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Abstract

Finite plasma temperature can modify the structure of the wakefield, reduce the wavebreaking
field, and lead to self-trapped electrons, which can degrade the electron bunch quality in a plasma-
based accelerator. The plasma temperature evolution is described using a relativistic warm fluid
theory. Alterations to the maximum amplitude of a nonlinear periodic wave exited in a plasma with
nonrelativistic temperatures are presented. The trapping threshold for a plasma electron and the
fraction of electrons trapped from a thermal distribution are examined using on a single-particle
model. Numerical artifacts in particle-in-cell models which can mimic the physics associated with

finite momentum spread are discussed.



I. INTRODUCTION

Plasma-based accelerators are capable of supporting large amplitude plasma waves with
electric fields up to hundreds of GV/m, approximately three orders of magnitude beyond
conventional accelerators.! Previously, laser-plasma accelerator experiments®’ have typi-
cally operated in the self-modulated regime of the laser wakefield accelerator (LWFA). In
this regime, a long (compared to the plasma wavelength), high power laser pulse drives a
plasma wave through a Raman or self-modulation instability. The plasma wave amplitude
grows exponentially inside the laser pulse, via the instability, until the growth saturates
nonlinearly or electrons become trapped in the plasma wave (subsequently damping the
plasma wave due to beam loading). Experimentally, significant electron trapping is found to
occur when the plasma wave amplitude surpasses a critical threshold, often loosely referred
to as wavebreaking.?” ¥ Uncontrolled trapping can result in the production of poor quality
electron beams (e.g., with near 100% energy spread), which limits the application of these
beams.

More recently, near-monoenergetic electron bunches have been produced in laser-plasma
accelerator experiments in the 100 MeV range® % as well as the 1 GeV range.'! The source
of the accelerated electrons was self-trapping from the background plasma. Narrow energy
spread electron beams were produced through control of the interaction length such that
the acceleration occurred over a dephasing length.!?

To further improve the electron bunch quality and stability, a variety of laser-triggered

injection methods have been proposed!® 17

, and controlled injection via colliding laser pulses
has been achieved experimentally.'® The next generation of plasma accelerator experiments
is likely to use a two-stage approach. The first stage would be a relatively low energy
injector, wherein the accelerated electron bunch is produced through self-trapping or laser-
triggered injection. The electron bunch would then be injected into the second stage, which
would be a “dark current free” structure that would accelerate the bunch to high energy. A
dark current free structure refers to the structure not generating any additional accelerated
electrons through any self-trapping process. In order to access the viability of present and
future plasma accelerator experiments, a detailed understanding and control of self-trapping

is essential.

Traditionally, fluid theories have been used to define and analyze wavebreaking (the max-



imum plasma wave amplitude of a nonlinear traveling wave).'®2* Previous hydrodynamic
wavebreaking theories in one-dimension (1D) have been carried out for plasmas in the cold
limit,* warm plasmas in the non-relativistic limit,?! and warm plasmas in the limit of ultra-
relativistic phase velocities.???* The cold, relativistic wavebreaking field'® is v/2(7y, —1)'/2 Ey,
where ’yi =1/(1—- ﬁi), v, = cf3, is the plasma wave phase velocity (approximately the group
velocity of the driver), Fy = cmw,/e, w, = ck, = (4mnge?/m)'/? is the plasma frequency,
and ng is the ambient electron plasma density. When the plasma wave field approaches
V2(7, — 1)Y2E,, the cold plasma density becomes singular,® indicating a breakdown of
the cold fluid model. In the ultra-relativistic phase velocity 3, = 1 limit, the warm wave-
breaking field was found®>?? to be Fy, ~ 0~'/*E,, where @ is the initial plasma temperature
normalized to mc?/kg, with kg the Boltzmann constant. This expression for Fy, is valid
for %,01/ 2> 1, e.g., for an ultra-relativistic (3, = 1) particle beam driver. For laser-driven
plasma waves, however, typically plasma wave phase velocities are 7, ~ 10-100 and initial
plasma temperatures are Omc? ~ 10 eV.?>?% Therefore, a laser-plasma accelerator typically
satisfies 7,0'/2 < 1, and, hence, the above expression for Ey, does not apply. Recently,
a warm, relativistic fluid theory has been used to describe wavebreaking in the regime of
interest to laser-plasma accelerators.?*

