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ABSTRACT

. The theory of sequential decays of an unstable system is
studied. Examples include the sequential emission of two or more
photons by an excited atom which reaches its ground state via one or
more intermediate levels, and the decay of an unstable particle into
other unstable particles. To describe these phenomena, a factorization
of the Green's function is introduced. This leads to a simple, and
" intuitively obvious, description of sequential decays. It also makes

possible an assessment of the accuracy of this description.
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I. INTRODUCTION

We consider the Qpantum mechanical description of a system
undergoing a sequence of decays. An example of this is provided by th;
de-excitation of an atom radiating in sequence twovor more photons. |
Other examples include the study-of angular correlations in successive>
nuclear decays and thebdecay of an unstable daughter in particle physics.

Previous treatments of these phenomena have tended to be ‘

heuristic or have introduced approximations at the outset which have

obscured many of the subtle features of sequential decays. In this

. paper .we shall apply the Green's function method used by Goldberger

aﬁd W’atsonl for single¥étep decays to a general description of multi-

step decay processes. Somewhat related techniéues have been used by
"Reff,eiby KrolL% and by Goldberger and Watsonh for specific cases of
'fwo-step decays. An alternate formulatioﬁ of thé decay problem has
been given recently by MOWer.5 His method treats as 'closely coupled"
‘all the states involved In a décay. This leads to the algebraic problem
. of inversion of a mafrix whose dimensionality i1s the number of states

- considefed; Our method takes account from the outset:of the time .

ordering of seéuential decays.

. The value of the Green's function apprdach iiés in the fact
that it gives.a rigorous formulation of mulﬁistep decays in which the
usual description by a product of Breit-Wigner resonance factors is
a natural first approximation. This is not true of ordinary (e.g.,

Rayleigh-Schrddinger ) perturbation methods. Correction terms depending



i:orespective Schrodinger equations

7:on the ratio of level widths to level spacing may be estimated in a.
:'{;fstraightforward way.‘ Qualitative statements about the time dependence .
" of the decay may be obtained from the analytic behavior of the Green s

'ﬁf'function.h

We begin with a collection of some relevant results of the

4-Q Goldberger-Watsonl formulation of decay processes. A physical system ‘v;v;"
T'fis assumed to be ‘described by a Hamiltonian H -This is written as
'AJ;H = K+, where ' is responsible for transitions ‘between eigenstates

”ﬂgof K. These eigenstates are written as g ,gb,~~- ‘and satisfy the .

(41'.1') |

‘T:flet us. now suppose that at time t = O the system is in & discrete -

(,

,ﬁﬂ3state 'g ;f We wish to calculate the probability that at time t it
fffiwill be found in a small domain of continuum states’ gb This

prdbability has the form 5 L

S LT R

?:Lwhere the sum. extends over the domain of states in question. For.

4'w€fexplicit evaluation we shall write this as };f
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%‘ = ‘dp, e, o (1.3)

in terms of the density dpb of states per unit energy interval. The
quantity ka' in Bq. (1.2) is defined as

2

where G(e) is the Green's function
L, -1 s
¢(e) = (e -H) , (1.5)
~and the contour 02 extends from +m +to0 =~00 and lies above the

real e€=-axis.

The Green's function G can be written in the form

Gg, = F_g_a G, » | : (1.6)

where F sgtisfies the equatién

BV, | ' (1.7)

with

(1.8)



-l
That is, Aa_“iS'the.projection»operator onto the initial discrete

state g . The quantity G in Eq. (1.6) is

6,(¢) = (g, 0(e) g,)

It

: . -1
[e - <, R, ()1,
: expressed‘in'térms of the diagbnal‘matrix element

 Ra(e)“ = (gé; R(¢) gé)

of the transition.operator'
R = VF.

. The matrix element of -G appearing in Eg. (1.l4) can be

expressed invthe‘forml“

(& 6(c) g)

‘Gba(e)'

- l . .‘ . '_v . l A. . ‘
T e - < Rba(€>~ € - e~ Ré(é) ’

where

i

Rba(é) ;(gb’ R(G),ga)"'.

@9)

(1.10)

(1.11)‘

(1.12)

(1.13)
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To evaluate the asymptotic transition probability

4P, = lim @R (%) N (l-lﬁ)
t- : :
we note” thafbfhe expreésioﬁ (i.lE) has no.singularitiés in the upper
half e-plane. The contour integral'(l.h) may then be evaluated, as
explained in Ref. 1, by lowering the contour at +co below the real
axis ontb-thé second sheet of Gba(e). In the limit +t - oo the
only significant contribution to ‘%/b comes from the pole at G =.eb _
‘and. we have> ‘
-ie ©
S (e.)e P
C{}wb‘; lim gfb(t) = 2:3‘_ Ea_ T - (1.15)

t=>

Equations (1.2) and (1.3) now lead to the result that

‘4P, = . _ (1.16)
The quantity Ra(eb) has the form
= -(ir /o | ' .
Ry(ey,) = D, -(iT/2) | (1.17)
where Da and ‘Pé are real and Pa > 0. Indeed, when there are no

channels into which the decay can go other than that represented by

 the &, » Ve havel



. '.-65
-In thls case the probablllty of flnding the system w1th1n the energy
range QD to eb + dgb is ' : - :

Ty o de

dP, = == - — L (1.19)

’eb TS T Re.(eb)]
I‘t 1s instructive to check our calculatlon by 1ntegrat1ng '
Eq. (1.19) over all eb to show that [dP = 1. Using Egq. (1.18)-

~we find that -

'Pb - fqu - _2—71.’—{ j d,eb {eb - € - Ra(%f

| - 1 1 .
= 13151(+) ' Eﬁljd {g,’”e-k in - H -e-in-H.}ga.]
= f@e [ﬁ(ga, 8(e -'H)g } '.
R fae se - o) [ty g )P = 0 - ae)

whe:c"e the- \fo and e}\ represent a complete set of elgenfunctlons
and eigenvalues of H. .When the states b are stable, but other states

than &, are accessible to the decay process we obtain 1nstead of



Eq. (1.18) the result that

B <1, - (1.21)
which is physically obvious.

| When the states b are themselves unstaBle, so that further
tfansitions will take place frdm b to lower states; our discuSsioﬁ

. leading to Eq. (l.i6) is still formally valid, but not very useful
becéuse in thi; éaSe‘ de'= 0. lTo see this, iet ﬁs consider a hydrogen
aﬁom which we.s initially in a 3D state, cqrrespohding to g, " In
“interpreting , &, ﬁo cOrfespond-té the 2P state plus an emitted photon,
‘we see that de.= 0. That is, prior to time t = 0o, the atom will

have undergone a subsequent transition to the 18 state. In this

case it is clear that
' = ,. ' | 1.22
Rba(eb) 0 | < )

We shall be'cgncerned in the femainder of this paper with the
 adaptation of the above férmalism to a study of sequential decays.
Although our»discussion will be general, it will be helpful bn
‘occasibn,to think of 1t aé applying to the case of an eicited atom
decaying through a series of radiétive transitions until it eventuvally
reaches its stable ground state.

In Section ITI we shall obtain a formally exact factorization of
the Green's function, of which Eq. (1.6) represents the first step.

