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METHODOLOGY ARTICLE Open Access

SAMSA: a comprehensive
metatranscriptome analysis pipeline
Samuel T. Westreich1,2, Ian Korf1,2, David A. Mills3 and Danielle G. Lemay2*

Abstract

Background: Although metatranscriptomics—the study of diverse microbial population activity based on RNA-seq
data—is rapidly growing in popularity, there are limited options for biologists to analyze this type of data. Current
approaches for processing metatranscriptomes rely on restricted databases and a dedicated computing cluster, or
metagenome-based approaches that have not been fully evaluated for processing metatranscriptomic datasets. We
created a new bioinformatics pipeline, designed specifically for metatranscriptome dataset analysis, which runs in
conjunction with Metagenome-RAST (MG-RAST) servers. Designed for use by researchers with relatively little
bioinformatics experience, SAMSA offers a breakdown of metatranscriptome transcription activity levels by organism
or transcript function, and is fully open source. We used this new tool to evaluate best practices for sequencing
stool metatranscriptomes.

Results: Working with the MG-RAST annotation server, we constructed the Simple Annotation of
Metatranscriptomes by Sequence Analysis (SAMSA) software package, a complete pipeline for the analysis of gut
microbiome data. SAMSA can summarize and evaluate raw annotation results, identifying abundant species and
significant functional differences between metatranscriptomes.
Using pilot data and simulated subsets, we determined experimental requirements for fecal gut
metatranscriptomes. Sequences need to be either long reads (longer than 100 bp) or joined paired-end reads. Each
sample needs 40–50 million raw sequences, which can be expected to yield the 5–10 million annotated reads
necessary for accurate abundance measures. We also demonstrated that ribosomal RNA depletion does not equally
deplete ribosomes from all species within a sample, and remaining rRNA sequences should be discarded. Using
publicly available metatranscriptome data in which rRNA was not depleted, we were able to demonstrate that
overall organism transcriptional activity can be measured using mRNA counts. We were also able to detect
significant differences between control and experimental groups in both organism transcriptional activity and
specific cellular functions.

Conclusions: By making this new pipeline publicly available, we have created a powerful new tool for
metatranscriptomics research, offering a new method for greater insight into the activity of diverse microbial
communities. We further recommend that stool metatranscriptomes be ribodepleted and sequenced in a 100 bp
paired end format with a minimum of 40 million reads per sample.

Keywords: Metatranscriptome, Pipeline, Microbiome, Metagenome, RNA-seq, Big data, Software package, Best
practices
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Background
Metatranscriptomics, the large-scale sequencing of
mRNAs from complex microbial communities, allows for
the observation of gene expression patterns [1–4].
Metatranscriptomics is a relatively new field, with the first
mention around 2008 [5], but it is growing quickly. Using
high-throughput techniques developed in conjunction with
“big data” computer-automated analysis approaches,
metatranscriptomics offers a novel and complete method
for looking at not just the organisms present, but also the
transcriptional activity occurring within a complex and di-
verse population at any chosen specific point in time [2, 3].
Metatranscriptomics is especially useful for analyzing
complex populations in flux, such as the gut microbiome,
which can be impacted and altered by a large number of
transitory factors [6–8].
However, because of the complexity of metatranscrip-

tomic data, extensive analysis is needed to convert raw
data into simplified and easily understood results. The
raw data comprise tens of millions of individual reads
per sample [4]. Simplifying and condensing this very
large data set requires multiple steps in a software pipe-
line and generally requires a dedicated bioinformatician
to perform the analysis. Current pipelines or in-house
methods often require significant computing power or
use several different tools, many of which were not ori-
ginally intended for metatranscriptome analysis [2, 3, 9].
For researchers who want to utilize metatranscriptomic
analysis but may not have the necessary bioinformatics
experience, there is a strong need for a complete pipe-
line, designed to analyze this data from beginning to end
without requiring extensive technical expertise.
In addition, as metatranscriptomics is a new area of gen-

omic exploration, there are few established guidelines or
standard protocols. Standardized protocols exist for mRNA
collection [5] and for stool-specific extraction [10, 11], but
there is also a pressing need for an investigation of
necessary sequencing parameters and depth, minimum
read quality standards, and reliable reference databases
against which metatranscriptome reads can be aligned. Any
researcher planing to sequence metatranscriptomic data
must know the target sequencing depth and minimum
recommended read length, whether to filter out ribosomal
sequences, and the relative confidence of their predicted
results based on these parameters.
In this paper, to develop a standard metatranscriptomic