For electric field amplitudes below the wavebreaking field, significant electron trapping
may occur in a warm plasma. In a warm plasma, such as that characterized by a Gaussian
distribution, fast electrons may exist on the tail of the distribution that can have sufficiently
high momenta to allow trapping in the plasma wave. Using a test particle trapping formal-
ism, the threshold momentum for a electron to become trapped in a plasma wave with an
amplitude below the wavebreaking limit can be calculated.?” Consequently, the fraction of
electrons trapped from the tail of the distribution, which constitutes the dark current, can
be determined.?” Furthermore, the amount of trapping at the hydrodynamic warm wave-
breaking limit can also be determined.

In this paper, some consequences of finite temperature on plasma-based accelerators are
discussed. In Sec. II, the results of a warm, relativistic fluid model are presented. This model
describes the evolution of the temperature in a plasma wakefield, as well as modification of
the wakefield due to finite temperature. The warm wavebreaking limit for nonrelativistic
plasma temperatures is presented. Section III discusses trapping and dark current with a

test particle model. Section IV discusses numerical heating and subsequent trapping when



modeling plasma accelerators with particle-in-cell codes. Conclusions are given in Sec. V.

II. WARM WAVEBREAKING

Standard warm relativistic fluid theories derived for collisionally-dominated plasmas (e.g.,
Ref. 28) are inadequate for describing short-pulse laser-plasma interactions. Short-pulse
laser-plasma interactions access a collisionless regime that is not in local thermodynamical
equilibrium, in which the plasma electrons experience relativistic motion while the tem-
perature (electron momentum spread) remains small. To model short-pulse laser-plasma
interactions, a warm relativistic fluid model can be derived from the collisionless Boltz-

4

mann equation.?*? By assuming that the plasma is “warm”, such that the phase-space
distribution has a small momentum spread about its mean, allows the hierarchy of moment
equations to be treated asymptotically.?? 33 No additional assumptions concerning the spe-
cific form of the distribution are required for closure of the fluid equations. Assuming the
quasi-static approximation,** i.e., the plasma wave driver and fluid quantities are assumed

to be functions only of the co-moving variable { = z — f,ct (where z is the driver propaga-

tion direction), the fluid equations can be combined to yield the evolution equation for the

nonlinear 1D plasma response®*
P [9u(l=fows)  3,(1—Bow)(1—ud)l] K (1)
082 | (1 —w?2)1/? 2 YL (1 = B w,)? By —w,

where 6 = kgTy/mc? is the initial isotropic temperature, 72 = 1 + a?/2, a* ~ 7.3 x

1071922 [pm] Io[W /cm?] is the normalized laser intensity for a linear polarized laser pulse,
Ao is the laser wavelength, and I, is the laser intensity. Here w, is the axial compo-
nent of the fluid velocity given by w = ([ dQ2fp)/([ d2fv), where f is the phase-space
density, p = v is the normalized particle momentum, and df)2 = dp/~ is the invariant
momentum space volume element. Linearizing Eq. (1) yields the driven wave equation
[0 + K (1 + 30/2)]w. = 0Za?, for a plasma wave with relativistic phase velocity (3, ~ 1).
In the linear regime a? < 1, the dominant thermal effect is a change in the wavelength of
the 1D plasma wave A >~ \,(1 — 36/4).

In terms of the axial fluid velocity, the plasma density is n/ny = w,/(8, —w,), the

electrostatic potential (normalized to mc?/e) is

_ (1= Bew) (1= Bow,)(1 — w?)'/? 3
¢ = (1 — w§)1/2 ’7&(1 _ ﬁ;lwz)2 —-1- 59, (2)
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FIG. 1: Plasma density n/ng (dotted curve), plasma wave electric field E,/Ey (solid curve), and
plasma temperature T'/T (dashed curve) excited by a Gaussian laser pulse with normalized inten-

sity a = 2 and RMS length k,Lrnms = 1 (centered at ky§ = 0).

