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Traditionally, heliophysics is characterized as the study of the near-Earth space
environment, where plasmas and neutral gases originating from the Earth, the
Sun, and other solar system bodies interact in ways that are detectable only
through in-situ or close-range (usually within ∼10 AU) remote sensing. As a result,
heliophysics has data from the space environment around a handful of solar
system objects, in particular the Sun and Earth. Comparatively, astrophysics has
data from an extensive array of objects, but is more limited in temporal, spatial,
and wavelength information from any individual object. Thus, our understanding
of planetary space environments as a complex, multi-dimensional network of
specific interacting systems may in the past have seemed to have little to do with
the highly diverse space environments detected through astrophysical methods.
Recent technological advances have begun to bridge this divide. Exoplanetary
studies are opening up avenues to study planetary environments beyond our solar
system, withmissions like Kepler, TESS, and JWST, alongwith increasing capabilities
of ground-based observations. At the same time, heliophysics studies are pushing
beyond the boundaries of our heliosphere with Voyager, IBEX, and the future IMAP
mission.

The interdisciplinary field of star-exoplanet interactions is a critical, growing area
of study that enriches heliophysics. A multidisciplinary approach to heliophysics
enables us to better understand universal processes that operate in diverse
environments, as well as the evolution of our solar system and extreme
space weather. The expertise, data, theory, and modeling tools developed by
heliophysicists are crucial in understanding the space environments of exoplanets,
their host stars, and their potential habitability. The mutual benefit that heliophysics
and exoplanetary studies offer each other depends on strong, continuing
solar system-focused and Earth-focused heliophysics studies. The heliophysics
discipline requires new targeted funding to support inter-divisional opportunities,
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including small multi-disciplinary research projects, large collaborative research
teams, and observations targeting the heliophysics of planetary and exoplanet
systems. Here we discuss areas of heliophysics-relevant exoplanetary research,
observational opportunities and challenges, and ways to promote the inclusion of
heliophysics within the wider exoplanetary community.

KEYWORDS

heliophysics, exoplanets, space weather, multidisciplinary, stellar wind, magnetosphere,
ionosphere, stellar activity

1 Introduction

Heliophysics is the study of fundamental processes of plasma and
neutral gas dynamics within the solar system, in regions ranging
from the Sun to the edge of the heliosphere and extending into the
upper atmospheres of planets. These processes are primarily driven
by the Sun’s magnetic activity and by the unique properties of the
planetary magnetic fields and atmospheres and their interaction with
the surrounding space environment. Analogous fundamental physical
processes occur in the space weather environments of other stars, and
these processes impact and interactwith the associated exoplanets.The
study of heliophysics processes in exoplanet system contexts provides
a unique parameter space that can complement the knowledge of our
present-day Earth-Sun system, as well as inform us about our past and
future.

Known exoplanet systems span a wide range of host star ages,
magnetic activity levels, and frequency of extreme space weather
events. This variety of exoplanet systems provides a more complete
parameter space that allows us to explore concepts beyond those
developed specifically for the Sun’s interactions with the Earth (and
other solar system planets), in order to derive more universal, self-
consistent relations and understanding of fundamental processes.
Extending our understanding to higher stellar activity levels will
help constrain the possible impacts of extreme solar storms on
the Earth as well as on Mars and the Moon, which are the focus
of human space travel. Similarly, studying young solar-type stars
can provide vital information about the young Sun to understand
the evolution of solar drivers and corresponding atmospheric and
magnetosphere/ionosphere/thermosphere (M-I-T) processes early in
the Earth’s history.

The field of exoplanets is becoming a major area of
interdisciplinary research that considers the full complexity of planets
in the Universe. It is essential that researchers from across the
heliophysics community participate in exoplanet studies so that
important insights gained from heliophysics are brought to the
table by experts in the field. Such interdisciplinary studies have
been recognized as crucial in the decadal surveys and community
white papers of other divisions and past heliophysics decadal surveys
(e.g., National Research Council, 2003; National Research Council,
2013; Kopparapu et al., 2021; National Academies of Sciences, 2021)
as well as overview books on exoplanets and their stars (e.g., Deeg
and Belmonte, 2018; Linsky, 2019; Basri, 2021). This recognition
provides an opportunity to expand the contribution of heliophysics,
raising its profile to be acknowledged as a field with universal impact.
It will also build intra-disciplinary collaborations that tie together
heliophysics subfields, yielding scientific applications well beyond
exoplanet studies.