‘This will be applied in Section ITII +to the description of a "unigue



 ;{{i;  .:‘ \v . | . :;8; -
sequence" of -decays, by,wﬁiéhbwe'meaﬁfa sequénce.for whichieaéh intermédiéﬁe
-1evei of the pafeht system is known. in Seétion IV we discuss the
'aééﬁrécﬁ'of thefapproximationé by which a sim§le descriptionbis possible.
in éecﬁibn V,we discuss ah Vambiguous sequence"_of’aecays,‘for which
7”the,tfansitions lead to'mixtﬁres 6f states of the parent system.
B Finally;,in Sectioﬁ_VI.we fntroduce gene?alized‘”Lee modéls” for which ‘.

g almdst“exéét solutions to our e@uations may_be obtained. -
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IT. FACTORIZATICN OF THE GREEN'S FUNCTION

The description of a two-step decay reviewed in the preceding

section will now be generalized. We consider a physical system which

‘decays from some initial state through a sequence of states to a

final stable, lowest state. This "system" is supposed to emit some
form bf radiation with each transition.6' The states in the seguence

will be written as 8,7 gb PR N ,'gd . Following the notation of
’ 1 n

Ea. (1.1), these are assumed to be eigenstates of the Hamiltonian XK :

K €, T €5 8y

Keg, = & & > (2.1)
1 101

Keg = %38 -

Here g, is the initial state in which the system is at time t = O
and 84 the final stable state. The complete Hamiltonian for the

system is, as in the last section, written as H = K + V, where V

"is responsible for the transitions. Because of the term V in the

Hamiltonian, at times & > O the system will be in a mixture of the

states (2.1).

To take explicit account of the radiation emitted, we write
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_m6 My ; SR (2.2)

]
foy
1

Here we have‘indicatedfthé discrete internal states of the decaying

system byv uv PIRRY ;'°°u8 . _Continuum states of the.emitted radiation
, o -2 P v . » S . R
are indicated as : kQ’, hQé!fka . ' The "vacuum state" with respect to

:emitted radiatipn is. xd . . The energies of the intefnal states are

. written as wa',‘wl;---wn, LA The.corfespondihg energies of the

radiation emitted in each transition are 'ul, ué,?--un,u. 'Th_us,7
€a = ‘Wd"
€ = W, + U .,
. 2 )
- = o v 2. A+ e u . - 2. :
€ 5t Ut Ut Y ruL B _g 3)

¥

‘Since the final sﬁate ga is assumed to be;stablé (steady) we can’
" supplement Eqs: (2:1) with B ST

" L "o .v)_l. M

*

valid 2t + - o * in the transition amplitude. [Strictly speaking,

”ithe eigenstates,of H include scattered waves of the emitted ;adiatibn
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and coupling to many states w . As we see from Appendix A, the
emitted radiation does not overlap the system at late times, so
" scattering can be neglected. ]

We desire the transition probability de that, as t - oo,

the sYstem will be observed in some set of states d . As in Eq. (1.2),

~we have

= 2':
- TGP
| (2.5)

A

Q

where the sum over states d d1s equivdlent to a sum over some desired

‘+

‘range of the continuum states A, . As in Eq. (1.4), we have

Q

/ . -iet , . _ ’

% =’%1m 5= J 2 4e e (g4, G(e) &,)s | (2.6)
N .
©. Cor

where G(e) is given by Eq. (1.5). Since the states XQ form a

continuous set, we may generalize Eq. (1.3) to write the sum on Q
" in Eq. (2.5) as the multiple integral:

1

= 'j(dpl dul dp2 dug”’dpn dun dp du .. ‘ ‘(2.7)

o

Here dpj [j =,l,2,--'n] is the .density of states per unit energy

., and 4
B °

is the corresponding density for ﬁhe last transition to Ug -

of the radiation emitted in the transition to the state u



To etaluate (E.S)Sue continue thé'?rocesshof faCtoriiationﬂof,t
,'G hegun nith'Eqs. (l.o)land'(l.Y)} .lnidoing-this We”must’recognize
‘%expllc1t1y that with each tran51tlon the system may decay 1nto a
E ‘l'llnear comblnatlon of several states UE‘. [For example, an atom
may radlate from a pure state 04 1nto a mlxture of states ab-,
"dlfferlng in the az1mnthal angular momentum quantum nurber.] We: are

" thus led to supplement the progectlon operators (l 8) w1th an addltlonal'

'set 1nto whlch the decay may go

"

l» f %%_ %é.Aghi gb-',}

Ay =}Q: Eq gdij d
_fHere the.sums dvérjthé' Q's.mayvbe chosen for convenl@re. We shall
' _suppose for ourfapplications'that'these:sums extend over all directions
By of'emissiongof the:radiationland oter those‘energies well on each side
ofleach.resonance'line From our study in Section IV of the accuracy
- of the resonance approximatlon we shall see that the range of energies
covered by the prOJectlon operators should not be too much greater than
‘the line widths;v The reason for this is thatvtransitions foff resonance"

should  be absorbed_into the transition operators. The corresponding sums. .

. over Bi‘--ﬁn “in Egs.. (2.8) extend over those states of the system into
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which transitions may go, as restricted by our assumed observation on
* the states"gé. We have, appropriately, assumed in (2.8) that the
" final observed state uﬁ. i1s unique. In addition to the projection

" operators (2.8) we shall find it convenient to define

1 1
E.= 1-A ,
n n
Ed = :l - Ad 5
P = 1-4A ,
a a
BB E% ’
By = BB
We note that Aj Ak = §jk Ak » Where Aj and Ak are any two of

" the projection operators in Eq. (2.8).
We begin with Egs. (1.6) and (1.7). The operator F can be

written in the form

by
1}

3 F<1) (T, +1),

(2.10)

|
W

Ay (F - 1),



I D IR

~where consistency evidently requires that L
/ Al.F o= Al‘. - S | _(2.11)

' To evaluate Fy “we define the transition operators

20 o )
- , o (2.12)
RCRCURS Al‘§<l).A
_'Then, on insertlng the. f:Lrst expression (2 lO) 1nto the rlgh’c -hand
: .s:.de of EqQ. (l 6), we find that - .
1 <>""
Fy .—V‘Al e P v bl (F + 1)
'*e-K @L F+Al’e—,_K'Rf'
. _'.Sd'lv:'ing this for F, gives _‘us. .
o 1 A
F, = = A, R )
B rmoam MR
= A — s 11)- A(l) (2.13)
€ - X - @L : .

The quantity F(l) is the solution of the equation



P X p y ) | (2.1h4)

To see this, we first note that F = El F + Al F. This relation and

the second. of Egs. (2.10) permit us to obtain from Eq. (1.7) the

- equation

Substitution of the first of Egs. (2.10) and use of Eq. (2.1k4) lead to

_ 1 (1) Y
E, F = B+ 5o B VF | (Fl + 1)

= AE +‘.El_(_F(l) - 1) (F, + 1)

_ (1) |
= E, +E F (F, + 1) - E T - El

- E F, S o S (2.15)

.81nce El'Fl = 0.

