outputs and does not have action inputs.
Similar to prior works [72, 62], we rescale
the action between [−1, 1]|A|, and apply a
tanh(·) squashing function at the output.
Cross-validation after finetuning. Since
we wish to learn task-specific policies that do
not overfit to small amounts of data, thereby
losing their generalization ability, we must
apply the right number of gradient steps dur-
ing finetuning: too few gradient steps will produce policies that do not succeed at the target
tasks, while too many gradient steps will give policies that have likely lose the generaliza-
tion ability of the pre-trained policy. To handle this tradeoff, we use a simple heuristic: we
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run finetuning for many iterations while also plotting the learned Q-values over a held-out
dataset of trajectories from the target task. Then, we pick the checkpoint for which the
learned Q-values are (roughly) monotonically increasing over the course of an held-out tra-
jectory (see Figure 5.3 for an example). Empirically we find that this heuristic guides us to
identify a good checkpoints (more examples in Appendix D.5).

5.5 Experimental Evaluation of PTR and Takeaways

for Robotic RL

The goal of our experiments is to show that PTR can learn effective policies for new tasks by
leveraging diverse robotic datasets alongside only a handful of user-provided demonstrations
for a given target task. To this end, we evaluate PTR in a variety of robotic manipulation
settings including scenarios where (a) the target task uses previously unseen objects that the
robot must manipulate, (b) the target task requires performing a previously observed task
but this time in a previously unseen domain, and (c) the target task requires retargeting
the behavior of an existing skill, in this case changing the type of object types it interacts
with, by using the target demonstrations. We will first describe our real-world setup, then
discuss the methods we shall compare to, and finally present our empirical results. At the
end, we will also present some diagnostic analysis in simulation that further corroborates
takeaways from our real-world results. For more details, visuals and our video, please visit
our anonymous website at https://sites.google.com/view/ptrcorl.
Real-world experimental setup. We directly utilize the publicly available bridge dataset
[45] for pre-training, as it provides a large number of robot demonstrations for a diverse set of
tasks in multiple domains. We use the same WidowX250 robot platform for our evaluations.
The bridge dataset contains distinct tasks, each differing in terms of the objects that the
robot interacts with and the domain the task is situated in. We assign a different task
identifier to each task in the dataset for pre-training. We also evaluate on an additional
door-opening task not present in the bridge dataset, where we collected demonstrations for
opening and closing a variety of doors, and test our system on new, unseen doors. More
details of our setup can be found in Appendix D.1.

Comparisons. Since the datasets we use (both the bridge dataset and the newly col-
lected door opening data) consist of human demonstrations, as indicated by prior work man-
dlekar2021what, the strongest prior method in this setting is behavioral cloning (BC), which
attempts to simply imitate the action of the demonstrator based on the current state. We
incorporate BC in a pipeline similar to PTR, denoted as BC (finetune), where we first run
BC on the pre-training dataset, and then finetune it using the demonstrations on the target
task. Next, to assess the importance of performing pre-training followed by fine-tuning, we
compare PTRto (i) standard multi-task offline CQL (CQL (joint)) that jointly trains on
the pre-training data and the target task data from scratch, and therefore skips Phase 1, and
directly applies Phase 2 of PTR, and (ii) multi-task offline CQL (CQL (0-shot)) that does

https://sites.google.com/view/ptrcorl
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Held-out Target 
Domain

Examples of Diverse Multi-
Domain Data

Pre-Training Task: Put 
Sushi in Pot

Fine-Tuning Task: Use 
metal pot instead(a) (b) (c)

“Put Corn in Bowl” Task Rollout in Held-out Target Domain

Figure 5.4: Illustrations of the three real-world experimental setups we evaluate PTRon: (a)
the “put sushi in a metallic pot” task which requires retargeting, (b) the task of opening an
unseen door, and (c) the “put corn in bowl in a sink” task in a new kitchen domain. Figure
(c) shows a successful rollout from PTR.

not use the target demonstrations at all. We also make the analogous comparison for BC,
jointly training BC on the pre-training and target task data from scratch (BC (joint)).

Scenario 1: Re-targeting skills for existing tasks to act on new objects during
finetuning. We utilized the subset of the bridge with all pick-and-place tasks in one toyk-
itchen for pre-training, and selected the “put sushi in pot” task as our target task. This task is
demonstrated in the bridge dataset, but only using an orange transparent pot (see Figure 5.4
(a)). In order to pose a scenario where the offline policy at the end of pre-training must be re-
targeted to act on a different object, we collected only ten demonstrations that place the sushi
in a metallic pot.

Method Success rate

BC (0-shot) 0%
BC (finetune) 0%
CQL (0-shot) 7%

PTR(Ours) 47.0%

Table 5.1: Performance
of PTRfor “put sushi in
metallic pot” in Scenario 1.
PTRsubstantially outper-
forms BC (finetune), even
though it is provided access
to only demonstration
data. We also show some
examples comparing some
trajectories of BC and
PTRin Appendix D.3.

This scenario is challenging since the metallic pot drastically
differs from the orange transparent pot visually. Moreover,
since the color of the tabletop is similar to that of the trans-
parent pot, any learned model that does not fine-tune effec-
tive would be vulnerable to spuriously identifying a patch on
the tabletop as the pot, when the transparent pot is absent.
By pre-training on all pick-and-place tasks in this domain (32
tasks) and jointly fine-tuning on this data and 10 demonstra-
tions, PTR is able to obtain a policy that is re-targeted towards
the metal pot. On the other hand, BC appears to be mistaking
arbitrary patches on the tabletop with the pot. Quantitatively,
we observe, as shwon in Table 5.1, that PTRis able to complete
the task with reasonable accuracy, whereas 0-shot and fine-
tuned BC are completely unable to solve the task. The fact
that 0-shot CQL has great difficulty solving the task indicates
that target demonstrations are necessary for solving this task,
and PTRis able to make efficient use of these demonstrations
(prior work [45] also found BC performs poorly with even 50
demonstrations).
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Method Success rate

BC (0-shot) 0%
CQL (0-shot) 0%
BC (joint) 35%
CQL (joint) 25%
BC (finetune) 50%

PTR(Ours) 60%

Table 5.2: Performance
of PTRfor opening a new
target door in Scenario
2 averaged over 20 inde-
pendently chosen evalua-
tion trials. PTRoutper-
forms both BC (finetune)
and BC (joint) given access
to the same data. Note
that jointly training on pre-
training data and the target
data is worse than finetun-
ing from the pre-trained ini-
tialization.

Scenario 2: Generalizing to previously unseen do-
mains. Next, we study whether PTRcan adapt behaviors
seen in the pre-training data to new domains. We study
a door opening task, which requires significantly more com-
plex maneuvers and precise control compared to the pick-and-
place tasks from above (video on the website: https://sites.
google.com/view/ptrcorl). The target door (shown in Fig-
ure 5.4(b)) we wish to open and corresponding toykitchen do-
main is never seen previously in the pre-training data, and
doors in the pre-training data exhibit different sizes, shapes,
handle types and visual appearances. Due to the limited num-
ber of demonstrations and the associated task complexity, in
order to succeed, an algorithm must effectively leverage the pre-
training data. Concretely, for pre-training, we used a dataset
of 800 door-opening demonstrations on 12 different doors in
4 different toykitchen domains, and we utilize 10 demonstra-
tions on a held-out door for finetuning. Table 5.2 shows that
PTRattains higher performance than both BC baselines and
CQL (joint).

Interestingly, Table 5.2 shows that while CQL (joint) by it-
self does not outperform BC (joint), the pre-training and fine-
tuning approach in PTR leads to significantly better perfor-
mance, improving over the best BC baseline despite using the very same CQL algorithm.
Since CQL (joint) is equivalent to PTR, but with no Phase 1, this large performance gap
indicates the efficacy of offline RL methods trained on large diverse datasets at providing
good initializations for learning new downstream tasks. We believe that this finding may be
of independent interest to robotic offline RL practitioners: when utilizing multi-task offline
RL, it might be better to first run multi-task pre-training followed by fine-tuning, as opposed
to jointly training from scratch.

