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Abstract

Objectives: We aimed to evaluate whether machine learning (ML) of non-contrast CT and 

clinical variables improve the prediction of atherosclerotic cardiovascular disease (ASCVD) and 

coronary heart disease (CHD) deaths as compared to coronary artery calcium (CAC) Agatston 

scoring and clinical data.

Background: The CAC score provides a measure of the global burden of coronary 

atherosclerosis, and its long-term prognostic utility has been consistently shown to have 

incremental value over clinical risk assessment. However, current approaches fail to integrate all 

available CT and clinical variables for comprehensive risk assessment.
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Methods: The study included data from 66,636 asymptomatic individuals (54±11 years, 67% 

Male) without established ASCVD undergoing CAC scanning and followed for CVD and CHD 

deaths at 10 years. Clinical risk assessment employed the ASCVD risk score. For ML we used an 

ensemble boosting approach to fit a predictive classifier for outcomes followed by automated 

feature selection using information gain ratio. The model building process used all available 

clinical and CT data, including the CAC score, the number, volume and density of CAC plaques, 

and extracoronary scores, comprising a total of 77 variables. We evaluated our overall proposed 

model (ML all) using a 10-fold cross-validation framework on the population data and area under 

the curve (AUC) as metrics. The prediction performance was also compared with two traditional 

scores (ASCVD risk and CAC score) and two additional models that were trained using all the 

clinical data (ML Clinical) and CT variables (ML CT).

Results: AUC by ML All (0.845) for predicting CVD death was superior compared to that 

obtained by clinical data alone (0.821), CAC score alone (0.781) and ML-CT alone (0.804) 

(p<0.001 for all). Similarly, for predicting CHD death, AUC by ML All (0.860) was superior to 

the other analyses (0.835 for clinical data, 0.816 for CAC, and 0.827 for ML-CT, p<0.001).

Conclusions: The comprehensive ML model was superior to clinical risk factors, CAC scores, 

and a ML model fitted using CT variables alone in prediction of both CVD and CHD deaths.

Condensed Abstract:

The study included data from 66,636 asymptomatic individuals without established atherosclerotic 

cardiovascular disease (ASCVD) undergoing coronary artery calcium (CAC) scanning and 

followed for cardiovascular disease (CVD) and coronary heart disease (CHD) deaths at 10 years. 

Comprehensive machine learning (ML) used 77 clinical and CT variables, including: the number, 

volume and density of CAC plaques, CAC and extracoronary scores, among others. Risk 

estimation by ML was superior to the current traditional risk equation and CAC score for 

prediction of CVD and CHD deaths and demonstrated high concordance between ML-predicted 

and actual observed risk for both CVD and CHD deaths.

Keywords

Machine learning; Coronary artery calcification; Coronary heart disease death; Cardiovascular 
disease death; Pooled cohort equation

Introduction

In clinical practice traditional risk factors obtained from population-based studies are used to 

predict cardiovascular disease (CVD) events. For example, the 2013 ACC/AHA 

atherosclerotic cardiovascular disease (ASCVD) risk estimator has improved risk assessment 

of cardiovascular diseases compared to previous risk algorithms 1. However, current clinical 

models still misclassify future risk assessment (1–4). Several studies, for instance, have 

shown that the ASCVD risk estimator and all other current risk scores overestimate actual 

observed risk (1–4).

Coronary artery calcification is a robust marker of coronary atherosclerosis. The coronary 

artery calcium (CAC) score measured by non-contrast cardiac-gated computed tomography 
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(CT) provides a measure of the global burden of coronary atherosclerosis, reflecting the 

effect all measured and unmeasured risk factors causing coronary atherosclerosis in an 

individual patient. Its long-term prognostic value has been shown consistently to provide 

independent predictive information to assess clinical risk of CVD and coronary heart disease 

(CHD) events (5–9). In addition, other CT variables such as the total number of calcified 

coronary lesions, plaque density and thoracic aorta calcification have been demonstrated to 

add to CAC assessment in prediction of CVD events (10,11). However, current models fail 

to integrate all available CT and clinical variables for comprehensive risk assessment.

