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Abstract 12 

More accurate characterization and prediction of the in-situ distribution of fracturing fluid in 13 
fractured reservoirs are needed for enhancing well productivity. In this study, an implicit-14 
sequentially coupled flow/geomechanics simulator incorporating an efficient discrete fracture 15 
model is developed to model fluid distribution and recovery performance of ultra-low permeability 16 
gas reservoirs. The finite-volume and finite-element methods are used for space discretization of 17 
the flow and geomechanics equations, respectively, while the backward Euler method is employed 18 
for time discretization. The flow and geomechanics equations are solved sequentially based on 19 
fixed-stress splitting. An efficient discrete-fracture model is used to explicitly model the fractured 20 
system. Flexible unstructured gridding is employed to model arbitrarily-oriented fractures. The 21 
interrelations among pore volume, permeability and geomechanical conditions are considered 22 
dynamically using two-way coupled flow and geomechanics computations. 23 

The geometry of fracture (networks) due to hydraulic fracturing has significant impacts on the 24 
fracturing fluid recovery efficiency and ensuing fluid distribution. Under the same injection 25 
volume, the fracturing fluid recovery is higher when the fracture geometry is planar. Fluid recovery 26 
is relatively lower whenever natural fractures are activated during fracturing treatments; flowback 27 
time is also shortened when complex fracture network with enlarged fracture interface is present. 28 
Fracturing fluid in hydraulic fractures may leak off into the natural fractures and subsequently 29 
imbibes into the surrounding matrix due to capillarity effects. The fracturing fluid recovery and 30 
in-situ fluid distribution are sensitive to the shut-in duration and fracture closure behavior.  31 

This study analyzes the coupled flow-geomechanical responses of fractured gas reservoirs during 32 
the post-fracturing periods. Understanding the fate of the fracturing fluid can provide insights on, 33 
to some extent, the stimulated fracture volume, size of the water invasion zone, and efficiency of 34 
the fracturing design. The simulation predictions can also provide more accurate initial reservoir 35 
conditions (e.g. distributions of different phases and pressure) for long-term well performance 36 
estimation.  37 
 38 
Keywords: coupled flow and geomechanics; flowback; fracturing-fluid distribution; tight/shale 39 
gas; fracture geometry  40 
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Introduction 1 

Shale or tight gas reservoirs have emerged in recent years as huge energy resources, and slick-2 
water fracturing treatment is widely used in the economic development of such ultra-low 3 
permeability reservoirs; large volumes of water are injected into the subsurface formation to create 4 
highly conductive fractures (Palisch et al. 2010; Du and Nojabaei 2019). Field observations 5 
indicate that only a small portion of the injected water, ranging from 5 to 50% among different 6 
reservoirs, can be recovered during the flowback operations (King 2010; Abbasi et al. 2014). In 7 
many cases, less than half of the injected water can be recovered after one year of production 8 
(Moridis 2017). The water-loss mechanisms and their effects on gas production post flowback 9 
have been the subject of many recent research studies. Alkouh et al. (2014), Clarkson and 10 
Williams-Kovacs (2013), Yang et al. (2017), and Jia et al. (2017) developed several 11 
(semi-)analytical models to analyze flowback and early-time production data and concluded that 12 
flowback production patterns appear to be strong indicators of the in-situ fracture characteristics. 13 
However, due to their many simplifications and assumptions, there are limitations for simulating 14 
temporal and spatial variation of fracturing fluid distribution using these (semi-)analytical models. 15 
On the other hand, numerical simulation offers an alternative for capturing complex physical 16 
mechanisms, and it can be used to assess the various influencing factors and predict the in-situ 17 
fluid distributions under various scenarios. Several numerical studies indicate that high capillary 18 
pressure and low water relative permeability are responsible for high water retention in the matrix, 19 
resulting in low water recoveries (Gdanski et al. 2009; Wang et al. 2010; Cheng 2012; Bertoncello 20 
et al. 2014; Yue et al. 2016). The injected water could also leak off into the surrounding natural or 21 
secondary fractures (Fan et al. 2010; Cheng 2012). Matrix imbibition could drive the imbibed 22 
water farther into the formation, although this process is quite slow (Wang and Leung 2015). A 23 
particular limitation in these aforementioned studies is that relatively coarse spatial discretization 24 
was used, where the discontinuity in saturation across a fracture face was not captured precisely. 25 
 26 
In addition to capillarity and fluid flow effects, dramatic changes in the pressure and phase 27 
saturation during the hydraulic fracturing process and subsequent flowback or production stages 28 
would directly influence the geomechanical response, which affects the porosity and permeability 29 
of the system (Rutqvist and Stephansson 2003). Liu et al. (2019) conducted  a series of simulation 30 
studies to investigate the impacts of fracture closure and observed that fracture closure would cause 31 
more water to imbibe into the matrix; although their study highlighted the importance of 32 
incorporating dynamic fracture properties, the mechanism of fracture closure was modeled based 33 
on certain empirical correlations describing fracture permeability or aperture as functions of fluid 34 
pressure; geomechanics calculations were omitted and the total stress acting on fracture surface 35 
was assumed to be constant; matrix deformation was also ignored. A detailed two-way coupled 36 
flow and geomechancis models that would fully capture the dynamic interrelations among 37 
pore/fracture volume, matrix permeability/fracture conductivity is rarely used to examine 38 
fracturing fluid distribution and recovery.    39 
 40 
The overall fracture-matrix interface is affected by the overall fracture (network) geometries, 41 
which are functions of fluid flow and geomechanics. Understanding the fracturing fluid flowback 42 
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patterns and recoveries may help reducing uncertainties associated with the identification and 1 
characterization of the fractured system (Clarkson and Williams-Kovacs 2013; Abbasi et al. 2014; 2 
Moridis 2017). Li et al. (2016; 2017) simulated tracer flowback profiles in stochastically generated 3 
fracture networks, and the results revealed that tracer flowback data analysis could be a promising 4 
technique to characterize stimulated fracture networks. Ehlig-Economides and Economides (2011) 5 
suggested that unrecovered fracturing fluid in the hydraulic fracture could activate nearby natural 6 
fractures, which behave like a propped fracture and enable gas flow; their results seem to suggest 7 
that low fracturing fluid recovery could be an indication of activation of natural fractures. 8 
Mukuhira et al. (2016) also reported that high pressure near the injection point would diffuse to 9 
the surrounding formation, activating natural fractures or other discontinuities along the way 10 
during the subsequent shut-in period. Kumar et al. (2018) discovered a positive correlation 11 
between prolonged seismic events and well productivity, corroborating the proposed mechanisms 12 
regarding the diffusion of hydrofracturing fluid into the surrounding matrix and activation of pre-13 
existing gas-saturated natural fractures. Therefore, to fully examine the fate of fracturing fluid and 14 
its effects on the stimulated fracture volume, discrete fracture models, where individual fractures 15 
are modeled explicitly, coupled with unstructured gridding techniques, should be implemented for 16 
high-resolution investigation of multiphase flow in unconventional reservoirs (Karimi-Fard et al. 17 
2004).  18 
 19 
In summary, a coupled multiphase flow and geomechanics simulation model capable of handling 20 
complex fracture networks is needed to analyze fracturing fluid distribution and flowback at high 21 
resolution. An improved understanding of the relationship between flowback patterns and fracture 22 
network geometries is beneficial for the identification and characterization of hydraulically 23 
fractured systems. The main objective of this study is developing a sequentially coupled 24 
multiphase flow and geomechanics simulator, where an efficient discrete fracture model is 25 
incorporated, to examine the fracturing fluid distribution and flowback characteristics for a variety 26 
of fracture configurations. Relationships between flowback behavior and connected fracture 27 
systems are inferred. 28 
 29 