We recommend a greater investment of efforts and funding in
the cross-disciplinary study of fundamental heliophysics and space
weather processes in exoplanet systems. This investment should take
the form of both greater participation in existing programs and the
creation of new programs. For instance, a larger contribution from
Heliophysics to NASA’s Exoplanets Research Program (XRP) and
Habitable Worlds (HW) programs would bring further heliophysics
expertise to the interdisciplinary questions of exoplanet habitability
and star-planet interaction. Additionally, the Living with a Star
(LWS) program could include more solicitations with Focused
Science Topics concerning the heliophysics of exoplanet systems by
incorporating partnered support from other Divisions. Exoplanet-
related heliophysics research should also include the creation of new
programs, such as an interdisciplinary mission of opportunity or an
early solar system research program. Existing advisory groups with
the inclusion of heliophysicists such as NexSS and ExoPAG could
be utilized in providing innovative strategies for implementing such
developments. The recommendations here should not be taken as
recommendations to replace any current or planned heliophysics
research, but rather to expand and build upon it, as the strength of
our physics-based understanding of the heliosphere and the space
environments of the Earth and other planetary bodies depends on
the strength and continuation of our current heliophysics program.
More broadly, this paper calls for wider recognition of the connections
between the Sun-Earth system and exoplanetary science and the value
of interdisciplinary work in applying heliophysics to the exoplanet
context and vice versa.

2 Research areas

2.1 Stellar activity/Sun as a star

An obvious connection between exoplanetary science and
heliophysics exists when considering the Sun as a star, or conversely,
examining populations of other G-type stars as “solar analogs’. Stellar
observations and theory tell us that stars spin down as they age
and shed angular momentum to their stellar winds; thus, the Sun
must have been more rapidly rotating and more magnetically active
in its past. In order to understand the space weather environment
and solar driving that led to present-day conditions on Earth and
other solar system planets, we must study the Sun’s past by applying
data-constrained, multidimensional heliophysics models of the solar
corona, the wind, and solar transient events (Airapetian et al., 2021).
Multi-wavelength observations and empirical Sun-as-a-star models
of other solar analogs provide constraints on the modeling of the
magnetic environments of the Young Sun (Toriumi and Airapetian,
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2022; Toriumi et al., 2022). Solar twins—or G type stars with similar
properties (such as temperature, age, and composition) to the present-
day Sun—play an important role in comparative studies of the Sun and
other stars (Porto de Mello et al., 2014). They can be used to calibrate
stellar evolutionmodels or investigate the rotational history of the Sun,
among other applications (Galarza et al., 2016; do Nascimento et al.,
2014). Other G-type stars at different stages of their lifetimes can
provide clues to the solar system’s past and future (e.g., Ribas et al.,
2005). Cool stars of other types including F, K, and M stars are also of
interest in providing points of comparison such as different levels of
coronal emission, stellar wind fluxes, flaring output, and other stellar
drivers such as coronal mass ejections (CMEs) and stellar energetic
particles (SEPs). A more detailed understanding of stellar energetic
output is needed to assess the influences that lead to both the Earth’s
present-day habitability, and the possible habitability of exoplanets
through their lifetimes.

There are several key differences in the observational capabilities
between studying our solar system (including Heliophysics
and Planetary missions) and studying other stars. A large gap
exists between the methods and outcomes of solar system
observations–typically in-situ, spatially-resolved, and/or continuous
in time–and astronomical observations of exoplanets and their
host stars–typically point-source and intermittent in time, and by
necessity remote. Though these differences can present obstacles in
communication between the exoplanet and heliophysics communities,
we also emphasize that these approaches can complement one another.
This can be done by developing Sun-as-a-star empirical models of
solar flares and CMEs. Better constraints on how stars spin down,
and how their flaring and coronal emission outputs evolve over the
lifetime of their planetary systems, are required to contribute directly
to understanding the behavior of the Sun over the history of the Solar
system.