analysis pipeline that can be applied to a wide range of
microbiome samples, we extracted and sequenced RNA
from human fecal material using experimentally validated
protocols [10]. By testing various parameters and modifica-
tions, we determined the best practices at each step in
obtaining and analyzing the metatranscriptomic data. In
addition, we incorporated a publicly available metatran-
scriptomic data set examining the fecal gut microbiome in

tyrosine kinase two knockout (Tyk2−/−) mice compared to
wild-type controls over time during the outbreak of dextran
sodium sulfate (DSS) induced colitis [12]. Examining this
data, we provide new insights into differences in functional
expression between the two different microbiomes over the
course of the colitis development. By applying the
approaches detailed here, researchers wishing to include
metatranscriptomic analysis in their experiments can obtain
accurate results without an investment in the development
of bioinformatics tools.

Results
Creation of SAMSA, a new pipeline for metatranscriptome
analysis
We created the SAMSA (Simple Analysis of Metatran-
scriptome Sequence Annotations) pipeline, designed to
fully analyze and characterize bacterial transcription
within a metatranscriptome, illustrating relative level of
transcriptional activity split by both organism and
functional category. There are four phases to the
pipeline: the preprocessing phase trims and combines
reads for input to the annotation phase, the annotation
phase provides an annotation for each read, the aggrega-
tion phase aggregates organsim and function informa-
tion across all reads, and the analysis phase provides
visualizations and statistical analysis (Fig. 1).

Preprocessing phase
During preprocessing, raw sequences are trimmed to
remove reads containing low-quality bases and eliminate
adaptor contamination using Trimmomatic, a flexible
read trimming tool for Illumina NGS data [13]. Next,
each pair of paired-end reads are aligned to each other
using FLASh, a short read aligning program [14]. In our
pilot samples, approximately 32–54 % of the raw reads
in each sample were successfully aligned, with an
average aligned read length of 178 base pairs.

Annotation phase
Next, these sequences are submitted for annotation to
Metagenomic Rapid Annotations using Subsystems
Technology (MG-RAST) [15]. MG-RAST includes
several steps, including an initial sequence quality
control check through SolexaQA, gene calling through
FragGeneScan, clustering of amino acid sequences at
90 % identity through the uclust implementation of
QIIME, and then using sBLAT on each protein sequence
cluster to locate the best match reference. For each
sequence cluster, MG-RAST selects the best match
through the sBLAT similarity search. If multiple refer-
ence database matches tie for best matching score, they
are both included in the final results. If the read does
not achieve a match score above the minimum e-value
cutoff, it is discarded. Each match is linked to MG-
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Fig. 1 The SAMSA pipeline. This organizational chart shows the flow of data through the pipeline, beginning with raw reads at the top of the
chart and ending with the graphical output of the results at the bottom. Note that blue boxes denote intermediate generated output files, red
boxes denote Python scripts, orange boxes denote R scripts, and green boxes denote external reference databases
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RAST’s internal identifier system and assigned an M5nr
ID, correlating with linked matches in all subsystems
databases. The annotated output can be provided on a per-
match basis, using the M5nr ID to link each read to its best
match from the subsystems database of choice. To create
sorted abundance measures of the metatranscriptome using
the SAMSA pipeline, all annotations with an acceptable
best-match to the NCBI Reference Database (RefSeq) [16]
are downloaded from MG-RAST. Annotations are down-
loaded for the best match to both organism and individual
transcript. Annotations are downloaded directly in tab-
delimited form using MG-RAST’s RESTful API interface
[17] and a custom Python program to assemble the API call
command. In addition, the annotated output is also down-
loaded from the SEED Subsystems reference database [18]
to provide ontology annotations.

Aggregation phase
A custom Python program parses each annotated output,
storing each unique annotation match in a dictionary and
maintaining counts of the number of occurrences of each
unique annotation. After the annotation file is processed,
unique annotations are sorted by abundance and exported
as output.