Next, we write

|
—
I~
o
]

F(E) (F2 +1),

|
i

A2<F(l) - 1),

{® = 4 2@, (2.16)
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" Proceeding as before, we find that
e AR - eam
e -x - R : ‘
“and
(2) _ 1o @ |
B = 1+ === P2'VF e (2.18)
We:can evidently'continue'ﬁhis factorization until We pbtain
finelly
pio @) (5 wd) (o e1)een(m 1) (5 + 1),
. oo Y n Y -l 2 At T
. R L . . 4"1 . /\' "
F, = (e -X- @\,(J)) oA, .R.(J);_ :
A"a vl
~(3) _ VF(_J)’
(3) _ I a0
Frelo= .1_+ =% &y VF ;s o | '(2,19)
for §o= L,2,-im. -
The opefators' '§i<3).(j = 1,2,-++n) are undgsirably‘complicated
.here, since-in general they may contain matrix elements. for scattering

© of radiation emitted prior thor accompanyingvthe Jth transition. We

" can eliminate this as follows. First, we define the "vacuum expectation”

‘o R

) <. {(that is, vacuum with respect to the emitted radiation) as



@V(J> 2 Bz QZ <7\'O uﬁ' , R‘(J) 7\‘0 ug;;)
J J J J J ,
(2.20)
X u u T A A *

where all sums extend over the states of (2.8) defining Aj . This

corfésponds to that part of @L(J) for which the emitted radiation does

- not interact again with the system.(in Fj). Then

QW e g

. Ly ' (2.21)

represents the portion of @{(J) which describes scattering of some

of the emifted radiation.

Equation (2.21) lets us write

A

oM A(5)
Fj ) € - K.— @\.(J) .
g (2.22)
A .
_ j (3)
) € - X f QJ (3) i o
where
r() _ R0) @Ls(j)' * Q(J) 200 (2.23)
€ - K =

~ We note from Egs. (2.20) and (2.23) that
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ﬂfsince the second term 1n Eq. (2 25) vanlshes when there is no radlatlon :
’Vvto be scattered in the flnal state
We ant1c1pate “that for many appllcatlons the second term in

(2 23) is negllglble and one can take

The assunptlon of an 1nterest1ngiy long-llved-resonance will o;ten 1mply
a weak perturbatlon V. ‘In sucnga‘case,:rescatterlng of emitted radiation
_w1ll_be un;mportant. -It,is of conrse to be observed that trescattering
:,of.radiation emitted in the Jth trans1t10n can’ formally occur in
(2 19) from any R- operator to the left of the Fj_ that emits it.
: (An advantage of the wave packet plcture is that the tendency for emitted
radlatlon to escape is more clearly'seen.) We-shall neglect this re-
vscatterlng of “adlatlon. An'estdmate of the erfor involved is made in
Sectlon Iv. - o | | N

~ Some further 1n51ght 1nto the s1gn1f1cance of the R(J)
. (2. 22) may be gained as follows. For the calculation R<J) from
(2 23) the qnantluy Q{ (J) corresponds to a self energy ! For

"Va long-lived state we might expect _Q{V(J) to be negligibly small
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' e s e o aans . ' p ()47t
everywhere except in the explicitly written propagator (¢ - K - ¥ )
v
in Eq. (2.22). (The operator A, restricts us to energies very close
to the energy shell.} If %,(J) mzy be omitted when one is calculating
v

. NS _
-R(J) and R<J l),'we have

REDRNECES N - (2.26)

.as is shown in Appendix B. Avmore~comple£e discussion of relations
among the R-operators ﬁiil be given in Section IV.
EQpation (2.19) represents the fundamental result of this paper.
In the subsequent sections we shall show how to apply it to the analysis
of sequeﬁtial decays.
| In using Egs. (2.19) td‘describe sequential decays we shall

5 [Ba. (2.5)]:

make three approXimations in the calculatidn of dP
(1). The "one" terms in the quantities (F 4 1), (Fy - 1)---(Fn +1)

;Will be neglected. This neglect forces us to consider only transitions

 that go through the "resonant states.”" Since the neglécted transitions

are not ‘associated with small resonance energy denominators, we expect

their amplitudes relative to the resonance transitions to be of order

T

el o (2.27)
‘where T = O(IRI) is the width of the resonance transition and

Lw:  is some characteristic energy of the decaying system.
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 (2) 'WRescatterihg,df radiation ohée_émitfed>ﬁill.bé n¢glected.v Tﬁis
'Alapproxiﬁation is éXpécted:to be ?giid”When:the.lifétimé of.a state is
" long Ccompared Wi flight' time of the emitted i«adiétion from the parent
system. o N | | | |
.':v-f(B)' The third éépfoximation is ﬁdt-eééehtialfto ourltheory,vbut a
convenieﬁéé}w'lnitﬁis'approximationgwe éupposé-that relevant matrix
-'élements.of the ﬁransitioﬂ:operatérs"R(J)’Jcan be tréatei as;constants“
~ over er.lbergy‘-.intervalé of fché ordér-of the level ﬁid’cﬂs.'v It is anticipated
. that the relative error‘résulting'frOm this approximation will be_givén
by an expression éf_fhé'forﬁ_(E;QT)..  | | |

“These apProximaﬁicns'wiiiLbe discussed farther in Section IV.
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ITI. UNIQUE SEQUENCE OF DECAYS

In this section we discuss'thé application of the theory of
Section II to a "unique sequence" of deéays. By wunique sequence’ we
mean to imply that the observation made on the state 4 1s sufficient

© for us to infer that each of the sequenée;of intermediate states

B 2
1
aé ,'--a% is unique. For such a decay we can then replace Egs. (2.8)
g2 n : ' '
by the set
_ t
Aa = 8y &y
. ' :
: 9 =
. - +
An - E: & &
BN
. 1 » : o . ' . .
Ay = D & gdf, o ' 1)

Q

jwhere there are no sums over ihternal states. An example of a-unique
sequence Wpuld be the decay of a hydrogen atom from the 3D (jz =0)

to the 2P (jz = 0) fo}thé 15 state. Observation that the polarization
Vector of the first phgton was parallel tp the axis of quantization

- would ensure this. | | |

for a wique sequehce the quantity Q{V(j) 'of'Eq. (2.24) has

the simple form

G{V<5> _ g, () > A 'x*. ; | (3.2)
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L Wﬁéréﬁ,Rj f:islthe complex number. -
( ) (e)

( Ny ",

QEQﬁatiQnﬁ(z.éé) now reads  ﬂv,-'”'

[}
gl
S, :
_ 5P+ Sl ‘

.}To 1llustrate our results, we con31der flrst the spe01al case '

' of a three-level tran31tlon 3 ﬁ-b b ﬁ-@,'where d is stable.

l‘__ ‘

, -For thls case Eq. (2 19) readS‘

iifF-j;  F(})*(Fi +~i?3  '. R G
‘.v USeOf Eqs. "(:l° 6)’ (l' 9): . (‘2 ..'12: ):" (2‘ lh‘ )_; and (5 . L’-) IgiVeS-‘ us
1 ' ‘ ”-- '-(1). 1

. (é5’ Gfga?~ = ?-;AR-(l) f Rla:v - € —'ea.—:Ra(e).’

M

,} Gba(§2-_ - i -
R € = Ry

Rl

l:Gdé<§i}v <éd"G.gé>'f .

. 1 " ,4 " = i v L A : ,’ | T

=30 ) B IR

O
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Here, Rlé(l) () = (gb ,-R(l) ga}-, etc. In deriving
1

€) =
v . o
Eq. (3.6) we have set Ry3. = Ry - This is correct, since for the

final stable state 4 (xQ,‘xQ ) = 0, which implies that gg Q{S(—) = 0.
‘ Co .