2.2 Astrospheres

Analogous to our heliosphere, the region of space surrounding
other main sequence stars and dominated by the stellar magnetic
field and the ionized stellar wind is called the astrosphere. The
solar/stellar wind is an important mediator of interactions, carrying
charged particles and magnetic field lines out to the planets, where
it influences the atmospheric composition and drives atmospheric
erosion. From an astrophysics perspective, the stellar wind properties
are of interest because they determine shedding of stellar mass
and angular momentum. The resulting impact on stellar spin-down
rates in turn affects how one might use gyrochronology to estimate
stellar ages. However, the winds of other cool stars are difficult to
constrain observationally. Preliminary success in constraining stellar
wind mass loss rates via Ly-α emission from hydrogen buildup at the
hydrogenwall beyond the astropause (analogous to the heliopause) is a
promising avenue of research in understanding universal heliophysics
processes in other stellar systems. Additional observations and
modeling will aid our ability to interpret Ly-α emission in terms
of stellar wind pressures and speeds (Wood et al., 2005; Wood et al.,
2021), particularly for other planet-hosting systems (Hussain et al.,
2016; Edelman et al., 2019). An understanding of the relationship
between host star magnetic field strength, resulting wind speed, and
spatial distribution is key to determining the solar wind as a driver of
past M-I-T processes at solar system planets (including Earth).

From the heliophysics perspective, Parker Solar Probe is opening a
new era of in-situ observations of the very inner heliosphere, including
the regime within about 20 solar radii where the solar wind is sub-
Alfvénic, that is, having a bulk plasma velocity less than the local
Alfvén speed, vA = B/√4πρ, where ρ is the mass density and B is the
magnetic field magnitude (e.g., He et al., 2021; Bandyopadhyay et al.,
2022). This achievement in heliospheric observations is directly
relevant to the exoplanet context, since many terrestrial exoplanets
orbiting M stars are expected to fall within their host stars’ Alfvén
surfaces (the boundary between sub- and super-Alfvénic wind flow)
for part or all of their orbital periods (e.g, Garraffo et al., 2016;
Farrish et al., 2019). Outside the Alfvén surface, upstream-directed
interactions from the planets to the Sun cannot occur. The solar
wind forms a bow shock ahead of any planetary obstacles. This bow
shock slows and redirects the solar wind, influencing the interaction
of the solar wind with the planet’s magnetosphere, ionosphere, and
atmosphere. Inside the Alfvén surface, by contrast, the flow of energy
may occur in both directions, toward and away from the star,
allowing direct interaction between the planet and its host star [e.g.
(Cohen et al., 2014; Saur et al., 2013)]. Though some close-in planets
on extremely short orbital periods may be moving fast enough to
produce a bow shock ahead of the planet as its Keplerian speed
exceeds the local sound speed [for example, WASP-12b (Vidotto et al.,
2011)], still other close-in planets are expected to experience sub-
Alfvénic interaction with their host star winds for some or most
of their orbits [for example, TRAPPIST-1e (Harbach et al., 2021) or
AU Mic b Cohen et al. (2022)], even when the orbital speed of the
planet is accounted for. It is therefore important to understand the
interaction of planetary magnetospheres and atmospheres with their
host star winds under a variety of conditions. In-situ data of solar wind
speeds and magnetic features such as switchbacks and shocks provide
a better picture than ever before of the behavior of the Sun’s very
inner heliosphere. As a complement, the extension of solar wind and
magnetospheric models to the sub-Alfvénic regime, and the transition
between sub- and super-Alfvénic regimes, can provide more context
for possible interactions between M stars and their extremely close-
in planets. These cases of sub-Alfvénic interactions or transitions
between sub- and super-Alfvénic conditions demonstrate an area
where heliophysics observations are uniquely poised to help answer
scientific questions in exoplanet systems, andwhere solarmissions and
heliophysics modelers can provide expertise to researchers in other
exoplanet-related disciplines.

