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Abstract

Optics and Algorithms for Designing Miniature Computational Cameras and Microscopes

by

Kyrollos Yanny

Doctor of Philosophy in Bioengineering

University of California, Berkeley

Professor Laura Waller, Chair

Traditional cameras and microscopes are often optimized to produce sharp 2D images of
the object. These 2D images miss important information about the world (e.g. depth and
spectrum). Access to this information can make a significant impact on fields such as neu-
roscience, medicine, and robotics. For example, volumetric neural imaging in freely moving
animals requires compact head-mountable 3D microscopes and tumor classification in tissue
benefits from access to spectral information. Modifications that enable capturing these extra
dimensions often result in bulky, expensive, and complex imaging setups. In this dissertation,
I focus on designing compact single-shot computational imaging systems that can capture
high dimensional information (depth and spectrum) about the world. This is achieved by
using a multiplexing optic as the image capture hardware and formulating image recovery as
a convex optimization problem. First, I discuss designing a single-shot compact miniature
3D fluorescence microscope, termed Miniscope3D. By placing an optimized multifocal phase
mask at the objective’s exit pupil, 3D fluorescence intensity is encoded into a single 2D
measurement and the 3D volume can be recovered by solving a sparsity constrained inverse
problem. This enables a 2.76 µm lateral and 15 µm axial resolution across 900 × 700 × 390
µm3 volume at 40 volumes per second in a device smaller than a U.S. quarter. Second, I
discuss designing a single-shot hyperspectral camera, termed Spectral DiffuserCam, by com-
bining a diffuser with a tiled spectral filter array. This enables recovering a hyperspectral
volume with higher spatial resolution than the spectral filter alone. The system is compact,
flexible, and can be designed with contiguous or non-contiguous spectral filters tailored to
a given application. Finally, the iterative reconstruction methods generally used for com-
pressed sensing take thousands of iterations to converge and rely on hand-tuned priors. I
discuss a deep learning architecture, termed MultiWienerNet, that uses multiple differen-
tiable Wiener filters paired with a convolutional neural network to take into account the
system’s spatially-varying point spread functions. The result is a 625 − 1600× increase in
speed compared to iterative methods with spatially-varying models and better reconstruction
quality than deep learning methods that assume shift invariance.
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1.1 Multiplexing vs one-to-one optics. (left) an ideal lens focuses a point source
to a point. This is ideal in terms of high frequency content and measurement
SNR. However, axial PFSs from an ideal lens produce a coherent sensing matrix
that is incompatible with compressed sensing based recovery. (middle) a diffuser
projects a point to a pseudorandom pattern with some high frequency content.
Axial PSFs from a diffuser produce a much more incoherent sensing matrix at
the cost of lower measurement SNR and less high-frequency content. (right)
multifocal randomly-spaced microlenses project a point to a pattern with high
frequency content and higher measurement SNR than the diffuser. Axial PSFs
from the microlens array can also produce an incoherent sensing matrix. . . . . 6

2.1 Miniscope3D system overview. As compared to previous Miniscope and
MiniLFM designs, our Miniscope3D is lighter weight and more compact. We re-
move the Miniscope’s tube lens and place a 55 µm thick optimized phase mask
at the aperture stop (Fourier plane) of the GRIN objective lens. A sparse set (64
per depth) of calibration point spread functions (PSFs) is captured by scanning
a 2.5 µm green fluorescent bead throughout the volume. We use this dataset
to pre-compute an efficient forward model that accurately captures field-varying
aberrations. The forward model is then used to iteratively solve an inverse prob-
lem to reconstruct 3D volumes from single-shot 2D measurements. The 3D re-
construction here is of a freely-swimming fluorescently-tagged tardigrade. . . . . 13

2.2 Experimental characterization: (a) Reconstructions of a fluorescent USAF
target at different axial positions to determine depth-dependent lateral resolution.
We recover 2.76 µm resolution across most of the 390 µm range of depths, with a
worst case of 3.9 µm (dashed orange lines mark inset locations and yellow boxes
on insets indicate smallest resolved groups). Note that the resolution target has
discrete levels of resolution that result in jumps in the data and resolution refers
to the gap between bars, not the line-pair width. (b) Reconstruction of a 160
µm thick sample of 4.8 µm fluorescent beads, as compared to a two-photon 3D
scanning image (maximum intensity projections in yx and zx are shown). Our
system detects the same features, with a slightly larger lateral spot size. . . . . . 14
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2.3 Experimental 3D reconstructions of (a) GFP-tagged neurons in two different
samples of 100 µm thick fixed mouse brain tissue, and (b) 300 µm thick optically
cleared mouse brain slice. We clearly resolve dendrites running across the volume
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µm3. (c) Maximum intensity projections from several frames of the reconstructed
3D videos of two different samples of freely moving tardigrades captured at a
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2.6 Phase mask parameterized by point-wise maximum of convex spheres.
Each sphere is outlined by a dashed line, and the final optic is shaded blue (not
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2.4 Each 3D voxel maps to a different PSF: (a) As a point source translates
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posed nonuniform multifocal design with regular unifocal and nonuni-
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signed cutoff frequency, lower is better). (c) PSFs and simulated reconstruc-
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signal-to-noise ratio (PSNR) listed. The measurement is corrupted with 100 e−1
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and column labels. The ideal system would be close to an identity matrix. (c) x-z
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2.14 PSNR comparison of Miniscope3D and 2D Miniscope. (Left) Simulated
reconstructions from our system at different light levels. (Middle) 2D Miniscope
(simulated) raw measurement. (Right) 2D Miniscope deconvolved reconstruc-
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Chapter 1

Introduction

1.1 Dissertation Outline
In this dissertation, I demonstrate how to design and optimize single-shot volumetric and
hyperspectral computational imaging systems using multiplexing optics, image recovery al-
gorithms, and deep learning.

Chapter 1: This chapter provides the necessary background that is used throughout the
rest of the dissertation. It starts by covering how optical systems form an image using linear
image formation models. Then I discuss how using a multiplexing optic can help with cap-
turing more information in a more compact device but introduces image recovery challenges.
To alleviate these challenges, the multiplexing optic will need to have certain properties (e.g.
randomness, incoherence) for successful image recovery. Image recovery can be performed
using iterative optimization algorithms or deep learning methods which are both introduced
here. Finally, previous work related to designing volumetric or hyperspectral single-shot
imaging systems is discussed.