The second term in G, above comes from the "1" term in

da

Eq. (3.5). The quantity R(ég has no virtual states "b" and so

describes decays which do not pass through'these resonance ''states."
In accordance with approximation (1) made at the close of Section II,

‘we shall negléct',R (1) in Gda" The second approximation made at

da.
(1)

the close of Section IT implies that we neglect in Ry any matrix

(l).n

elements which describe scattering of the radiatioﬁ "emitted by Rla

The provability of finding the system in a state &, = QE kQ
- T 1

‘at time t is given by Eq. (1.2), where now

O ey o oL Jf". -iet
db(t):’ 5T . de e Gba(e)
2

—1(eb’+va)t - Fbt/é
~ &£ e . R (l)
' (1) 1a,
eb ea + Rl - Ra
e'l(ea.+ Da)t .e-rat/é o) -
eb - € + Rl - Ra» _
:Here we have evaluated the contourv.,integfal,.y in a éimple two-~pole

approximation, appropriate for long-lived states, as described in

Ref. 1. We have also written



e en) s e Rb<l>> R

SO S 8
-+ ; The guantity 4P (t) is therefore’

, {1 P2 coslley - Dy D )E) e

<rb-..1‘a>’°}ﬁ S 6

We see that the expre531on (3 8) vanlshes at % > 0, as was

'conJectured in Sectlon I.

The condltlons under whlch Jf  

enz IR (l)! . du"z
g |

-

--" w1ll be dlscussed 1n Sectlon IV.-,
The probablllty that as' t~*'a>' welfind the entire system
"ﬂ?ln some range of stable sUates d is’ glven by Eq. (2.5), where now

- ifg[recall that we have agreed to set R' I




Voo lim = / de e_ief ¢, (e)
, -
X} PRI 27l JC da
_ "2
iy L) . (@)
Tegt . Ry Rig o .
= e (l‘> , . (9'/)
(g7 & ~ By 7)oy - ¢, - R))

Here we have used the second of Eqs. (3.6) and have deformed the contour
onto the second sheet of Gygs 8 described in Ref. 1. Our notation here

is _such that

Rdl(_l) = lim Rdl(l) (e, + 1)

n-0(+) E
(1) _ - (1)

Ryg = lim - Ry, (ed + i),
1~ 0(+) |

R(l)'— lim - R(i)(é.+i)—D—i il-;

1 = 1. g TS 27
1> 0(+) o

, | A r, ,

R, = lim Ra(-ed + in) = D, -1 =, - (3.10)

n—>0(_+) .

. Where Da’ D,, I"a, and 1“.' -are real and I‘a, I, are positive. In

1

evaluating the contour integral above we have noted that Eg. (2.h4)

+implies that Gda(e) has a pole at <. on the real axis and no other

a
poles on the real axis (barring accidental degeneracies).
On substituting (3.9) into Eg. (2.5), and on using Eq. (2.7),

we obtain
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- St a . W o ‘ L R
AP = ' , e . (3.
HMarT e Tem T (17,2 27
, ]ed ‘eb R _l_ [e - €, - Ra, :

Ewhere-_L

i e @2

:vr_a = Eﬂ J dpl 'Rla »[

. L a (3.12)

Tet us suppose our observatlon on the state d restricts ﬁhe

‘;5penergy of the flrst emltted radlatlon to the range ul " to- Ul + dul,

;;but does not restrlct U. The probablllty of thls 1s obtained by

‘elntegratlng (3 ll) over all U .7 When

de: - € = .ed . . v .
L B SRR - (1)
o dRa(e') o o -

de ¢ = e »

Vetc., we. may treat R. (l), R o 1 l; and r . eas constants'in (3.11).

A
‘(Thls is the third approx1matlon mentloned at the close of Sectlon II)

. Then, u31ng Eqs. (2. 3), we obtaln

d < ) <_> R >.

’ X [(ul -V, - D, + Wi + Dy ) + H (F + Fl)e]

(3.1%)
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This has the'Lorenfz shape of Eq. (1.19), but of éourse containé level
shifts D and widths T for states .a and b. .

In derivinngq. (3.14) we have made all three of the approximations
mentioned in Sectiom‘II. First, we neglected the "non-resonant” Rda(l)

term in Eq. (3.6). Second, we have neglected in (3.6) .rescattering by
1 ' ' :
Rdl‘ ) of radiation emitted in the first transition. Third, we treated

o (1)

R, and R, as constants when integrating over wu. in Eq. (3.11) to

obtain (B.lh).: The error arising from these approximations will be
investigated in Sectipn.iv.

Let us nowvconsider the sequence of (n + 1) transiﬁions
a ~b, >b, >+ d through the strateé (2.2). The expression (2.5)
.gives thé probability of finding the system in a given set of states
4 as t > m. In this case Eqs. (2.6) and (2.19) lead to the result

-ie.t

& (n) ()., (@), @)
: %/ _ © Rdn' Rnn-l REl v Rla ‘ ,
fa = ° ' (n) (=103 oo L Y
(_ Gd - €.b - Rn ) < ed- - € - R ) \ ed ea - Ra>

bn-1 n-1
n ,

(3.15)

where we again make the first two approximetions mentioned in Section IT.

The R's here are all evaluated at the energy €, + in in the

a

1im n - O(+). TFollowing the notation of Egs. (3.10) we write

R’.(j.) .
i il

il
w}
]
o
mkjﬂ
e

(5.16)



.
for' jf _ 'l)?,..{FﬁSIAIée} asfin'gqs..gj.lE);eye define
r’a=‘.2#.J dpl |R1a<;>l
- fo m®F, G

vwhere:the notation of Eq.-(2,7) has been used for the sums over stétes.
On inserting (3.15) into Ea. (2.5), we obtein the probability

" 'dP, : that the emitted radiations are in the intervels w. o . ul‘% d uy,

a - . , . o - o - 1
- ’ T ™ o ) . o '
a 1 : n -’ ) o : .
DU ow Bn A Gwyrordw) du o : 8
apy = T _ - ’ ‘ (3-28),
a €. -¢ -R (n)|2"'le -€ -R ]2 '
' ad b, ~"n -1 a “a

n
Let ue suppoee, fer example, that only one of the'energies,
say ug, ie'measured._vThe prpbability that thisvenergy lies in the range

. uG.ItC‘ u,+ 4 ucv, irrespective.of.the other energies, -is obtained by

B 1ntegrat1ng (3. 18) over all uhe other energies. Again we assume that

all the resonances are suff1c1ently narrow that we may negle0u quantltles
© of the order of (3 15) and that R_; (n) r'a,-Jfrh as constants
(our thlrd approx1mat10n). An elementary integration now gives us the

probability



e B () () ()
a on I‘n‘/ _ \1“1 \ra
o (r_+T_ ) } ,
o o-1 | (3.19)

X

2

: - T 5 -
- - T
<uo TVt Dyt Ve Dor) * T <Pc + ‘c-l)

Except for normalization, this agrees with Eq. (3.14).

in deriving Eq. (3.19) we have made the same three approximations

‘that were made in the ~derivation of Eq. (3.1L).
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IV. DISCUSSION OF APPROXIMATIONS
- In this section we shall discuss the accuracy’éf the reéults
obtained in the last section. We shall also study the relation between
"the quantities (5.16) and (5.17).