The “superflare” extremes of stellar activity, and their potential
planetary and exoplanetary consequences, have garnered considerable
interest from heliophysics, planetary science, and astrophysics. By
analogy with energetic solar flare events, stellar flares are expected
to be associated with stellar CMEs, shocks, and stellar energetic
particles (SEPs) whose properties are a critical factor of exoplanet
habitability (Airapetian et al., 2020). The search for these astrospheric
counterparts of stellar superflares along with stellar prominence
and filament eruptions is a growing area of research and requires
coordinated multi-observatory, multi-wavelength observations of
active stars. Recent studies report several potential detections of stellar
CMEs associated with (super-)flares on G, K and M-dwarfs. The
observational signatures are based on detection of the Doppler shifted
absorption/emission of optical/UV/X-ray emissions lines, coronal
XUV/FUV dimming, radio bursts, and continuous absorption of X-
rays due to eruptive filaments or passing CMEs (Veronig et al., 2021;
Namekata et al., 2022).While past studies so far have relied on a single
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observational technique, coordinated studies to search for multiple
signatures are required to constrain the properties of these ejections.
Such coordinated observational campaigns are strongly encouraged,
as they would provide criticial constrains for modeling efforts of
stellar CMEs in various coronal environments of active stars (see
review by Lynch et al., 2022). Hu et al. (2022) modeled the extreme
energetic particle events accelerated by superflare-associated CMEs
from solar-like stars. Our knowledge so far depends on such data-
constrained modeling capabilities, with the same tools used for our
own space weather research as for exoplanetary space environments
over a range of stellar activity assumptions. These modeling activities
provide knowledge of not only astrospheric environments but also of
our own solar system under a range of possible circumstances, and
of the uniqueness of our situation among the broad populations of
extrasolar systems.

2.3 Exoplanet magnetospheres

Planetary magnetic fields are generated within planetary interiors
by magnetic dynamos. As such, their presence can provide constraints
on planetary interiors. Further, the extent to which exoplanets retain
their atmospheres over geological time scales depends in part upon
whether they are exposed directly to the host stars’ stellar winds. In
the Solar System, data from instruments on the Mars Atmosphere and
Volatile EvolutioN (MAVEN) spacecraft have captured the erosion of
Mars’ atmosphere when a coronal mass ejection (CME) impacted it.
Some of these topics are synergistic with those addressed in Section
(“Exoplanet Atmospheres”).

Some exoplanets are found in close-in orbits (<0.05 au) to
their host stars. These close-in planets experience persistent extreme
space weather conditions, due to stellar wind and interplanetary
magnetic field parameters that can be 1–3 orders of magnitude
stronger than the typical values near Earth (e.g., Garraffo et al.,
2016). Moreover, depending upon the characteristics of the stellar
winds and the eccentricities of their orbits, close-in exoplanets
can transition between very different plasma sectors within short
time intervals during their orbits, mimicking transient conditions
(e.g., CMEs) (Cohen et al., 2014). More distant exoplanets (>0.1
au) present more direct analogs to Solar System planets, but
potentially offer a greater diversity of planetary interiors, operative
dynamos, and magnetospheric geometries than those found in our
own solar system. For both close-in and more distant exoplanets,
magnetospheres potentially shield the planets from their host stars’
stellar winds, as well as control energetic particle access to their
atmospheres (including both magnetospheric- and stellar-origin
particles).Magnetospheres play an important role in redirecting stellar
wind and CME energy and escaping ions to influence atmospheric
escape.

Stellar XUV-driven atmospheric heating produces the significant
expansion of the upper atmospheres of rocky and giant exoplanets
that in some cases can transition into hydrodynamic escape
(Johnstone et al., 2018; Johnstone et al., 2019). The interaction
between the expanding upper atmospheres of rotating hot Jupiters
within their large-scale (dipole-like) magnetic fields drives the
formation of a magnetodisk located outside the “Alfvénic surface”
from the planet (Khodachenko et al., 2021). For close-in exoplanets,
the tidal force and XUV driven heating are strong contributors to

drive the expansion of planetary atmosphere beyond the Roche lobe
and to accelerate its material in the form of a double stream planetary
wind at the day- and night-sides of the planet (Shaikhislamov et al.,
2019).

Knowledge about and accurate modeling of exoplanetary
magnetic fields could constrain our understanding of planetary
responses to their space environment and evolutionary path
(Dong et al., 2019; Dong et al., 2020). In the Solar System, planetary
magnetic fields can be probed via in-situ measurements from
spacecraft. For exoplanets, one of the few means of constraining the
presence of exoplanetary magnetic fields is by their interactions with
the host stars’ stellar winds. Electron cyclotron masers operating in
the polar regions of planets with planetary-scale magnetic fields and
sourced by magnetic field-stellar wind interactions may be detectable
over interstellar distances. Two potential observations of radio
emission resulting from exoplanet magnetospheric processes have
been found to date, from the hot Jupiter τ Boo b (Turner et al., 2021)
and an otherwise unconfirmed Earth-size planet (Vedantham et al.,
2020). However, in dense plasmaspheres of close-in hot exoplanets
around young G and K type stars, where plasma (Langmuir)
frequency, fL, gets close to the electron gyrofrequency, fc, traditional
ECMI generation mechanisms are likely not efficient (Weber et al.,
2017). The account of plasmasphere cut-off (i.e., breaking of the
ECMI condition fL < 0.3fc) constitutes the specifics of exoplanetary
radio emission problem, as compared to similar cases in the Solar
System. In these cases, plasmamasermechanismof exoplanetary radio
emission can be efficient in dense and weakly magnetized (or even
non-magnetized) plasma (Zaitsev and Shaposhnikov, 2022). Similar
mechanisms are known to play an important role in the generation
of radio emission in solar corona, as well as in magnetospheres of the
Solar System planets.