Scenario 3: Learning to solve new tasks in new domains. Finally, we evaluate
the efficacy of PTRin learning to solve a new task in a new domain. Unlike the two scenarios
studied above, where we attempted to solve the same task in a different domain (“open a
different door”), or re-target task in the same domain (“put sushi in a metallic pot”), in this
scenario, we attempt to solve a new task (“put corn in a bowl in sink”) in a new kitchen
scene. This task is represented via a unique task identifier, and we are not provided with
any data for this task identifier during pre-training. We pre-train on all 80 pick-and-place
style tasks from the bridge dataset, while holding out any data from the new task kitchen
scene, and then fine-tune on demonstration data from this new kitchen. More details are in
Appendix D.2.

Figure 5.4 (c) shows a rollout of the final policy found by PTRsuccessfully performing the
“put corn in pot task,” which is not included in the bridge data.

https://sites.google.com/view/ptrcorl
https://sites.google.com/view/ptrcorl
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BC Fine-Tuning on Compound Target Task fails at stage 2

PTR Fine-Tuning on compound target task

Dataset Task 1 Dataset Task 2

Figure 5.5: PTRand BC (finetune) on the simulated bin sorting task used for our diagnostic
study. Note that while PTR is able to apply the skill of sort an object multiple times in a
single trajectory, BC usually fails to learn this behavior.

Method Success rate

CQL (joint) 0%
BC (finetune) 40%

PTR(Ours) 50%

Table 5.3: Performance of
PTRon the “put corn in bowl
in sink” task in Scenario 3,
averaged over 20 evaluation
trials. PTRoutperforms BC
(finetune) and CQL (joint), in-
dicating that PTRcan gener-
alize to new tasks in new do-
mains better than BC.

A quantitative comparison between PTRand BC (finetune)
(we only evaluated BC (finetune) in this scenario since this
was the strongest BC baseline in other scenarios) shown in
Table 5.2 indicates that PTRclearly outperforms fine-tuned
BC on this task, demonstrating the capability of PTR for
acquiring a new skill in new domains.

Diagnostic study in simulation. Finally, we perform
a diagnostic study in simulation to verify some of the in-
sights observed in our real-world experiments. We created a
bin sort task, where a WidowX250 robot is placed in front
two bins and is provided with two objects (more details in
Appendix D.1). The task is to sort each object in the cor-
rect bin associated with that object. The pre-training data
provided to this robot is pick-place data, that only demon-
strates how to pick one of the objects and place it in one
of the bins, but does not demonstrate the compound task
of placing both objects. In order to succeed at this such
a compound task, a robot must learn an abstract representation of the skill of sorting an
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object during the pre-training phase, and then figure out that it needs to apply this skill
multiple times in a trajectory to succeed at the task from just five demonstrations of the
desired sorting behavior.

We also note that while BC (finetune) is able to only successfully sort one of the objects,
PTR is able to successfully apply the skill of sorting an object multiple times. The absolute
success rates attained by PTR and BC (finetune) are 8%, and 2% respectively, indicating
that PTR is better. Second, we observed in Scenario 2 that joint training with offline RL led
to worse performance than PTR. This trend also holds in simulation (CQL (joint) attains
only a 3% success rate, which is better than BC (finetune), but still worse than 8% for PTR),
and this finding further supports the intuition that pre-training via offline RL on diverse data
can give rise to a great initialization that can be fine-tuned.

5.6 Conclusion, Discussion, and Limitations

We presented a learning system that uses diverse prior data for general-purpose offline RL
pretraining, followed by fine-tuning to downstream tasks. The prior data, sourced from a
publicly available dataset, consists of over a hundred tasks across ten scenes, and enables
PTR to learn a generalist policy that can be fine-tuned with as few as 10 demonstrations.
We show that this approach outperforms prior pre-training and fine-tuning methods based
on imitation learning. More broadly, our aim is to take a step toward large-scale general-
purpose pre-training on diverse data in robotics, analogously to the kind of pre-training
methods that have transformed vision/NLP [40, 146]. One of the most exciting directions
for future work is to further scale up this pre-training to provide a single policy initialization,
that can be utilized by robotic practitioners as a starting point, similar to GPT3 [18].
Limitations. Our method requires the prior data and new tasks to be structurally similar.
We expect that as the prior data becomes broader, the range of new tasks that could be
tackled will increase. Additionally, our system must fine-tune on the same type of robot.
Multi-robot pre-training could address this limitation, and studying such multi-robot train-
ing is an exciting direction.
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Chapter 6

Conclusion

In the first part, we showed how model-based reinforcement learning that uses pixels as
the state representation and learns a dynamics model over images can effectively leverage
large amounts of data obtained from random scripted policies to perform complex object
rearrangement tasks including pushing and grasping. We showed that pre-training on multi-
robot data and fine-tuning on a small amount of data from a different, held-out target robot
can greatly boost performance over training on the target robot alone.

In the second part, we showed how multi-domain, multi-task human teleoperated demon-
stration data can be used for joint training and fine-tuning with a target task, boosting
generalization even if the target task uses new objects or is situated in new scene or do-
main. We also showed that fine-tuning performance can be further increased by using
offline-reinforcement learning instead of imitation learning, and empirically confirmed that
increasing model-capacity leads to better policy performance.

Both parts demonstrate the benefit and potential of accumulating and leveraging large
and diverse robotic datasets for boosting generalization and adapatability of robotic agents,
indicating that the lessons learned in large-scale deep learning indeed apply to robotics as
well.

A promising direction that we have not been able to work on is whether video data from
humans on the internet can be filtered and incorporated into the training process increasing
the dataset size by orders of magnitudes. This could lead to even better generalization. For
example since the diversity of objects in internet videos is far greater than our datasets,
it is conceivable that better objects representations and affordances could be learned by
incorporating such data. Furthermore, language annotations which often exist for in-the-
wild videos from the internet could be added into the training process which could natural
language grounding, and a way of specifying goals via natural language.

I hope that this work can serve as a motivation for further scaling up robot learning
datasets and finding yet more general methods that allow leveraging a broader variety of
robotic data, leading to ever greater generalization capabilities.
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Appendix A

Visual Foresight

A.1 Skip Connection Neural Advection Model

Our video prediction model, shown in Figure 2.3, is inspired by the dynamic neural advection
(DNA) model proposed by [54] and it is a variant of the SNA model proposed by [47].
The model uses a convolutional LSTM [189] to predict future frames. The prediction is
initialized with an initial sequence of 2 ground truth frames, and predicts 13 futures frames.
The model predicts these frames by iteratively making next-frame predictions and feeding
those predictions back to itself. Each predicted frame, is given by a compositing layer,
which composes intermediate frames with predicted compositing masks. The intermediate
frames include the previous 2 frames and transformed versions them. To easily allow various
transformations for different parts of the image, we predict 8 transformed frames, 4 of which
are transformed from the previous frame, and the other 4 from the frame 2 steps in the
past. These intermediate frames are then combined with compositing masks, which are
also predicted by the convolutional LSTM. For simplicity, we collectively refer to these
transformations as a single transformation F̂t+1←t in Equation B.2. In addition, the first
frame of the sequence is also given as one of the intermediate frames [47].

To enable action conditioning, the robot action at each time step is passed to all the
convolutional layers of the main network, by concatenating it along the channel dimension
of the inputs of these layers. Since they are vectors with no spatial dimensions, they are
replicated spatially to match the spatial dimensions of the inputs.