the electric field is E./Ey, = —k,'0cp(w.), and kpT/mc® = (1 —w?)(1 — B, w,) %0 is
the temperature [measure of thermal spread given by the contraction of the momentum
variance tensor, kgT'/mc* = U*U, — 1, with the hydrodynamic four momentum given by
Uur = ([dfp*)/(f df)].>* The warm fluid approximation assumes kg7’ /mc* < 1 (i.e., non-
relativistic temperatures). Figure 1 shows the plasma density n/ng (dotted curve), plasma
wave electric field E,/Ey (solid curve), and plasma temperature T /Ty (dashed curve) ex-
cited by a Gaussian laser pulse a = agexp(—§*/4L%,;s) with normalized peak intensity
ap = 2 and intensity RMS length k,Lrms = 1. The plasma temperature undergoes peri-
odic oscillations in the wake owing to compression of the plasma density.?’ Note that the
temperature evolution (to lowest order in the small parameter kgT/mc* < 1) is given by
T = [(n/ng)*(1 — w?)]Ty. The temperature evolution can be evaluated using the warm
plasma approximation and does not require the choice of a specific distribution, as incor-
rectly claimed in Ref. 35.

The warm fluid model can be used to determine the maximum field amplitude Emax =
Erax/Eo of a nonlinear periodic plasma wave with phase velocity (3, excited in a plasma
with initial temperature 0, i.e., the warm wavebreaking field,?*

A 20101 = x8) — Bo(xd = 203/3+1)] 1} 0

2 —1 6ﬂzp
E — 0 0o 2 ) 3
max gas (X + X ) + { [(1 — ﬁlp) _ (1 N ﬁlp)xg]g 71 ( )




where
1
X3 =2 (1 B, + 2T+ ) {3539
T8, (48072 /02 + 98267) " {66@2’0 (1092 /72 + 3529)

1/2
28, (292 7+ 3626) (48072 /2 + 95392)1/2] } (1)

Here xo = (1 —w,)/(1 —w?)/? is the extrema of the fluid momenta in the co-moving frame.
The maximum density perturbation is given by (17/n0)max = [1 — 8, (1 = x3)/(1 + x5)] 7",

1920 (j.e., there is

which does not become singular in contrast to the cold fluid theories
no shock formation). Furthermore, the absence of a singularity indicates that the fluid
model remains valid, i.e., there is no break-down of the fluid model at (or before) the
wavebreaking limit (contrary to the unfounded claims of Ref. 35). For wave amplitudes
larger than Eq. (3), no traveling wave solutions to the fluid equations exist. At the warm
hydrodynamic wavebreaking limit Eq. (3) the thermal pressure and the space charge force
of the plasma wave are equal. The peak plasma temperature at the maximum plasma wave
amplitude occurs at the point of maximum compression and is given by (kgT/mc*)max =
40x3[(1 4+ x5) — 6,1 (1 = x3)] . For a typical laser-plasma accelerator experiment, vy, ~ 10~
100, v1 ~ 1, and #mc* ~ 10 eV.?>? In this regime § < 73 /72 < 1, and the maximum
temperature to leading order is (kgT/mc*)max =~ v (7 0/3)Y?[1 — (372 0/3)12/(4v,)] < 1,
which confirms the validity of the warm plasma approximation at the maximum plasma
wave amplitude.

The warm fluid theory used above is an approximation based on an asymptotic pertur-
bation expansion assuming small thermal spread and does not require specific assumptions
about the initial plasma distribution. If the temperature becomes relativistic this expan-
sion will no longer be valid. For relativistic temperatures, the higher-order moments of the
distribution will be important and will be a function of the specific form of the phase-space
distribution. Note that choice of an unphysical distribution (e.g., water-bag) may lead to
singular (unbounded) solutions. These singularities are not physical (as erroneously specu-
lated in Ref. 35), but the result of the choice of an unphysical phase-space distribution. It
should also be noted that for sufficiently large (or singular) density the collisionless plasma
model will no longer be valid.

In the cold plasma limit (§ = 0), Eq. (3) reduces to E2_ (8 = 0) = 27, (v, — 1). Thisis a

max
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FIG. 2: Maximum plasma wave electric field amplitude Frax = Frax /Eo [Eq. (3)] versus initial
temperature  with v, = 10 and «; = 1. The dotted curve is the ultra-relativistic result 3, = 1,

and the dashed line is the cold limit.