Machine learning (ML) is the scientific field that enables data-driven predictions by learning 

from data. ML builds models that can learn from training samples to subsequently perform 

prediction tasks in unseen samples. ML techniques have showed equal or better performance 

than humans in medical tasks such as diagnosis, decision-making and risk prediction in 

cardiology (12–16). This is the first study, to our knowledge, to assess the prognostic value 

of ML to estimate CVD and coronary heart disease (CHD) deaths among asymptomatic 

individuals integrating clinical and CAC data. We hypothesized that comprehensive ML of 

CAC and other variables from non-contrast cardiac CT can better predict CHD and CVD 

deaths than current state-of-the art methods for risk prediction. The aim of the current study 

was then to evaluate whether ML, considering all available clinical and cardiac CT imaging 

variables, predicts CVD and CHD deaths more accurately than existing assessments.

Methods

Study population

The CAC Consortium is a large multicenter observational cohort study of patients who have 

undergone CAC scanning for clinical purposes and is designed to determine the cause-

specific death including CVD, CHD and non-CVD deaths.

Details regarding the CAC consortium have been described previously (17). The CAC 

consortium includes 66,636 asymptomatic individuals (54±11 years, 67% Male) without 

known CHD who non-contrast cardiac CT for detecting CAC at 4 high volume centers in the 

U.S (Harbor UCLA Medical Center, Torrance, California; Cedars Sinai Medical Center, Los 

Angeles, California; Columbus, Ohio; and Minneapolis Heart Institute, Minneapolis, 

Minnesota). All sites had at least 10 years’ experience to exam CAC scanning, provided 

>5000 scans per site and can complete >90% of clinical demographics which were required 

for the study. Inclusion criteria were patients with ≥18 years old, asymptomatic, no history 

of CHD, and who underwent CAC scanning. Exclusion criteria were missing data of scan 

identifiers (n=2650), no-dedicated CAC score (n=4669), no-CAC scanning (n=4833), 

uncertain date of birth (n=150), uncertain data of scan (n=11), or insufficient data for follow-

up (n=10,320).

Each institution obtained Institutional Review Board approval and all participants provided 

informed consent.
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Clinical demographics

Clinical demographics and laboratory data were collected at the time of CAC scanning or at 

a clinical visit associated with the scan. Hypertension, diabetes and dyslipidemia were 

defined when individuals self-reported diagnosis made by their physicians, had testing at the 

time of the scan visit, or had been treated by medications for these diseases. Dyslipidemia 

was also defined when LDL-C >160 mg/dL, HDL-C<40 mg/dL in men and <50 mg/dL in 

women, or fasting triglycerides>150 mg/dL were present. Never, former, or current smoking 

was recorded for smoking status. Family history of CHD was defined as premature family 

history (<55 years in old in a male relative and <65 years old in a female relative) at the 

Columbus, Ohio site, or the presence of a first-degree relative with a history of premature 

CHD at other 3 sites. The ASCVD risk score was calculated by using the PCE (17). Total 

cholesterol and high-density lipoprotein (220 mg/dL and 40mg/dL for patients with 

untreated dyslipidemia; 190mg/dL and 60mg/dL for patients without dyslipidemia; 

180mg/dL and 50mg/dL for dyslipidemic patients with treatment) were used to calculate 

ASCVD risk score. When historical risk-factors did not include measurements regarding 

blood pressure, 150mmHg and 90mmHg were used as systolic and diastolic blood pressure 

for hypertensive patients without treatment. 135 mmHg and 85mmHg for hypertensive 

patients with treatment, and 120mmH and 80mmHg for patients without hypertension were 

used for calculating ASCVD risk score.

Study Follow-up

Death was defined by patient identifiers including social security number, name, date of 

birth through the Social Security Death Index (SSDI) Death Master File and followed 

through June 1st 2014. Cause of death was determined by coded death certificates through 

the National Death Index service. The maximum follow-up time was truncated at 10 years to 

investigate actual 10 years CVD/CHD risk prediction by ML.

CT protocol and interpretation of CAC

CAC scans were performed in accordance with standard protocols (18). Because of the 

current study nature to investigate >10-year death for patients, electron beam tomography 

was obtained in approximately 93% of patients. In total, approximately 13%, 38%, 38% and 

3.5% of patients were scanned with the Imatron C-100 scanner, the C-150, the C-300, and 

the e-Speed scanner (GE-Imatron), respectively. More recent data at two sites was collected 

using multidetector CT in 7% of patients on a 4-slice MDCT scanner (Somatom Volume 

Zoom, Siemens Medical Solutions) and the General Electric LightSpeed VCT 64-slice 

platform (GE Healthcare). Due to the long-term follow-up, most of the scans (>90%) were 

performed by electron beam tomography and the rest were scanned by multidetector CT. 