The SNA variant that we use incorporate the architectural improvements proposed
by [102]. Each convolutional layer is followed by instance normalization [172] and ReLU
activations. We also use instance normalization on the LSTM pre-activations (i.e., the in-
put, forget, and output gates, as well as the transformed and next cell of the LSTM). In
addition, we modify the spatial downsampling and upsampling mechanisms. Standard sub-
sampling and upsampling between convolutions is known to produce artifacts for dense image
generation tasks [132, 131]. In the encoding layers, we reduce the spatial resolution of the
feature maps by average pooling, and in the decoding layers, we increase the resolution by
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using bilinear interpolation. All convolutions in the generator use a stride of 1. The actions
are concatenated to the inputs of all the convolutional layers of the main network, as opposed
to only the bottleneck.

Figure A.1: The blue dot indicates
the designated pixel

We provide an example of the skip connection neu-
ral advection (SNA) model recovering from occlusion
in Figure A.2. In this figure, the arm is predicted to
move in front of the designated pixel, marked in blue in
Figure A.1. The predictions of the DNA model, shown
in figure Figure A.2(b), contain incorrect motion of the
marked object, as shown in the heatmaps visualizing P̂t,
although the arm actually passes in front of it. This
is because the DNA model cannot recover information
about an object that it has ‘overwritten’ during its pre-
dictions, causing the model to predict that the pixel
moves with the arm. We identified this as one of the
major causes of planning failure using the DNA model.
By contrast our SNA model predicts that the occluded
object will not move, shown in figure Figure A.2(a).

A.2 Improved Action Sampling

Distributions for Data Collection

In order to collect meaningful interaction data for learn-
ing folding of deformable objects such as towels and cloth, we found that the grasping
primitive can be slightly adapted to increase the likelihood of encountering states where
cloths are actually folded. When using actions sampled from a simple distribution or the
previously-described distribution, clothing would become tangled up. To improve the ef-
ficiency of folding cloths we use an action primitive similar to the grasping primitive, but
additionally we reduce lateral motion of the end-effector when the gripper is close to the
table, thus reducing events where cloths become tangled up.

A.3 Improvements of the CEM-Optimizer

In the model-predictive control setting, the action sequences found by the optimizer can be
very different between execution real-world times steps. For example at one time step the
optimizer might find a pushing action leading towards the goal and in the next time step it
determines a grasping action to be optimal to reach the goal. Näıve replanning at every time
step can then result in alternating between a pushing and a grasping attempt indefinitely
causing the agent to get stuck and not making any progress towards to goal.
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((a)) Skip connection neural advection (SNA) does not erase or move objects in the background

((b)) Standard DNA [56] exhibits undesirable movement of the distribution Pd(t) and erases the
background

Figure A.2: Top rows: Predicted images of arm moving in front of green object with desig-
nated pixel (as indicated in Figure A.1). Bottom rows: Predicted probability distributions
Pd(t) of designated pixel obtained by repeatedly applying transformations.

Time

Designted Pixel

Goal Pixel

Figure A.3: Applying our method to a pushing task. In the first 3 time instants the object behaves
unexpectedly, moving down. The tracking then allows the robot to retry, allowing it to eventually
bring the object to the goal.

Time

Designted Pixel

Goal Pixel

Figure A.4: Retrying behavior of our method combining prehensile and non-prehensile manipula-
tion. In the first 4 time instants shown the robot pushes the object. It then loses the object, and
decides to grasp it pulling it all the way to the goal. Retrying is enabled by applying the learned
registration to both camera views (here we only show the front view).
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Figure A.5: Left: Task setup with green dot marking the obstacle. Right, first row: the
predicted frames generated by SNA. Second row: the probability distribution of the desig-
nated pixel on the moving object (brown stuffed animal). Note that part of the distribution
shifts down and left, which is the indicated goal. Third row: the probability distribution
of the designated pixel on the obstacle-object (blue power drill). Although the distribution
increases in entropy during the occlusion (in the middle), it then recovers and remains on
its original position.

We can resolve this problem by modifying the sampling distribution of the first iteration
of CEM so that the optimizer commits to the plan found in the previous time step. In the
simplest version of CEM the sampling distribution at first iteration of CEM is chosen to
be a Gaussian with diagonal covariance matrix and zero mean. We instead use the best
action sequence found in the optimization of the previous real-world time step as the mean
for sampling new actions in the current real-world time-step. Since this action sequence is
optimized for the previous time step we only use the values a2:T and omit the first action.
To sample actions close to the action sequence from the previous time step we reduce the
entries of the diagonal covariance matrix for the first T − 1 time steps. It is crucial that
the last entry of the covariance matrix at the end of the horizon is not reduced otherwise
no exploration could happen for the last time step causing poor performance at later time
steps.

A.4 Experimental Setup

To train both our video-prediction and registration models, we collected 20,000 trajectories
of pushing motions and 15,000 trajectories with gripper control, where the robot randomly
picks and moves objects using the grasping reflex described in section 2.7. The data collection
process is fully autonomous, requiring human intervention only to change out the objects in
front of the robot. The action space consisted of relative movements of the end-effector in
cartesian space along the x, y, and z axes, and for some parts of the dataset we also added
azimuthal rotations of the gripper and a grasping action.
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A.5 Experimental Evaluation

Figure A.5 shows an example of the SNA model successfully predicting the position of the
obstacle through an occlusion and finding a trajectory that avoids the obstacle.

A.6 Simulated Experiments

In order to provide a more controlled comparison, we also set up a realistic simulation envi-
ronment using MuJoCo [170], which includes a robotic manipulator controlled via Cartesian
position control, similar to our real world setup, pushing randomly-generated L-shaped ob-
jects with random colors (see details in supplementary materials). We trained the same video
prediction model in this environment, and set up 50 evaluation tasks where blocks must be
pushed to target locations with maximum episode lengths of 120 steps. We compare our
proposed registration-based method, “predictor propagation,” and ground-truth registration
obtained from the simulator, which provides an oracle upper bound on registration perfor-
mance.
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Appendix B

RoboNet

B.1 Visual Foresight Preliminaries

Here we give a brief introduction into the visual foresight algorithm used in this paper, see
[57, 48, 46] for a more detailed treatment.

Action conditioned video-prediction model

The core of visual foresight is the action conditioned video-prediction model, which is a
deterministic variant of the model described in [103]. The model is illustrated in Figure B.1
and implemented as a recurrent neural network using actions a0:T , and images I0:T as inputs
and outputting future predicted images Î1:T . Instead of using a context of 1 as shown in
Figure B.1, a longer context can be used which increases the model’s ability to adapt to
environment variation such as held-out view-points. In all experiments in this paper we
used a context of 2 frames. Longer contexts can potentially help the model adapt to unseen
conditions in the environment, however, this is left for future work. The RNN is unrolled
according to the following equations:

[ht+1, F̂t+1←t] = gθ(at, ht, It) (B.1)

Ît+1 = F̂t+1←t ⋄ Ît (B.2)

Here gθ(at, ht, It) is a forward predictor parameterized by θ and F̂t+1←t is two-dimensional
flow field with the same size as the image which is used to transform an image from one
time-step into the next via bilinear-sampling.

The architecture of the RNN, which is illustrated in Figure B.2, uses a stack of convo-
lutional LSTMs [190] interleaved with convolution layers, skip connection help the learning
process.

Training details For pretraining all models are trained for 160k iterations using a
batchsize of 16. For SGD we use the Adam optimizer. Finetuning is carried out for another
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150k steps. The learning rate starts at 1e-3 and is annealed linearly to 0 after 200k steps
until the end of training.