Mathematical formulation  30 

Governing Equations for Fluid Flow – The mass balance for component k is written as follows: 31 
 32 

k k kd
m d d q d

dt   
+   =   f n  .............................................................................................. (1) 33 

 34 
where the superscript k indicates the component. ( ) /d dt  represents the time derivative of a 35 

physical quantity ( ) . km is mass of component k. kf and 
kq are the flux and source terms on the 36 

physical domain   with a boundary  , respectively, and n is the outer normal vector of the 37 
boundary. The mass of component k is written as: 38 
 39 

( )1k k k

J J J s R

J

m S X     = + −  ............................................................................................. (2)  40 
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 1 
where the subscript J indicates the fluid phase.   is the true porosity, defined as the ratio of the 2 

pore volume to the bulk volume in the deformed configuration. JS  and J  are saturation and 3 

density of phase J, respectively, and k

JX is the mass fraction of component k in phase J. s is an 4 

indicator for gas sorption. 0s = for non-sorb rock, such as a typical tight gas formation, while 5 

1s = for gas-sorb rock, such as shales. R is the rock density, and 
k  is the mass of sorbed 6 

component k per unit mass of rock. The mass flux term is described as: 7 
 8 

k k k

J J J

J J

X= = f w w   ............................................................................................................. (3) 9 

 10 

where k

Jw is the convective mass flow of component k in phase J. The diffusive mass flow is 11 

ignored in this model. The phase mass flow Jw is given by Darcy’s Law according to the following 12 

equation:  13 
 14 

( )J rJ
J J J

J

k
p





= − −w k Grad g    .................................................................................................. (4) 15 

 16 

where k is the absolute permeability tensor. J  and rJk  are the viscosity and relative permeability 17 

of phase J, respectively. Jp  is the fluid pressure of phase J, and g is the gravity vector, and Grad18 

is the gradient operator.  19 
 20 
Governing Equations for Geomechanical Responses – The quasi-static momentum 21 
conservation equation is written as: 22 

b  + =g 0   ............................................................................................................................ (5) 23 

where σ  is the total stress tensor, and b  is the bulk density. Infinitesimal deformation is assumed, 24 

such that the strain tensor () can be calculated as a function of the displacement vector u:  25 

 26 

( )
1

2

T=  +ε u u    ....................................................................................................................... (6) 27 

 28 
Boundary Conditions. The boundary conditions for the coupled problem are: 29 

J f Jw =w n  on f , J Jp p=  on p ,   ........................................................................................ (7) 30 

t t =σ n  on t , =u u  on u ,  ..................................................................................................... (8) 31 

HF f = −σ n t  on HF  ................................................................................................................... (9)  32 

 33 
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f  and p  are fixed flow rate (
Jw ) flow boundary and fixed pressure (

Jp ) flow boundary, where 1 

f p  =  and f p  =  ; t  and u  are fixed traction ( t ) geomechanical boundary and 2 

fixed displacement ( u ) geomechanical boundary, where t u  =  and t u  =  ;   3 

denotes the outer boundary of the whole domain. tn  and fn are unit normal vector to t  and f , 4 

respectively. Fractures act as internal boundaries ( HF ), as shown in Figure 1. The traction acting 5 

on fracture surface ( ft ) can be expressed as: 6 

( )f HF s HFp p= + t n   ................................................................................................................. (10) 7 

where the fluid pressure in fractures ( HFp ) is exerted on the internal boundaries, where HFn is the 8 

unit normal vector to HF  pointing from HF

− to HF

+ . sp  is the force acting on the fracture faces 9 

due to compression of the proppant pack. Assuming that the proppant pack behaves linear-10 

elastically under compression, sp  can be written as (Yan et al. 2018): 11 

 12 

( ) ( )

( )

,0/ , 0

0, 0

s HF HF HF

s

HF

E d
p

+ − + −

+ −

− −  −  
= 

−  

u u n u u n

u u n
  ................................................................. (11) 13 

  14 

where sE  is the Young’s modulus of proppant pack.  ( ) HF

+ −− u u n  represents the normal 15 

displacement jump between fracture faces (i.e. aperture changes), and ,0HFd  is the initial fracture 16 

aperture. 17 
 18 
 19 

 20 
Figure 1 Schematic of a fractured porous medium and its boundaries. 21 

 22 
Constitutive Relations. With the sign convention of tensile stress being positive, the constitutive 23 
relation for the rock skeleton can be written as: 24 

 25 

' :b p b p= − = −σ σ I C ε I   ........................................................................................................... (12) 26 

 27 
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where b is the Biot’s coefficient, σ  and 'σ  are the total stress tensor and effective stress tensor, 1 

respectively. 
J J

J

p s p= is the fluid pressure in multiphase flow. C is the elasticity tensor, which, 2 

in 2D plane-strain condition, is expressed as: 3 

 
( )

( )( )

1
1 1

1
1

1 1 2 1 1

1
1 1

E

 

 
  

   

 

 

 
 − −
 

−  =
 + − − −
 
 
 − − 

C   4 

 5 
Following the fixed stress splitting algorithm (Mikelic and Wheeler, 2013), the flow problem is 6 

solved first to obtain p at the next time level (pn+1) by freezing the total stress (i.e. 0v = ). 7 

According to Geertsma (1957), the true porosity variation in a deformable porous medium can be 8 
approximated as: 9 
 10 

( ) ( )
1 1 1 1 1 1

v v

b s b b b

b
p p

K K K K K
      

 

    
= − − + = − +    

    
 ....................................... (13) 11 

 12 

where bK  and sK  are the bulk modulus of the skeleton and modulus of the solid grain, 13 

respectively, and 1 b

s

K
b

K
= −  is the Biot’s coefficient (Biot, 1941). With the constraint of 0v = , 14 

the true porosity variation can be expressed as: 15 

( )1

1 1

k

k k k

b b

bb
p p

K K


    

−

− −
− −

= → = + 
 

  ......................................................................... (14) 16 

 17 

where k refers to the Newton iteration counter. Substituting the relation between reservoir porosity 18 

( * ) and true porosity, i.e., ( )* 1 v  = + , into the above equation gives: 19 

( ) 1

1 1
1 *

* *

k

vk k k

b

b
p

K

 
  

−

− −
 + −

= +  
 

 ...................................................................................... (15) 20 

 21 
The fixed stress splitting offers a framework for facilitating the evolution of reservoir porosity 22 
with both the volumetric strain and pore pressure, as prescribed by the flow problem solution. The 23 
matrix and fracture permeabilities are functions of the updated porosity: 24 
 25 