Analysis phase
Annotation and abundance information from the Aggrega-
tion phase are inputs to custom R scripts, which generate
barplots and dendograms (see Fig. 1). To compare experi-
mental versus control metatranscriptomes and determine
significantly differentially expressed transcripts, R’s DESeq2
package is used to test the output files for differential
expression [19]. DESeq2’s testing method adjusts for
multiple hypothesis testing, performing pairwise compari-
sons in the scope of a larger overall data set. The pipeline’s
R scripts export sorted lists of log2fold change in both
organism and functional category activity, sorted by
adjusted p-value. Results are also stored in the local R
environment and can be used for graphical output.
This complete pipeline, coded in Python and R, is fully

open source, is set up for streamlined use from the
command line, does not require a local server for
intense computation, and is freely available for download
through GitHub.

Measurement of host transcripts in fecal
metatranscriptomes
Given that metatranscriptomes theoretically contain the
transcriptional profile of all organisms present, we asked
whether the transcriptomes of host cells could still be
elucidated from fecal metatranscriptomes for which the
primary goal was bacterial metatranscriptome analysis.
We tried two methods of RNA extraction followed by
either ribosomal depletion or poly(A) enrichment (see

Methods). Neither method yielded many reads aligning
to the human genome. We found 417 and 340 ribode-
pleted reads (0.0019 and 0.0085 % of all ribodepleted
reads) matching the human genome, and 2273 and 2100
poly(A) enriched reads (0.116 and 0.097 % of all poly(A)
enriched reads) matching the human genome. Thus, we
conclude that host transcriptomes cannot be reliably
extracted from stool metatranscriptomes that have been
isolated and sequenced using standard methods.

Use of ribosomal depletion methods in
metatranscriptome preparation
Transcriptomic and metatranscriptomic extractions are
often treated with ribodepletion methods before sequen-
cing for the removal of ribosomal reads, increasing the
relative mRNA yield [4, 20]. Comparing ribodepleted
and non-depleted RNA, we found that the Ribo-Zero
Gold ribodepletion kit from Illumina showed an overall
63–82 % reduction in ribosomal reads present within
our sample, but certain microbial ribosomes did not
show any reduction, including members of the
Actinobacteria, Cyanobacteria, and Spirochaetes phyla
(Fig. 2, Table 1). Ribodepletion appears effective at
depleting rRNA reads within a sample, but also prefer-
entially removes ribosomes from certain bacterial phyla
over others, skewing ribosomal output within the
metatranscriptome’s sequencing results.

Optimal sequencing depth for gut microbiome
metatranscriptomics
An important consideration when creating a metatran-
scriptome is sequencing depth: how many reads must be
obtained in order to provide proper representation of all
reads within a sample? As the proportionality of different
reads within the sample is of crucial importance, sequen-
cing depth must be large enough to ensure a balanced
representation of each read’s relative abundance within
the total sample. Too little depth can result in inaccurate
abundance and activity measurements.
To evaluate necessary sequencing depth using a

bioinformatics based approach, we generated 100
randomly selected subsets of a large and comparatively
over-sequenced metatranscriptome of 21.6 million anno-
tated reads (derived from 38 M raw reads), creating ten
smaller stand-alone simulated metatranscriptomes for
each size point measured, moving in ten percent incre-
ments from 1 million up to 20 annotated million reads
per subset. Within each simulated metatranscriptome,
the relative percentage of various reads was measured,
and these results were compared by simulated metatran-
scriptome size. This approach was performed looking at
both high (in the 90th percentile of all reads by sorted
abundance), medium (in the 50th percentile of all reads
by sorted abundance), and low (in the 10th percentile of
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all reads by sorted abundance) abundance reads within
the parent metatranscriptome (Fig. 3). By comparing
relative abundance in each subset metatranscriptome to
the final full data, we quantified the accuracy of the
abundance measurements. We defined accuracy as per-
centage deviation from final, stable abundance counts.
This data shows that, for the human gut metatranscrip-
tomes examined, a minimum a minimum of 5 and 10
million read annotations are needed to achieve above
90 % accuracy in low abundance reads. This is equiva-
lent to about 40–50 million raw sequence reads. Note
that abundance estimates for medium and high
abundance reads can be reasonably accurate with fewer
annotations (Fig. 3).