2427 of the cold relativistic wavebreaking field'®2% to include the presence of a

generalization
laser field. In the regime relevant to laser-plasma accelerator experiments, < 7%/ ”yf, < 1,
Eq. (3) reduces to**

- 8 1/4 1/2
B =27 (7 — 1) — 3 (3v2710)" —2(3720) 7| . (5)

Equation (5) is the cold relativistic wavebreaking field with the lowest order reduction due
to the plasma temperature. For high-intensity lasers (a? 2 1), Eq. (5) indicates that Fyay
inside a laser pulse is significantly larger compared to behind the pulse (where a = 0).%
Figure 2 shows the wavebreaking field Eq. (3), Fmax = Fmax/Eo (solid curve), versus
initial temperature 6 with +, = 10 and v, = 1. The dotted curve is the ultra-relativistic
result (4, = 1), and the dashed line is the cold limit (§ = 0). Note that for typical
short-pulse laser-plasma-interactions, § ~ 107%. Figure 3(a) shows the maximum density
perturbation calculated by solving Eq. (1) assuming a drive laser pulse pulse with a Gaussian
longitudinal profile a = ag exp(—&%/4L%,s) with RMS intensity pulse length of k,Lrys = 1
propagating in a plasma with density such that 7, = 10. As the amplitude approaches
the wavebreaking limit (6n/10)max = [1 — 6,1 (1 — x3)/(1 + x3)]7" — 1 (dotted line), the
peak density perturbation is modified from the cold result. Figure 3(b) shows the difference
between the nonlinear plasma wavelengths (AX/A,)/0 = [A(6 = 0) — A]/(6),) (solid curve),
the peak electric fields (AE/Ey)/0 = [E.(0 = 0) — E.]/(0Ey) (dotted curve), and the peak
electrostatic potentials Agp/0 = [p(6 = 0) — ¢]/0 (dashed curve), assuming an initially cold

(0 = 0) and warm (6 = 10~?) plasma versus drive laser amplitude ao (with k,Lgrns = 1
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FIG. 3: (a) Peak density perturbation versus amplitude of drive laser ao (with k,Lrms = 1 and
v, = 10) for initial plasma temperature of § = 1073 (solid curve) and § = 0 (dashed curve).
Dotted line in (a) is the wavebreaking limit (n/n¢)max — 1 behind the drive laser for v, = 10
and § = 1073. (b) Difference between the nonlinear plasma wavelengths (AX/),/0) (solid curve),
difference between the peak electric field amplitudes (AE/Ep)/0 (dotted curve), and difference
between the peak potential amplitudes A¢/0 (dashed curve), assuming an initially cold (6 = 0)

and warm (# = 1073) plasma versus drive laser amplitude ay.

and 7, = 10). Note that the differences plotted in Fig. 3(b) are normalized to 6. As
Fig. 3(b) indicates, the normalized potential and electric field of the wave in a warm plasma
differ from the cold result by a factor of order ~ 6 < 1 (typically § ~ 10~%), and below
wavebreaking, the electric field is well-modelled by the cold plasma result for nonrelativistic
initial temperatures.?? This is in contrast to the mistaken claims of Ref. 35 that the cold
plasma response can not be used to approximately model the electrostatic field of a plasma
wave below wavebreaking. For ag < 1, [A\(f = 0) — A]/(6),) = 3/4 (the 1D relativistic
Bohm-Gross thermal shift in the plasma wavelength), as shown in Fig. 3(b).



III. PARTICLE TRAPPING

The dynamics of an electron in the presence of a plasma wave and a laser pulse is deter-
mined by the Hamiltonian in the co-moving frame®” H = (7% + u2)1/ - Bou—¢(€), where u
is the electron momentum normalized to mec. Assuming the quasi-static approximation, the
Hamiltonian is time independent and, therefore, a constant of motion H(u,£) = constant.

The electron momentum at any phase is

w= B2 (H+0¢) £, [V2(H +0)* — 2] (6)

Equation (6) describes trapped (closed) and untrapped (open) orbits, in which a particular
orbit is specified by a particular value of H = constant. The separatrix orbit between
trapped and untrapped orbits is given by H = H,, where Hy = v, (§n)/7vo — ¢(&m). Here,
&m is the phase that maximizes H (v (§)7,0,,&). Assuming v, = constant, ¢(&,,) = Gmin 18
the minimum potential of the plasma wave.