*

0 *

0

n

m
m mk k





 
=  

 
  .......................................................................................................................... (16) 26 

 27 
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where mk  and *

m  are the matrix permeability and reservoir porosity, and the subscript “0” refers 1 

to the initial state.  The fracture conductivity ( fF ) is formulated according to the cubic law 2 

(Witherspoon et al. 1980): 3 
 4 

3

0

0

f

f f

f

a
F F

a

 
=   

 

   ........................................................................................................................ (17) 5 

 6 
where fa  are the fracture aperture. 7 

Next, the geomechanics problem is solved freezing the fluid pressure. Invoking the porosity 8 
variation equation [Eq. (13)] and incorporating the relationship between volumetric stress and 9 

volumetric strain v b vK b p  = −  (Biot,  1941) gives: 10 

 11 

( )
( )( )1

v

b

b b
b p

K


   

− −
= − +   ........................................................................................... (18) 12 

Following the arguments of Coussy (2004), ( )b −  and 
( )( )1

b

b b

K

− −
 can be treated as constants 13 

in linear poroelasticity. Thus, integration of Eq. (18) from the initial state gives: 14 

 15 

( )( )
( )( )

( )0

0 0 0 0

1
v v

b

b b
b p p

K


    

− −
− = − − + −   .................................................................. (19) 16 

 17 

With the relationship for reservoir porosity: ( )* 1 v  = + , Eq. (19) can be formulated as: 18 

 19 

( )
( )( )

( ) ( )

( )
( )( )

( )

0 2

0 0 0

0

0 0 0

1
*

1

v v v

b

v v

b

b b
b p p O

K

b b
b p p

K


    


  

− −
= + − + − +

− −
 + − + −

 .............................................................. (20) 20 

 21 

where ( )2

vO   term is neglected under the assumption of infinitesimal deformation (Dana et al., 22 

2018). 23 
 24 

Discretization and Solution Scheme 25 

In this section, the numerical strategies for solving the coupled problem are presented. The grid 26 
structure is described first, and it is followed by a discussion of the finite volume discretization 27 
and finite element discretization for the flow and geomechanics problems, respectively. The mixed 28 
finite volume and finite element (MFVFE) formulation leads to a set of coupled nonlinear system 29 
of equations, which are solved sequentially using the fixed-stress splitting algorithm.  30 
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 1 
Grid Structure. The fractures are expressed explicitly using conformal unstructured grids. A 2 
fracture is treated as an interface element between its two neighboring matrix cells. As shown in 3 
Figure 2, a control volume is assigned to each element for the flow problem; the unknowns (i.e., 4 
p) are associated with the cell center. For the geomechanics problem, the unknowns (i.e., u) are 5 
located at the element nodes. A splitting-node technique is used to duplicate the nodes along the 6 
fractures: each node has its own degrees of freedom, but it shares the same coordinates as the other 7 
split nodes (Ji et al. 2009; Garipov et al. 2016). The linear or nonlinear interactions of fracture 8 
surfaces and fracture-proppant can be easily implemented using this technique (Jiang and Yang 9 
2018). These split nodes form the so-called ‘zero-thickness interface element’ that is widely 10 
applied in fracture mechanics, such as the cohesive zone model.  11 
 12 
 13 

 14 
Figure 2 Grid structure for the flow (left) and geomechanics (right) problems [adapted from 15 

Garipov et al. (2016)]. Red lines represent fractures. 16 

 17 
Finite-Volume Discretization of Flow Equation. Using a two-point flux approximation, the flow 18 
rate between two neighboring cells can be expressed as: 19 
 20 

( )12 12 2 1Q T p p= −   .................................................................................................................... (21) 21 

 22 

where 12Q  is flow rate from cell 1 to cell 2. 12T  is the geometric part of the transmissibility, and 23 

  represents the fluid mobility. The geometric part of the transmissibility is independent of the 24 
fluid phases, only depending on the geometry and intrinsic rock properties. In multiphase flow, 25 
the mobility part of the transmissibility of each phase is different, which is calculated based on 26 
upstream weighting.  27 

An efficient discrete fracture model proposed by Karimi-Fard et al. (2004) is employed. The 28 
geometric part of the transmissibility is given by: 29 

 30 

1 2
12

1 2

T
 

 
=

+
 with 

i i
i i i

i

A k

D
 = n f    ............................................................................................ (22) 31 

 32 
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where iA  is the area of the shared interface between the two cells, ik  is the permeability of cell i, 1 

iD  is the distance between the centroid of the shared face and the centroid of cell i, in  is the unit 2 

vector normal to the interface pointing towards cell i, and if  is the unit vector along the direction 3 

of the line connecting the cell centroid and interface centroid. 4 
 5 
For a fracture intersection with n connected fracture segments, the geometric transmissibility 6 
between each pair of fracture segments (for example, cell i and cell j) can be approximated as: 7 

 

8 

   ........................................................................................................................... (23) 9 

 10 
 11 
Finite-Element Discretization of Geomechanical Equation. Galerkin finite element method 12 
(FEM) is used to discretize the geomechanical equation. Linear triangular elements are used, and 13 
fluid pressure is constant within each element. Multiplying Eq. (12) by an arbitrary weighting 14 

function u , such that 0 =u on the fixed displacement boundaries ( u ) and integrating Eq. (5) 15 

over the computational domain, the weak form of the geomechanical governing equation can be 16 
derived after applying divergence theorem: 17 

 18 

( ) ( ) ( ) ( ) ( )
f t

T T TT T

f bd bp d d d d      
    
 −  +   = +     u ' u m t u t u g ………(24) 19 

 20 

where [1,  1,  0]T=m  in 2D and [1,  1,  1,  0,  0,  0]T=m  in 3D.   represents the local separation of 21 

the fracture elements. The displacement unknowns are interpolated by multiplying the nodal values 22 
with the shape functions, as expressed in Eq. (25): 23 
 24 

=u Nu   ...................................................................................................................................... (25) 25 

 26 
where u  is the nodal displacement vector; N is a matrix consisting of the shape functions, which 27 

are the same to the weighting functions in Galerkin FEM. The relation between the local separation 28 
and global nodal displacement can be expressed as: 29 

  ................................................................................................................................ (26) 30 

where N is the shape function array of 1-D linear element; L is local displacement-separation 31 
relation matrix; R is the rotation matrix. The production of the three matrices forms the global 32 
displacement-separation relation matrix (Bc). Detailed formulations can be found in Park and 33 
Paulino (2012). The discretized equation in matrix-vector form after neglecting the body force 34 
term in 2D becomes: 35 
 36 
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f− +
ext

Ku Q f = f   ................................................................................................................. (27) 1 

where, 2 

( ) ( )
T

d


=   K N C N  ..........................................................................................................  (28) 3 

( )
T

bp d


=  Q N m   .............................................................................................................. (29) 4 

f

T k

f f d


=  cf B t    ........................................................................................................................ (30) 5 

T d


= ext
f N t   ....................................................................................................................... (31) 6 