Paired or single end sequencing for metatranscriptome
analysis
Another important consideration when sequencing a
metatranscriptome is whether paired-end sequencing is
necessary for proper read annotation. Paired-end se-
quencing is more expensive on a per-read basis but the
average output read length is significantly increased,
allowing for a more accurate best-match annotation in
the pipeline.
Statistical comparisons of the relative organism activity

results and the relative transcript abundance between
single and paired end read versions of the same original
metatranscriptome file show significant differences in

both organism-of-origin and transcript identification by
the annotation pipeline. In identical metatranscriptomes
containing either paired-end or single end reads, the
paired-end reads resulted in fewer reads removed due to
quality controls (51,507 versus 123,518, or 0.3 vs. 0.6 %),
and a greater percentage of all reads matching at least
one alignment in the reference database (77.2 %, or
4,321,429 paired end reads versus 65.9 %, or 3,194,911
single end reads) (Table 2).
The paired-end sequencing data matched to a

higher number of unique transcripts than the single
read data (270,384 unique transcripts versus 215,599
transcripts), suggesting that increased read length
leads to greater specificity in transcript annotation.
Correlations between paired-end and single-read proc-
essed identical metatranscriptomes averaged only 0.72
between both pilot samples. Given that these paired-
end and single read metatranscriptomes were origin-
ally identical before the trimming of excess bases
beyond 100 bases per read, these results indicate sig-
nificant mislabeling or lost information in the single
read approach when compared to the more accurate
paired-end sample.
Taken with the organism matching results, these

numbers suggest that the increased read length generated
either through paired-end sequencing or through 150-bp
single-end sequencing is necessary to ensure accurate
metatranscriptome annotation.

Fig. 2 Level of depletion in ribodepleted vs. control metatranscriptomes. Identical pilot metatranscriptome samples were sequenced; protocol 1
included a ribodepletion step, while protocol 4 did not include this step. As is demonstrated, not all species were equally depleted, skewing the
perceived abundances of different organisms within the metatranscriptome. Normalized data shows the combined average depletion percentage
for each phylum of bacteria present within the sample
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Determining organisms present within fecal
metatranscriptomes
Using publicly available metatranscriptomes that were
not depleted of ribosomal RNAs [12], we compared
estimates of organism abundance using either mRNA or
rRNA transcripts, using matches in NCBI’s RefSeq
database for mRNA and matches in the SILVA small
subunit (SSU) database for rRNA. We found a consistent
correlation between abundance estimates from mRNA
vs. rRNA (Fig. 4) across all samples, suggesting that
mRNA abundance estimates may be able to provide
useful representative population data within a sample.
With filtering to remove non-bacterial annotations, we
observed an average Pearson correlation of 0.99 at the
order level, 0.85 at the family level, and 0.81 at the genus
level of identification across all 15 samples.

Applying this pipeline to a public metatranscriptomic
data set: organism and functional analysis
Publicly available metatranscriptomic data [12] was
analyzed using the SAMSA pipeline described above
(Fig. 1). Output tables generated by the pipeline are
imported into R, where a stacked bar graph allows for
comparing of relative activity levels both by organism
(Fig. 5) and by functional category (Fig. 6). Due to the
large number of both organism and functional categor-
ies, the R analysis scripts generate graphs which show
only the top 30 most abundant organisms and/or
functional categories, with remaining categories grouped
under an “other” catch-all category (Fig. 6a) or removed
from display (Fig. 6b).
In the original paper [12], which focused primarily on

the response of mouse gut epithelial cells to dextran
sodium sulfate (DSS) induced colitis, the authors used
primarily only the rRNA sequences from 16S amplicon
sequencing of the samples to examine shifts in mouse
gut microbiomes. They did report an increase in mRNA
matching Enterobacteriaceae species in Tyrosine Kinase
2 (Tyk2) deficient mice, rising on day 3 of treatment,
but provided no other mRNA analysis of these samples.
Examining the results of our pipeline, we observed a

1.558-fold increase in Enterobacteriaceae mRNA expres-
sion in day 3 samples (p = 0.0055). Indeed, looking across
all bacterial species with greater than 100 average
expressed transcripts, we found significant increases in
transcriptional activity in Escherichia and Providencia
species, both of which are associated with ulcerative colitis
[21]. In addition, we noted a significant decrease in
Butyrivibrio species (p = 0.03), when comparing between
wild-type and Tyk2-deficient mice over the course of
DSS-induced colitis. Butyrivibrio is a probiotic-associated
strain that may normally offer protection against colitis
[22]. We also observed several significant changes in
functional activity between the two groups, identifying
more than 300 protein-coding transcripts differentially
expressed between wild-type and Tyk2-deficient mice
(adjusted p < 0.05, Additional file 1).