CAC and extracoronary calcification including thoracic aortic calcification (TAC), aortic 

valve calcification (AVC) and mitral valve calcification (MVC) were scored using Agatston 

method (19). Besides, CAC scores as well as volume score and mean CAC densities for left 

main and other main three vessels were also available. Additional information regarding 

CAC including total number of CAC plaques, CAC volume scores, CAC density, TAC 

scores, AVC scores and MVC scores were available in 68%, 51%, 30%, 51%, 15% and 15% 

of the cohort, respectively.
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Machine learning

Figure 1 illustrates the steps followed to train and evaluate the proposed model (ML all) 

using a 10-fold cross validation framework in the study population. First, the overall 

population was randomly divided into 10 equally sized non-overlapping groups. One group 

containing 10% was retained as the test set and the other 90% were used as the training set; 

second, a feature selection was performed using the training set and information gain; third, 

a data-driven model was fitted using the training set and an ensemble boosting approach 

(LogitBoost); fourth, the prediction performance was evaluated using the test set. The cross-

validation procedure then looped 10 times over the various groups, each time performing 

variable selection and model building, and using different training and test sets - meaning 

that none of the data points were used for model training and evaluation at the same time. 

We used this validation procedure seeking to maximize the use of training and validation 

data, avoid the testing of hypothesis suggested by arbitrary splitting of data, and reduce the 

variance in prediction error. Once finished, as fifthly step, the predictions of the 

corresponding 10 models were stacked to assess the overall prediction performance of CHD 

and CVD deaths.

Variable selection—A total of 77 variables, including 46 clinical variables (e.g. ASCVD 

risk score, age, sex, race, body mass index, hypertension, diabetes, hyperlipidemia, current 

smoking, family history of CHD, smoking years, and medication information) and 31 CT 

variables (derived from CAC scans) (Table 2), were available to train the model. We firstly 

used information gain to select the best attributes for the classifier using those variables that 

resulted in an information gain > 1e-5. Information gain is a measure of the amount of 

information gained from the data by attribute (20,21).

Model building—We used an ensemble boosting approach to fit a predictive classifier for 

cardiovascular outcomes (22). This boosting method called LogitBoost is tree-based 

learning technique that combines the predictions of many weak classifiers to produce a 

single powerful prediction: A weak learner is fit in each iteration seeking to reduce the 

misclassification error of previous iterations. For a given patient, the outcome of ML model - 

called the ML score - was then the probability risk of having CVD and CHD mortality. It is 

also worth adding that this technique is suitable to deal with missing data (21). This 

technique uses non-missing data to establish a ranking of surrogate variables: The first 

surrogate is the feature that best describe the training data while the second surrogate does 

the second-best description, and so on. It then imputes missing data, either in the training or 

test phase, using the ranking of surrogate variables in order, if the first surrogate variable is 

missing. ML and feature selection were implemented in the open-source Waikato 

Environment for Knowledge Analysis (WEKA) platform 3.8.0 (University of Waikato, 

Hamilton, New Zealand).

Prediction models—We trained two additional ML models to compare to our proposed 

model (ML All) following the steps previously described: 1) a first model trained with all 

the clinical variables (ML Clinical); and 2) a second model trained with all CT variables 

(ML CT). These two ML models were trained and evaluated using the same folds and cross-

validation procedure followed for the ML All model to subsequently enable paired 
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comparisons. We also compared our ML ALL model with a logistic regression model 

(LR-3F) trained with age, ASCVD and CAC scores to predict both CHD and CVD deaths. 

This analysis was done to determine the benefit of combining all variables using ML 

technique such as LogitBoost.

Statistical analyses—We compared the prediction performance of our ML model with 

the ASCVD risk and CAC score: using AUC as metric to evaluate the overall performance 

of the ML models and traditional scores. Youden index was also provided to summarize 

performance predictions. Pairwise comparisons were performed between the ASCVD risk 

score, CAC score alone, and ML models using DeLong test (23). The ML models were 

assessed by sex and the Brier scores were computed between predicted and observed CVD 

and CHD deaths (24). Additionally, ML All model was compared with traditional scores in 

single random stratified partitioning of our population data. Statistical calculations were 

performed in R software version 3.4 using the pROC package for DeLong analysis (25).