Sampling-based Planning

In visual foresight tasks are specified in terms of the motion of user-selected pixels. To
predict where pixels move in response to a sequence of actions, we define a probability
distribution P0 over the locations of the designated pixel. At time step 0 this we use a one-
hot-distribution with 1 a the user-selected pixel and 0 everywhere else. When then apply
the same transformations to these distributions that we also apply to the images. This is
summarized in the following equation:

P̂t+1 = F̂t+1←t ⋄ P̂t (B.3)

Here P̂t+1 denotes the predicted probability distribution of the designated pixel.
The planning cost is computed as the expected distance to the goal pixel position dg

under the predicted distribution P̂t, averaged over time:

c =
∑

t=1,...,T

ct =
∑

t=1,...,T

Ed̂t∼Pt

[
∥d̂t − dg∥2

]
(B.4)

To find the optimal action sequence we apply the model-predictive path intregral (MPPI) [179]
algorithm, since this allows us to find good actions sequences more efficiently than random

Transformations

True Images

LSTM-States

Actions

Predicted Images

Time

Figure B.1: Recurrent dynamics model for action-conditioned video-prediction based on flow
transformations. (Used with permission from [49])
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Figure B.2: Architecture of the recurrent video-prediction architecture. (Used with permis-
sion from [49])

shooting. In the first iteration the actions are sampled from a unit Gaussian, in subsequent
iterations the mean action is computed as an exponential weighted average as follows:

µt =

∑N
k=0 e

−γckak,0:T∑N
k=0 e

−γck
(B.5)

Here N is the number of samples, chosen to be 600. The prediction horizon is 15 steps. We
found that a number of 3 MPPI iterations works best in our settings. We apply temporal
smoothing to the action samples using a low-pass filter to achieve smoother control and
better exploration of the state space.

After finding an action sequence, the first action of this sequence is applied to the robot
and the planner is queried again, thus operating in an MPC-like fashion. In order to perform
re-planning, it is required to know the current position of the designated pixel. In this work
we use a simple method for obtaining an estimate for the designated pixel by using the
model’s prediction, i.e. the flow maps from the previous time-step, we call this predictor
propagation. While this position estimate is noisy and more complex alternatives, such
as hand-engineered trackers or self-supervised registration [46] exist, we opt for the simple
approach in this work.

B.2 Data Collection Details

State and Action Space

Most of the robots in RoboNet (excluding Google R3 from [55]) employ the same Cartesian
end-effector control action space with restricted rotation, and a gripper joint. At each time-
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step, the state is a R5 vector containing the grippers XYZ position, the gripper’s yaw angle
(rest of orientation is locked, with the gripper pointed downwards), and the gripper joint-
angle value. The user must specify safety bounds per-robot, which constrain the end-effector
to operate within a ”safe” region of space at all time-steps. Actions are specified as deltas
between the current state and commanded state for the next time-step. Note that the gripper
action is binarized to ”open” or ”close” for simplicity. Actions are blocking with a set time-
out, so user defined policies only receive states and calculate actions once the robot has
reached (or gotten as close as possible to) the commanded state. There are no ”real-time”
constraints on the user policy. As a result, the robot must come to a complete stop at each
step. While this scheme can easily generalize to new robots, it does impose constraints on
the final robot behavior. We hope to relax these constraints in future work.

Exploration Policy

During data collection, actions are either sampled from a simple diagonal Gaussian with
one dimension per action-space dimension, or a more sophisticated distribution that biases
the probability of grasping when the gripper is at the table height, increasing the chance
that the robot will randomly grasp objects. This primitive is described further below. The
variances in the diagonal Gaussians are hand-tuned per robot and differ between different
action dimensions. The exact parameters are stored in inside the hdf5-files under the field
policy-description.

While using a simple action distribution such as a diagonal Gaussian, the robot arm
frequently pushes objects, however the arm quite rarely grasps objects. In order for a learning
algorithm such as visual foresight to effectively model grasping, it must have seen a sufficient
number of grasps in the dataset. By applying a grasping primitive, such as the one originally
introduced in [46], the likelihood for these kinds of events can be increased. The grasping
primitive is implemented as a hard-coded rule that closes the gripper when the z-level of the
end-effector is less than a certain threshold, and opens the gripper if the arm is lifted above
a threshold while not carrying an object.

There are, however, two robots in this dataset which employ significantly different ex-
ploration policies. The Google R3 robot samples random pushing motions instead of simply
taking random Cartesian motions, and the Fetch robot data only contains random explo-
ration in the x and y dimensions.

B.3 Database Implementation Details

The database stores every trajectory as a separate entity with a set of attributes that can
be filtered. We provide code infrastructure that allows a user to filter certain subsets of
attributes for training and testing. The database can be accessed using the Pandas python-
API, a popular library for structuring large amounts of data. Data is stored in the widely
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adopted hdf5-format, and videos are encoded via MP4 for efficiency reasons. New trajectory
attributes can be added easily.

B.4 Description of Benchmarking Tasks

For all control benchmarks we used object relocation tasks from a set of fixed initial posi-
tions towards a set of fixed goal positions marked on a table. The experimental setups for
each robot are depicted in Figure B.3. After executing the action sequences computed by
the algorithm the remaining distance to the goal is measured using a tape, and success is
determined by human judges.

Held out viewpoint

Training 
viewpoints

Franka PandaKUKA Sawyer

Figure B.3: Experimental setups for benchmarking tasks on the Kuka, Franka, and Sawyer
robots.

B.5 Experimental evaluation of adaptation to unseen

gripper

We evaluate on a domain where a Sawyer robot is equipped with a new gripper that was
not seen in the dataset. We collected 300 new trajectories with a Robotiq 2-finger gripper,
which differs significantly in visual appearance and dimensions from the Weiss Robotics
gripper used in all other Sawyer trajectories (see Figure 3.2), and used this data to evaluate
four different models: zero-shot generalization for a model trained on RoboNet, a model
trained only on the new data, a model pre-trained on only the Sawyer data in RoboNet and
then finetuned with the new data, and a model pre-trained on all of RoboNet and finetuned
with the new data. The results qualitative results of this evaluation are shown in Figure B.4
and the quantitative results are in Table B.1, averaging over 10 trajectories each. The best-
performing model in this case is the one that is pretrained on only the Sawyer data, and
it attains performance that is comparable to in-domain generalization (see, e.g., the seen
viewpoint result in Table 3.2 for a comparison). The model pre-trained on the more diverse
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RoboNet dataset actually performs worse, likely due to the limited capacity and underfitting
issues discussed in Section 3.5. However, these results do demonstrate that visual foresight
models can adapt to moderate morphological changes using a modest amount of data.

t = 0 t = 3 t = 6 t = 9 t = 12

Goal position
Starting position

Final position

Goal specification Final image

Predicted 
trajectory

Actual 
trajectory

Figure B.4: Example task of pushing an object
with an unseen gripper, in this case the Robotiq
gripper.

Avg. distance (cm)
zero-shot 15.5 ± 2.6
without pretraining 17 ± 1.8
pretraining on
Sawyer-only 9.8 ± 2.1
pretraining on
all of RoboNet 14.7 ± 2.1

Table B.1: Evaluation results for adapta-
tion to Robotiq gripper with the Sawyer
arm. The model trained on only Sawyer
data performs the best when fine-tuned
on 300 trajectories with a Robotiq grip-
per.
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Appendix C

Bridge Data

Task
Tar.