There have been numerous estimates of the radio powers
generated by exoplanetary auroral emissions due to electron cyclotron
masers (e.g., Laneuville et al., 2020), but the lack of many detections
to date likely reflects both the limited sensitivity of many current
telescopes and the relatively high frequencies observed compared to
the radio frequencies at which Solar System planets emit.

The importance of these questions is recognized on an
interdisciplinary basis, and continued collaboration between
heliophysicsmodelers and radio astronomers to predict the conditions
necessary for detection and interpret any future detections is crucial.
The report of the Panel on Exoplanets, Astrobiology, and the Solar
System, from the Pathways to Discovery Astronomy & Astrophysics
Decadal Survey, stated, “For terrestrial planets, surface/atmosphere
exchange mechanisms mediate atmospheric composition, and
planetary magnetic fields can illuminate processes occurring deep
in a planet’s interior, while providing critical insights into how
the planet’s atmosphere interacts with the space environment.” In
the Origins, Worlds, and Life Planetary Science & Astrobiology
Decadal Survey report, two Priority Science Question Topics had
elements involving the existence of planetarymagnetic fields and their
interactions with the solar wind, Question 6: “Solid body atmospheres,
exospheres, magnetospheres, and climate evolution” and Question 12:
“Exoplanets.” Further, the recommendation for the Uranus Orbiter
& Probe as the next Planetary Science Flagship mission was based
on the importance of studying its magnetosphere and its interaction
with the solar wind as “ground truth” for ice giants in other planetary
systems.
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2.4 Exoplanet ionospheres

Ionizing Extreme Ultraviolet (EUV) flux and particle flux incident
on the upper atmosphere creates the ionosphere, which modulates
magnetospheric responses to stellar winds, provides protection from
stellar winds in the case of unmagnetized planets, and provides a
source of atmospheric escape. The extreme space weather conditions
at many observable exoplanets may lead to high ionospheric escape
rates and heavy ion loss (Airapetian et al., 2017; Garcia-Sage et al.,
2017), as well as large Joule heating (Cohen et al., 2014). The Joule
heating influences the upper atmospheric density and expansion and
may further enhance escape. This heating depends on ionospheric
conductance, which is determined by many parameters, some of
which are unknown, including EUV flux, atmospheric composition,
planetary field, particle precipitation, and stellar wind properties.
Comprehensive, detailed modeling is required to determine the
impact of these parameters on the ionospheric conductance and
the consequent modulation of atmospheric loss and atmospheric
observables.

Testing our ionosphericmodels on observables is key. At Earth and
other solar system planets, the ionosphere and ionospheric activity are
remotely observable with airglow and the aurora, but these processes
are expected to be too faint to be observed at exoplanets. However,
the auroral radio emission mentioned above is influenced by the
ionosphere, resulting in potentially observable ionospheric effects.
The modulating effects of the ionosphere must be taken into account
for predicting or analyzing observations of auroral radio emission
(Sciola et al., 2021). Radio emission may only be observable under
certain planetary and astrospheric conditions, but testing models on
observable planets will provide key constraints and validation of our
models.

Finally, it should be noted that under extreme conditions of
hydrodynamic escape within the region of strong tidal forces, as
discussed in the previous section, the star-ward and tail-ward
expansion of the atmosphere results in an ionopause that also extends
in both directions, with a complex shape that should be taken into
account in the interpretation or prediction of Ly-α observations.