Discussion
Although still an emerging field, metatranscriptomics
offers a powerful approach for analyzing complex
functional activity within a heterogeneous microbial
population, such as that found within the gut micro-
biome. Previous approaches for the study of the gut
microbiome provide an incomplete picture, limited to
only identifying variations in organism population levels
and not including data on the gene expression of differ-
ent species within the environment.
Our pipeline fulfills the need for four main steps in

metatranscriptomic data analysis: preprocessing, annota-
tion, aggregation, and analysis. By leveraging MG-RAST’s

Table 1 Comparison of rRNA abundance in control vs.
ribodepleted samples

Phylum 4012, P4 4012, P1 4015, P4 4015, P1 % depleted

Gemmatimonadetes 3 1 28 5 74.40

Spirochaetes 3 4 14 55 163.10

Nitrospirae 4 1 22 0 87.50

Fusobacteria 5 5 24 9 31.25

Fibrobacteres 6 0 21 0 100.00

Synergistetes 6 5 14 2 51.19

Thermi 6 1 11 1 87.12

Chlorobi 6 1 34 0 91.67

Chloroflexi 7 6 29 2 53.69

Caldiserica 8 0 64 0 100.00

Caldithrix 11 0 70 2 98.57

Tenericutes 67 6 411 28 92.12

Chlamydiae 74 1 410 15 97.50

Acidobacteria 94 5 453 7 96.57

Euryarchaeota 175 15 942 693 58.93

Parvarchaeota 241 8 1298 22 97.49

Cyanobacteria 262 210 974 59 56.89

Planctomycetes 303 7 2019 23 98.28

Crenarchaeota 514 183 2474 106 80.06

Lentisphaerae 1045 19 6324 151 97.90

Verrucomicrobia 1107 29 6679 117 97.81

Actinobacteria 2739 5432 8394 5326 30.89

Proteobacteria 43585 3780 61436 2612 93.54

Bacteroidetes 486595 218584 1163164 98778 73.29

Firmicutes 939246 127130 2178859 38923 92.34

TOTALS 1476112 355433 3434266 146948 75.98

Two pilot metatranscriptomes were sequenced twice; the P1 protocol involved
a ribodepletion step, while the P4 protocol did not. Comparisons of the
organism annotations reveal that ribodepletion led to a decrease in 16S rRNA
reads for most, but not all, bacterial phyla
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annotation server, we can provide comprehensive annota-
tion and analysis of a metatranscriptome without requir-
ing a dedicated private server. SAMSA generates outputs
at each step, creating a streamlined pipeline where each
stage in data analysis can be independently examined.
Using the SAMSA pipeline, we have established a set of

“best practices” for metatranscriptome sequencing. Our
work demonstrates that the increased specificity provided
by a paired-end sequencing approach significantly in-
creases specificity of read annotations. In addition, to pro-
vide a complete and accurate measure of read abundance
within a metatranscriptome, approximately 40 million raw

reads must be sequenced, providing an estimated 10
million mRNA annotations.
Due to the vast majority of extracted total RNA origin-

ating from ribosomes, ribodepletion is strongly recom-
mended for all metatranscriptome sample processing.
We demonstrate that although ribodepletion is not suc-
cessful at removing all rRNA, and skews the proportions
of remaining rRNA within a sample, it greatly increases
the number of mRNA annotations obtained per
metatranscriptome. Although we only tested one com-
mercially available ribodepletion kit, we believe that all
ribodepletion methods based on hybridization with com-
plementary rRNA oligonucleotide probes will carry some
intrinsic bias, skewing the proportions of remaining
rRNA within the sample. Therefore, we recommend dis-
carding all remaining ribosomal reads before performing
further analysis on these samples.
Although ribodepletion results in a loss of information

regarding organism abundance within a metatranscrip-
tomic sample, we show that total mRNA can be used as
an alternate method of evaluating overall organism
presence within a sample. Compared to mRNA results,
we found a higher number of false annotations among
the rRNA reads, particularly for eukaryotic organisms
which were not present in the original fecal samples,
including plant species such as Sisymbrium (cabbage),