Consider a plasma electron with initial normalized momentum u; in the absence of any
fields (i.e., before the passage of the driver and excitation of the plasma wave, v, = 1
and ¢ = 0). The orbit of the electron will be defined by the Hamiltonian H = H;, where
Hy = (1 + u})"? — B,u;. Trapping of the electron will occur when the orbit defined by
the Hamiltonian H, coincides with a trapped orbit, defined by the separatrix orbit, namely,
when H; < H,. For H, > H,, the electron is on an untrapped orbit. Solving H; = H, yields

in the minimum initial electron momentum for trapping in the plasma wave,?”

e = YoBp (V1 = Yobmin) — Yo [(71 = Yobumin)? — 1] (7)

Equation (7) is valid for a plasma wave potential in a warm plasma, where ¢, is the
extrema of the plasma wave potential [solution of Eq. (1)]. Figure 4 shows the initial
momentum u; required for the electron to be trapped by a plasma wave with amplitude
Em = Epeax/ Eo, withy, = 1. In Fig. 4 the peak electric field corresponding to the minimum
potential guin (En, ) was solved using Eq. (1) for a warm plasma with @ = 10~%. The threshold
momentum required for trapping decreases for larger plasma wave amplitude and for lower
plasma wave phase velocity. Note that trapping can occur for plasma waves with ultra-
relativistic phase velocities (8, = 1); with §, = 1 and vy, = 1, Eq. (7) reduces to u; =
(Gmin — 1/ Pmin) /2.
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FIG. 4: Initial electron momentum u; required to be trapped by a plasma wave with field amplitude
Epeax/Eo and phase velocity 7, = 5 (dotted curve), v, = 10 (solid curve), v, = 20 (dashed curve),

and (3, = 1 (dash-dotted curve), assuming an initial plasma temperature § = 10~%.

As shown in Fig. 3 (and Ref. 33) the fields are weakly influenced by the width of the
distribution, Epeax(0)/Eo — Epeax(6 = 0)/Ey ~ 0, below the wavebreaking limit. Thus,
contrary to the unfounded conjecture in Ref. 35, it is an excellent approximation to use the
cold fields when studying a warm plasma for typical laser-plasma accelerator parameters.

For a cold plasma, the relation between the minimum potential and the field amplitude is

) ) ) 1/2

Pmin = 7L — 1+ EL/2 =5, {(’uﬂLEﬁl/Q) —ﬁ} , (8)
where E,, = beak/ Eo 1s the normalized amplitude of the plasma wave field. Equations (7)
and (8) can be solved for the peak field E; required for the onset of particle trapping as a

function of the initial electron momentum u;,2"

(o Eo)” = 291 (v — 1) + 2928, {uw = [(Bpw)” + 2801 /%] *} . (9)

where u; < 1 (non-relativistic initial momentum) has been assumed.

Note that trapping occurs in a warm plasma in the ultra-relativistic phase velocity limit
where the wave phase velocity is equal to the speed of light v, = ¢ (as shown in Fig. 4).
For v, =1, B, =1, and v, < 1, Eq. (7) yields ¢min >~ —1 + u;, and, using Eq. (8), the
peak field of an ultra-relativistic plasma wave required for trapping an electron with initial
momentum w; is Fy/Ey ~ u, 2 This result refutes the incorrect claim of Ref. 35 that
trapping can not occur for plasma waves with 3, = 1. Indeed, with 3, = 1, the separatrix
between trapped and untrapped particles is finite for all phases except &, (which is never

reached by a trapped particle).
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Equation (7) concerns the trapping in a plasma wave of a single plasma electron with
initial momentum wu;. For a thermal plasma electron distribution, electrons on the tail of the
distribution function may have sufficiently high momentum so as to reside on trapped orbits.
The fraction of electrons trapped in the plasma wave can be computed for a given initial
momentum distribution. For example, assuming an initial Gaussian momentum distribution
of the plasma electrons with initial temperature T defined by the RMS momentum spread
(ksTo/me)?, with (kgTp/mec?)'/? < 1 [i.e., a momentum distribution of the form F(u) o

exp(—u?/20)], the fraction of trapped electrons is*”

Jorap = %erfc (ut/\/%> , (10)

where w; is given by Eq. (7). Note that only electrons with momenta in the direction of the
phase velocity of the plasma wave are trapped.