- The exact'expfession for _gyd , for Which‘(5.15) représented

- our appﬁbximatioh, is . o L : ‘ ‘ ' _ S
et ' ' S '
- e d . (n) 1 Yoo L L -1 .
' =e T (ggr BV (Fy +1) e (7 + 1) g,) (eg- e =R )7 . (4.1)
" Here all fuhctions of € are evaluated at € = 'ed + in in the limit

| .- Q(;).';.
| fhe firét approximation is‘thét,éf réplaciﬁg:(h;l) by' 

~ie.t . . ' . ' - :
.%Ki = € é '(gd}‘R(n> F.n Fn-l...Fl-gé>-<€d " ST Ra)-l"'. | (4.2)
This épprdximation ié.éonéeptﬁally straiéhtforward; It corrésponds
to neglecting transitiohs which are ndtvresonént and which should npt
'vlead'to sharply defined energies (to within the widths T) for the
emitﬁed radiations; Estimates of the relatiVe éontributions of non~
‘ résOhantVCOntributions can sometimes ﬁefobtained'Withvdiménsional :
arguments for A w. in (2.275. When this isrnot the case, a specific
calculation musf be made. An examplé bf'such a calculation is giveﬁ
in Section VI. | | |

Using Eqs. (2.22), we may rewrite. (L4.2) in the form



(n) (n) @) o (D)
o —iedt ot Rdn Rnn—l _REl Rla )
{ o > ! : - : — . (h.3)
d _ <€ - e =R (n/)...(c — _R)
a bn n el a a

The summation here is over intermediate-states contained in the projection
operators: Al';'An of Egs. (2.22), but is restricted by the fact that

8q is a disérete étafe; If there were no .rescattering éf once emitted
radiafion, the intermediate sﬁdtes in (4.3) would be unigue and this
‘would reduce to (3.15). Thué, we céﬁ write the expression (4.3) as

Ski = ‘%a (5.15? + gyd (scat). | (b, 1)

’Hére Q%a (3.15) represents.the quantity (3.15) and %{i(scat) the
 contribution from rescattering... ‘ | '
For estimating the magnitudeé oflthe two terms in Eq. (h.%)‘ it
‘is convenient to render these dimensionless with mﬁltiplication by the

- factor’ Dl/é; where D is the weighting factor (2.7) of final states g,°
D. = Bp Bu 8o Bu Bp §u . (b.5)

To get an order-of -magnitude estimate, we write [see Egs. (3.17)]

Su, =~ I,
J g’

= @)F
8o, IR,,
SR Rz ol

E
2

/ T P !E _ ej - RJ(J)] , (4.6)
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etc. This permits us to estimate the magnitude:of (3.15) as

T \ T \ S
1/2 1 a
ID %/dG 15), <—— - <—I=£/ <—I;-) B (4.-7')
~which is consistent w1th Eq. (3.19).

Let us estlmate' g%i(scat) by supp051ng that the radiation

emltted in this trans1tlon to state w, “is rescattered by the

Bo

uantity,.R 4_1(7). The characteriStic magnitude of this can be

obtalned by supposing it to be the Q{ (7) [see Hgq. (2.23)]. That

7, is, we suppose R< ). _emlt” radlatlon of energy u! < while. -

\;s<7) scatters thls 1nto 1ts flnal observed state w1th energy ud .

‘Using the arguments which led to the estimate (4.7L'we are led to the

. expression

.D._l/e 'y(i'<,g¢at'> . I_;._ [ & b ”d?p, @ o SN

Y ¢ - e -R<7>,]

L T 1z -
S — R< ) Bo Su "'6p du <: /) (h 8)

€ ~¢e' _ -R (o)
_ o o

" where the 1ntegral over u o is ofVCOurse-restricted to the narrow

range of energles spanned by the states 1n A '; In the denominators

. @bove we have the ‘energies
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o Bo o-1 1’
! - ‘ f .
e’y gy T Uy, +ul o+ +
€ = Wy, FU AT ke w _ | (4.9)
There are V +1 = % - 0 + 1 energy denominators in (14.8).

In doing the integral over 'du'c we thus encounter (v + 1) poles.
When the expressions (3.13), etc., are small, we may estimate gﬂi(scat)
by supposing these to coalesce into a single pole of order (v + 1).

This gives

By ) « 3 Ja, L [0 60400l
' i ¢ (au ) S
- o (k.20)
6u7 P’a \l/é ‘
><6p du PP 6p el R eae
o o ¥ _Py T, // _

The only sum over virtual states now is that explicitly indicated by
the integral J[dp’c . To simplify our expression it 1s convenient to

define a mean width T by the equation

v . .« o0
(1) = Ty Ton Tyoy -

This lets us write



-
' Dl/2 .‘ %/d(scat [D1/2 (}/d(g. 15 ] x (A w> fdp Q (7) , (hll)

. vhere. : Aw A is a characteristlc energy, such as was introduced in
(2 27), which we take as representing the derlvatlves in (h lO)
- To contlnue, let us suppose the radiation emltted in the.

| tran51tlon to Wy is a's:Lngle partlcle. »_'I'hen,_ Lo

. Bo
a ' g A R S

'where. : k_ is its momentum and 'v its veloc:Lty. I\Tow;, 'tnef'c_ross'f' v;"’i

'sect10,n for scatterlng this rad:LatJ.on is A

B i —]; r ’vv. Lo (7)‘2 z <wiq> : @_ (7) 2 .
= % Jee a0 () 100

<y

- Tnis, along with (4.11), lets us fvinally'ex.press Bg.. (h1) 1n the form

¥ 4(3.25) J S (k)

[__-__
il =
A~
I>
2
\,/

/\

ol

mwhere ’X =' ko‘ T .

(7)

Em:.tted radiation may also be scattered by the operator R
[see Eq. .(4‘.8)]. We estimate this for the largest contribution,which

' ~oceurs for ¥y = ¢+ 1. This is [we use perturbation theory] v
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1/2 | 1 J(_ )
D cat) = ' '
. yd(s ) : € - € i R (7) ae g du c
(UIP |U> ' 1
X :V7c € - A Voo (o)
Sy e -¢'_ -R\C
' . o o
R, (9 5 su 8o By .. (b.14)
o'g-1 o oy ¥ S ‘
Here 'Ro,o_l(q) emits rediation into & state o' . This is scattered

to a state o by V . Because of the projection operator P&

oo!

this must involve a trensition to a "distant" state ' of thé_parent

, . . po ,
system. This lets us write € - e"7 ~ Aw, as in Eq. (4.11). TFinally
Vyc can be written as R70<7), since it emits radiation into the state

7 . All of this lets us put (L.1L) into the form’

D %ﬁ@wﬁ)ﬁ«.AW fng_%U,[D_ %ﬁ@djﬂ.
on identifying V., with 6%8(7), we see that this has just the form

of (4.11), with v = 1. Thus, our estimate of (L4.11) is generally valid.

- The result (4.13) may be understood gqualitatively as follows.

Radlatlon emitted in the trgnsition-to state abd leaves its source
with a "flight time" At = .Awfl. The probability that within the

time At there will be v other radiations emitted, when they are
emitted at random and with a mean rate I+ , is  (1/v!) (r at)’
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1/2

when IRVANY < < l. The factor (t /@( ) fepresents the probabllity
' amplitude that ecatterlng Will actually occur{

| 'Fof the speeiai‘eaee-of’dipolevradiationvemitted bj an.
Vexc1ted atom we may estimate Av - from the exp11c1t matrlx element
- 0 be Aﬁw =~ u, the energy‘of the photon. Since E/u- is a,very.
small quantity for atomic trans1tlons, we .see that the correctlon
term in (4.13) is small 1ndeed.»