Env

Joint

Train

Single

Task

Potential reason for

no gain with bridge data

turn faucet lever (1) tk2 0% 0% [t]The faucet in tk2 has very different
appearance from the other faucets
Pickup pan from stove (2) ts1 0% N/A Not enough target domain data and prior data for this task
Put spoon into pot (2) tk2 0% N/A Not enough target domain data and prior data for this task
flip orange pot upright (3) tk2 50% 60% [t]There is no orange pot in prior dataset,
only metal pots in prior dataset
open box flaps (3) tk2 10% 10% Boxes and pushing motions do not occur in prior data
take lid off pot (3) ts3 60% 60% Only 100 demos involving lids in prior dataset.
pick up screw driver (3) toolchest 0% 0% [t]The toolchest and screwdrivers are
visually very different from prior data
put pot or pan in sink (1) tk2 90% 50%
put carrot on plate (2) ts1 40% N/A
Wipe plate w/ sponge (3) k1 70% N/A
put pear in bowl (3) tk2 50% 10%
put brush in pot (3) ts3 90% 0%
put detergent dry rack (3) ts3 80% 10%
lift bowl (3) tk2 70% 50%

Figure C.1: Comparison of scenarios where usage of the bridge data helps performance and
where it does not. Scenarios where usage of bridge data does not help are marked in red font.
The type of transfer setting is denoted by the number in brackets after the task description.
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Appendix D

Pre-training For Robots

D.1 Details of Our Experimental Setup

Real-World Experimental Setup

A picture of our real-world experimental setup is shown in Figure D.1. The scenarios con-
sidered in our experiments (Section 5.5) are designed to evaluate the performance of our
method under a variety of situations and therefore we set up these tasks in different toyk-
itchen domains (see Figure D.1) on two different WidowX250 robot arms. We use data from
the bridge dataset ebert2021bridge consisting of data collected with many robots in many
domains for training but exclude the task / domain that we use for evaluation from the
training dataset.

Diagnostic Experimental Setup in Simulation

Figure D.2: Bin-Sorting task used for
our simulated evaluations. The task
requires sorting the cylinder into the
left bin and the teapot into the right
bin.

In simulation, we evaluate our approach in a simu-
lated bin-sorting task on the simulated WidowX250
platform, aimed to mimic the setup we use for
our real-world evaluations. This setup is designed
in the PyBullet simulation framework provided by
singh2020cog. A picture is shown in Figure D.2. In
this task, two different bins and two different objects
are placed in front of the WidowX robot. The goal of
the robot is to correctly sort each of the two objects to
their designated bin (e.g the cylinder is supposed to
be placed in the left bin and teapot should be placed
in the right bin. We refer to this task as a compound
task since it requires successfully combining behav-
iors of two different pick-and-place skills one after the
other in a single trajectory while also adequately iden-
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(1) (2)

(3) (4)

Figure D.1: Setup Overview: Following [45], we use a toykitchen setup described in that
prior work for our experiments. This utilizes a 6-DoF WidowX 250 robot. (1): Held-out
toykitchen used for experiments in Scenario 3 (denoted “toykitchen 6”), (2): Re-targeting
toykitchen used for experiments in Scenario 2 (denoted “toykitchen 2”), (3): target objects
used in the experiments of scenario 3., (4): the held-out kitchen setup used for door opening
(“toykitchen 1”).

tifying the correct bin associated with each object. A
success is counted only when the robot can accurately
sort both of the objects into their corresponding bins.
Offline pre-training dataset. The dataset provided for offline pre-training only consists of
demonstrations that show how the robot should pick one of the two objects and place it into
one of the two bins. Each episode in the pre-training dataset is about 30-40 timesteps long.
A picture showing some trajectories from the pre-training dataset are shown in Figure D.3.
While the downstream task only requires solving this sorting task with two specific objects
(shown in Figure D.4), the pre-training data consists of a 10 unique objects (some shown in
Figure D.3). The two target objects that appear together in the downstream target scene are
never seen together in the pre-training data. Since the pre-training data only demonstrates
how the robot must pick up one of the objects and place it in one of the two bins (not
necessarily in the target bin that the target task requires), it neither consists of any behavior
that places objects into bins sequentially, nor does it consist of any behavior where one of
objects is placed one of the bins while the other one is not. This is what makes this task
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Figure D.3: Some trajectories from the pre-training data used in the simulated bin-sort task.

Figure D.4: The five demonstration trajectories used for Phase 2 of PTR.

particularly challenging.
Target demonstration data. The target task data provided to the algorithm consists of
only five demonstrations that show how the robot must complete both the stages of placing
both objects (see Figure D.4). Each episode in the target demonstration data is 80 timesteps
long, which is substantially longer than any trajectory in the pre-training data, though one
would hope that good representations learned from the pick and place tasks are still useful
for this target task. While all methods are able to generally solve the first segment of placing
the first object into the correct bin, the primary challenge in this task is to effectively sort
the second object, and we find that PTRattains a substantially better success rate than
other baselines in this exact step.
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Retarget to metal-pot, using 10 
demos in target domain

1. Pre-Train on Bridge Data in toykitchen 2 (1850 trajectories  31 tasks): 

Figure D.5: Illustration of pre-training data and finetuning data used for Scenario 1: re-
targeting the put sushi in metal-pot behavior to put the object in the metal pot instead of
the orange transparent pot.

D.2 Description of the Real-World Evaluation

Scenarios

In this section, we describe the real-world evaluation scenarios considered in Section 5.5. We
additionally include a much more challenging version of Scenario 3, for which we present
results in Appendix D.3. These harder test cases evaluate the finetuning performance on
four different tasks, starting from the same initialization trained on bridge data except
the toykitchen 6 domain in which these four tasks were set up. In the following sections,
nomenclature for the toy kitchens is drawn from ebert2021bridge and as described in the
caption of Figure D.1.

Scenario 1: Re-targeting skills for existing to solve new tasks

Pre-training data. The pre-training data comprises of all of the pick and place data from
the bridge dataset ebert2021bridge from toykitchen 2. This includes data corresponding to
the task of putting the sushi in the transparent orange pot (Figure D.5).
Target task and data. Since our goal in this scenario is to re-target the skill for putting
the sushi in the transparent orange pot to the task of putting the sushi in the metallic pot,
we utilize a dataset of 20 demonstrations that place the sushi in a metallic pot as our target
task data that we fine-tune with (shown in Figure D.5).
Quantitative evaluation protocol. For our quantitative evaluations in Table 5.1, we
run 10 controlled evaluation rollouts that place the sushi and the metallic pot in different
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1. Pre-Train on Bridge Data, 12 doors 800 demonstrations, 3 different toy-kitchens

2. Fine-Tune on Target Domain Data: 1 door, 15 
demonstrations

Figure D.6: Illustration of pre-training data and fine-tuning data used for Scenario 2 (door
opening): transferring a behavior to a held-out domain.

locations of the workspace. In all runs the arm starts at up to 10 cm distance above the
target object. The initial object and arm poses and positions are matched as closely as
possible for different methods.

Scenario 2: Generalizing to Previously Unseen Domains

Pre-training data. The pre-training data in Scenario 2 consists of 800 door opening
demonstrations on 12 different doors across 3 different toykitchen domains.
Target task and data. The target task requires opening the door of an unseen microwave
in toykitchen 1 using a target dataset of only 15 demonstrations.
Quantitative evaluation protocol. We run 20 rollouts with each method, counting suc-
cesses when the robot opened the door by at least 45 degrees. To begin an evaluation rollout,
we reset the robot to randomly sampled poses obtained from held-out demonstrations on
the target door. This is a compound task requiring the robot to first grab the door by the
handle, next move around the door, and finally push the door open. As before, we match
the initial pose of the robot as closely as possible for all the methods.

Scenario 3: Learning to Solve New Tasks in New Domains

Pre-training data. All pick-and-place data in the bridge dataset ebert2021bridge except
any demonstration data collected in toykitchen 6, where our evaluations are performed.
Target task and data. The target task requires placing a corn in a pot in the sink in the
new target domain and the target dataset provides 10 demonstrations for this task. These
target demonstrations are sampled from the bridge dataset itself.
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1. Pre-Train on Bridge Data 80 tasks, 5920 trajectories 
Put Sweet Potato on Plate

Put cucumber in pot

Put knife in pot

Take croissant out of pot

2. Fine-Tune on  
10 demos each 

Figure D.7: Illustration of pre-training data and fine-tuning data used for the new tasks we
have added in Scenario 3. The goal is to learn to solve new tasks in new domains starting
from the same pre-trained initialization and when fine-tuning is only performed using 10-20
demonstrations of the target task.