Figure 5 shows the fraction of trapped electrons versus the initial temperature of a Gaus-
sian plasma electron momentum distribution for three different nonlinear plasma wave am-
plitudes driven by a laser with k,Lrms = 1 and ag = 3.65 (Em ~ 1.75), ap = 4.15 (Em ~ 2),
and ap = 4.75 (Em o~ 2.25), with v, = 10. Note that the plasma wave was calculated assum-
ing a warm plasma with temperature 6 via Eq. (1). The total number of trapped electrons
(i.e., dark current in the plasma accelerator) can be estimated from Eq. (10). For example,
for a plasma density of ng = 10! ecm ™3, driver transverse size of r; = 10 um, and accelerator
length of 1 mm, a trapping fraction of fi., = 1072 indicates ~ 0.1 nC of trapped charge.
This trapping calculation neglects beam loading, which implies the wakefield induced by the
trapped electrons is much smaller than the primary plasma wave, or ng.p/no < |¢|, where
Nirap 15 the density of the trapped electron bunch.

As the driver propagates into the plasma, more charge will be trapped until the amplitude
of the plasma wave is substantially reduced due to beam loading. The beam loading limit is
defined as the number of accelerated electrons required to produce a wakefield that cancels
the accelerating field of the plasma wave.?® The trapped bunch density is approximately
given by ny, > firapnoz/ Ly, where z is the propagation distance and L, is the bunch length.
Assuming k,L, < 1, the wakefield generated by the bunch is given by E,/Ey ~ k,Lyny/ng
in the 1D limit, assuming Fj/FEy < 1. The beam loading limit at which Ej, ~ E,, is then

reached after a propagation distance of zp;, =~ kp_ 1 ft;;pEm. For Em ~ 1 and fiap < 1,

kpzgr, > 1 and beam loading will only be significant after long propagation distances.
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FIG. 5: Fraction of trapped electrons fiap [Eq. (10)] versus the initial temperature of a Gaussian
plasma electron distribution 6 = kpTy/mc? for three different nonlinear plasma wave amplitudes

driven by a laser with k,Lrms = 1 and ag = 3.65 (Ey, ~ 1.75), ag = 4.15 (E,, ~ 2), and a¢ = 4.75
(B =~ 2.25), with 4, = 10,

For a given initial plasma temperature and plasma wave phase velocity, a larger fraction
of electrons become trapped as the plasma wave amplitude increases. The particle trapping
model presented in this section, can be used to calculate the fraction trapped at the hydro-
dynamic wavebreaking field. For simplicity, consider 7, = 1. Equation (7) can be solved
for the plasma wave potential required for trapping an electron with initial momentum u,,
Omin = 7;1 — (1 +u®)Y? + Bouy ~ 7;1 — 1+ Byuy, for u; < 1. The minimum potential
at the wavebreaking amplitude is given by Eq. (2) with w, = (1 — x3)/(1 + x2), where
Xo is given by Eq. (4). Assuming 6 < 1, yields ¢wp ~ 7,7 — 1 + B,V/30. Hence, at the
wavebreaking amplitude, a significant fraction of the plasma electrons (satisfying u; > \/@)
will be trapped: fiap = erfe(1/3/2)/2 ~ 0.04. Note that here we have used the potential
derived from the warm fluid equations. This shows that significant trapping occurs below
the wavebreaking limit for a physical initial electron distribution (e.g., Gaussian) and refutes
the incorrect claims® that there is no trapping below the wavebreaking limit.

The warm fluid theory of wavebreaking and the trapping calculation assume the quasi-
static approximation that the plasma wave is a function of only { = 2z — v,t. In general,
for the plasma wave to be a traveling wave that is a function of only ¢ implies that there
is sufficiently small trapping and beam loading such that any time dependent damping of
the plasma wave is insignificant (i.e., kyzp, > 1, as discussed above). At the wavebreaking
amplitude, the fraction trapped is fiap =~ 4% assuming an initial Gaussian electron momen-

tum distribution. For example, if the beam loading estimate discussed above is assumed to

12



approximately apply in the nonlinear limit, then fi,,, >~ 4% and EWB ~ 3 imply zpy, >~ 12,,.
This simple estimation implies that beam loading can lead to appreciable reduction of the
plasma wave after several plasma periods if the field amplitude approaches the hydrodynamic

wavebreaking limit.