Chapter 2: This chapter demonstrates how an optimized multiplexing optic (e.g. multifocal
microlens array) can replace the tube lens in a miniature fluorescence microscope to enable
volumetric single-shot imaging in a device smaller than a U.S. quarter. I introduce theory
and algorithms to design, optimize, and fabricate the multiplexing optic as well as a low-
rank image formation model that takes into account the field-varying aberrations inherent
to miniature optics. The device is experimentally validated on freely swimming fluorescent
tardigrades and mouse brain tissue slices. I also discuss SNR comparisons with 2D miniature
microscopes, how reconstruction quality varies with object sparsity, and provide a guide to
adapt the theory to different optical systems.
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Chapter 3: This chapter demonstrates another application of the co-design of a multi-
plexing optic with post-process algorithms. Combining an off-the-shelf diffuser with a tiled
spectral filter array enables recovering a hyperspectral volume from a single-shot. The device
is compact and offers higher spatial resolution than that achieved by using the spectral filter
array alone. I present theory for quantifying lateral and spectral resolution as well as exper-
imental results showing hyperspectral reconstructions with high spatio-spectral resolution.

Chapter 4: In the previous chapters, an iterative optimization algorithm is used to recover
a high-dimensional object (e.g. volumetric or hyperspectral) from a 2D image. These it-
erative algorithms take thousands of iterations to converge and rely on hand-tuned priors
to achieve good reconstruction quality. This prohibits real-time processing of images and
limits the type of objects that can be used. Deep learning methods can speed-up the re-
construction process, however, they often assume shift-invariance. This assumption is not
valid in miniature optical systems, where the strict size requirements usually prevent use
of aberration-correcting optics. This chapter introduces a deep learning architecture that
uses multiple differentiable Wiener filters with a convolutional neural network to take into
account the field-varying behaviour of the optical system. This results in a 625 − 1600×
increase in speed compared to iterative methods with spatially-varying models and better
reconstruction quality than deep learning methods that assume shift-invariance.

1.2 Image Formation Models
Traditional cameras and microscopes are often optimized to produce sharp 2D images of
the object. These 2D images miss important information about the world (e.g. depth
and spectrum). Access to this information can make a significant impact on fields such
as neuroscience, medicine, and robotics. For example, volumetric neural imaging in freely
moving animals requires compact head-mountable 3D microscopes and tumor classification
in tissue benefits from access to spectral information. Modifications that enable capturing
these extra dimensions often result in bulky, expensive, and complex imaging setups. In this
dissertation, I focus on designing compact single-shot computational imaging systems that
can capture high-dimensional information (depth and spectrum) about the world. This is
achieved by using a multiplexing optic as the image capture hardware and formulating image
recovery as a convex optimization problem. To understand how changing the optics affect the
measurement and the image recovery, an accurate image formation model (forward model) is
required. To establish this forward model, the volumetric object intensity is treated as a 3D
grid of voxels, v[x, y, z]. Each voxel produces a point spread function (PSF), h[x′, y′; x, y, z],
on the camera sensor, where [x′, y′] are image space indices. Since the object voxels are
mutually incoherent, the measurement can be expressed as a linear combination of the PSFs
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from each voxel in the object:

b[x′, y′] =
∑

z

∑
x,y

v[x, y, z]h[x′, y′; x, y, z]

= Av,
(1.1)

where b is the measurement and A is a matrix that maps the 3D volume to the 2D mea-
surement.

Shift-invariant model
If the optical system is well corrected for aberrations, as is the case for complex bench-top
optical systems, the PSF will approximately be the same for all object points within the
field of view (FOV). Such a system is said to be shift-invariant. This property significantly
reduces the complexity of Eq. 1.1 as it reduces to a sum over 2D convolutions:

b[x′, y′] =
∑

z

∑
x,y

v[x, y, z]
[x,y]
∗ h[x, y, z], (1.2)

where
[x,y]
∗ represents a 2D convolution. This shift-invariant model relates changes to the

optical system, as described by the PSF, to changes in the measurement. This allows for
a direct way to design PSFs that introduce desirable measurement properties. A modified
version of this model is used in Chapter 3 to describe how using a diffuser and a tiled spectral
filter array affects the measurement. Since the diffuser can be approximated by randomly-
spaced microlenses with a small aperture (~f/20), off-axis aberrations are negligible and the
system is approximately shift-invariant.

Shift-varying model
While the shift-invariant model is applicable to many optical systems, miniature high NA
objectives have significant off-axis aberrations that cannot be ignored. In Chapter 2, the 0.55
NA GRIN objective has significant coma that severely impacts the quality of reconstructions
when the shift-invariant model is used (see Fig. 2.4 (c)). Thus, the field-varying behavior of
the PSF needs to be included in the forward model. There are multiple ways to approximate
the image formation model for shift-invariant PSFs (e.g. locally convolutional, low-rank
models, etc. [5, 73, 13, 28, 109, 32, 59]). Any of these techniques is applicable to our
pipeline. In particular, I introduce a low-rank forward model (discussed in more detail in
Chapter 2 ), approximating the spatially-varying PSFs as a weighted sum of shift-invariant
kernels:

b[x′, y′] =
∑

z

K∑
r=1

{
(v[x, y, z]wr[x, y, z])

[x,y]
∗ gr[x, y, z]

}
[x′, y′] , (1.3)

where the weights {wr} and the kernels {gr} are computed from a singular value decom-
position (SVD) of sparsely sampled PSFs from different positions in the FoV and the inner
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sum is over the K largest values in the SVD. Note that in the 2D imaging case, the object is
a thin slice in the z-dimension, so the outer sum over z is not included in the forward model.

1.3 Multiplexing Optics and Compressed Sensing
The problem of recovering a high-dimensional (e.g. 3D) signal from a low-dimensional mea-
surement (e.g. 2D image) can be described using a linear systems of equations as shown in
Eq. 1.1, where A is a wide matrix forming an underdetermined linear system with fewer
equations than unknowns. Generally, such a system has an infinitude of solutions. This
means that there are infinitely many objects, v[x, y, z], that can describe the measurement
b. This makes the recovery of the object infeasible with traditional linear solvers. However,
if certain conditions are imposed on the object and on the sensing matrix, compressed sensing
theory [19] can be used to recover the object.