 7 
Solution Strategy. The fixed-stress split iterative scheme decouples the flow problem and 8 
geomechanics problem, solving them sequentially at each time step. As shown in Figure 3, in each 9 
time step, the flow problem is solved first, and the porosity is updated during each Newton iteration 10 
k. Once the flow problem has converged (i.e., ||residual|| < tolerance), the geomechanical equation 11 
is solved using the updated fluid pressures. The reservoir porosity is computed again after the 12 
geomechanics problem is obtained. Finally, convergence for the entire coupled problem is checked: 13 
if the maximum relative error for the fluid pressure between coupling iterations is within a certain 14 
tolerance, the algorithm would proceed to the next time step; otherwise, the entire fixed-stress 15 
splitting iteration is repeated within the current time step. 16 

 17 

 18 
Figure 3 Flowchart of the sequential-implicit algorithm (each sub-problem, i.e., flow problem 19 

and geomechanical problem, is solved implicitly) for coupled flow and geomechanics based on 20 
fixed-stress splitting. The coupling convergence criterion is set as max{|| (pn+1-pn)/ pn+1||}<10-5. 21 
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 1 

Model Validation  2 

 3 
Validation Case 1 – Water-gas two-phase flow. A case consisting of two sets of fractures for a 4 
domain of 10m×10m is constructed to validate the implementation of discrete fracture modeling, 5 
as shown in Figure 4(a). An injector is placed at the left-bottom corner, where water is injected at 6 
a rate of 0.005 kg/s; a producer is located at the right-top corner with a constant flowing bottom-7 
hole pressure of 25 MPa. At the initial conditions, p0 = 35 MPa, m0 = 0.2, f = 0.8, km0 = 10 mD, 8 
and kf0 = 20 D (with an initial aperture of af0 = 0.01 m), and constant water saturation of 0.2. The 9 
water saturation distributions at different times are shown in Figure 4(b). The water saturation 10 
distributions predicted with the proposed model are in good agreement with those obtained from 11 
the commercial simulator GEM (GEM, 2015), validating the implementation of the discrete 12 
fracture model. In this simulation case, there are a total of 6665 elements (i.e. 13330 degrees of 13 
freedom in each iteration). With a single processor, the average CPU time for each Newton 14 
iteration is 2.3 seconds, and the average number of Newton iterations in each time step required 15 
for convergence is 6.3. 16 

 17 
                                     (a)                                                              (b)  18 
Figure 4 (a) Computational mesh for the validation case of water-gas (two-phase) flow problem 19 
(red lines represent fractures); (b) Water saturation distributions at different times; the top four 20 

plots are predictions from the proposed model; the bottom four plots are predictions from 21 
commercial simulator (note that the color scales are slightly different, but only slight differences 22 

are detected between the two sets of results). 23 

 24 
Validation Case 2 – McNamee-Gibson’s problem. In the McNamee-Gibson’s problem, 25 
deformation for when a constant strip load being applied on a poroelastic medium is considered 26 
(McNamee and Gibson, 1960a, b). There is an instantaneous fluid pressure buildup once the load 27 
is applied. Table 1 summarizes the parameters used in this validation problem. The computational 28 
domain and boundary conditions are shown in Figure 5(a), in which a piecewise traction is loaded 29 
on the top boundary, and fixed normal displacement boundaries are set for the left, right, and 30 
bottom boundaries. The observation point is located on the left boundary at a distance of 3.5 m 31 
below the top boundary. Figure 5(b) shows the comparison between numerical and analytical 32 
solutions for the pore pressure response in dimensionless form at the observation point. The good 33 
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agreement among the two solutions validates the implementation of the presented coupled flow 1 
and geomechanical model following a fixed-stress splitting coupling scheme.    2 

Table 1 Parameters used in McNamee-Gibson's validation problem 3 

Parameters  Value  Unit 

Model dimension 110×110 m 

Porosity 0.25 – 

Permeability 50 mD 

Young’s modulus 450 MPa 

Poisson’s ratio 0 – 

Biot’s coefficient 1 – 

Fluid compressibility 4×10-10 Pa-1 

Fluid viscosity 10-3 Pa·s 

Traction T1, range a 20, 4 MPa, m 

Traction T2, range a2 10, 106 MPa, m 

Initial pressure 10 MPa 

Consolidation coefficient (c) 0.0213 m2/s 

 4 

   5 
    6 
                                                 (a)                                                             (b)  7 

Figure 5 (a) Computational domain and boundary conditions for the McNamee-Gibson’s 8 
problem; (b) Comparison of pore pressure responses in dimensionless form at the observation 9 

point. 10 

Fracturing Fluid Distribution Analysis 11 

Simulation Model Setup 12 

Coupled fluid flow and geomechanical simulation is performed to model fracturing fluid 13 
distribution and recovery. Explicit treatment of the discrete fractures with high spatial 14 
discretization resolution facilitates detailed examination of how fluids would distribute in the 15 
vicinity of fracture planes, such that any potential water blocking can be analyzed accurately. Four 16 
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cases are examined next. First, a single planar fracture is placed in the middle of the domain to 1 
investigate the role of matrix imbibition on fracturing fluid distribution (Case 1). Moreover, to 2 
highlight the necessity of coupling with geomechanics, flow-only simulations are conducted based 3 
on the single fracture model. Next, three cases with complex fracture geometries are constructed 4 
(Case 2, Case 3 and Case 4) to examine the influences of natural or secondary fractures on the 5 
ensuing fluid distribution. Firstly, a stochastic fracture network is generated, of which the 6 
statistical parameters are listed in Table 2. In Case 2 and Case 3, it is assumed that the hydraulic 7 
fracture is deflected into natural fractures during the injection phase, resulting in fracture 8 
geometries with different degrees of complexity. The total water-filled fracture length of Case 3 is 9 
two times of that in Case 1 and Case 2. The total injection volume is kept constant for all cases 10 
while the water-filled fracture aperture is adjusted accordingly. The hydraulic fracture aperture is 11 
0.01 m for Case 1 and Case 2, and 0.005 m for Case 3. For Case 4, it is assumed that the hydraulic 12 
fracture is connected with multiple gas-filled natural fractures. Since natural fractures not directly 13 
connected with hydraulic fractures have minimal impacts on fracturing fluid flowback (Yang et al. 14 
2016), they are ignored in this study (i.e. only the natural fractures intersecting the hydraulic 15 
fracture are used in Case 4). Figure 6 schematically illustrates the fracture geometry of each case. 16 
The model is initialized following the conditions described in Liu et al. (2018): the hydraulic 17 
fractures are initially filled with water with the pressure higher than the surrounding formation, 18 
mimicking the state right after the injection phase during a typical hydraulic fracturing treatment. 19 
No flow boundary condition is applied for the flow problem. For geomechanics, fixed normal 20 
displacement condition is applied to the left and bottom boundaries, while fixed traction condition 21 
is applied to the other two boundaries, and they are also schematically illustrated in Figure 6(a). 22 
Other relevant parameters are listed in Table 3.  23 

 24 

 25 
                   (a)                                (b)                                (c)                                    (d)                    26 
Figure 6 Illustration of the computational domain (30 m × 30 m) and fracture geometry for cases 27 