Quantitative evaluation protocol. During evaluation we were unable to exactly match
the camera orientation used to collect the target demonstration trajectories, and therefore
ran evaluations with a slightly modified camera view. This presents an additional challenge
for any method as it must now generalize to a modified camera view of the target toykitchen
domain, without having ever observed this domain or this camera view during training.
We sampled initial poses for our method by choosing transitions from a held out dataset
of demonstrations of the target task and resetting the robot to those initial pose for each
method. We attempted to match the positions of objects across methods as closely as
possible.

More Tasks in Scenario 3: Learning to Solve Multiple New Tasks
in New Domains From the Same Initialization

In Appendix D.3, we have now added results for more tasks in Scenario 3. The details of
these tasks are as follows:
Pre-training data. All pick-and-place data from bridge dataset ebert2021bridge except
data from toykitchen 6.
Target task and data. We consider four downstream tasks: take croissant from a metallic
bowl, put sweet potato on plate, place knife in pot, and put cucumber in bowl, and collected
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10 target demonstrations for croissant, sweet potato and put cucumber in bowl tasks, and
20 target demonstrations for the knife in pot task. A picture of these target tasks is shown
in Figure D.7.
Qualitative evaluation protocol. For our evaluations, we utilize either 10 or 20 evaluation
rollouts. As with all of our other quantitative results, we evaluate all the baseline approaches
and PTRstarting from an identical set of initial poses for the robot. These initial poses are
randomly sampled from the poses that appear in the first 10 timesteps of the held-out
demonstration trajectories for this target task. For the configuration of objects, we test our
policies in a variety of task-specific configurations that we discuss below:

• Take croissant from metallic bowl: For this task, we alternate between two kinds
of positions for the metallic bowl. In the “easy” positions, the metallic bowl is placed
roughly vertically beneath the robot’s initial starting pose, whereas in the “hard”
positions, the robot must first move itself to the right location of the bowl and then
execute the policy.

• Put sweet potato on plate: For this task, we performed 20 evaluation rollouts.
We only sampled 10 initial poses for the robot, but for each position, we evaluated
every policy on two orientations of the sweet-potato (i.e., the sweet potato is placed
on the table on its flat face or on its curved face). Each of these orientations present
some unique challenges, and evaluating both of them allows us to guage how robust
the learned policy is.

• Place knife in pot: We evaluate this task over 10 evaluation rollouts, where the first
five rollouts use a smaller knife, while the other five rollouts use a larger knife (shown
in Figure D.1).

• Put cucumber in bowl: We run 10 evaluation rollouts starting from 10 randomly
sampled initial poses of the robot for our evaluations.

We will discuss the results obtained on these new tasks in Appendix D.3.

D.3 Additional Experimental Results

In this section we present additional experiments for each of the three scenarios, further
corroborating the results introduced in the main experimental section of this paper. We will
then present some ablations of the key practical design decisions in Appendix D.5.

Additional Baseline Comparisons in Scenario 2

In this section, we present results for some additional baselines from the open door task in a
new toykitchen domain (Scenario 2 in the main paper). The results are shown in Table D.1.
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Observe that not only does PTRoutperform BC (finetuning), it also outperforms joint train-
ing for both CQL and BC, and also just training on only the target data from scratch with
either method. This indicates that PTRis quite effective compared to other baselines, in-
cluding the best BC method, even with demonstration data, where BC is expected to be
optimal.

0-shot joint Target data only

Task PTR(Ours) BC (fine.) CQL BC CQL BC CQL BC

Open Door 60% 50% 0% 0% 25% 35% 20% 35%

Table D.1: Performance of PTR and baselines on scenario 2, generalizing to previously
unseen domains (opening new door in new domain). PTR attains the highest success rate.
0-shot, i.e. only using bridge data, does not work at all. Jointly training with target averaged
over 20 independently chosen evaluation trials also performs much worse than PTR.

More interestingly, note that while PTRoutperforms the best BC baseline, joint training
with CQL does not quite outperform BC (joint). This is interesting for two reasons: first,
the fact that BC outperforms CQL with joint training is expected and shows that our BC
baseline is functioning as expected in this regime. Second, it shows that while offline RL
methods näıvely may not quite outperform BC with demonstration data, running multi-task
offline RL on diverse demonstration data can still be useful because fine-tuning from the
resulting initialization on a target task can actually lead to better performance compared to
BC (either joint trained or fine-tuned).

More Evaluations of PTRin the Additional Tasks in Scenario 3

As discussed in Appendix D.2, the new tasks in Scenario 3 are designed to test the efficacy
of PTRin solving new tasks in new domains. The four downstream tasks we consider are:
take croissant from metallic bowl, put sweet potato on plate, keep knife on pot, and put
cucumber in bowl. All of these are setup in the same new toy kitchen environment (called
“toykitchen6”) that was held out from the pre-training dataset. The details of this setup
including the number of demonstrations in the target data, the evaluation protocol for ob-
taining quantitative results, and illustrations of the tasks are presented in Appendix D.2.
Here we discuss the results.
The results for these tasks are presented in Table D.2. Observe that PTRattains the highest
success rate on every task, and in many tasks outperforms the next best baseline by about
2x. Observe that while CQL (joint) outperforms BC (joint) generally, it still does not
attain as high success rates as PTR. Completely skipping pre-training and just training on
10-20 target task demonstrations only can be effective in some cases with CQL (see CQL
(Target data only) on place knife in pot) but is substantially worse with both CQL and
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Joint training Target data only

Task PTR(Ours) BC (fine.) CQL BC CQL BC

Take croissant from metal bowl 7/10 3/10 4/10 4/10 0/10 1/10
Put sweet potato on plate 7/20 1/20 0/20 0/20 0/20 0/20

Place knife in pot 4/10 2/10 2/10 3/10 3/10 0/10
Put cucumber in pot 5/10 0/10 2/10 1/10 0/10 0/10

Table D.2: Performance of PTRand other baseline methods for new tasks in Scenario 3.
Note that PTRoutperforms all other baselines including BC (finetune), training on the target
demonstration data only with no pre-training (“Target data only”) and jointly training on
all the pre-training data and the target demonstration data (“Joint training”).

BC in general. Finally, we find BC (finetune) attains similar success rates as BC (joint),
and is also worse than PTR.
Again note that the gap in performance between PTRand BC (finetune) is much larger than
the gap between CQL (joint) and BC (joint) indicating that applying the fine-tuning
procedure does lead to a larger boost for multi-task offline RL compared to BC.

Why Does PTROutperform BC-based methods, Even With
Demonstration Data?

One natural question to ask given the results in this paper is: why does utilizing an offline RL
method for pre-training and finetuning as in PTRoutperform BC-based methods even though
the dataset is quite “BC-friendly”, consisting of only demonstrations? One might speculate
that an answer to this question is that our BC baseline can be tuned to be much better.
However, note that our BC baseline is not suboptimally tuned. We utilize the procedure
prescribed by prior work ebert2021bridge for tuning BC as we discuss in Appendix D.4.
In addition, the fact that BC (joint) does actually outperform CQL (joint) in many of
our experiments, indicates that our BC baselines are well tuned. To explain the contrast
to ebert2021bridge, note that the setup in this prior work utilized many more target task
demonstrations (≥ 50 demonstrations from the target task) compared to our evaluations,
which might explain why our BC-baseline numbers are lower in an absolute sense. Therefore,
the technical question still remains: why would we expect PTRto perform better than BC?
We will attempt to answer this question using some empirical evidence and visualizations.
Also, we will aim to provide intuition for why our approach PTRoutperforms the baseline.
To begin answering this question, it is instructive to visualize some failures for a BC-
based method and qualitatively attempt to understand why BC is worse than utilizing PTR.
We visualize some evaluation rollouts for BC (finetune) and PTRas film strips in Fig-
ure D.8. Specifically, we visualize evaluation rollouts that present a challenging initial state.
For example, for the rollout from the take crossiant out of metallic pot task, the robot must
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Qualitative Comparison of BC (finetune) and PTR