Results

Table 1 summarizes clinical characteristics of patients in the current study. Mean age was 

54±11 years and 67% were males. Most of the study cohort were white. The mean 10-year 

ASCVD risk score was 7.4±8.9%. Hyperlipidemia and family history of CHD were the most 

common cardiovascular risk factors, following hypertension, current smoking and diabetes, 

respectively.

The endpoints of the current study are CHD death (n=524), and CVD death (n=971) 

including death from CHD (n=524, 54%), stroke (n=160, 17%), congestive heart failure 

(n=51, 5%), and other circulatory disease (n=236, 24%). The variable rankings (first 50 

variables) for prediction of CVD and CHD deaths are listed in Figure 2 (Figure 2a: CVD 

death, and Figure 2b: CHD death). ASCVD risk score was the feature that obtained the 

highest gain for predicting both types of deaths, followed by age and CAC score. Similarly, 

these variables were the most used to train the weak classifiers in the ML All model for 

predicting both types of risk.

AUCs for predicting the 10-year CVD and CHD deaths are shown in Central Illustration (a 

and b respectively). For CVD death, AUC for ML Clinical was significantly higher than ML 

for ASCVD risk alone (AUC; 0.826 vs. 0.821, p<0.001) and ML CT significantly improved 

the prediction compared to CAC alone (0.804 vs. 0.781, p<0.001). In addition, AUC for ML 

All (0.845) was higher than that for ML clinical (0.826, p<0.001) and ML CT (0.804, 

p<0.001) (Central Illustration-a). With respect to CHD death, AUCs for ML Clinical and 

ASCVD risk alone were comparable (0.835 vs. 0.834, p=0.639). ML CT significantly 

improved the prediction compared to CAC alone (0.827 vs. 0.816, p=0.025). AUC for ML 

All (0.860) was higher than that for ML Clinical (p<0.001) or ML CT (p<0.001) (Central 

Illustration-b). The separate results in male and female cohorts are provided in Supplemental 

Figure 1. Tables 3 and 4 provide the Youden index for each model and traditional scores, 

where our ML All model obtained the highest Youden index for both CVH and CHD deaths.

Nakanishi et al. Page 6

JACC Cardiovasc Imaging. Author manuscript; available in PMC 2021 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A comparative plot of observed and ML predicted risks is shown in Figure 3. An excellent 

Brier score (<0.05) was shown for prediction of CVD and CHD deaths, resulting in precise 

ML-prediction of CVD (Figure 3a) and CHD death (Figure 3b) compared to observed 

deaths.

In the sub-analyses to investigate if ML ALL improved the prognostic predictions compared 

to conventional analysis, ML ALL improved the prognostic prediction of a logistic 

regression model trained with age, ASCVD and CAC scores (LR-3F) (Supplemental Figure 

2).

When the ML All model was compared with traditional scores in single random stratified 

partitioning of the population data into training (80%) and test (20%) sets, we obtained the 

same tendency of variable rankings and performance predictions for both CVD and CHD 

death (Supplemental Figure 3) and the AUC for ML was higher than that for ASCVD risk 

and CAC score (Supplemental Figure 4).

Discussion

In a large multicenter cohort of 66,636 asymptomatic individuals undergoing clinical CAC 

scans, we have showed that ML models that integrates all clinical and non-contrast CT 

imaging variables can obtain superior prognostic performance than traditional scores to 

predict both CVD and CHD deaths. In this study, we developed a ML method to show the 

added prognostic value of integrating clinical and non-contrast CT imaging variables, 

providing a ranking of the most significant variables to predict CVD and CHD deaths. Our 

comprehensive ML model obtained high concordance between the ML risk score and actual 

observed risk for both CVD and CHD deaths, suggesting prospective clinical 

implementations of ML models to assess the risk for both types of deaths. We have 

demonstrated that age, ASCVD risk and CAC score showed highest gains to predict events 

and that additional variables provide significant, incremental value in the overall prediction 

performance.

The standard approach to analyze the predictive value of CAC scanning along with clinical 

information has been performed on a limited number of variables. The ASCVD risk score, 

for example, is a parsimonious score based on a handful of these available clinical variables. 