1-4 (blue line represents water-filled hydraulic fracture; red line represents gas-filled natural 28 
fracture; black dot indicates the perforation location). The same geomechanical boundary 29 

conditions, as illustrated in (a) is applied to all four cases. 30 

 31 
Table 2 Statistical parameters of the generated natural fracture network. 32 

Parameters Value Unit 

Fracture density 1 m/m2 

Average fracture length 4 m 

Average incline-angle 45 degree 

Standard derivation of incline-angle 5 degree 

 33 
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 1 
Table 3 Summary of relevant parameters for the coupled flow and geomechanical simulation 2 

models. 3 

Parameters  Value  Unit 

Initial reservoir pressure 3.2×107 Pa 

Initial natural fracture pressure 3.2×107
 Pa 

Initial hydraulic fracture pressure 5.5×107 Pa 

Matrix porosity 0.06 – 

Matrix permeability 2.0×10-19 m2 

Matrix initial water saturation 0.25 – 

Hydraulic fracture length 2 m 

Hydraulic fracture porosity 0.9 – 

Hydraulic fracture permeability 1.0×10-12 m2 

Hydraulic fracture initial water saturation 1.0 – 

Natural fracture aperture 0.001 m 

Natural fracture porosity  0.5 – 

Natural fracture permeability 1.0×10-14 m2 

Natural fracture initial water saturation 0.1 – 

Bottom-hole Pressure 2.0×107 Pa 

Total in-situ stress 5.5×107
 Pa 

Young’s modulus 29 GPa 

Poisson’s ratio 0.2 – 

Biot’s coefficient 0.7 – 

 4 
The modified Brooks-Corey relations (Lake 1989; Brooks and Corey 1964) are used to generate 5 
the relative permeability and capillary pressure functions for the matrix, natural fracture and 6 
hydraulic fracture domains, as shown in Figure 7 and Figure 8.  7 

   8 

                                      (a)                                                                       (b) 9 
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 1 

(c) 2 

Figure 7 Relative permeability curves of matrix (a), natural fractures (b) and hydraulic fractures 3 
(c). 4 

 5 

Figure 8 Capillary pressure curves of matrix and natural fractures. 6 

 7 
Sensitivity Analysis – Results and Discussion  8 

Single Planar Hydraulic Fracture. To assess the influences of geomechanical effects and matrix 9 
imbibition on fracturing fluid distribution and recovery, two sets of simulations are conducted with 10 
different shut-in durations (i.e. 1 day and 3 days): in one set, the flow problem is not coupled with 11 
geomechanical calculation; while in the other set of simulations, the coupled flow and 12 
geomechanical model is used. The water recovery factors under different conditions are compared 13 
in Figure 9. Clearly, the ultimate water recovery is lower when geomechanical effects are 14 
considered. This can be attributed to fracture closure, which hinders water flowing into the 15 
wellbore. Thus, coupled flow and geomechanics model should be considered when analyzing 16 
stress-sensitive fractured reservoirs. And the following discussions will be based on the results of 17 
coupled simulations.  18 
 19 
As shown in Figure 10 and Figure 11, fracturing fluid imbibes further into the matrix away from 20 
the hydraulic fracture faces as shut-in time increases. As expected, matrix imbibition is one of the 21 
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major mechanisms for fracturing fluid loss, and this observation is corroborated by the trends of 1 
fracturing fluid recovery during flowback period in Figure 9. As the shut-in duration increases, 2 
the fracturing fluid recovery decreases, indicating that the imbibed fracturing fluid tends to remain 3 
in the matrix and potentially contributes to the so-called water blockage phenomenon that can be 4 
detrimental to long-term well productivity (Eveline et al. 2017; Liu et al. 2019; Wu et al. 2019). 5 
Comparing the water distribution profiles in Figure 11 and Figure 12, it is clear that despite of a 6 
portion of the injected water being produced, the matrix water saturation near the hydraulic fracture 7 
remains high after the flowback period, which could significantly reduce the gas relative 8 
permeability and hinder efficient gas production. Removal of this water-blocking zone may 9 
potentially increase the well productivity, and surfactant-assisted EOR/EGR techniques (Longoria 10 
et al. 2017) may be suitable to reduce the nearby matrix capillary pressure. Resuming shut-in may 11 
allow the unrecovered fracturing fluid to continue imbibing into the matrix and to diffuse away 12 
from the near fracture region (Liu et al. 2019). However, this is a very slow process.   13 

 14 

 15 
Figure 9 Comparison of water recovery factors with or without geomechanical coupling for two 16 

different shut-in times. 17 

 18 

 19 
Figure 10 Water saturation distribution after a shut-in period of 1 day for Case 1. 20 
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 1 
Figure 11 Water saturation distribution after a shut-in period of 3 days for Case 1. 2 

 3 
Figure 12 Water saturation distribution at the end of flowback for Case 1 with a shut-in period of 4 

3 days. 5 

 6 
Intersecting Hydraulic Fractures. More complex fracture configurations with intersecting 7 
fractures are studied in Case 2 and Case 3.  The comparison between Case 1 and Case 2 is used to 8 
identify the impacts of fracture complexity on fracturing fluid flowback, while the comparison 9 
between Case 1 and Case 3 can help examine the influence of enlarged fracture interface on 10 
flowback behavior. With the same injection volume as for Case 1, the fracturing fluid distributions 11 
after different shut-in periods of 1 day and 3 days are shown in Figure 13 and Figure 14, 12 
respectively. Once again, fracturing fluid imbibes into the surrounding matrix, and it should be 13 
noted that the water saturation is higher at the fracture intersecting point, since water from all 14 
fracture segments is accumulated at this point. Figure 15 indicates the water recovery of Case 2 is 15 
slightly lower than that of Case 1 under the same shut-in time. The results indicate that the 16 
complexity of fracture geometry would affect water loss during flowback operations. This can be 17 
attributed to the tortuous nature of complex fracture geometries that reduces the water influx 18 
towards the wellbore.  19 
 20 
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 1 
Figure 13 Water saturation distribution after a shut-in period of 1 day for Case 2. 2 

 3 
Figure 14 Water saturation distribution after a shut-in period of 3 days for Case 2. 4 

 5 
Figure 15 Fracturing fluid recovery factors (%) as a function of production time for Case 1 and 6 

Case 2 corresponding to different shut-in durations. 7 
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Similarly, Figure 16 and Figure 17 compare the fracturing fluid distribution of Case 3 after 1 day 1 
and three days shut-in, but the area of water invasion zone is increased for Case 3 due to its 2 
enlarged matrix-fracture interface. More water has imbibed into the matrix as compared to Case 1; 3 
therefore, the corresponding fracturing fluid recoveries are significantly reduced in Case 3, as 4 
illustrated in Figure 18. Moreover, time required to achieve maximum fracturing fluid recovery is 5 
shortened in Case 3 (i.e., the fracturing fluid has flown back faster in Case 3), which is due to the 6 
less mobile fracturing fluid in the fractures after the shut-in period.  7 
 8 
These observations suggest that flowback characteristics (rate, volume and time) are potential 9 
indicators of the stimulated fracture geometry and area of the matrix-fracture interface. For 10 
instance, slightly lower fracturing fluid recovery, yet similar flowback time, may indicate a more 11 
complex fracture geometry than a simple planar fracture, despite of the identical total stimulated 12 
fracture length or total fracture-matrix interface area. On the other hand, significantly lower 13 
fracturing fluid recovery and shorter flowback time may designate a complex fracture geometry 14 
with enlarged fracture-matrix interface.  15 
 16 