T We have now seen that the three approximatlons descrlbed at
the elose of Section II and used in our analy31s all require the_.
smallness of a ratid‘of the form"D/évv,hwhere I'is a;level,width'f
and’ Aw 1is a characteristic energy of the system. To_estimate the
- order of this_tatio, we must of course coneider'a specific physical
fieystem. | |
v We turn now to a study of the relatlons between the F'>v
f of Eqs. (3. 17) and the I of i Eqs. (3.16). The argument which -

J
v led_to Eq.v(85b) of Chapter 8, Ref. 1, permlts us to write

Ly <a>*€ i |
,Fj, " nilo(+) > <ng) ( + n) e

B, -x) B, R (e o+ 1n) gbj); C(kas)
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When we know that the transition is a .unique sequence,vand there are

"no glternate channels,‘so the:states g5j+l follow the By » Ve
might be tempted to write
r, - o fdp RO sge - e ) ae (4.16)
3 P e, g a " Tvg+r’ “tpgel o :
To see the relation with Eq. (3.17), we consider
2 () w3
Ry = (gpgua VT €3
y w(d+1) '
(Epgun VT (Fyp + 1) gy)
o g, (34) 1 (3+1)
= [Rj+l .. .. G * l} Ry
bj+l J+1 ‘
€ - € : o ‘
_ i+l A o (3+1)
T T g G R ‘ (1.27)
' BIHL T Tyl

Tt is evident from Eq. (4.17) that the expression (4.16) vanishes.

The édrrect T does not of course vanish if there is a finite

J
transition rate from the state €y * The‘er?or made in using (4.16)
1is that ﬁhe gbj+l’S are not eigenstates of H, so aﬁransition into
. these stateé is meaningless, other than as a transient phenomenon.

When the final state is the steble state gy » then Eq. (l.1h)
may be used. Innthis case the level shift Rd(g) ‘vanishes and

2 3) _ oo (3+)
Rj+lj = Rj+lj . This tells us that



T ='if' - I ,‘,_,(u.18) .
[Wheg there_are.altefnaﬁevdecay:channels,froﬁvthe state g, ;eEq. (L.18)
is of course neelongér true.]’ | o I
: An appregimate relation betWeenefhev rjaaf'and the F’ feomay
be eesily obtained. We 1llustrate this for the quantlty P for which
we'ekpeet' Pa > P'é’ 1f there are decay routes through other channels
. than that. of the | From‘Eqs, (2.10) and (2.12) we have

8y e
bl

’K%,VFQ)@ +1g)

]

.R;(ﬁd).
R & ) (l) S
Ra(l?_(ed) + g:,. : a%»e ucl 3 | ,(uj}g)

1 a” v T

where the' sum on' Qik is limited byAthe ?rojection operator Al..'The
) and thus describes decay

‘ term R contalns no v1rtual states

g

. bl B v
'-through alternatevchannels. When our "small parameter" F/ij‘ is

' e (1) o (L)%

~indeed negligible; as we have been assuming, .Ral

 ‘This permits us to obtain from Eq;.(h,l9)lo
T = -2 Im [Ra(ed)}

ccem i e e T sl - o) I,

oo (B

| Qle o =
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On':neglecting'COhtributions of orderlr/éy, we obtain

»'ra - - 2_Y.Im__[Ra(-l)(€d)J +'.I‘;a. ’ _t , (.20)

with similar relations between ry “and P'l,_etc.

The physicai interpretation of Eq. (4.20) is o‘bvious:' T, is
~the total width Oflﬁhe transition from g, ,'while P'a 1s the partial

width of the transition through . ,This.is compieteiy consistent with

B
, : 1 : :
.~ Eq. (3.14)." On integrating that equation over u,. we obtain

o ‘I"n, : I"ll _ p'a C | ‘ -
Pdﬁ = (“f—)“‘<'ﬁl—‘> I—;—) . ‘ ()—L.El')

This is just the probability that the decay goes through the sequence

of statés wb --fwb ) Og prescribed by our_observationé*on the state
h 1 "~ "n- : '

&4
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| V. _.'Lu\ll_'BIGUOUVS"SEQUEl\ICE OF 'mnsimlons o
.Whenltne threé,aftroximatiens‘mentienedbat thefclese ofvsection IT e
:l;l'are Valid,‘the description Qf'decey thnough an ambiéuousfeet of_etates
s vétraightfor’Ward.“' In this case there W:Lll be 'morethan' one {ter'm in the
- sums. over ‘B ~ in some.of the progectlon operators (2 8). Then the
?_quantltles @i 16} in Eq (2 22) contain matrix elements coupllng the }
,states uéj contalned'ln AJ | | ‘ |
Often these non-dlagonal elements of . G{ (J) may- ‘be neglected
e‘however. (An example is prov1ded by the case of an atom falllng through:
?a level cons1st1ng of a set of degenerate states dlfferlng only in ‘
}megnetlclquantum number.) When this is pos31ble, the treetment éiven
' vin Section lII needs but little‘modification.' , l‘netead of Eq (3.15),
' we have, | | | v -
S Y 3 I ¢ 5 B
y, - A _3d5?1. fop e

" PR YO
By Bn_ (éd " “gn _'RBn _,>f"(€d - eaA- Ra)

(5.1)
-Hbrelwe have written -
SRR G BN ¢ ) BN
. - . | o ,“vi R ~ (5.2)
(3) . (3) : |
R,. L= w R
Rgy = (o 4y By
~ete. _ . : _
Let us apply Eq. (5.1) to the case of a three-step transition
a = bl.» d, where there afe two levels Bl = 1 and B'l = 2 of the

system at the intermediate step. ILet us also suppose that we observe
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the angle of emission of the particles radiated in the two steps, bub

not their energy. The probabiiityi.de is then

. - 5
Py = A
. . . Q
- o, 12
= - de dpy fdul duy l%/dl
| (e (1), @2 -
2 IR R | _ o
. (lejr) 3 ap, { ar e - (5.3
a T : i
1
1) . (1) (1) . W . @, @) .
Ryp ™/ Bpg | TRy~ Bpg ) (Rgp ™7 Ry, ) }
+ + ,[ T + c.c. ?.
T 17 7p o ' ‘
1o ——= -1 (D) - ]_32) )
Here
(1) _ Pl
Rl . = Dl - i "é",
. (5.4)
' r
() _ . , 2
R, = D, -1 =,
ete.
When Tl = I, and D, = D,, Eq. (5.3) reduces to the
expression |
2 ' 2
(2x) Y (1) (1)
ap, = dp dp , R R . (5.5)
a ra i 1,5, Ta L2, |

This is of a form familiar in the theory of successive angular

correlations.
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: We illustrate,‘flnally, an example for whlch off-dlagonal

matrlx elements of - @ V(J) must be kept us1ng the model Just descrlbed

of a two state second level. We wrlte '

. RJ'(l){

la, f (Qi,XQ » R

L@

1 .j<“ii’ R

u (1)

etc. We also write e '= €

o

)

(1)

“and

(1)

R

) ’

@) .

Py = (“ipﬁgi’fF;_ga> L

etc. Then Eg. (2;22)_provideS’the eoupled equations

._“[bev_el-

3@ »

(e - e - R, w,

' which may be solved algebralcally for T 11

Fip - R

= R

12.

(1)

(1)

F

1 T

F

21

- find for QYE the expres51on

1L

'and  F.

1

la

28, .