Fig. 3 Effects of metatranscriptome size on read abundance variation. As the number of annotations in a metatranscriptome increases along the X axis,
accuracy of abundance measurements increases for all reads. Red denotes the top 5 most abundant transcripts within the sampled metatranscriptome
(by counts), while blue denotes transcripts of medium abundance (top 50 % by sorted counts) and green denotes low-abundance transcripts (bottom
10 % by sorted counts). Approximately 10–15 million annotations are needed before abundance accuracy for all transcripts tops 90 %. Abundance accuracy
was measured out to 20 million annotations, but the accuracy was 100 % in all categories beyond 15 million (data not shown)

Table 2 Read count comparison between single and paired
end files

4012 SR 4012 PE 4015 SR 4015 PE

Forward reads 38,763,820 - 22,613,426 -

Reverse reads 38,763,820 - 22,613,426 -

Paired assembled reads - 19,269,224 - 7,245,834

Total annotations 11,840,915 21,683,084 1,928,992 3,041,963

Unique annotations 8,658,502 13,310,506 1,280,940 1,875,267

Two pilot paired-end metatranscriptomes were analyzed both in paired
configuration, and using only the forward reads (to simulate a single-end
metatranscriptome from the same data). Despite higher numbers of total
reads, the single-end data matched to fewer total and unique annotations in
both cases
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Arabidopsis, and Populus (cottonwood), Bos taurus,
human, and Coptotermes (termite). This increased
mismatch rate may be due to the fact that MG-RAST is
not tailored to work with eukaryotic organisms. Another
reason that mRNA and rRNA results were not perfectly
correlated is that there were insufficient mRNA reads in
the data set used for direct comparison. Our data (Fig. 3)
suggested that a minimum of 10 million annotated reads
are required for accurate annotations, while the non-
ribosomal depleted data set averaged only 1–2 million
annotated mRNA reads per sample. While total mRNA
may not be a perfect proxy of organism population size,
the extent of mismatches in the rRNA data suggest that
mRNA is at least better than total rRNA for judging
overall activity-based abundance.
Analyzing a public data set, we confirmed the rRNA

patterns previously described by the producers of that
data [12], and also identified significant changes in other,
more specific genera of microbial species, including
increases in Escherichia and Providencia and decreases

in Butyrivibrio. Both the increase in Escherichia and
Providencia and the decrease in Butyrivibrio species were
only notable at the genus level and would not be identifi-
able in 16S data, demonstrating the value of mRNA-based
metatranscriptomics analysis. In addition, we successfully
identified a variety of functional expressed activities of gut
microbes that significantly differed between wild-type and
Tyk2−/− strains of mice strains.
As the field of metatranscriptomics continues to grow

and expand, we expect that metatranscriptome analysis
will become increasingly important to understand the
functional responses of gut microbiome communities.
By using mRNA transcripts to identify both the overall
transcriptional activity levels of organisms within a sam-
ple and changes in specific gene or functional
expression, we can gain a better understanding of the
capabilities and actions within an active gut microbiome
at any chosen point in time. Because all parts of SAMSA
are open source and publicly accessible, this tool can be
used even by researchers with little previous experience

Fig. 4 Comparison of mRNA vs. rRNA based abundance estimates. a Stacked bar graph measuring percentage distribution of total
metatranscriptome activity by organism, with pairwise comparisons between mRNA and rRNA transcripts. To reduce potential mislabeling of
organisms in the “long tail” of low-abundance organisms, only the top 30 most abundant organisms are displayed; other results are included in
the purple “Other” catchall category. b The same measurement, expressed in total number of annotations per metatranscriptome sample. Due to
a lack of ribodepletion, rRNA transcripts dominate all samples
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in working with metatranscriptomes. We hope to en-
courage the more widespread use of metatranscrip-
tomics as the next “big data” tool for determining
activity within complex microbiome populations.
Although the SAMSA pipeline successfully annotated

and summarized gut microbiome metatranscriptome
data without the need for large server resources, several
limitations still exist. MG-RAST’s annotation servers
require waiting in a queue, and processing may be
slowed by days to weeks. Additionally, although SAMSA
can reveal shifts in functional expression patterns, shifts
in microbial population sizes cannot be measured as
accurately as using shotgun metagenomics, and future
approaches may focus on incorporating both techniques
to ensure completeness.