 17 
Figure 16 Water saturation distribution after a shut-in period of 1 day for Case 3. 18 

 19 
Figure 17 Water saturation distribution after a shut-in period of 3 days for Case 3. 20 
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 1 
Figure 18 Fracturing fluid recovery factors (%) as a function of production time for Case 1 and 2 

Case 3 corresponding to different shut-in durations. 3 

 4 
Natural Fractures. Given that natural fractures often exist in shale formations (Gale et al. 2014; 5 
Liu et al. 2019), the effects of natural fractures directly connected to the hydraulic fracture are 6 
examined in Case 4. The fracturing fluid distributions corresponding to different shut-in duration 7 
is analyzed. The results are similar to those of Case 1, with the exception that a portion of the 8 
fracturing fluid has temporarily leaked off into the natural fractures due to their relative high 9 
permeability, as compared with that of the matrix. The fluid then gradually imbibes into the nearby 10 
matrix, as shown in Figure 19 and Figure 20. Comparing with the water recovery for Case 1, fluid 11 
leak-off into the nearby natural fractures leads to slightly lower fracturing fluid recovery, as shown 12 
in Figure 21. Moreover, the difference in ultimate water recovery between Case 1 and Case 4 13 
increases as the shut-in time is extended, which also confirms the hypothesis that the existence of 14 
natural fractures may promote more water to imbibe into and be retained in the surrounding matrix. 15 
Another interesting observation is that, although the final water recovery is reduced in Case 4, the 16 
initial flowback rate of Case 4 is higher compared with Case 1. This is because the gas rate 17 
increases with the presence of natural fracture network, which displaces more water flowing into 18 
the wellbore, resulting in higher water flow rate. Correspondinly, the flowback time is also 19 
shortened due to the limited mobile fracturing fluid at the end of shut-in. Therefore, high initial 20 
flowback rate and short flowback time may be an indicator of existence of natural fractures directly 21 
connected to stimulated hydraulic fractures.  22 
 23 
Moreover, Figure 22 shows the water distribution after producing for 5 days (a) and 15 days (b) 24 
with a 3 days shut-in before flowback. Compared with the water distribution at the end of shut-in 25 
(Figure 20), the matrix water saturation near the fractures after producing 5 days (Figure 22(a)) 26 
becomes slightly higher which indicates that the remaining water in the fractures continues 27 
imbibing into the surrounding matrix under capillary drive. As production continues, water tends 28 
to flow further into the matrix, as evidenced by the expanded water invasion zone in Figure 22(b). 29 
These observations support the hypothesis that unrecovered water would finally reside in the 30 
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matrix due to strong capillarity, instead of being trapped in the fractures (assuming that these 1 
fractures do not close completely).  2 
 3 

 4 
Figure 19 Water saturation distribution after a shut-in period of 1 day for Case 4. 5 

 6 
Figure 20 Water saturation distribution after a shut-in period of 3 days for Case 4. 7 
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 1 
Figure 21 Fracturing fluid recovery factors (%) as a function of production time for Case 1 and 2 

Case 4 corresponding to different shut-in durations.    3 

  4 
                                   (a)                                                                               (b) 5 

Figure 22 Water distribution in the vinicity of fractures after a flowback duration of 5 days (a) 6 
and 15 days (b) with a period of 3 days shut-in before flowback. 7 

The results for Case 4 seem to suggest that natural fractures could potentially act as conductive 8 
pathways that facilitate increased water imbibition into the surrounding matrix. However, natural 9 
fracture conductivity varies due to different degrees of mineralization or cementation (Gale et al. 10 
2014). An additional scenario (Case 4a) is constructed, where the fracture permeability is increased 11 
to 50 mD. As shown in Figure 23, fracturing fluid leaks off further into the natural fractures in 12 
Case 4a with higher conductivity, compared with Case 4 in Figure 20. Correspondingly, as the 13 
natural fracture permeability increases, the fracturing fluid recovery factor decreases, as shown in 14 
Figure 24. The results support the postulation that high natural fracture conductivity would 15 
increase the overall permeability of the fractured medium, which, in turn, promotes water 16 
imbibition into the surrounding matrix. As a result, fluid leak-off characteristics could be indicators 17 
of the in-situ fracture configuration (geometries, intensities, and conductivities). Leak-off into the 18 
natural fractures may contribute to additional water loss; however, it is unlikely that water can be 19 
permanently trapped in the natural fractures without imbibing further into the matrix. 20 
 21 
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 1 
Figure 23 Water saturation distribution after a shut-in period of 3 days for Case 4a (i.e. high 2 

natural fracture conductivity). 3 

 4 
Figure 24 Fracturing fluid recovery as a function of production time for Case 1 (without NF), 5 
Case 4 (lower NF permeability) and Case 4a (higher NF permeability) after 3 days of shut-in 6 

time. 7 

Conclusions  8 

1. A sequential-implicit coupled two-phase flow and geomechanical simulation model 9 
incorporating a discrete fracture formulation is developed. The simulation model is validated 10 
against predictions from commercial simulator, as well as other existing or analytical solutions. 11 
The developed simulation model can be used to investigate coupled hydromechanical 12 
processes in fractured gas reservoirs.  13 

2. The developed simulation model is used to predict fracturing fluid distribution and recovery 14 
profiles in fractured ultra-low permeability gas reservoirs. Discrete fractures are represented 15 
explicitly with high resolution. Matrix deformation, fracture closure and stress-dependent rock 16 
properties are coupled dynamically through poromechanics computations in the numerical 17 
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simulations. The focus is to visualize the temporal evolution of fracturing fluid distribution, as 1 
well as to explore the potential for inference of fracture geometry from flowback characteristics.  2 

3. Matrix imbibition is the main controlling factor for water loss. Water invasion zone in the 3 
vicinity of hydraulic fractures increase with shut-in time. At the end of the flowback period, 4 
the matrix water saturation in areas close to the fracture face remains high, implying that water 5 
blocking may happen that inhibits gas flow.  6 

4. Reservoirs with complex fracture geometries may exhibit low fracturing fluid recovery and 7 
shortened flowback time. Higher matrix water saturation is observed at the intersection of 8 
multiple fractures.  9 

5. Leak off of fracturing fluid into natural fractures may contribute to water loss. However, this 10 
mechanism is strongly dependent on the natural fracture conductivity. Lower conductive 11 
natural fractures exhibit less impact on the fracturing fluid flowback behavior. It is unlikely 12 
that water can be permanently trapped in the natural fractures without imbibing further into the 13 
matrix. 14 

6. This study aids in visualizing the detailed mechanisms associated with fracturing fluid 15 
distribution. It reveals various flowback characteristics that are related to the stimulated 16 
fracture geometry. More realistic (and complex) fracture geometry should be employed in 17 
future studies. Integrated fracture propagation and coupled simulation of flow-geomechanical 18 
processes is recommended.  19 