12°

_p @)

R ()7

(5.6)

From there we



a1 12 la ' (1) (1)
R R
L . 6 T fa 1a
| %’_2_ . 1edt €4 = % - B, o |
. (L _‘R(l)_-Rf () ( .
\Nd .1 "1 (l) a” % ar
: €, = e R
+ same term with "1" and "2" interchénged Lo (5.7)

It should be noted that for- such decays the 51mple Lorentz line

shape can be replaced by a much more compléx llne. :



VI. ’GEl\TVEE.{ALIZED'LEE“ﬁODE_LHVZ -
To illustrate and‘elarify the tneery presented:in the‘preceding
'j eee£ions,:we-considefia model analogous to Lee'sffield theory.12 In
:tnefmo&el; the perturbingnpotenﬁial v  cdnnects only successive Steps
' in eveequence'efbscaler'phofon emiseions,1~a‘4-51 e-bg‘»_-'-'»‘d.

' Thus, we require

N

| (gbl.a- V g () 1

) .

a

»vw\l

_ R:Q 8 ‘h v( ) etc.
ik ;EQ,M : ks

5V .:;hjl-=”.8 e
Eop Teprgd = %

.-Here gb gﬁ ; ete. are restrlcted to a narrow. range of nhoton
energles about the resonant value. All matrlx elements of .V vanish
'unless they are of type (6 l) or the Hermitean congugate.'

For a three-step cascade we have,-

)
R = Vap

)y 1 |
B = Yo T-% Vav
r, 1) - o

da

(1)

Reg = Vg | {Equation 6.2 continued)

Il
<3
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R = V. = e
aa ~ ‘ab 177 Vva (6.2)
, € ~ X -
. . v Yo} :
.and thence
N 1 | E , 1 ‘

2 T T-% Van @) e T-X-RE ° (6.3)
_ , € -K-R, ‘ o |

" Thus, the "one" terms of (2.19) do not appear, and only the resonant

" sequence contributes to the decay. It is easy to extend this result

. for cascades of any number of steps. Of course, the absence of transitions

, ékipping oné:or more steps follows directly ffom the construction of V .

(1)

- The calculatlon-of. Gda_-ls reduced to quadrature unless Rbb

‘contains rescattering terms. Because of our artificial requirement

that V. vanish except for transitions near the energy -shell, rescattering

may occur only if the two photons in state 84 'have nearly the same
.energy. Then we see
, : 2
.' ’ . ot [V(Q)}
. (g-b 2 R gb) = 6}5,& g € - Wd - k - q - iﬂ
) ' 7 o

. 8D 80 v(x') vle) | (6.4)

€ -w -k - k'
. Te o

n

_8k',k &l(l) + @Ls(l) (Alfl':,%) s

o

where ®(k) is a unit ste?.function which vanishes for k outside



k6

S o ' : : 1
the range of 4 included in Zq .

Follow1ng the argumen‘b of Sectlon IV, we may estlmate the |

.'rescatterlr‘g correctlon to G as.

(g Gg ) = m v(k) v T L e .
€ - W Q{ B e “a o
The correction is givén to ldwes’; order by - -
X o= omom g [ae ) b Pl
= - 2; T(o - d); T in {k'Av(k')jlk,=k o (6.6}
= -4iTT.
The characteristic time T = (2/k)+r is'anélogous to the "delay

.tiﬁe" which is fam:‘v.liar in discussions of scét‘te.ring pro_blems.l5 Recalling -
f.’che:s'ki;itslclus"s"ionf‘.in'j'Se.ei:vi-onZ.EEVJ;"-."; we ﬁa_y call T | the "escape time"

4 for the photon. The duantify r .= 24 4dn v/d.k is a measur¢ of the size
-of the decaylng system. in gexlleral,v we expect T fgjl/k, since _k. is

.a characterlstlc frequency of the system, and the maximum poss1ble

frequency, for components travers:Lng a dlstance r with the ve1001ty

of light, would Ve simply . kmax = l/r. ' Thus, we conclude,
b S
5 G . o ,
= b2, rescattering = O <£>, ' _ (6.7)

ba
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in agreement with the genéfal conclusion of Section 1v.
We turn now to the éstimation of off-energy-shell effeéts.
To do this we broaden | the definition of our Lee model potential,
- allowing v(k) to be different from zero over a range of energies of

AR
the order w. - w_ . Then we have, from (k.20),

b
r, = fé’ -2 im @{a(l)(Wé) = Té’ + fé" ;
) @“a(l) | ) f a5k v(x)° [1 - e(k)) | (6.8)

(25)° € -w -k - 62b(l> ’

o 3 (a2
R f &g (a) ,

<2ﬁ)5 € - Wy - k -~ g+ in

@{b(l). The decay rate for

where we. neglect rescattering terms in

virtual states far from the energy shell is

| 3 3 . -
nt ) = [EE L aestr v ok B o)

(x)  (ex) : (6.9)
‘ . - _ 9,
v(x)® v(a) ~
x - IE ., (1)
(v, -Wb-li-‘Re§%a )+ am(%b )

.The projéction opérator 1 - 6 alléws us to neglect Q&b(l) in

the dénominator, so‘that Fa" is given accurately by ordinary second-
order perturbation theory. For simplicity, we have treated the photons
k;'and g/_as distinguiéhable, bﬁt Bose statistics could easily be

taken into account.
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' Neglecting the variation of v with k ’ we may estimate the :'

- decay rate 'ré .when W, . is much greater than wa., so-that resonant rif-'--~

E intermediate‘States are excluded. 'Negiecting k- in'the denominator'

”of.(6,9),‘we°have o

ra ~ "Pa = 15 ’wb) o : 7 2. (6‘,10)',' .

: ',where . 'y is the decay rate for the resonant seq_uence :Ln the case
i ,bwa ; wb' = - Wb. - wav Thus, the decay rate in the absence of resonant

1ntermed1ate states is suppressed by a factor of order P/u, W1th
AR AV AR |
On the. other hand, even When nb lies “between Wa 'and wd B :
there w111 stiil rbe a non-resonant. contribution I‘a"' to the total |
. decay rate : I‘é ) We estimate I‘ " f’or lwa -"_wb‘ =Awa - Wd w:.th ®(k) A_ '
' taken to vanish when lw - w. - kl_, ‘_ exceeds A7 (A >> l)

- Y
"o v _..___..._..l
1_‘a e 2K W, =W, j /

X (2 - x)
1+¢ (1 - x)° L
, (6.11)

'-§~?fi7/‘ﬁ;“wal<<ly

This gives |
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The term E/nA simply compenéaﬁes the effecf of trunééting the
contribution Faf defined as resonaaninstead_ofiintegrating the
resonant energy faétor oyer.gii ihtermediate energies, Thus this terﬁ
should be omittéd when fa'x'-islevaluate@ as in (4.20), by replacing
the resonance factor with a delta-function. The second term,

‘ -872/3ﬁ(wé - wb); comes mainl& from the reduction in two-photon phase
space at the extreme values of k, .Combining (6.7) and (6.10), we
have Verified for aﬁ explicit model the result
o . o ‘ .
ST, =T 1+o<—i—> , | (6.13)
where u  is given by a typical photoh frequéncy.‘

_The Lee model permits us to‘see in a simple éxample the
importance of proper order of operaﬁions in the factorization of thé
Green's function. Consider the'proﬁlem of  inverse decay: Given a state
g, containing one photon; what is the probability as a function of
time to observe the state gb with no photons, and a higher internal
energy (wb > Wé)?