IV. MODELING WITH PARTICLE-IN-CELL CODES

Particle-in-cell (PIC) codes® %! have been used extensively to model laser-plasma-based
accelerator experiments. In a particle-grid approach such as PIC, finite-sized, charged
macro-particles interact with electromagnetic fields defined on a grid and interpolated to
the macro-particle positions. The unavoidable discretization of the physical model and the
small number of macro-particles used to represent the phase space distribution both give rise
to unphysical heating.*>*! These heating mechanisms include scattering®? and grid heating.*?
Numerical heating via scattering has a continuous slow growth of momentum spread is due
to the finite number of macro-particles. The growth of momentum spread depends mainly
on the number of macro-particles per cell and on the particle shape. Grid heating® has
a fast growth rate and saturates when Ap ~ Az in 1D, where A\p = (kBT/47meQ)1/2 is
the Debye length and Az the grid size. Interpolation of the gridded field quantities to the
macro-particle positions leads to numerical errors in the trajectories that appear to be qual-
itatively different than the trajectory errors due to truncation in the particle integrator.
These numerical errors will alter the macro-particle phase space and can mimic physical
processes leading to the incorrect interpretation of computational results. This will be of
particular importance when attempting to model detailed kinetic effects, such as trapping
of the background electrons or generation of dark current in a plasma-based accelerator.

The effect of the unphysical heating (macro-particle momentum spread) in PIC codes
is studied for the case of a nonlinear plasma wave driven by a short laser pulse.** For the
study described in this section, the initial normalized laser intensity profile is of the form
ag exp(—2z%/L?) with ap = 2, k,L = 2, and wy/w, = 10. For a 0.8-pum laser wavelength,
the plasma wavelength is 8 ym (plasma number density of 1.7 x 10 cm™3), L = 2.5 um
(10 fs FWHM laser intensity duration), and peak laser intensity of 8.5 x 10'® W /cm?. The

1D simulation box is 130 pm long, and the laser was launched from the boundary of the

simulation box. The number of grid points varies according to the resolution. The macro-
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FIG. 6: Macro-particle phase space at ¢t = 15.75)\,/c, with the physical parameters wy/w, = 10,
ap = 2, and k,L = 2, using the numerical parameters: (a) Az = X\g/36 and Npp. = 400, (b)
Az = Mo/48 and Nppe = 400, (c) Az = Ag/48 and Nppe = 100, and (d) Az = A¢/48 and
Nppe = 400 with a filter’” on the current. The insets show a magnification of the phase-space at

the first (A) and fifth (B) buckets after the laser pulse.

particles are loaded uniformly and cold (no initial momentum), using either Ny, = 100 or
Nppe = 400, where Npp. is the number of macro-particles per cell. For the simulations, a
modified version of Plasma Simulation Code (PSC)* is used, which implements the standard
PIC algorithm® and uses a charge-conserving current-deposition scheme.*6

For this case we expect no self-trapping in the wake because the plasma is initially cold
and the wakefield is below the cold relativistic wavebreaking field, E, < Ep[2(y, — 1)]'/2.
The evolution of the plasma temperature should follow the warm fluid model,?*3® which
predicts that an initially cold collisionless plasma remains cold in this regime. However,
the PIC simulations show macro-particles trapped in the wake, as seen in Fig. 6. Figure 6
shows the macro-particle phase space (momentum versus position) at ¢t = 15.75),/c for the
numerical parameters: (a) Az = \g/36 and Nppe = 400, (b) Az = \¢/48 and N, = 400,
(c) Az = Ao/48 and Nppe = 100, and (d) Az = XA¢/48 and N, = 400 with a (1,2,1)
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filter (including compensator)?” on the current. The insets show a magnification of the
phase-space at the first (A) and fifth (B) buckets after the laser pulse. Note that the
wake amplitude is lower in the fifth bucket compared to the first. This is due to the laser
evolution (self-steepening of the laser pulse) resulting in a higher peak laser intensity as the
laser propagates through the plasma (this has also been confirmed by comparison with 1D
cold fluid simulations of the same physical parameters). The insets of Fig. 6 show that,
as a function of distance behind the driver, phase space develops an increasingly complex
structure. When the plasma current is deposited on the grid, this course graining will yield
a current which will have characteristics similar to that due to a warm distribution. In
particular this course graining will trigger grid heating, leading to an increasingly large
momentum spread. As shown in Figs. 6(a)—(c), the phase space structure is dependent
on the resolution and number of macro-particles per cell. At a resolution of Az = )\¢/36
the longitudinal electric field is accurately represented. Increasing the resolution leads to
very little change in the wakefield, but results in significant changes in the macro-particle
phase space. Note that for a warm initial condition, the PIC algorithm has been shown,
with sufficient resolution and macro-particles per cell, to yield the correct thermal plasma
response.®?