 20 

Nomenclature  21 

af 

A 

C 

D 

Es 

mk 

fk 

Ff 

q 

n 

SJ 

ρJ  
wJ 

𝜇𝐽 

kr 

σ  

ε  

u 

b 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

fracture aperture, m  

interface area between elements, m2 

elasticity tensor, Pa 

distances from cell center to the centroid of shared interface, m 

Young’s modulus of proppant pack, Pa 

Mass of component k, kg  

mass flux of component k, kg/(m2·s)  

fracture conductivity, m3 

source term, kg 

outer normal vector 

saturation of phase J 

density, kg/m3 

mass flow of phase J, kg/s 

viscosity of phase J, Pa·s 

relative permeability  

stress tensor, Pa 

strain tensor 

displacement vector, m  

Biot’s coefficient  
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ϕ  

ϕ* 

Kb  

Ks 

λ  

ν 

 

 

R 

L 

N 

K 

f 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

true porosity 

reservoir porosity 

drained bulk modulus, Pa 

modulus of solid grain, Pa 

fluid mobility, Pa-1·s-1 

Poisson’s ratio 

computational domain 

boundary of computational domain 

rotation matrix 

local displacement-separation matrix 

shape function matrix  

stiffness matrix, N/m  

traction vector, N 

 

Acknowledgements  1 

Y. Liu is thankful for the financial support of his work that was provided by the Texas Engineering 2 
Experiment Station and the  Petroleum Engineering Department of Texas A&M University 3 
through their start-up funding of the projects of Prof. G. Moridis. Portions of this research were 4 
conducted with high performance research computing resources provided by Texas A&M 5 
University.  6 

References  7 

Abbasi, M.A., Ezulike, D.O., Dehghanpour, H. et al. 2014. A comparative study of flowback rate 8 

and pressure transient behavior in multifractured horizontal wells completed in tight gas and oil 9 

reservoirs. Journal of Natural Gas Science and Engineering, 17: 82-93. 10 

http://dx.doi.org/10.1016/j.jngse.2013.12.007. 11 

Alkouh, A., McKetta, S., Wattenbarger, R. A. 2014. Estimation of effective-fracture volume using 12 

water-flowback and production data for shale-gas wells. Journal of Canadian Petroleum 13 

Technology, 53(05): 290-303. 14 

Bertoncello, A., Wallace, J., Blyton, C. et al. 2014. Imbibition and water blockage in 15 

unconventional reservoirs: well management implications during flowback and early 16 

production. SPE Reservoir Evaluation & Engineering, 17(04): 497-506. SPE-167698-PA. 17 

http://dx.doi.org/10.2118/167698-PA. 18 

Biot, M.A., 1941. General theory of three‐dimensional consolidation. Journal of applied 19 
physics, 12(2): 155-164. 20 

Brooks, R.H. and Corey, A.T., 1964. Hydraulic properties of porous media and their relation to 21 
drainage design. Transactions of the ASAE, 7(1): 26-0028. 22 

Cheng, Y. 2012. Impact of Water Dynamics in Fractures on the Performance of Hydraulically 23 

Fractured Wells in Gas-Shale Reservoirs. Journal of Canadian Petroleum Technology 51 (2): 24 

143-151. SPE-127863-PA. http://dx.doi.org/10.2118/127863-PA. 25 



26 
 

Clarkson, C.R. and Williams-Kovacs, J., 2013. Modeling two-phase flowback of multifractured 1 

horizontal wells completed in shale. SPE Journal, 18(04): 795-812. SPE-162593-PA. 2 

https://doi.org/10.2118/162593-PA 3 

Computer Modeling Group (CMG). 2015. GEM: Compositional & Unconventional Reservoir 4 

Simulator User’s Guide, Version 2015, Calgary: CMG.    5 

Coussy, O., 2004. Poromechanics. John Wiley & Sons. 6 
Dana, S., Ganis, B. and Wheeler, M.F., 2018. A multiscale fixed stress split iterative scheme for 7 

coupled flow and poromechanics in deep subsurface reservoirs. Journal of Computational 8 

Physics, 352: 1-22. 9 

Du, F. and Nojabaei, B. 2019. A Review of Gas Injection in Shale Reservoirs: Enhanced Oil/Gas 10 

Recovery Approaches and Greenhouse Gas Control. Energies 12 (12): 2355. 11 

Ehlig-Economides, C.A. and Economides, M.J., 2011 Water as proppant. Presented at SPE Annual 12 

Technical Conference and Exhibition, Denver, Colorado, USA, 30 October-02 November. 13 

SPE-147603-MS. https://doi.org/10.2118/147603-MS 14 

Eveline, V. F., Akkutlu, I. Y., and Moridis, G. J. 2017. Numerical Simulation of Hydraulic 15 

Fracturing Water Effects on Shale Gas Permeability Alteration. Transport in Porous 16 

Media, 116(2): 727-752. https://doi.org/10.1007/s11242-016-0798-4 17 

Fan, L., Thompson, J.W. and Robinson, J.R. 2010. Understanding gas production mechanism and 18 

effectiveness of well stimulation in the Haynesville Shale through reservoir simulation. 19 

Presented at the Canadian Unconventional Resources and International Petroleum Conference, 20 

Calgary, Alberta, Canada 19-21 October. SPE-136696-MS. http://dx.doi.org/10.2118/136696-21 

MS. 22 

Gale, J. F., Laubach, S. E., Olson, J. E. et al. 2014. Natural fractures in shale: A review and new 23 

observations. AAPG bulletin, 98(11): 2165-2216. https://doi.org/10.1306/08121413151 24 

Garipov, T.T., Karimi-Fard, M. and Tchelepi, H.A., 2016. Discrete fracture model for coupled 25 

flow and geomechanics. Computational Geosciences, 20(1): 149-160. 26 

Gdanski, R.D., Fulton, D.D. and Shen, C. 2009. Fracture-Face-Skin Evolution During 27 

Cleanup. SPE Production & Operations, 24 (01): 22-34. SPE-101083-PA. 28 

http://dx.doi.org/10.2118/101083-PA. 29 

Geertsma, J., 1957. The effect of fluid pressure decline on volumetric changes of porous rocks. 30 

Ji, L., Settari, A. and Sullivan, R.B., 2009. A novel hydraulic fracturing model fully coupled with 31 

geomechanics and reservoir simulation. SPE Journal, 14(03): 423-430. 32 

Jia, P., Cheng, L., Clarkson, C.R. and Williams-Kovacs, J.D. 2017. Flow behavior analysis of two-33 
phase (gas/water) flowback and early-time production from hydraulically-fractured shale gas 34 
wells using a hybrid numerical/analytical model. International Journal of Coal Geology, 182: 35 
14-31. 36 