2.5 Exoplanet atmospheres

As explained in the previous section, a star’s activity has a major
impact on the atmospheres of any planets orbiting it, and close-
in exoplanets are subjected to more extreme conditions than any
observable in our Solar System. This gives a unique opportunity
to understand the impact of extreme events on the chemistry and
climate of rocky exoplanets, the critical factors for their habitability.
For example, stellar energetic particles (SEPs) - a source of ionizing
radiation - from young solar-like stars during extreme space weather
events could have modified planetary atmospheric compositions
and may explain the formation of potent greenhouse gases and
prebiotic molecules on early Earth and Mars (Airapetian et al.,
2016; Jolitz et al., 2017; Lingam et al., 2018). Analogously, stellar
activity, including photons and particles emitted during CMEs and
Stellar Proton Events (SPEs), and cosmic rays (both stellar and
galactic) could affect the chemical composition of the atmosphere
including biosignatures. The extent to which a particular biosignature
might be detectable would depend upon the stellar activity level,
the specific molecule under consideration, and the endogenous

production rate of that molecule on the planet (e.g., Segura et al.,
2005; Grießmeier et al., 2016; Tabataba-Vakili et al., 2016). Potential
biosignature molecules can be directly destroyed by energetic
particles or their downstream photochemical products, reducing
their abundance and thus detectability at a given rate of planetary
production (Tabataba-Vakili et al., 2016). Particles could have enough
energy to split the nitrogen molecule, N2, producing NOx (NO and
NO2), which can destroy the potential biosignature O3 (Segura et al.,
2005; Segura et al., 2010; Tilley et al., 2019) or could contribute
to create biosignature “false positives” by catalyzing the abiotic
generation of biosignature molecules such as N2O (Airapetian et al.,
2016; Airapetian et al., 2020). Potential false positive scenarios could
be predicted by extensive characterization of the host star or identified
by searching for the spectrally active non-biosignature gases that are
predicted to form in combination with the putative biosignatures
(e.g., Tabataba-Vakili et al., 2016; Schwieterman et al., 2022). For
example, abiotic production of N2O would be accompanied by
more robust production of NO2, HNO3, and/or HCN (Ibid.). The
abiotic production or destruction of greenhouse gas molecules such
as nitrous oxide via stellar activity could impact planetary climate,
depending on the abundances of the produced or destroyed gases
and their endogenous production rates (e.g., Airapetian et al., 2016;
2020; Tian et al., 2020). For hot Jupiters, photons and particles can
influence detectable chemical species (e.g. NH3, HCN). In general,
the photochemistry driven by all phenomena associated with stellar
activity should be consideredwhen predicting or analyzing the spectra
of exoplanets (Venot et al., 2016; Barth et al., 2021).

The effect of the space environment on atmospheric evolution,
both within and outside of our solar system, is also of major
importance to understanding space weather effects on habitability
and on the observed trends for exoplanet radii vs. insolation
(Fulton et al., 2017; Ketzer and Poppenhaeger, 2022). An overview
of atmospheric escape processes by Gronoff et al. (2020) identified
ten escape processes, most of which have been observed within our
Solar System. These processes can broadly be categorized as thermal
escape (Jeans and hydrodynamic escape), photochemical escape, and
ion escape. The primary drivers of these loss processes are stellar
XUV heating and stellar wind, but the properties of the planet,
including mass, atmospheric composition, and intrinsic magnetic
field, determine the response to these drivers and the mechanisms
that can most effectively induce atmospheric loss. The specifics of
the loss mechanisms affect not only the total mass loss rates but also
atmospheric species or isotopes that undergo the greatest loss (e.g.
Garcia-Sage et al., 2017; Gronoff et al., 2020). In some cases, such as
that of Mars, atmospheric evolution may be drastic, leading to loss of
water and nearly complete loss of the atmosphere (Dong et al., 2018b;
Jakosky et al., 2018) from a combination of thermal, photochemical,
and ion escape processes. Atmospheric escape at Earth is often
compared to that at Mars, leading some to claim that Mars lost its
atmosphere because it has no magnetic field. Both planets would
have been subjected to nearly the same stellar wind and XUV fluxes,
resulting in increased mass loss early in the planets’ histories. While
the magnetic field of the planets would have influenced this mass loss,
some studies suggest atmospheric escape would have been enhanced,
not suppressed, by a strong intrinsic field (e.g. Lazio et al., 2019;
Gronoff et al., 2020; Lee et al., 2021). The observations of exoplanets,
which in some cases have included detectable atmospheric escape
(e.g., Lecavelier Des Etangs et al., 2010), allow the study of a greater
parameter space of planetary mass, stellar impacts, and atmospheric
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losses, which enables us to better characterize the reasons why a planet
retains or loses its atmosphere.