Object Sparsity and Matrix Coherence
Compressed sensing theory deals with recovering an object, v[x, y, z] that has more elements
than the measurement, b, given that the object is sparse. This means that the object has
very few non-zero elements. For example, the image of stars in a dark night or a fluorescent
object on a black background are considered to be natively sparse. The intuition here is that
instead of recovering the full object (which has more elements than the measurement), one
only has to recover a few non-zero coefficients and their location while the rest of the elements
are zero. This makes for an easier optimization problem. While the requirement of object
sparsity can seem to be very restrictive, compressed sensing theory requires the object to be
sparse in some domain. This means that the object does not have to be natively sparse but
that there is some representation of the object that has many zeros in its coefficients. Many
such representations exist (e.g. wavelets, DCT). In this dissertation, I use Total Variation
as the sparsifying transform. This requires the object to have sparse gradients which is valid
for a general class of objects.

In addition to requiring the object to be sparse, compressed sensing theory requires the
sensing matrix A to be incoherent. Mutual coherence is defined as the largest normalized
inner product between two distinct columns of the matrix:

µ(A) = max
i ̸=j

|⟨ ai

||ai||2
,

aj

||aj||2
⟩|. (1.4)

This quantity captures how close matrix A is to an orthogonal matrix (µ(A) = 0). A
"good" sensing matrix will have a small µ(A). Intuitively speaking, since the measurement
is a linear combination of the columns of matrix A. It should be easier to determine which
columns participate in the measurement if the columns are very distinct from one another.
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In fact, compressed sensing guarantees the recovery of the object under the following
condition:

µ(A) ≤ 1
2||v||0

(1.5)

where ∥·∥0 is the l0 norm, the number of non-zero elements in a vector. While this condition
is not met in practice, the intuition behind it is very useful. As the matrix coherence
decreases, a more dense object can be recovered. This promotes designing optical systems
whose sensing matrices are as incoherent as possible.

A traditional lens produces axial PSFs that are not suitable for compressed sensing. This
is because the sensing matrix produced by such PSFs is very coherent (i.e. high µ(A)).
In contrast, a diffuser produces a PSF consisting of a unique pseudorandom pattern with
high-frequency features. This forms a much more incoherent matrix than a traditional lens.
Chapter 3 uses a diffuser as the imaging optic to multiplex spectral information into a 2D
measurement. Combining the diffuser with a tiled spectral filter array allows for recovering
64 spectral channels with high spatial resolution from a single 2D measurement. While the
diffuser is a great optic for matrix incoherence, it results in a measurement with less frequency
content and reduced SNR (as light in the dark areas of the PSF is not completely zero). For
applications that are signal starved and require high spatial resolution (e.g. fluorescence
imaging), a multifocal, randomly spaced microlens array, produces PSFs with more high-
frequency content and better light concentration (see Fig. 1.1). Chapter 2 uses a multifocal
microlens array to multiplex volumetric information into a 2D measurement allowing for
single-shot 3D imaging. In addition, Chapter 2 builds on the mutual coherence metric
and introduces a merit function that introduces astigmatism and optimizes the microlenses’
positions to produce axial PSFs that are very distinct from each other (i.e. incoherent).

Image Recovery
Provided the object is sparse in some domain, we can reconstruct the volume by solving the
following sparsity-constrained inverse problem:

v̂ = arg min
v≥0

∥Av − b∥2
2 + τ∥Ψv∥1, (1.6)

with Ψ being a sparsifying transform (e.g. 3D gradient, corresponding to TV regularization)
and τ being a tuning parameter.

Equation 1.6 can be solved using a variety of iterative methods; we use Fast Iterative
Shrinkage Thresholding (FISTA) [11]. This requires repeatedly applying A and its adjoint.
To make this computationally feasible for high megavoxel systems like ours, we need an
efficient representation for A. A shift-invariant forward model is extremely computationally
efficient because A becomes a convolution matrix [3, 4, 52]. It also requires only a single PSF
calibration image, from which the PSFs at all other positions can be inferred. For systems
that are shift-varying (e.g. miniature microscopes), the low-rank forward model provides an
efficient representation (see Chapter 2 for more detail).
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sensor sensorsensor

ideal lens diffuser microlenses

Figure 1.1: Multiplexing vs one-to-one optics. (left) an ideal lens focuses a point source
to a point. This is ideal in terms of high frequency content and measurement SNR. However,
axial PFSs from an ideal lens produce a coherent sensing matrix that is incompatible with
compressed sensing based recovery. (middle) a diffuser projects a point to a pseudorandom
pattern with some high frequency content. Axial PSFs from a diffuser produce a much more
incoherent sensing matrix at the cost of lower measurement SNR and less high-frequency
content. (right) multifocal randomly-spaced microlenses project a point to a pattern with
high frequency content and higher measurement SNR than the diffuser. Axial PSFs from
the microlens array can also produce an incoherent sensing matrix.

1.4 Iterative and Deep Methods to Solving the
Inverse Problem

A variety of algorithms have been utilized to solve Eq. 1.6 over the years. Classical methods
use iterative optimization approaches, such as the Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) and the Alternating Direction Method of Multipliers (ADMM) [11,
16]. Such methods incorporate hand-picked priors, such as Total Variation (TV) and native
sparsity, to improve image quality. In Chapter 2 & Chapter 3, I use FISTA with a TV
prior to solve the inverse problem. A typical reconstruction of size 512 × 512 × 20 takes 1-3k
iterations, and runs in 8-24 minutes on a GPU RTX 2080-Ti using MATLAB. While classical
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methods provide great flexibility in incorporating different forward models and trying out
different priors for a given measurement, these methods are prohibitively slow to run in
real-time.