Also, prognosis with CAC scanning is typically assessed alone without consideration of 

variables such as CAC score in individual vessels, number of plaques, or extracoronary 

calcification. While a comprehensive method for integrating all available variables from the 

CAC scan has been advocated (26), such a method has not been developed. Further, a 

comprehensive integration of all available clinical information with a more complete 

analysis of variables from non-contrast CT has also not been proposed. In the current study, 

we developed a ML method that integrating clinical and non-contrast cardiac CT imaging 

data outperformed the traditional scores and single-variable-type ML models on the 

prognostic prediction for CVD and CHD death: Similarly by gender, we showed that our 

ML method outperformed the prognostic prediction in females and males for CVD death. In 

the current study the prognostic improvement of the ML method was significant for CHD 

death in males but not in females. The reason for this finding is not clear. A prior study from 
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the CAC Consortium revealed that after adjustment for ASCVD risk, CAC scores added 

significantly prognostic accuracy in both males and females for prediction of CVD death 

(reports for CHD death were not made) (27).

Conventional risk assessment involves classification of patients into few predefined risk 

categories. Without precise quantitative estimates, however, crude risk categorization with 

arbitrary thresholds may misclassify patients compared to continuous risk predictions (28). 

In contrast, ML can give a precise risk calibration for specific patient. Recent studies have 

motivated the development of comprehensive risk assessment by ML with imaging based on 

coronary CT angiography or myocardial single photon emission CT (29,30). In this study, 

we used a similar method to maximize non-contrast CT information for cardiovascular risk 

prediction in a large asymptomatic population. Our findings suggest that future risk 

prediction models based on all available information can achieve a more accurate and 

precise model to identify risk that could be implemented clinically to improve the clinical 

use of CAC scanning in risk assessment and guiding management decisions (14,15,30). The 

ML approach is likely to become a routine tool for risk assessment using CAC scanning with 

the evolution of the electronic medical record and its integration with imaging data in future 

clinical practice.

Limitations

Our study has some limitations. Although the available CT data contained several variables 

in addition to the CAC score, multiple CT variables were not available in all patients, 

introducing uncertainties that may affect the prediction performance of the ML model. 

Additional variables of prognostic importance such as epicardial adipose tissue were not 

contained in the database. Our outcome variables were CVD and CHD deaths, since the 

CAC Consortium database did not contain regarding nonfatal cardiac events. CHD and CVD 

deaths overlap, with the CHD deaths being included in the latter. By including the latter, we 

are able to show that CAC is as predictive for both CVD and CHD events. There were a 

relatively small number of CHD deaths in females. This may possibly explain that the 

improvement did not reach statistical significance in AUC of ML All over ML Clinical for 

CHD death in females. We used CVD and CHD deaths for the primary outcomes in the 

current study since the CAC Consortium was deigned to determine cause-specific death 

including CVD, CHD and non-CVD deaths among asymptomatic patients undergoing CAC.

Conclusion

The current study demonstrated that a ML approaches that integrate clinical and non-

contrast CT variables can provide better risk assessment of CVD and CHD death than the 

combination of the traditional ASCVD and CAC scores. As clinical data from digital 

medical records become available for seamless integration with imaging data, the ML 

approach is likely to become a routine tool for clinical risk assessment using CAC scanning 

in the future.
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Acknowledgments

Financial Support: This research was supported in part by grant R01HL089765 from the National Heart, Lung, 
and Blood Institute/ National Institutes of Health (NHLBI/NIH) (PI: Piotr Slomka). Dr. Blaha has received support 
from NIH award for this project (L30 HL 110027). The content is solely the responsibility of the authors and does 
not necessarily represent the official views of the National Institutes of Health. At Cedars-Sinai, the study was 
supported in part by a grant from the Miriam & Sheldon G. Adelson Medical Research Foundation (PI: Dr 
Berman). Dr. Budoff has served as a consultant for General Electric.