Overall, heliophysics facilitates our understanding of how an
exoplanet atmosphere evolves with its host star, which allows us
to better delineate the history of the planets in the solar system.
Conversely, studying exoplanet atmospheres has the potential to
highlight the activity of their host stars. With the planet acting as a
detector for the star’s particles andfields, wemay be able to study stellar
activity regimes that are rarely seen on our Sun.

3 Observational opportunities and
challenges

Heliophysics observations generally fall into two categories -
in-situ measurements of space plasmas, and remote sensing from
spacecraft instruments and ground-based facilities, mostly of the
Sun or aurora. In contrast, astronomical observations rely on
integrated flux observations in different spectral bands, spectroscopy,
polarimetry, and radio observations. Thus, while limited to one
star and planetary system, heliophysics observations provide details
that cannot be obtained by astronomy. These approaches are
complementary: while astronomical observations provide broad
statistics of systems, heliophysics observations provide a fine, realistic,
and complex picture of the current solar system.

Ongoing and future heliophysics missions are making ground-
breaking in-situ observations of processes that influence stellar and
exoplanetary space environments. One potential approach to making
use of these observations is to analyze solar system objects as
astrophysical objects - predicting what would be observed if, e.g.
an Earth-like or Venus-like planet or a Sun-like star were observed
by current or future astrophysical instruments and missions. As
mentioned in Section 2.2, the Parker Solar Probe (PSP) is contributing
the first in-situ observations of the very inner heliosphere within
the sub-Alfvénic solar wind, with implications for exoplanetary
space environments. The encounter of PSP with a comet-like object
322P around 0.025 AU may also offer fresh insights concerning the
habitability of close-in exoplanets (0.03–0.05 AU) around M dwarfs
(He et al., 2021). At the same time, through collaborative missions
with planetary science, such as Juno at Jupiter and MAVEN at Mars,
we are able to test our understanding of how universal heliophysics
processes, including atmospheric and ionospheric escape, energetic
particle acceleration andpropagation, and solarwind interactionswith
magnetospheres and ionospheres apply to diverse planetary systems.

The coming decade will bring an increased understanding of the
upper atmosphere and ionosphere of Earth, in unprecedented detail,
with the GDC (Geospace Dynamics Constellation) and DYNAMIC
(Dynamical Neutral Atmosphere-Ionosphere Coupling) missions,
which together will allow us to better understand the transition from
themiddle atmosphere into themagnetosphere and themany dynamic
processes that influence energy and mass transfer between these
regions. A strong interdisciplinary collaboration is needed in order
to utilize these and other heliophysics observations as detailed case
studies for exoplanet research. Of particular interest across science
divisions are questions of atmospheric escape. Opportunities similar
to the MISTE mission recommended by the previous Heliophysics
Decadal Survey (National Research Council, 2013; Moore et al., 2016;
Parsay et al., 2021) would shed light on the basics physics of ion

escape processes, which is necessary to move past Earth-based
phenomenology and accurately predict exoplanet escape. On the
astrophysical side, UV imaging similar to the proposed ESCAPE
mission (France et al., 2022) would provide the necessary knowledge
of stellar fluxes at wavelengths that drive a multitude of escape
processes.

Astronomical observations are increasingly expected to make
measurements that are highly relevant to the stellar and exoplanetary
space environments, providing the crucial measurements needed to
test understanding of basic heliophysics processes. Studies of the radio
emission generated by CMEs from other stars or the magnetospheric
emissions from exoplanets or both would be enabled by space-based
observations at a few Megahertz and below, e.g., as a successor to the
Sun Radio Interferometer Space Experiment [SunRISE, Kasper et al.
(2021)]. The TESS mission provides extensive data from nearby star
systems, including observations of stellar flares (Günther et al., 2020).
JWST has already reported a detection of a CO2 atmosphere (JWST
Transiting Exoplanet Community Early Release Science Team, 2022)
and can be expected to vastly extend our knowledge of exoplanet
atmospheric compositions.