Deep learning approaches can be used to speed up the image reconstruction [76, 98, 85,
55]. These methods provide good image quality and can run in real-time. However, they
rely on a shift-invariant PSF approximation and do not generalize well to optical systems
with field-varying aberrations. In Chapter 4, I introduce a deep learning architecture for
fast, spatially-varying deconvolution. The architecture, termed MultiWienerNet, consists of
multiple Wiener deconvolution layers followed by a convolutional neural network (CNN).
Each Wiener deconvolution layer is initialized with a different PSF sampled from a different
object point in the FoV. The result of the multiple Wiener deconvolution layers is a set
of intermediate images that have sharp features in different regions depending on where
the PSF is sampled from. These intermediate images are then fed to a refinement CNN
to blend them together and produce the final output. The learnable Wiener deconvolution
filters are initialized with PSFs captured at several locations in the FoV, but then allowed
to update throughout training to learn the best filters and noise regularization parameters.
This allows us to incorporate knowledge of the field-varying aberrations into the network,
providing a physically-informed initialization that is further refined throughout training. The
end result is a fast spatially-varying deconvolution that is 625−1600× faster than the baseline
iterative method (Spatially-Varying FISTA [109]), enabling real-time image reconstruction.
In addition, incorporating the field-varying PSFs allows our network to have better image
quality near the edges of the FoV than is achieved by existing deep learning based methods
which assume shift-invariance.

1.5 Related Works

Related Works in Miniature Microscopes
For neural imaging in freely-moving mice, high-resolution two-photon microscopes have been
implemented in a small form factor [112, 45]. However, they require expensive hardware (e.g.
femtosecond laser), introduce non-linear motion artifacts [83] and, as a scanning method,
must trade-off FoV for temporal resolution. Selective-plane illumination (light sheet) micro-
scopes can also be built in miniaturized versions, achieving faster 3D capture [30] at a cost of
adding an external illumination source which increases the size of the implanting hardware.

Unlike scanning approaches, single-shot methods project information from the entire
volume onto a 2D image, then computationally reconstruct the 3D volume. This enables
capturing a large 3D FoV with temporal resolution limited only by the camera exposure time.
Single-shot 3D fluorescence capture has been demonstrated using a lensless architecture [1],
but lacked the integrated illumination that is required for in-vivo imaging. Other recent work
combines coding elements with multi-fiber endoscopes to achieve single-shot non-fluorescent
3D, with relatively low resolution [93]. The miniature light field microscope [96], using a
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conventional unifocal microlens array, demonstrated a fully-integrated 3D fluorescence sys-
tem. However, like conventional LFMs, it suffers from degraded lateral resolution outside
a narrow axial operating range. Additionally, the device is larger and heavier than the 2D
Miniscope due to the added microlens array and propagation distance. Lastly, their algo-
rithm [78], while computationally-efficient, relies on temporal video processing that requires
multiple frames of capture and static structure in the sample; thus, it does not generalize
to single-shot 3D imaging in all applications. Our system, in comparison, uses a more com-
pact, lightweight design that achieves higher lateral resolution over a larger 3D FoV and is
optimized to enable 3D recovery from a single frame. This allows it to be used on a more
general class of samples and enables easier motion correction, as no temporally-consistent
sample structure is required.

Related Works in single-shot Hyperspectral Imaging
Many single-shot hyperspectral imaging techniques have been proposed and evaluated over
the past few years. Most approaches can be categorized into the following groups: spectral
filter-based methods, coded aperture methods, speckle-based methods, and dispersion-based
methods. Spectral filter array methods use tiled spectral filter arrays on the sensor to recover
the spectral channels of interest [61]. These methods can be viewed as an extension of
Bayer pattern based color imaging, but with more than three filters. As the number of
filters increases (increasing the spectral resolution), the spatial resolution decreases. For
instance, with an 8 × 8 filter array (64 spectral channels), the spatial resolution is 8×
worse in each direction than that of the camera sensor. Demosaicing methods have been
proposed to improve upon this, however they rely on intelligently guessing information that
is not recorded by the sensor [75]. In contrast, our system combines a spectral filter array
with a randomizing diffuser, allowing us to recover close to the full spatial resolution of the
sensor, which is not possible with traditional lens-based spectral filter array methods. Coded
aperture methods use a dispersive optical element, such as a prism or diffractive grating,
along with a coded aperture in order to modulate the light [36, 65, 103, 20]. These systems
are able to capture hyperspectral images and videos but tend to be large table-top systems
(1 meter long) consisting of multiple lenses and optical components, often much larger than
a conventional camera. In contrast, our system has a much smaller form factor, requiring
only a camera sensor with an attached spectral filter array and a thin diffuser placed close to
the sensor. Speckle-based methods use the wavelength dependence of speckle from a random
media to achieve hyperspectral imaging [87, 34]. These systems can be compact, since they
require only a sensor and scattering media as their optic, however their spectral resolution
is limited by the speckle correlation through wavelengths. This is challenging to design for
a given application and has worse spectral resolution than our proposed system. Dispersive
methods utilize the dispersion from a prism or diffractive optic to encode spectral information
on the sensor, without the use of a coded aperture. As demonstrated in [10], this can be
accomplished opportunistically using a prism and standard DSLR camera. Such a system
can have high spatial resolution, equal to that of the camera sensor, however the spectral
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information is encoded only at the edges of objects in the scene, resulting in a highly ill-
conditioned problem and lower spectral accuracy. Other methods use a dispersive diffuser
as opposed to a prism as the dispersive element [39]. This can be more compact than prism-
based systems, however there is a trade-off between spatial and spectral resolution depending
on the amount of dispersion and has only been demonstrated for up to 33 spectral bands.
The spatial resolution can be improved by including an additional RGB camera to form a
dual-camera system at the cost of additional hardware and space [44]. While these dispersive
methods are more compact than coded-aperture methods, they still require a lens assembly in
addition to a prism or diffractive element. This compactness challenge is addressed by [104,
49], in which a single diffractive optic is designed to act both as the lens and the dispersive
element, uniquely encoding spectral information in a spectrally-rotating PSF. In contrast to
other dispersive methods, our system is more compact and has a similar size as [49]. Our
system differs from [49] in that our spectral and spatial resolutions are decoupled, enabling
custom sensors tailored to specific spectral filter bands that do not need to be contiguous,
enabling more flexibility in the imager design.