Future versions of this pipeline will focus on a more
rapid in-house annotation step, using custom built
reference databases and allowing for greater speed and
additional analysis options, drawing from multiple refer-
ence databases as data progresses through the pipeline.

Conclusions
We have created a new pipeline for metatranscriptome
analysis, functioning in conjunction with the MG-
RAST annotation pipeline. This pipeline is capable of
determining functional expression activity within a
sample at the transcript level, and provides measures of
total transcription, differentiated either by organism or
by functional category of transcript. This pipeline will
enable more rapid adoption of metatranscriptomics

Fig. 5 Organism output of 15 metatranscriptomes. a Stacked bar graph measuring percentage distribution of total metatranscriptome activity by
organism, comparing 6 wild-type to 9 tyrosine kinase 2 knockout gut microbiomes. To reduce potential mislabeling of organisms in the “long tail”
of low-abundance organisms, only the top 30 most abundant organisms are displayed; other results are included in the purple “Other” catchall
category. b The same measurement, expressed in total number of annotations per metatranscriptome sample
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methods. Finally, we recommend that stool metatran-
scriptomes be ribodepleted and sequenced in a 100 bp
paired end format with a minimum of 40 million reads
per sample.

Methods
Sample Collection
Stool samples were collected from two normal healthy
adults. Stool was added to 50 mL tubes containing
25 mL RNAlater until the total volume reached 30 mL.
Samples were then sealed and shaked vigourously until
the contents appeared to be uniform in consistency. The
samples were then temporarily stored at −20 C before
being moved to −80 C.

RNA extraction
Two different RNA extraction protocols were applied
to the two human subject stool samples, adapted from
Giannoukos et al.[10]. Samples were initially frozen at
−80° C in RNAlater. Samples were partially thawed and
mixed with bacterial lysis buffer, incubated, and then
homogenized through both bead-beating and QIAsh-
redder treatments. Extraction was performed using the
Qiagen RNeasy isolation kit, with additional rigorous
Turbo DNAse treatment to remove DNA contamin-
ation. Ribodepletion was performed on two of the
samples (designated P1) using the RiboZero Magnetic
GOLD kit. Poly(A) selection was performed on two
samples (designated P4) using the Illumina TruSeq kit
protocol.

Fig. 6 Transcript functional category output of 13 metatranscriptomes. a Stacked bar graph measuring percentage distribution of total
metatranscriptome activity by functional category, comparing 5 wild-type to 8 tyrosine kinase 2 knockout mouse gut microbiomes. To reduce
graph complexity, only the top 30 most abundant functions in each sample are displayed. Two samples were excluded due to very low total read
counts. b The same measurements, expressed in total number of annotations per metatranscriptome
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RNA sequencing
For each sample, RNA-Seq libraries were prepared from
20uL of >2000 ng/uL at the DNA Sequencing Core of the
UC Davis Genome Center. RNA extracted using the bacter-
ial metatranscriptome protocol (P1) was first ribodepleted
using the RiboZero Magnetic Gold Kit (Epidemiology),
catalog number MRZE706. The Illumina TruSeq protocol,
without poly(A) selection, was then used to prepare RNA-
Seq libraries. For the TRIzol-extract RNA (P4), the Illumina
TruSeq protocol with poly(A) selection was used to prepare
RNA-Seq libaries. All four samples were run on a single
lane of Illumina HiSeq 2000 with indexing to allocate
~40 % of the lane to each bacterial metatranscriptomes and
~10 % of the lane to each poly(A)-selected metatranscrip-
tome. The four metatranscriptomes have been deposited in
the NCBI SRA repository, in BioProject PRJNA313102,
SRA study SRP071017.