BC (finetune) 
Failure: grasps bowl instead of croissant when 

crossiant is not underneath

PTR 
Success: grasps croissant and puts by sink

Task: Take Croissant from Metal Bowl

BC (finetune) 
Failure: executes an imprecise grasp, and fails to 

locate the pot accurately

PTR 
Success: Places Cucumber in Pot

Task: Put Cucumber in Bowl

Figure D.8: Qualitative successes of PTRvisualized alongside failures of BC (finetune). As
an example, observe that while PTRis accurately able to reach to the croissant and grasp
it to solve the task, BC (finetune) is imprecise and grasps the bowl instead of the croissant
resulting in failure.

first accurately position itself over the crossiant before executing the grasping action. Simi-
larly, for the rollout from the cucumber task, the robot must accurately locate the bowl and
precisely try to grasp the cucumber. Observe in Figure D.8 that BC (finetune) typically
fails to accurately reach the objects of interest (croissant and the bowl) and executes the
grasping action prematurely. On the other hand, PTRis more robust in these situations,
and is able to accurately reach the object of interest before it executes the grasping action
or the releasing action. Why does this happen?
To understand why this happens, one mental model is to appeal to the critical states
argument from kumar2022should. Intuitively, this argument suggests that in tasks where
the robot must precisely accomplish actions at only few specific states (called “critical
states”) to succeed, but the actions at other states (called “non-critical states”) do not
matter as much. Thus, offline RL-style methods can outperform BC-based methods even
with demonstration data. This is because learning a value function can enable the robot
to reason about which states are more important than others, and the resulting policy
optimization can “focus” on taking correct actions at such critical states. Our real-world
evaluation scenarios exhibit such a structure. The majority of the actions that the robot
must take to reach the object do not need to be precise as long as they generally move the
robot in the right direction. However, in order to succeed, the robot must critically ensure
to position the arm right above the object in a correct orientation and position itself right
above the container in which the object must be placed. These are the critical states and
special care must be taken to execute the right action at these states. In such scenarios, the
argument of kumar2022should would suggest that offline RL should be better. We believe
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that we observe a similar effect in our experiments: the learned BC policies are often not
precise-enough at those critical states where taking the right action is critical to succeed.

Q Values Learnt After Finetuning
Before Offline Finetuning Finetuned Chosen Checkpoint
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Target Task: Take Croissant out of Metal Bowl

Figure D.9: Evolution of Q-values on the target task
over the process of fine-tuning with PTR. Observe that while the learned Q-values on

held-out trajectories from the dataset just at the beginning of Phase 2 (finetuning) do not
exhibit a roughly increasing trend, the checkpoint of PTRwe choose to evaluate exhibits a
generally increasing trend in the Q-values despite having access to only 10 demonstrations

for these target tasks.

As supporting evidence to the discussion above, we further visualize the Q-values over held-
out trajectories from the target demonstration data that were never seen by PTRduring
fine-tuning in Figure D.3. To demonstrate the contrast, we present the trend in Q-values
before fine-tuning and for the checkpoint selected for evaluation after fine-tuning on the
target task. Observe that the Q-values for the chosen checkpoint generally increase over the
course of the trajectory indicating that the learned Q-function is able to fit well to the target
data. Also, the learned Q-function generalizes to held-out trajectories despite the fact that
only 10 demonstrations were provided during the fine-tuning phase. This evidence supports
the claim that it is reasonable to expect the learned Q-function to be able to focus on the
more critical decisions in the trajectory.

Complete Results In Simulation

Finally, we present some additional results comparing BC-based methods and CQL to PTRin
our simulated bin-sorting task. Recall that goal of this task was to solve a two-stage, com-
pound task with only five target demonstrations as discussed in Figure D.2. Most impor-
tantly, the pre-training data does not show any instance of the robot attempting to solve
this two-stage task.
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The performance numbers (along with 95%-confidence intervals) are shown in Table D.3.
Observe that PTRimproves upon prior methods in a statistically significant manner, out-
performing the BC baselines by a significant margin. This validates the efficacy of PTRin
simulation, and corroborates our real-world results.

Method Success rate

BC (joint training) 7.00 ± 0.00 %
CQL (joint training) 8.00 ± 1.00 %
BC (finetune) 4.88 ± 4.07 %

PTR(Ours) 17.41 ± 1.77 %

Table D.3: Performance of PTRin comparison with other methods on the simulated bin
sorting task, trained for many more gradient steps for all methods until each one of them
converges. Observe that PTRsubstantially outperforms other prior methods, including joint
training on the same data with BC or CQL. Training on target data only is unable to recover
a non-zero performance, and so we do not report it in this table. Since the 95%-confidence
intervals do not overlap between PTRand other methods, it indicates that PTRimproves
upon baselines in a statistically significant manner.

D.4 Hyperparameters for PTRand Baseline Methods

In this section, we will present the hyperparameters we use in our experiments and explain
how we tune the other hyperparameters for both our method PTRand the baselines we
consider.
PTR. Since PTRutilizes CQL as the base offline RL method, it trains two Q-functions
and a separate policy, and maintains a delayed copy of the two Q-functions, commonly
referred to as target Q-functions. We utilize completely independent networks to represent
each of these five models (2 Q-functions, 2 target Q-functions and the policy). We also
do not share the convolutional encoders among them. As discussed in the main text, we
rescaled the action space to [−1, 1]|A| to match the one used by actor-critic algorithms,
and utilized a tanh squashing function at the end of the policy. We used a CQL α value
of 10.0 for our pick and place experiments. The rest of the hyperparameters for training
the Q-function, the target network updates and the policy are taken from the standard
training for image-based CQL from singh2020cog, and are presented in Table D.4 below for
completeness. The hyperparameters we choose are essentially the network design decisions
of (1) utilizing group normalization instead of batch normalization, (2) utilizing learned
spatial embeddings instead of standard mean pooling, (3) passing in actions at each of the
fully connected layers of the Q-network and the hyperparameter α in CQL that must be
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adjusted since our data consists of demonstrations. We will ablate the new design decisions
explicitly in Appendix D.5.

Hyperparameter Value

Q-function learning rate 3e-4
Policy learning rate 1e-4
Target update rate 0.005 (soft update with Polyak averaging)
Optimizer type Adam
Discount factor γ 0.96 (since trajectories have a length of only about 30-40)
Use terminals True
Reward shift and scale shift = -1, scale = 10.0
CQL α 10.0

Table D.4: Main hyperparameters for CQL training in our real-world experiments. In sim-
ulation, we utilize a smaller α for CQL, α = 1.0 and a larger discount γ = 0.98 since
trajectories in simulation are about 60-70 timesteps in length.