Related Works in Spatially Varying Deconvolution
A variety of approaches have been proposed for deconvolution over the years, ranging from
Wiener filtering to iterative optimization approaches, such as Richardson-Lucy or FISTA,
along with a number of hand-crafted priors, such as TV, sparsity, etc. The simplest models
assume that the PSF is shift-invariant, however real systems often have a spatially-varying
PSF that are field-varying. Several methods have been proposed to deal with spatially-
varying deconvolutions, such as low-rank models [109] or local-convolutional models [59],
however they are typically slow and computationally intensive, making them unsuitable for
real-time image reconstruction. Recently, deep-learning based deconvolution methods have
been demonstrated to improve image quality and reconstruction speed for deconvolutions,
providing a promising improvement over traditional approaches [76, 54] [98, 85]. However,
to date, these methods rely on a shift-invariant PSF approximation and are not well-suited
for most optical systems with spatially-varying PSFs. Our network architecture consists of
multiple Wiener deconvolution layers paired with a convolutional neural network. This allows
the network to take into account the field-varying behaviour of the optical system resulting
in faster reconstructions than classical iterative approaches and better reconstructions than
deep learning methods that assume shift-invariance.
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Chapter 2

Optimized Single-shot Miniature 3D
Fluorescence Microscopy

This chapter is based on [109] and is joint work with Nick Antipa, William Liberti, Sam
Dehaeck, Kristina Monakhova, Fanglin Linda Liu, Konlin Shen, Ren Ng, and Laura Waller.

2.1 Abstract
Miniature fluorescence microscopes are a standard tool in systems biology. However, wide-
field miniature microscopes only capture 2D information, and modifications that enable 3D
capabilities increase size and weight, and have poor resolution outside a narrow depth range.
Here, we achieve 3D capability by replacing the tube lens of a conventional 2D Miniscope with
an optimized multifocal phase mask at the objective’s aperture stop. Placing the phase mask
at the aperture stop significantly reduces the size of the device and varying the focal lengths
enables uniform resolution across a wide depth range. The phase mask encodes 3D fluores-
cence intensity into a single 2D measurement and the 3D volume is recovered by solving a
sparsity-constrained inverse problem. We provide methods for designing and fabricating the
phase mask and an efficient forward model that accounts for the field-varying aberrations in
miniature objectives. We demonstrate a prototype that is 17 mm tall and weighs 2.5 grams,
achieving 2.76 µm lateral and 15 µm axial resolution across most of the 900 × 700 × 390
µm3 volume at 40 volumes per second. The performance is validated experimentally on res-
olution targets, dynamic biological samples, and mouse brain tissue. Compared to existing
miniature single-shot volume-capture implementations, our system is smaller, lighter, and
achieves more than 2× better lateral and axial resolution throughout a 10× larger usable
depth range. Our microscope design provides single-shot 3D imaging for applications where
a compact platform matters, such as volumetric neural imaging in freely-moving animals
and 3D motion studies of dynamic samples in incubators and lab-on-a-chip devices.
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2.2 Introduction
Miniature widefield fluorescence microscopes enable important applications in systems bi-
ology - for example, optical recording of neural activity in freely-moving animals [37, 64,
48, 42], and long-term in situ imaging within incubators and lab-on-a-chip devices. These
miniature microscopes, commonly called ‘Miniscopes’, are developed by a vibrant open-
source community [102] and made of 3D printed parts and off-the-shelf components. While
the Miniscope is designed for 2D fluorescence imaging only, many applications can benefit
from imaging 3D structure.

Volumetric microscopy methods aim to capture 3D structure; however, they often rely on
scanning (e.g. two-photon, light sheet) which is difficult to miniaturize and must trade off
temporal resolution and field-of-view (FoV). Two-photon microscopes have been implemented
in small form factors [112, 45], giving high resolution at a cost of motion artifacts [83],
limited FoV, and expensive hardware. Miniaturized light sheet microscopes achieve faster
capture [30], but also depend on scanning which causes motion artifacts and increases the
complexity and size of the hardware.

Unlike scanning approaches, single-shot methods [108, 67, 3, 59, 1, 7, 63, 17] offer faster
capture speeds, with temporal resolution limited only by the camera frame rate. These
methods encode information from the entire volume into a 2D measurement, then compu-
tationally reconstruct the 3D information. Single-shot 3D fluorescence capture has been
demonstrated using a lensless architecture [1, 59], but lacked the integrated illumination
that is required for in-vivo imaging. In addition, such mask-only systems have no magni-
fying optics, and so are limited to low effective numerical aperture (NA) resulting in poor
lateral and axial resolutions. Other recent work combines coding elements with multi-fiber
endoscopes to achieve single-shot non-fluorescence 3D, with relatively low resolution [93].
Recently, the miniature light field microscope (MiniLFM) [96] demonstrated an integrated
3D fluorescence system with computationally-efficient temporal video processing for neural
activity tracking [78]. This system adds a standard microlens array (regularly-spaced, uni-
focal) to the image plane of the Miniscope, giving it single-shot 3D capabilities at the cost
of degraded lateral resolution and a larger and heavier device. The MiniLFM algorithm [78]
is optimized for neural activity tracking applications, so uses temporal video processing that
requires sparsity, multiple frames of capture and static structure in the sample.

Here, we present a new single-shot 3D miniature fluorescence microscope, termed Minis-
cope3D, that is not only smaller and lighter weight than MiniLFM, but also achieves better
resolution over a larger volume. It is designed as a simple hardware modification to the
widely-used UCLA Miniscope [102], replacing the tube lens with an optimized phase mask
placed directly at the aperture stop (Fourier plane) of the objective lens (Fig. 2.1). The
phase mask consists of a set of multifocal nonuniformly-spaced microlenses, optimized such
that each point within a 3D sample generates a unique high-frequency pattern on the sensor,
encoding volumetric information in a single 2D measurement. The 3D volume is recovered
by solving a sparsity-constrained compressed sensing inverse problem, enabling us to recover
24.5 million voxels from a 0.3 megapixel measurement. Our algorithm assumes the sample
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to be sparse in some domain, which is valid for a general class of fluorescent samples. We
demonstrate the capabilities of our microscope by imaging fluorescent resolution targets,
freely swimming biological samples, scattering mouse brain tissue, and optically cleared
mouse brain tissue. We also validate the accuracy of our reconstructions against two-photon
microscopy and discuss the limitations of our method.