Abbreviations

CAC Coronary artery calcium score

ML Machine learning

ASCVD Atherosclerotic cardiovascular disease

CVD Cardiovascular disease

CHD Coronary heart disease

PCE Pooled cohort equation

LR Logistic regression

References

1. Kavousi M, Leening MJ, Nanchen D et al. Comparison of application of the ACC/AHA guidelines, 
Adult Treatment Panel III guidelines, and European Society of Cardiology guidelines for 
cardiovascular disease prevention in a European cohort. Jama 2014;311:1416–23. [PubMed: 
24681960] 

2. DeFilippis AP, Young R, Carrubba CJ et al. An analysis of calibration and discrimination among 
multiple cardiovascular risk scores in a modern multiethnic cohort. Ann Intern Med 2015;162:266–
75. [PubMed: 25686167] 

3. DeFilippis AP, Young R, McEvoy JW et al. Risk score overestimation: the impact of individual 
cardiovascular risk factors and preventive therapies on the performance of the American Heart 
Association-American College of Cardiology-Atherosclerotic Cardiovascular Disease risk score in a 
modern multi-ethnic cohort. Eur Heart J 2017;38:598–608. [PubMed: 27436865] 

4. Rana JS, Tabada GH, Solomon MD et al. Accuracy of the Atherosclerotic Cardiovascular Risk 
Equation in a Large Contemporary, Multiethnic Population. J Am Coll Cardiol 2016;67:2118–30. 
[PubMed: 27151343] 

5. Budoff MJ, Shaw LJ, Liu ST et al. Long-term prognosis associated with coronary calcification: 
observations from a registry of 25,253 patients. J Am Coll Cardiol 2007;49:1860–70. [PubMed: 
17481445] 

6. Nakanishi R, Li D, Blaha MJ et al. All-cause mortality by age and gender based on coronary artery 
calcium scores. Eur Heart J Cardiovasc Imaging 2016;17:1305–1314. [PubMed: 26705490] 

7. Nakanishi R, Li D, Blaha MJ et al. The relationship between coronary artery calcium score and the 
long-term mortality among patients with minimal or absent coronary artery risk factors. Int J 
Cardiol 2015;185:275–81. [PubMed: 25818539] 

8. McClelland RL, Jorgensen NW, Budoff M et al. 10-Year Coronary Heart Disease Risk Prediction 
Using Coronary Artery Calcium and Traditional Risk Factors: Derivation in the MESA (Multi-

Nakanishi et al. Page 9

JACC Cardiovasc Imaging. Author manuscript; available in PMC 2021 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ethnic Study of Atherosclerosis) With Validation in the HNR (Heinz Nixdorf Recall) Study and the 
DHS (Dallas Heart Study). J Am Coll Cardiol 2015;66:1643–53. [PubMed: 26449133] 

9. Erbel R, Möhlenkamp S, Moebus S et al. Coronary risk stratification, discrimination, and 
reclassification improvement based on quantification of subclinical coronary atherosclerosis: the 
Heinz Nixdorf Recall study. J Am Coll Cardiol 2010;56:1397–406. [PubMed: 20946997] 

10. Blaha MJ, Budoff MJ, Tota-Maharaj R et al. Improving the CAC Score by Addition of Regional 
Measures of Calcium Distribution: Multi-Ethnic Study of Atherosclerosis. JACC Cardiovasc 
Imaging 2016.

11. Mahabadi AA, Lehmann N, Mohlenkamp S et al. Noncoronary Measures Enhance the Predictive 
Value of Cardiac CT Above Traditional Risk Factors and CAC Score in the General Population. 
JACC Cardiovasc Imaging 2016;9:1177–1185. [PubMed: 27450878] 

12. Siegersma KR, Leiner T, Chew DP, Appelman Y, Hofstra L, Verjans JW. Artificial intelligence in 
cardiovascular imaging: state of the art and implications for the imaging cardiologist. Neth Heart J 
2019;27:403–413. [PubMed: 31399886] 

13. Deo RC. Machine Learning in Medicine. Circulation 2015;132:1920–30. [PubMed: 26572668] 

14. Arsanjani R, Xu Y, Dey D et al. Improved accuracy of myocardial perfusion SPECT for detection 
of coronary artery disease by machine learning in a large population. J Nucl Cardiol 2013;20:553–
62. [PubMed: 23703378] 

15. Arsanjani R, Dey D, Khachatryan T et al. Prediction of revascularization after myocardial 
perfusion SPECT by machine learning in a large population. J Nucl Cardiol 2015;22:877–84. 
[PubMed: 25480110] 

16. Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-Learning Algorithms to 
Automate Morphological and Functional Assessments in 2D Echocardiography. J Am Coll Cardiol 
2016;68:2287–2295. [PubMed: 27884247] 