Preprocessing and annotation of metatranscriptome
reads
Raw sequences were obtained for two pilot samples,
labeled as 4012 and 4015. Cleaning of the raw sequences
to remove reads containing low-quality bases and
eliminate adaptor contamination was performed using
Trimmomatic, a flexible read trimming tool for Illumina
NGS data. At default parameters, Trimmomatic removed
low-quality reads to meet the minimum threshold of
acceptability for MG-RAST submission.
Paired end raw sequence files were aligned using FLASh,

a short read aligning program. Approximately 32–54 % of
the raw reads in each sample were successfully aligned, with
an average aligned read length of 178 base pairs.
The trimmed and aligned sequences were submitted for

annotation to Metagenomic Rapid Annotations using
Subsystems Technology (MG-RAST) [15]. MG-RAST
includes several steps, including an initial sequence quality
control check through SolexaQA, gene calling through
FragGeneScan, clustering of amino acid sequences at 90 %
identity through the uclust implementation of QIIME,
and then using sBLAT on each protein sequence cluster
to locate the best match reference.
For each sequence cluster, MG-RAST selects the best

match through the sBLAT similarity search. If multiple
reference database matches tie for best matching score,
they are both included in the final results. If the read
does not achieve a match score above the minimum
e-value cutoff, it is discarded. Each match is linked to
MG-RAST’s internal identifier system and assigned an
M5nr ID, correlating with linked matches in all subsys-
tems databases. The annotated output can be provided
on a per-match basis, using the M5nr ID to link each
read to its best match from the subsystems database of
choice.

Post-annotation processing and analysis
To create sorted abundance measures of the metatran-
scriptome, all annotations with an acceptable best-match
to the NCBI Reference Database (RefSeq) were down-
loaded from MG-RAST. Annotations were downloaded
for the best match to both organism and individual tran-
script. Annotations were downloaded directly in tab-
delimited form using MG-RAST’s RESTful API interface
and a custom Python program to assemble the API call
command. In addition, the annotated output was also
downloaded from the SEED Subsystems reference data-
base to provide ontology annotations.
A custom Python program parsed through each

annotated output, storing each unique annotation match
in a dictionary and maintaining counts of the number of
occurrences of each unique annotation. After the
annotation file was processed, the unique annotations
were sorted by abundance and exported as output.

Evaluating minimum viable metatranscriptome read
counts
To determine minimum viable metatranscriptome size, the
original samples, which were very deeply sequenced, were
digitally broken down and reshuffled to create smaller, ran-
domly generated subset metatranscriptomes. 100 smaller
subset metatranscriptomes were generated for each subset
size, with the subset sizes consisting of 1, 5, 10, 20, 30, 40,
50, 60, 70, 80, and 90% of the final metatranscriptome size.
Each of these smaller subsets was subjected to identical

analysis using the same programs and pipeline to determine
variation in annotation abundance. By comparing relative
variation in the abundance of different transcripts, the
minimum necessary metatranscriptome size needed for
stable abundance percentage estimates could be computed.
To determine whether paired-end sequencing was ne-

cessary for ensuring accuracy of the annotation process,
the paired-end reads were digitally trimmed to 100 base
pairs, creating a simulated single-read metatranscrip-
tome containing the same number of identical sequences
to the paired-end file. This digitally created single-read
metatranscriptome was analyzed using the same pipeline
as the paired-end original file, and the results were com-
pared for to determine level of variation using statistical
testing in R via the DESeq2 package.

Comparison of tyrosine kinase 2 knockout versus wild-
type mice in colitis
The constructed pipeline was tested using publicly available
RNA-seq data from Hainzl et al. [12]. The original authors
obtained Illumina-sequenced metatranscriptomes from 15
gnotobiotic mice, 9 with a tyrosine kinase 2 knockout
genotype (Tyk2−/−) and 6 wild-type controls, at different
stages of dextran sodium sulfate (DSS) induced colitis. The
original authors used only the rRNA gene copies from the

Westreich et al. BMC Bioinformatics  (2016) 17:399 Page 11 of 12



metatranscriptomes, demonstrating through PCA analysis
that both the wild-type and Tyk2−/− mice showed similar
shifts in organism population based on stage of DSS-
induced inflammation.

Version control & access to the SAMSA pipeline
The version of SAMSA used in this paper was version
1.0.0. The version of MG-RAST used was version 3.6,
current as of May 2016. All components and tools used
in the SAMSA pipeline, as well as documentation files,
are freely available from GitHub at http://github.com/
transcript/SAMSA.

Additional files

Additional file 1: Differentially expressed transcripts when comparing
between wild-type and Tyk2-deficient mice in DSS-induced colitis. This is a
tab-delimited file, with all entries included, sorted by ascending multiple
hypothesis-adjusted p value. (XLS 3680 kb)
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