To achieve high-quality imaging in a small, low-weight device, a number of technical
innovations were developed. Placing the phase mask in Fourier space (instead of image
space) significantly improves compactness, and also reduces computational burden [70, 92,
43]. Varying the focal lengths of the microlenses enhances the uniformity of resolution
across depth, as compared to implementations like MiniLFM. Because we use an optimized
forward model and calibration scheme to account for the field-varying aberrations inherent
to miniature objectives, we are able to add 3D capabilities to the 2D Miniscope, at a cost of
only a small loss of lateral resolution, and lower signal-to-noise ratio (SNR). Our algorithm
unites optical theory with compressed sensing in a general way that can allow others to
design and fabricate optimized phase masks for their applications. The main contributions
of this work are:

• A new miniature 3D microscope architecture that improves upon MiniLFM, achieving
significantly better resolution across a 10× larger depth range, while reducing overall
device size.

• A prototype, based on easily available parts, 3D printing, and open-source designs,
that weighs 2.5 grams and achieves 2.76 µm lateral and 15 µm axial resolution across
most of the 900 × 700 × 390 µm3 volume at 40 volumes per second.

• Design principles for optimizing phase masks for 3D imaging and a high-quality fabri-
cation method using two-photon polymerization in a Nanoscribe 3D printer.

• An efficient calibration scheme and reconstruction algorithm that accounts for the
field-varying aberrations inherent in miniaturized objective lenses.

2.3 Results
We characterize the performance of our computational microscope with samples of increasing
complexity, capturing dynamic 3D recordings at frame rates of up to 40 volumes per second.

Resolution Characterization: Lateral resolution is measured at different depths by
imaging a fluorescent resolution target every 10 µm axially and determining the smallest
resolved group by eye. Figure 2.2(a) demonstrates 2.76 µm uniform lateral resolution over
270 µm in depth. The resolution degrades to 3.9 µm over the next 120 µm in depth, for
a total usable depth range of 390 µm. This relatively uniform resolution through a wide
depth range is due to our multifocal design. Axial resolution is determined by imaging a
thin layer of 4.8 µm fluorescent beads at different depths and using Rayleigh criterion (at
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Figure 2.1: Miniscope3D system overview. As compared to previous Miniscope and
MiniLFM designs, our Miniscope3D is lighter weight and more compact. We remove the
Miniscope’s tube lens and place a 55 µm thick optimized phase mask at the aperture stop
(Fourier plane) of the GRIN objective lens. A sparse set (64 per depth) of calibration point
spread functions (PSFs) is captured by scanning a 2.5 µm green fluorescent bead throughout
the volume. We use this dataset to pre-compute an efficient forward model that accurately
captures field-varying aberrations. The forward model is then used to iteratively solve an
inverse problem to reconstruct 3D volumes from single-shot 2D measurements. The 3D
reconstruction here is of a freely-swimming fluorescently-tagged tardigrade.

least a 20% dip between the peaks of the two reconstructed points) to determine resolution.
Raw data from multiple depths are added to synthesize a measurement of two layers of
beads with varying separations (see Fig. 2.10). We achieve 15 µm axial resolution across
the entire 390 µm depth range, which matches the axial full-width-half-maximum (FWHM)
in the reconstructions of the 3D fluorescent beads sample in Fig. 2.2(b).

Two-Photon Verification: To validate the accuracy of our results, we compare against
two-photon microscopy, which is considered ground truth. Figure 2.2(b) shows results for a
160 µm thick sample of 4.8 µm green fluorescent beads. Miniscope3D accurately recovers all
the beads in the volume, after visually adjusting for tip/tilt misalignment in post-processing.

Mouse Brain Tissue: Next, we show feasibility for neuro-biological samples by imaging
post-fixed mouse brain slices where GFP is expressed in a sparse population of neurons
throughout the sample. Figure 2.3(a) shows reconstructions from two 100 µm thick scattering
samples from different parts of the hippocampus, and Fig. 2.3(b) shows results from a 300
µm thick optically cleared section. In the 300 µm slice, dendrites can be seen running across
the reconstruction axially (~1 µm features), and individual cell bodies appear at distinct
depths (see Video 1).

Dynamic Biological Samples: Finally, we image dynamic samples of freely-swimming
SYBR-green stained tardigrades at a maximum of 40 frames per second. Figure 2.3(c) shows
maximum intensity projections of the reconstructed videos at different time points from two
different recordings. The reconstructions show that Miniscope3D can track freely-moving
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(a) Lateral Resolution Vs Depth
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Figure 2.2: Experimental characterization: (a) Reconstructions of a fluorescent USAF
target at different axial positions to determine depth-dependent lateral resolution. We re-
cover 2.76 µm resolution across most of the 390 µm range of depths, with a worst case of 3.9
µm (dashed orange lines mark inset locations and yellow boxes on insets indicate smallest
resolved groups). Note that the resolution target has discrete levels of resolution that result
in jumps in the data and resolution refers to the gap between bars, not the line-pair width.
(b) Reconstruction of a 160 µm thick sample of 4.8 µm fluorescent beads, as compared to
a two-photon 3D scanning image (maximum intensity projections in yx and zx are shown).
Our system detects the same features, with a slightly larger lateral spot size.

biological samples at high spatial and temporal resolution (see Videos 2-6 ).

2.4 Theory and Methods

System Theory
Miniscope3D encodes volumetric information via a thin phase mask placed at the aperture
stop of the gradient index (GRIN) objective lens (see Fig. 2.1). The goal of our design is to
optimize the microscope optics for compressed sensing, enabling capture of a large number
of voxels from a small number of sensor pixels. To achieve this, the phase mask comprises
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(a) 100 µm thick Mouse Brain Slice

(c) Freely Moving Tardigrades
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Figure 2.3: Experimental 3D reconstructions of (a) GFP-tagged neurons in two differ-
ent samples of 100 µm thick fixed mouse brain tissue, and (b) 300 µm thick optically cleared
mouse brain slice. We clearly resolve dendrites running across the volume axially (see Video
1 ). All mouse brain volume reconstructions are 790×617×210 µm3. (c) Maximum intensity
projections from several frames of the reconstructed 3D videos of two different samples of
freely moving tardigrades captured at a maximum of 40 frames per second (see Video 2 &
3 ).

an engineered pattern of multifocal microlenses, designed such that each fluorescent point
source in the scene produces a unique high-frequency pattern of focal spots at the sensor
plane, thus encoding its 3D position. The structure and spatial frequencies present in this
pattern, termed the point spread function (PSF), determine our reconstruction resolution at
that position; theory for these limits is presented in the Lateral Resolution section below.