17. Blaha MJ, Whelton SP, Al Rifai M et al. Rationale and design of the coronary artery calcium 
consortium: A multicenter cohort study. J Cardiovasc Comput Tomogr 2017;11:54–61. [PubMed: 
27884729] 

18. Abbara S, Blanke P, Maroules CD et al. SCCT guidelines for the performance and acquisition of 
coronary computed tomographic angiography: A report of the society of Cardiovascular Computed 
Tomography Guidelines Committee: Endorsed by the North American Society for Cardiovascular 
Imaging (NASCI). J Cardiovasc Comput Tomogr 2016;10:435–449. [PubMed: 27780758] 

19. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr., Detrano. Quantification of 
coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15:827–32. 
[PubMed: 2407762] 

20. Quinlan JR. Induction of Decision Trees, 1986.

21. Daniel Berrar WD. Information gain (KullbackLeibler divergence). In: Dubitzky W, Wolkenhauer 
O, Cho KH, Yokota H (eds) Encyclopedia of Systems Biology Springer, New York, NY 
2013:1022–1023.

22. Jerome Friedman TH, Tibshirani Robert. Additive logistic regression: a statistical view of boosting 
(With discussion and a rejoinder by the authors). Ann Statist 2000;28:337–4–7.

23. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated 
receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837–45. 
[PubMed: 3203132] 

24. BRIER GW. Verification of forecasts expressed in terms of probability. Mon. Wea. Rev, 1950:1–3.

25. Team RC. R: A Language and Environment for Statistical Computing. : Open Journal of Statistics, 
2017.

26. Berman DS, Arnson Y, Rozanski A. Assessment of Coronary Calcium Density on Noncontrast 
Computed Tomography. JACC Cardiovasc Imaging 2017;10:855–857. [PubMed: 28797405] 

27. Shaw LJ, Min JK, Nasir K et al. Sex differences in calcified plaque and long-term cardiovascular 
mortality: observations from the CAC Consortium. Eur Heart J 2018;39:3727–3735. [PubMed: 
30212857] 

28. Wynants L, van Smeden M, McLernon DJ, Timmerman D, Steyerberg EW, Van Calster B. Three 
myths about risk thresholds for prediction models. BMC medicine 2019;17:192. [PubMed: 
31651317] 

Nakanishi et al. Page 10

JACC Cardiovasc Imaging. Author manuscript; available in PMC 2021 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



29. Betancur J, Rubeaux M, Fuchs TA et al. Automatic Valve Plane Localization in Myocardial 
Perfusion SPECT/CT by Machine Learning: Anatomic and Clinical Validation. J Nucl Med 
2017;58:961–967. [PubMed: 27811121] 

30. Motwani M, Dey D, Berman DS et al. Machine learning for prediction of all-cause mortality in 
patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. 
Eur Heart J 2017;38:500–507. [PubMed: 27252451] 

Nakanishi et al. Page 11

JACC Cardiovasc Imaging. Author manuscript; available in PMC 2021 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clinical Perspectives:

COMPETENCY IN MEDICAL KNOWLEDGE:

The integration of clinical and non-contrast CT imaging variables into ML methods 

enables to develop risk models that have superior prognostic prediction of CVD and CHD 

death than the traditional clinical risk scores such as ASCVD and CAC scores.

TRANSLATIONAL OUTLOOK:

Breakthroughs in electronic medical records and integration systems with imaging 

workstations can facilitate the implementation of ML models as a routine tool for clinical 

risk assessment using clinical and CAC scanning in the future.
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Figure 1. Workflow of the method used to train the proposed model.
1) Random split of population in 10 folds, 2) Selection of variables using information gain, 

3) k-th model building using ensemble boosting, 4) Evaluation of prediction performance of 

k-th model, 5) evaluation of overall prediction of CHD and CVD events.
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Figure 2a. 
Importance ranking of variables for prediction of CVD death.
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Figure 2b. 
Importance ranking of variables for prediction of CHD death.
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Figure 3. 
A comparative plot of observed and ML predicted risks for cardiovascular (A) and cardiac 

(B) death.
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Central illustration-a. 
Receiver operating characteristic curves for prediction of CVD death
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Central illustration-b. 
Receiver operating characteristic curves for prediction of CHD death
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Table 1.