The longitudinal mean square macro-particle momentum spread, o2 = ((u — (u))?), is
shown in Fig. 7. In this example, secular growth of the momentum spread occurs after
the third plasma wave bucket. Increasing longitudinal resolution reduces the momentum
spread; Fig. 7(a) shows resolutions of Az = X\¢/60 (red curve) and Az = X\y/36 (black

curve). Increasing the macro-particles per cell also reduces the momentum spread; Fig. 7(b)

shows Nppe = 100 (red curve) and Ny, = 400 (black curve).

V. SUMMARY AND DISCUSSION

The performance of plasma-based accelerators can be affected by finite plasma tem-
perature. Finite temperatures reduce the wavebreaking field and enhance the amount of
self-trapped electrons thus leading to the production of dark current, which will degrade
the accelerated electron bunch quality. To correctly determine the temperature evolution, a
warm relativistic fluid theory has been derived and analyzed.??:3® The plasma temperature

is found to undergo periodic oscillations in the wake, due to adiabatic compression, but
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FIG. 7: (a) Normalized mean square momentum spread calculated in each cell for Az = \y/36
and Nppe = 400 (black curve) and Az = Ag/60 and Npp. = 400 (red curve). (b) Normalized mean
square momentum spread calculated in each cell for Az = X\y/48 and Npp. = 400 (black curve)
and Az = X\g/48 and Nppe = 100 (red curve). The physical parameters are wy/w, = 10, ap = 2,
and k,L = 2.

there is no secular heating.?%33 This is the case since, in the underdense regime of plasma
accelerators, there are no collisions, and, in the standard wakefield case, the plasma re-
sponse is well-described using the quasi-static approximation. Using a warm fluid model,
an analytical result for the maximum field amplitude of a periodic nonlinear plasma wave
(warm wavebreaking limit) was derived.?* The warm wavebreaking limit Eq. (3) is capable
of describing the regime of current ultra-intense short-pulse laser interactions with under-
dense plasma, in contrast to previous results that are limited to ultra-relativistic particle
drive beams. This field amplitude is a fundamental limit on the accelerating gradient in
plasma-based accelerators.

For wake amplitudes below the wavebreaking limit, fast particles on the tail of a thermal
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distribution may become trapped. The trapping of thermal plasma electrons in a nonlinear
plasma wave has been examined using a formalism based on single-particle dynamics and
the threshold electric field amplitude for trapping an electron with arbitrary momentum in
a nonlinear plasma wave was derived.?” This calculation included the presence of a laser
field, which was found to increase the trapping threshold and, hence, reduce the fraction of
trapped electrons. The dark current, or the fraction of electrons trapped, was calculated as
a function of initial plasma temperature, wave amplitude, and wave phase velocity.%”
Several numerical effects in PIC codes can lead to phase space errors, unphysical heating
of the model plasma (i.e., an unphysically large macro-particle momentum spread), and
erroneously large levels of particle trapping. Since numerical heating increases with distance
behind the wake driver, this issue is worse for larger simulation boxes. For the examples
presented in Sec. IV, numerical trapping was observed to occur behind the seventh period
of the wake when ay = 2. For ag = 3, however, numerical trapping occurred after the first
three wake periods. Care must be taken in choosing the numerical parameters to ensure
that artificial numerical effects are sufficiently small. Although the results presented in this
paper have been limited to 1D, this same general behavior is observed to occur in 2D PIC
simulations.***® Further studies indicate that the use of shaped macro-particles may reduce

these effects, however, numerical heating and unphysical trapping will still occur.*®
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