Figure 2.4 shows how our PSF changes with the lateral and axial position of a point source
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in the object space. As the point source moves laterally, the PSF translates (Fig. 2.4(b)).
In an idealized microscope with the phase mask in Fourier space, the system would be shift-
invariant [70, 92]; however, because of the inherent aberrations in the GRIN lens, the pattern
also slightly changes structure as it shifts. As the point source moves axially, the overall PSF
changes size and different spots come into focus (Fig. 2.4(a)), because we use a diversity of
microlens focal lengths in our phase mask. As discussed in the section on Multifocal Design,
this ensures that the PSFs at a wide range of depths all contain sharp focal spots, unlike
unifocal microlenses. To maximize the performance of our system, we optimize the spacing
and focal lengths of the microlenses, as described in the Phase Mask Optimization section.

Our distributed, unique PSFs satisfy the multiplexing requirement of compressed sensing.
Hence, we utilize sparsity-constrained inverse methods to recover the voxelized sparse 3D
fluorescence emission, v, from a single 2D sensor measurement, b. To do this, we model
b as a linear function of v, denoting the measurement process as b = Av. Here, A is the
measurement matrix, a linear operator that captures how each voxel maps to the sensor.
Provided the sample is sparse in some domain, we reconstruct the volume by solving the
sparsity-constrained inverse problem:

v̂ = arg min
v≥0

∥Av − b∥2
2 + τ∥Ψv∥1, (2.1)

with Ψ being a sparsifying transform (e.g. 3D gradient, corresponding to TV regularization)
and τ being a tuning parameter.

Equation 2.1 can be solved using a variety of iterative methods; we use Fast Iterative
Shrinkage Thresholding (FISTA) [11]. This requires repeatedly applying A and its adjoint.
To make this computationally feasible for high megavoxel systems like ours, we need an
efficient representation for A. A shift-invariant forward model is extremely computationally
efficient because A becomes a convolution matrix [3, 4, 52]. It also requires only a single PSF
calibration image, from which the PSFs at all other positions can be inferred. Unfortunately,
miniature integrated systems like ours are not shift invariant, due to the off-axis aberrations
inherent to compact objectives. To account for this, in the following sections we develop a
field-varying forward model and a practical calibration scheme that account for aberrations
with minimal added computational cost.

Field-varying Forward Model

Because aberrations in the GRIN lens of the Miniscope render the shift-invariant model
invalid, we need to both measure and model how the PSF changes across the FoV. Explicitly
measuring the PSF at each position within the volume is infeasible, both in terms of amount
of calibration data and computational burden of reconstruction. It is also unnecessary since
the PSF structure changes slowly across the FoV. Instead, our calibration scheme samples
the PSF sparsely across the field and uses a weighted convolution model to estimate the PSF
at other positions [33]. We capture 64 PSF measurements at each depth, then use them to
predict the full set of over 300,000 PSFs. Our forward model thus only requires computing
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a limited number of convolutions (typically 10-20) and achieves 2.2× better resolution and
better quality than the shift-invariant model (see Fig. 2.4(c)).

Our field-varying forward model approximates A using a weighted sum of shift-invariant
(convolution) kernels. We treat the volumetric intensity as a 3D grid of voxels, denoted
v[x, y, z]. A voxel at location [x, y, z] produces a PSF on the sensor, h[u, v; x, y, z], where
[u, v] indexes sensor rows and columns. For ease of notation we will assume the system has
magnification M = 1 and apply appropriate scaling to the solution after 3D image recovery.
We also assume v has finite axial and lateral support. By treating the voxels as mutually
incoherent, the measurement will be a linear combination of PSFs:

b[u, v] =
∑

z

∑
x,y

v[x, y; z]h[u, v; x, y, z]

= Av,
(2.2)

where the bounds of the sums implicitly contain the sample. To capture field-varying be-
havior, we seek to model the PSF from each voxel as a weighted sum of K shift-invariant
kernels [33]. The kernels, gr[u, v; z], and weights, wr[x, y, z], which will be described below,
should be chosen to represent all PSFs accurately with the smallest possible K. Mathemat-
ically, the forward model can be written as:

h[u, v; x, y, z] = Λ[u, v]
K∑

r=1
wr[x, y, z]gr[u − x, v − y; z], (2.3)

where Λ[u, v] is an indicator function that selects only the values that fall within the sensor
pixel grid. In other words, the PSF from position [x, y, z] is modeled by shifting the kernels,
{gr[u, v; z]} r = 1 . . . K, associated with depth z, to be centered at the PSF location on the
sensor, [u, v] = [x, y]. Then, each kernel is assigned a field-dependent weight, wr[x, y, z],
and the weighted kernels are summed over r. Note that this motivates the placement of the
phase mask in the aperture stop. By ensuring that all field points fully illuminate the mask,
the system will be close to shift-invariant, which will keep the necessary number of kernels
low.

To find the kernels and weights that best represent all of the PSFs, first consider each
PSF in a coordinate space relative to the chief ray. We do this by centering each measured
PSF on-axis:

h[u + x, v + y; x, y, z] =
K∑

r=1
wr[x, y, z]gr[u, v], (2.4)

where [x, y] is the chief ray spatial coordinate at the sensor. We assume that the calibration
procedure will capture N PSFs across the field, {h[u, v; xi, yi, z]} i = 1 . . . N , for each depth
z. We estimate the chief ray coordinate [x, y] of off-axis PSFs by cross-correlating each
with the on-axis PSF. The off-axis measurements are then shifted on-axis, vectorized, and
combined into a registered PSF matrix, denoted H. For smoothly varying systems, H will
be low rank and can be well approximated by solving
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Ĝ, Ŵ = arg min
G,W

∥GW − H∥2
2 , (2.5)

where G ∈ RMp×K and W ∈ RK×N for a sensor with Mp pixels. The optimal rank-K solution
can be found by computing the the K largest values of the singular value decomposition
(SVD) of H. The r-th column of the left singular vector matrix, Ĝ, contains the kernel
gr[x, y; z] in vectorized form. Similarly, combining the singular values with the right singular
vector matrix produces Ŵ , of which the r-th row contains the optimal weights wr[xi, yi, z]
for voxel [xi, yi, z]. Empirically, we find that the weights vary smoothly across the field, so
we use natural neighbor interpolation to estimate the weights between sampled points. After
testing the number of sample points per depth (N) empirically, we find 64 to be sufficient
for our system.