Having phrased the question thus, we are tempted to write

(g, G &) 32 % ® % v(k') 6 (k', k), (6.14)
W
with
1 ) | ' 1
o ¥ - (s e ®)
| ' (6.15)
Q (xr, 1) - ¥ik!) v()
a w7 o

€-Wb
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'p_Note thatp(6;ih> yields a neeningful?expressionpfor tne transition_'
E ratevp;2 Im (g ;-R'g ) only'if ‘g" is taken as a normalized state
w' @(k), vhere (k) is a wave packet for the photon.- Otherw1se one
| is speaking of a tran51tlon from an Lunnormallzable state of deflnlte f
momentum to the normallzed state gE s “and the rate for this is
;undeflned. These con51derations do not affect the follow1ng dlscuss1on,.
but should be kept in mind for appllcations ‘of the Green s function .

formal_ism. Evaluation. of (6.1h4) is difficult, since (6.15) ShoW's-’fthat:’.:‘":;.”.
"7':the pole at e.;HW£-,is spnrious,.and the inverSionvrequired,to ' 4

evaluate "Ga‘ is a non-triVial operation} However, we may approach

- .the pfoblem'in‘a different'Way. It is easy to see that in our model

. as in any theory With time—reversal 1nvar1ance, the Green s function

- is symmetrlc,.'
wro6) < b og) s sy )

I':Where the-states g__ and g; have opposite spins and momenta. from
‘ a

' g, and gb , and the last equality in (6 16) is special to our model.

'Thus, we may replace (6. lh) w1th

. '='  2 vk) 1_"; , o (6.17)
e o) . q, -

Aé -, - k + in.

gwith

S € - Wé_- k + in
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Wﬁat we have done is simply to obtain the Gfeen'évfunctioﬁ fori a b
by transposing the G we already know how t§'§Ompute, that‘for the
“decay ‘b -> g . -Needless to say, even if time-reversal invariance did’
not_hold; we could cafry out the factqfization for inverse decay by
usiﬁg transposed F' Opefatqrs obeying

’

s 1+F Y e | © (6.18)

‘We conclude that, in general, the factorization of G should proceed

from "top" to "bottom" of a cascade, even for inverse processes.
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'A?PENDIXYA. DECAY INTO WAVE PACKET STATES
‘f It is sometimes helpful in: describing a decay process to
- speciﬁy the state of the emitted radiation with wave packets .FOr'
' example, the use of wave packets makes it easy to see that Eq. (2 h). -

: is valid at times such that the radiation has escaped from the parent

: system. ' | |
To illustrate,\we consiier"an.eton in'the:initiei state @,
”'whicn'makes a transitionitovthe.stete a, , emitting a photon of definite -

B

polarization. The wave packet state is taken to be

i

L2 f-dka.(kfp) e T ; 3 (A.1)

"where'.'xk is a photon'eigenstate of'momentum k, and Lp’vr ‘corresponds
: b4 .
. s WE YW

to a photon having components of momentum very: close to p ¥ centered

at r in pos1t10n space. CA typical final state is then

R - (A.2
&y = YLy o | (a.2)

- The decay probability is given by (Eq. (1.2), this time with

Eﬁl
YA

- %/b(t) __: = d5k a*(k ) ei&‘»fﬁ\-f ae e'i‘?tgaé kk, G(e) @ )
- o C
2 B C (A.3)

As t - o, we have
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-1ekt' R

e () L '(A.u)

i - - ')
.~ Ca Raley)

. _ 3. % 1%5'1;
%<b' = er k a-(§'-;g) e "™ e

Here we have written €x for the energy of the ‘state aé Kk and
P

Rka, for the transition matrix element into that state. In ﬁhe_ :
following we shall assume that the R's are slowly varying so that
'Rka(ek) ~ Rpa(ep)~ and @La(ek) ~ Q{a(ep).

We now consider two cases., First, suppose the time duration’
T of the wave packet pulse at a given point in space is long compared

to the lifetime of the decay (or, equivalently, Ae, << I'). Then, at

k
times t>>T, we may evaluate %/b by using the approximation

e, ~ e +ech . (x-p) to obtal
i ptTeP k-5p o obtain

Yy~ e B ) R () i . (as)

Here

i3

W(x)

t3al
.
e ]

fd3,15v a®(

is the complex'éonjﬁgate'wave packet in position spacé.
A natural choice of wave packet amplitude for studying decays

would be a function cbeying
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0 x< <0{ |

W) = o
B (a.6)
'w(;gi‘c\) -1 x>> R ,

'-'crﬁherev gb.isla disfaﬁceieigﬁifieentiy greeterithan.tﬁe.size:efnfhe
» atem,._With-the‘choice (A;é)"the transifion amp}ifude (A.5)fis non; :
,: ygﬁishing pnly'whenfthe'bhofon'hae completelyreecaped frOm’the etom.v
Jend cannot !, interact with it ageiﬁ;‘VThus, (A.5) is equivalent to
(1'15)'for ' ct’":>'>.@ . | | | |

Let us now turn to a second case, approprlate to certain meson

‘ :decays, in which the wave packet of the photon or other decay product

has & narrow tlme resolution(compared to the decay llfe-tlme) but stlll |

oa broad spatlal resolution (compared to the dimensions of the decaying

1‘eystem). . To dbtain “the appropriate limit of (A.l4) we use
° D S ¥

énd’agaih evaluate the M 's at k=p to. obtain

M/
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(\J/ : Q-‘, i @ (e ) ' [f d.T rd51, *(1 il.;‘,’:gg :
0 .
-ie' 7
X e -
(o 0]

C-die 'T

Lpa(éx')) f aT e 8" W{e(t - TY}E)
0 o g

o)

=

-ie,® e-i(D;iryé)(t-r.E/b) -é(£ - . b/e)

” gi/c) ® (e)) e

a
~/E .f € ' . A
vx W <;ELE__£ , 0 . o (A18j

_Here, - 0(t) is the Heaviside function

o(t) 1, £330

il

0 ,t<0

rand W 1is a wave packet of mixed arguments in momentum and position

. . ' -ikex
et . - 2 iksr APy
" : ~ . -
peaked aboub k:”. = k,+p = p and .,}S\,'g_‘ = XX PP = 24 -
The time dependence of l<§/b,2 is given by
-T(-r-D/c) -
-L\UF Ay
Y l® ~e T (A.9)

in agreement with intuition.
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- APPENDIX B. DERIVATION OF'EQUATION (2.26)
When we can ignore ‘the difference between @{ (J) and 'v'@;(j)"'

._1n Eq. (2 23), we. can wrlte this as i

“

oGy A”(:J)' .,'<3>"‘ N
R = R ot '“st-' € - K_»-'.QS(JJ_ R’.J '. (B;l)_

. Now,
fﬁ(j l)_:_ vevi po R(J',l)
- T LU
| L - (B2)
o o werl 2y

wheré a = €= K. If we substitute the right-hand side of (B-1)
‘.inte_tnis, we'heve' | |
R0-1) L gy [1 + R (j) —‘—aﬁj‘] A(J) Py Y

[}

ve s @S(J)—l—m] E (a) V+®<a) 1]

L [1 + & Q) ———(-7:21 J }:.ﬁ@.)-g RO (e

e
: Here we have used our assumption‘that @{V(J) may'be neglected in

,i'setting
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