The only other hyperparameter used by PTRis the mixing ratio τ that determines the
proportion of samples drawn from the pre-training dataset and the target dataset during
the offline finetuning phase in PTR. We utilize τ = 0.7 for our experiments with PTRin the
main paper, and use τ = 0.9 for the additional experiments we added in the Appendix. This
is because τ = 0.9 (more bridge data, and smaller amount of target data) was helpful in
scenarios with very limited target data.
In order to perform checkpoint selection for PTR, we utilized the trends in the learned Q-
values over a set of held-out trajectories on the target data as discussed in Section 5.4. We
did not tune any other algorithmic hyperparameters for CQL, as these were taken directly
from singh2020cog.
BC (finetune). We trained BC in a similar manner as ebert2021bridge, utilizing the
design decisions that this prior work found optimal for their experiments. The policy for
BC utilizes the very same ResNet 34 backbone as our RL policy since a backbone based on
ResNet 34 was found to be quite effective in ebert2021bridge. Following the recommendations
of ebert2021bridge and based on result trends from our own preliminary experiments, we
chose to not utilize the tanh squashing function at the end of the policy for any BC-based
method, but trained a deterministic BC policy that was trained to regress to the action in
the demonstration with a mean-squared error (MSE) objective.
In order to perform cross-validation, checkpoint and model selection for our BC policies, we
follow guidelines from prior work ebert2021bridge,emmons2021rvs and track the MSE on a
held-out validation dataset similar to standard supervised learning. We found that a ResNet
34 BC policy attained the smallest validation MSEs in general, and for our evaluations, we
utilized a checkpoint of a ResNet 34 BC policy that attained the smallest MSE.
Analogous to the case of PTRdiscussed above, we also ablated the performance of BC for a
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set of varying values of the mixing ratio τ , but found that a large value of τ = 0.9 was the
most effective for BC, and hence utilized τ = 0.9 for BC (finetune) and BC (joint).
BC (joint) and CQL (joint). The primary distinction between training BC (joint) and
BC (finetune) and correspondingly, CQL (joint) and PTRwas that in the case of joint
training, the target dataset was introduced right at the beginning of Phase 1 (pre-training
phase), and we mixed the target data with the pre-training data using the same value of the
mixing ratio τ used in for our fine-tuning experiments to ensure a fair comparison.

D.5 Validating the Design Choices from Section 5.4

via Ablations

In this section, we will present ablation studies aimed to validate the design choices utilized
by PTR. We found these design choices quite crucial for attaining good performance. The
concrete research questions we wish to answer are: (1) How important is utilizing a large net-
work for attaining good performance with PTR, and how does the performance of PTRscale
with the size of the Q-function?, (2) How effective is a learned spatial embedding compared
to other approaches for aggregating spatial information? (3) Is concatenating actions at
each fully-connected layer of the Q-function crucial for good performance?, (4) Is group
normalization a good alternative to batch normalization? and (5) How does our choice of
creating binary rewards for training affect the performance of PTR?. We will answer these
questions next.

Figure D.10: Scaling trends for
PTRon the open door task from Sce-
nario 2, and average over two pick
and place tasks (take croissant out
of metallic pot and put cucumber in
bowl) from Scenario 3. Note that
more high capacity and expressive
function approximators lead to the
best results.

Highly expressive Q-networks are essential for
good performance. To assess the importance of
highly expressive Q-functions, we evaluate the per-
formance of PTRwith varying sizes and architec-
tures on three tasks: the open door task from Sce-
nario 2, and the put cucumber in pot and take
croissant out of metallic bowl tasks from Scenario
3. Our choice of architectures is as follows: (a) a
standard three-layer convolutional network typically
used by prior work for DM-control tasks (see for ex-
ample, kostrikov2021offline), (b) an IMPALA espe-
holt2018impala ResNet that consists of 15 convolu-
tional layers spread across a stack of 3 residual blocks,
(c) ResNet 18 with group normalization and learned
spatial embeddings, (d) ResNet 34 that we use in our
experiments, and (e) an even bigger ResNet 50 with
group normalization and learned spatial embeddings.
We present our results in Figure D.10. To obtain more
accurate scaling trends, we plot the trend in the av-
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erage success rates for the pick and place tasks from
Scenario 3 along with the trend in the success rate for
the open door task separately since these tasks use different pre-training datasets. Observe
that the performance of smaller networks (Small, IMPALA) is significantly worse than the
ResNet in the door opening task. For the pick and place tasks that contain a much larger
dataset, Small, IMPALA and ResNet18 all perform much worse than ResNet 34 and ResNet
50. We believe this result is quite exciting since it highlights the possiblity of actually
benefitting from using highly-expressive neural network models with TD-learning based RL
methods trained on lots of diverse multi-task data (contrary to prior work lee2022multi).
We believe that this result is a valuable starting point for further scaling and innovation.
Learned spatial embeddings are crucial for performance. Next we study the impact
of utilizing the learned spatial embeddings for encoding spatial information when convert-
ing the feature maps from the convolutional stack into a vector that is fed into the fully-
connected part of the Q-function. We compare our choice to utilizing a spatial softmax as
in ebert2021bridge, and also global average pooling (GAP) that simply averages over the
spatial information, typically utilized in supervised learning with ResNets.

Method Success rate

PTR with spatial softmax 4/10
PTR with global average pooling 4/10

PTR with learned spatial embeddings (Ours) 7/10

Table D.5: Ablation of PTRwith spatial softmax and GAP on the croissant task. Observe
that PTRwith learned spatial embeddings performs significantly better than using a spatial
softmax or global average pooling.

As shown in Table D.5 learned spatial embeddings outperform both of these prior approaches
on the put croissant in pot task. We suspect that spatial softmax does not perform much
better than the GAP approach since the softmax operation can easily get saturated when
running gradient descent to fit value targets that are not centered in some range, which
would effectively hinder its expressivity. This indicates that the approach of retaining spatial
information like in PTRis required for attaining good performance.
Concatenating actions at each layer is crucial for performance. Next, we run
PTRwithout passing in actions at each fully connected layer of the Q-function on the take
croissant out of metallic bowl task and only directly concatenate the actions with the output
of the convolutional layers before passing it into the fully-connected component of the net-
work. On the croissant task, we find that not passing in actions at each layer only succeeds
in 2/10 evaluation rollouts, which is significantly worse than the default PTRwhich passes
in actions at each layer and succeeds in 7/10 evaluation rollouts (Table D.6).
Group normalization is more consistent than batch normalization. Next, we ablate



APPENDIX D. PRE-TRAINING FOR ROBOTS 110

Method Success rate

PTR without actions passed in at each FC layer 2/10
PTR with actions passed in at each FC layer (Ours) 7/10

Table D.6: Ablation of PTRwith actions passed in at each layer. Observe that passing in
actions at each fully-connected layer does lead to quite good performance.

the usage of group normalization over batch normalization in the ResNet 34 Q-functions
that PTRuses. We found that batch normalization was generally harder to train to attain
Q-function plots that exhibit a roughly increasing trend over the course of a trajectory. That
said, on some tasks such as the croissant in pot task, we did get a reasonable Q-function, and
found that batch normalization can perform well. On the other hand, on the put cucumber in
pot task, we found that batch normalization was really ineffective. These results are shown
in Table D.7, and they demonstrate that batch normalization may not be as consistent and
reliable with PTRas group normalization.

Method Croissant out of metallic bowl Cucumber in pot

PTR with batch norm. (relative) + 28.0% (7/10 → 9/10) - 60.0% (5/10 → 2/10)

Table D.7: Relative performance of PTRwith batch normalization with respect to PTRwith
group normalization. Observe that while utilizing batch normalization in PTRcan be some-
times more effective than using batch normalization (e.g., take croissant out of metallic bowl
task), it may also be highly ineffective and can reduce success rates significantly in other
tasks. The performance numbers to the left of the → corresponds to the performance of
PTRwith group normalization and the performance to the right of → is the performance
with batch normalization.

Choice of reward function. Finally, we present some results that ablate the choice of the
reward function utilized for training PTRfrom data that entirely consists of demonstrations.
In our main set of experiments, we labeled the last three timesteps of every trajectory with
a reward of +1 and annotated all other timesteps with a 0 reward. We tried perhaps the
most natural choice of labeling only the last timestep with a 0 reward on the croissant
task, and found that this choice succeeds 0/10 times, compared to annotating the last three
timesteps with a +1 reward which succeeds 7/10 times. We suspect that this is because only
annotating the last timestep with a +1 reward is not ideal for two reasons: first, the task is
often completed in the dataset much earlier than the observation shows the task complete,
and hence the last-step annotation procedure induces a non-Markovian reward function, and
second, only labeling the last step with a +1 leads to overly conservative Q-functions when
used with PTR, which may not lead to good policies.
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