4 Modeling opportunities and
challenges

With growing computer power and capabilities, heliophysics
models increase in resolution and physical complexity, allowing
them to realistically reproduce phenomena in much finer detail and
accuracy. Nevertheless, heliophysics models commonly operate under
known limitations that are filled inwith empirical fitting or simplifying
assumptions. These empirical constraints and other Earth- or solar
system-based assumptions may not be appropriate for other systems.
As a result, the modeling of exoplanetary plasma environments
can present significant challenges to established heliophysics
models.

Heliospheric magnetosphere models typically assume that the
upstream stellar wind is supersonic and super-Alfvénic, (the transition
boundary is called the Alfvén surface) which allows for one-
way, supersonic boundary conditions on the upstream side of the
magnetosphere. This assumption is not valid for many detected
exoplanets. Changing this boundary condition presents a significant
challenge to the modeling efforts. In many cases, the planet finds itself
inside the Alfvén surface of the host star, allowing feedback to the
host star (e.g., Garraffo et al., 2017). Even in the case of supersonic
stellar winds, the conditions can be so extreme that the magnetopause
boundary is close to the planetary surface (Dong et al., 2017b;
Slavin et al., 2019). This also presents significant numerical challenges
because the larger intrinsic wave speeds in the region of the stronger
magnetic field near the planet require a much smaller timestep
for numerical stability, making the computations quite expensive
(e.g., Sciola et al., 2021). The adaptation of sophisticated heliophysics
models for exoplanet applications requires acknowledgment of areas
where we are missing basic physics in our models and so may help us
to better understand the limitations of our knowledge, to better define
our computational needs, and to incorporate new or different physics
in the models.

While the above examples detail a few of the many cases
where exoplanetary systems with extreme conditions may require
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extensive new physics to model, the considerable expertise in
sophisticated and validated models that have been developed or
are becoming available within the heliophysics community serves
as an excellent starting point for development of exoplanetary
models even in extreme conditions. These models not only include
the important magnetic coupling of planetary magnetic fields to a
dynamic stellar wind, but also include the equally important effects
of the ionosphere and atmospheric outflow (e.g. Brambles et al.,
2011; Garcia-Sage et al., 2015; Garcia-Sage et al., 2015; Glocer, 2016;
Dong et al., 2017a; 2018a; Airapetian et al., 2017; Airapetian et al.,
2020). In addition, there is a considerable amount to be learned
from applying heliophysics models to less extreme situations, which
are likely to be of more interest in addressing the question of
habitability.

Because astrophysics generally works in population-level
statistics, another way to bring together heliophysics with
exoplanetary system observations is by carrying out extensive
heliophysics modeling to develop space environment statistics
that can be compared to astronomical observations. The latter
may also provide independent constraints on heliophysics
models.

5 Collaboration opportunities,
challenges, and recommendations

Heliophysics observations and models provide constraints to
any attempt to understand a realistic stellar system and exoplanets
within it. It is imperative that heliophysics expertise is used to
inform a realistic, complex view of exoplanet systems. A strong
interdisciplinary collaboration is needed to integrate such expertise
into exoplanet research. Recognizing the need for interdisciplinary
research, NASA has begun extending its funding opportunities for
more interdisciplinary proposals. Specifically, the Exoplanets Research
Program (XRP), Habitable Worlds (HW), and Interdisciplinary
Consortia for Astrobiology Research (ICAR) programs have provided
the opportunity to propose “heliophysics of exoplanets” projects.
The XRP program is funded by all four NASA divisions, and
most of the funding still comes from the Astrophysics Division
and Planetary Science Division. In 2020, only 2 out of 26 selected
proposals were heliophysics projects. We recommend augmenting
Heliophysics funding to both the XRP and HW programs to allow
broader participation of heliophysics researchers in exoplanets
and comparative planetology research. Funding from Heliophysics
for exoplanetary topics facilitates ties between divisions. We
also recommend the creation of interdisciplinary opportunities
within the Heliophysics programs, e.g., LWS, and the creation of
interdisciplinary review panels to review explicitly interdisciplinary
Heliophysics proposals. Finally, we recommend having relevant
heliophysics opportunities such as LWS as paths to join the Nexus for
Exoplanet Systems Science (NExSS) and other Research Coordination
Networks. Such networks and collaborations - and interdisciplinary
collaboration in general - improve our ability to conduct our
technical work, and help us exchange best practices for open
science and strategies for creating diverse, inclusive, equitable, and
accessible environments in the field. These advances are important
and especially critical for interdisciplinary research where the
incorporation of different perspectives is required to advance the
field.
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