Jiang, J. and Yang, J., 2018. Coupled fluid flow and geomechanics modeling of stress-sensitive 37 

production behavior in fractured shale gas reservoirs. International Journal of Rock Mechanics 38 

and Mining Sciences, 101: 1-12. 39 

Karimi-Fard, M., Durlofsky, L.J. and Aziz, K. 2004. An Efficient Discrete-Fracture Model 40 
Applicable for General-Purpose Reservoir Simulators. SPE Journal, 9(02): 227-236. 41 

https://doi.org/10.2118/162593-PA
http://dx.doi.org/10.2118/136696-MS
http://dx.doi.org/10.2118/136696-MS
http://dx.doi.org/10.2118/101083-PA


27 
 

King, G.E., 2010. Thirty years of gas shale fracturing: What have we learned?. Presented at 1 

the SPE Annual Technical Conference and Exhibition, Florence, Italy, 19-22 September. SPE-2 

133456-MS. https://doi.org/10.2118/133456-MS 3 

Kumar, A., Zorn, E., Hammack, R. et al., 2018. Long-period, long-duration seismic events and 4 

their probable role in reservoir stimulation and stage productivity. SPE Reservoir Evaluation & 5 

Engineering. SPE-191377-PA. https://doi.org/10.2118/191377-PA 6 

Lake, L.W. 1989. Enhanced Oil Recovery, Chapter 3. Prentice Hall. 7 
Li, J., Pei, Y., Jiang, H. et al. 2016. Tracer flowback based fracture network characterization in 8 

hydraulic fracturing. Presented at the Abu Dhabi International Petroleum Exhibition & 9 
Conference, UAE, 7-10 November. SPE-183444-MS.  10 

Li, L., Pinprayong, V., Meng, F. et al. 2017. Fracture Network Evaluation Using Tracer Flowback: 11 
A Case Study. Presented at the SPE Symposium: Production Enhancement and Cost 12 
Optimisation, Kuala Lumpur, Malaysia, 7-8 November. SPE-189276-MS. 13 

Liu, Y., Leung, J. Y. and Chalaturnyk, R. 2018. Geomechanical Simulation of Partially Propped 14 

Fracture Closure and Its Implication for Water Flowback and Gas Production. SPE Reservoir 15 

Evaluation & Engineering, 21(02): 273-290. 16 

Liu, Y., Leung, J.Y.W., Chalaturnyk, R.J. et al., 2019. New Insights on Mechanisms Controlling 17 

Fracturing-Fluid Distribution and Their Effects on Well Performance in Shale-Gas 18 

Reservoirs. SPE Production & Operations, 34(3): 564-585. 19 

Liu, L., Yao, J., Sun, H. et al. 2019. Compositional modeling of shale condensate gas flow with 20 

multiple transport mechanisms. Journal of Petroleum Science and Engineering, 172, pp.1186-21 

1201. 22 

Longoria, R. A., Liang, T., Huynh, U. T. et al. 2017. Water blocks in tight formations: the role of 23 

matrix/fracture interaction in hydrocarbon-permeability reduction and its implications in the 24 

use of enhanced oil recovery techniques. SPE Journal, 22(05): 1-393. 25 

McNamee, J. and Gibson, R. E. 1960a. Displacement functions and linear transforms applied to 26 

diffusion through porous elastic media. The Quarterly Journal of Mechanics and Applied 27 

Mathematics, 13(1): 98-111. 28 

McNamee, J. and Gibson, R. E. 1960b. Plane strain and axially symmetric problems of the 29 

consolidation of a semi-infinite clay stratum. The Quarterly Journal of Mechanics and Applied 30 

Mathematics, 13(2): 210-227. 31 

Mikelić, A. and Wheeler, M.F., 2013. Convergence of iterative coupling for coupled flow and 32 

geomechanics. Computational Geosciences, 17(3): 455-461. https://doi.org/10.1007/s10596-33 

012-9318-y 34 

Moridis, G.J., 2017. High Resolution Investigations of Flow and Thermal Processes During 35 

Production from Hydraulically Fractured Ultra-Low Permeability Media. Presented at the SPE 36 

Latin America and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 37 

17-19, May. SPE-185512-MS. https://doi.org/10.2118/185512-MS 38 

Mukuhira, Y., Dinske, C., Asanuma, H. et al. 2017. Pore pressure behavior at the shut‐in phase 39 

and causality of large induced seismicity at Basel, Switzerland. Journal of Geophysical 40 

Research: Solid Earth, 122(1): 411-435. https://doi.org/10.1002/2016JB013338. 41 

https://doi.org/10.2118/191377-PA


28 
 

Palisch, T.T., Vincent, M. and Handren, P.J., 2010. Slickwater fracturing: food for thought. SPE 1 

Production & Operations, 25(03): 327-344. SPE-115766-PA. https://doi.org/ 10.2118/115766-2 

PA 3 

Park, K., and Paulino, G. H. 2012. Computational implementation of the PPR potential-based 4 

cohesive model in ABAQUS: Educational perspective. Engineering fracture mechanics, 93: 5 

239-262. 6 

Rutqvist, J. and Stephansson, O., 2003. The role of hydromechanical coupling in fractured rock 7 

engineering. Hydrogeology Journal, 11(1): 7-40. https://doi.org/10.1007/s10040-002-0241-5 8 

Wang, J.Y., Holditch, S. and McVay, D. 2010. Modeling Fracture-Fluid Cleanup in Tight-Gas 9 

Wells. SPE Journal, 15 (03): 783-793. SPE 119624-PA. http://dx.doi.org/10.2118/119624-PA. 10 

Wang, M. and Leung, J.Y. 2015. Numerical investigation of fluid-loss mechanisms during 11 

hydraulic fracturing flow-back operations in tight reservoirs. Journal of Petroleum Science and 12 

Engineering, 133: 85-102. http://dx.doi.org/10.1016/j.petro.2015.05.013. 13 

Wang, M. and Leung, J.Y., 2016. Numerical Investigation of Coupling Multiphase Flow and 14 
Geomechanical Effects on Water Loss During Hydraulic-Fracturing Flowback Operation. SPE 15 
Reservoir Evaluation & Engineering, 19(03): 520-537. 16 

Witherspoon, P. A., Wang, J. S., Iwai, K. et al. 1980. Validity of cubic law for fluid flow in a 17 
deformable rock fracture. Water resources research, 16(6): 1016-1024. 18 

Wu, Y., Cheng, L., Huang, S. et al. 2019. An analytical model for analyzing the impact of 19 
fracturing fluid-induced formation damage on rate transient behavior in tight formations. 20 
Journal of Petroleum Science and Engineering, 179: 513-525. 21 

Yan, X., Huang, Z., Yao, J. et al. 2018. An efficient numerical hybrid model for multiphase flow 22 
in deformable fractured-shale reservoirs. SPE Journal, 23(04): 1-412. 23 

Yang, R., Huang, Z., Li, G. et al. 2017. A semianalytical approach to model two-phase flowback 24 
of shale-gas wells with complex-fracture-network geometries. SPE Journal, 22(06): 1-808. 25 

Yue, M., Leung, J.Y. and Dehghanpour, H. 2016. Numerical Investigation of Limitations and 26 

Assumptions of Analytical Transient Flow Models in Tight Oil Reservoirs. Journal of Natural 27 

Gas Science and Engineering, 30: 471-486. http://dx.doi.org/j.jngse.2016.01.042.  28 

 29 