Patient characteristics (n= 66,636)

Age (years) 54±11

Male (n, %) 44,633 (67)

White/Black/Hispanic/Others (%) 89/2/3/6

BMI (kg/m2) 27.5±5.3

Hypertension (n, %) 20,624 (31)

Diabetes (n, %) 4,503 (7)

Hyperlipidemia (n, %) 36,227 (54)

Current smoking (n, %) 6,400 (10)

Family history of CHD (n, %) 30,720 (46)

ASCVD risk score (mean ± SD) 7.4 ± 8.9%

CAC score (n, %) (n=66,636)

 CAC 0 29,757 (45)

 CAC 1–99 20,534 (30)

 CAC 100–399 7,341 (14)

 CAC ≥400 9,004 (11)

TAC score (n, %) (n=41,066)

 TAC 0 19,476 (48)

 TAC 1–99 11,927 (29)

 TAC 100–399 5,415 (13)

 TAC ≥400 4,248 (10)

AVC score (n, %) (n=10,007)

 AVC 0 8,610 (86)

 AVC 1–99 876 (9)

 AVC 100–399 352 (3)

 AVC ≥400 169 (2)

MVC score (n, %) (n=10,008)

 MVC 0 9,416 (94)

 MVC 1–99 283 (3)

 MVC 100–399 150 (1)

 MVC ≥400 159 (2)

Abbreviations: BMI- Body mass index, CHD- Coronary heart disease, ASCVD- Atherosclerotic cardiovascular disease, CAC- Coronary artery 
calcium, TAC- Thoracic aortic calcification, AVC- Aortic valve calcification, MVC- Mitral valve calcification
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Table 2.

Clinical and CT variables

Clinical variables
CT variables

CAC variables Non-CAC variables

ASCVD risk score Diabetes Total CAC score Presence of TAC

Age Oral diabetic medications LM CAC score TAC score

Sex Insulin LAD CAC score TAC volume score

Race Glucose LCx CAC score Presence of AVC

Height Current smoker RCA CAC score AVC score

Weight Past smoker Total volume score AVC volume score

Obese Smoking years LM volume score Presence of MVC

Body mass index Smoking pack years LAD volume score MVC score

Heart rate Smoking packs LCx volume score MVC volume score

Menopause Digoxin RCA volume score Descending aorta diameter

Site Statins Total CAC lesions Ascending aorta diameter

Fasting Nitrates LM CAC lesions

Hypertension Angiotensin-converting enzyme (ACE) inhibitors LAD CAC lesions

Hypertension medications Beta blockers LCx CAC lesions

Systolic blood pressure Vitamin C RCA CAC lesions

Diastolic blood pressure Aspirin Total CAC mean density

Dyslipidemia Niacin LM CAC mean density

Dyslipidemia medications Calcium blockers LAD CAC mean density

Low density lipoprotein Blood thinner medications LCx CAC mean density

Cholesterol Stroke RCA CAC mean density

High density lipoprotein Peripheral vascular disease

Triglyceride Kidney disease

Lung disease

Family history

Abbreviations: CT-Computed tomography, ASCVD-Atherosclerotic cardiovascular disease, CAC-Coronary artery calcium, LM-Left main, LAD-
Left anterior descending artery, LCx-Left circumflex, RCA-Right coronary artery, TAC-Total aorta calcium, AVC-Aortic valve calcium, MVC-
Mitral valve calcium

JACC Cardiovasc Imaging. Author manuscript; available in PMC 2021 March 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nakanishi et al. Page 21

Table 3.

Optimal cut-points and Youden index for each model in 10-year CHD deaths

Model Optimal cut-point Sensitivity Specificity Youden index

ML All 0.005 0.825 0.745 0.570

ML Clinical 0.007 0.720 0.802 0.522

ASCVD risk 0.114 0.746 0.783 0.529

ML CT 0.007 0.748 0.778 0.526

CAC score 76.80 0.781 0.732 0.512
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Table 4.

Optimal cut-points and Youden index for each model in 10-year CVD deaths

Model Optimal cut-point Sensitivity Specificity Youden index

ML All 0.011 0.737 0.803 0.540

ML Clinical 0.010 0.742 0.761 0.504

ASCVD risk 0.113 0.720 0.780 0.500

ML CT 0.013 0.731 0.765 0.496

CAC score 56.0 0.751 0.702 0.453
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