The computational-efficiency of this model can be analyzed by substituting Eq. 2.3 into
Eq. 2.2, yielding:

b[u, v] =
∑

z

∑
x,y

v[x, y, z]Λ[u, v]
K∑

r=1
wr[x, y, z]gr[u − x, v − y; z]

= Λ[u, v]
∑

z

K∑
r=1

{
(v[x, y, z]wr[x, y, z])

[x,y]
∗ gr[x, y; z]

}
[u, v] ,

(2.6)

where
[x,y]
∗ denotes discrete linear convolution over the lateral variables. In practice, each con-

volution can be implemented using a combination of padding and FFT-convolution, while
Λ[u, v] represents a crop [3]. Note that the summation over z assumes no voxel is partially
occluded. Because this model comprises K point-wise multiplications and K 2D convolu-
tions per depth, it is approximately K−times slower than a shift-invariant model. Hence
minimizing K via choice of weights and kernels, or by reducing aberrations in the hardware,
improves computational efficiency.

Calibration

Experimentally, our calibration procedure captures PSF images of a 2.5 µm green fluorescent
bead at 64 equally-spaced points across the FoV, for each depth. Empirically, we find that
the singular values decay quickly and a model with rank between K = 10 and K = 20 is
sufficient for our system. Note that we can trade-off the speed and accuracy of our model
by varying K, but the decomposition need only be performed once. This method allows
characterization of an extremely large matrix by only capturing a relatively small number
of images. For example, our typical calibration requires 80 depths. Densely sampling every
PSF using a 0.3 megapixel sensor would require 24 million calibration images (300,000 per
depth) and terabytes of storage. In contrast, our method enables calibrating this entire
volume using only 80 depths × 64 images/depth = 5, 120 images, which takes 2 hours to
capture using automated stages and requires a few gigabytes to store.
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Reconstruction Algorithm

In solving Eq. 2.1 we use sparsifying transform Ψ = [∇x∇y∇z]⊺, which corresponds to 3D
anisotropic TV regularization, promoting sparse 3D gradients in the reconstruction. The
regularization parameter, τ , controls the balance between the data fidelity and the sparse
3D gradients prior. In practice, we hand-tune τ on a range of test data, then leave it
fixed for subsequent captures (see Fig. 2.13). We solve Eq. 2.1 using FISTA [11], with
the fast, subiteration-free parallel proximal method [50]. Computationally, our method has
similarities to light-field deconvolution [17], but because our PSF is not periodic and our
focal lengths are not all the same, we are able to remove the need for aperture matching
and achieve higher resolution across a larger volume. In order to solve Eq. 2.1, we compute
the linear forward and adjoint matrix-vector multiplies using FFT-convolution. A typical
reconstruction takes 1-3k iterations, and runs in 8-24 minutes on a GPU RTX 2080-Ti using
MATLAB.

Phase Mask Design
In this section, we present theory for designing and optimizing a phase mask that achieves
a target resolution uniformly across a specified 3D volume. We assume that the phase mask
will be placed in the aperture stop of the objective with the sensor at a fixed distance,
since this architecture reduces the size and weight of our device, makes the system close to
shift-invariant and enables multiplexing, which is necessary for compressed sensing. We aim
for all PSFs produced by the mask to have high spatial-frequency content and be mutually
incoherent (i.e. all as dissimilar as possible). Toward this goal, we propose a multifocal array
of nonuniformly-spaced microlenses as our phase mask.

We choose to use a phase mask made of microlenses because it provides good light
throughput, while balancing the trade-offs between SNR and compressive sensing capabil-
ities. Our previous work employed off-the-shelf diffusers with a pseudorandom Gaussian
surface profile [3]. These generate a caustic PSF that has poor SNR due to the spreading of
the light by the concave bumps of the diffuser surface. In contrast, microlenses concentrate
the light into a small number of sharp spots, giving better performance in low-light appli-
cations like fluorescence microscopy (see Sec. 2.5). By parameterizing our design as a set
of microlenses, we can also derive simple design rules from first-principles (sections Lateral
Resolution & Multifocal Design), then use those to formulate an optimization problem that
locally optimizes the placement and aberrations of each microlens.

We space our microlenses nonuniformly to ensure that the PSFs from all field points
are dissimilar. Regularly-spaced arrays will produce highly similar PSFs when shifted by
one microlens period, causing certain spatial frequencies to be poorly measured. Previous
work avoided this ambiguity by introducing a field stop [70, 92, 43] that prevents the PSFs
from overlapping, but this restricts the FoV significantly. Our design yields a larger FoV
by using nonuniform spacing and computationally disambiguating the overlapping PSFs. In
Fig. 2.5 we compare PSFs and reconstructions from regularly-spaced and nonuniform phase
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mask designs. Looking at Fig. 2.5(c), the PSF of the regular array causes unwanted peaks
at low frequencies in its radially-averaged inverse power spectral density (IPSD), a metric
related to deconvolution performance [24] (lower is better). This manifests as artifacts in
the simulated reconstruction, which are significantly reduced in reconstructions from both
of the nonuniform designs.

Using multiple microlens focal lengths extends the depth range across which we obtain
good resolution, as described in the section on Multifocal Design. Multifocal designs have
sharp focal spots across a wider desired depth range than can be achieved with unifocal
designs, trading SNR in-focus for better performance off-focus. Figure 2.5(c,d) compares the
PSFs and reconstruction quality of our approach versus unifocal designs in-focus and 200
µm away from the native focus of the unifocal arrays. The blurry features in the out-of-focus
PSFs for both unifocal designs cause poor performance, as shown in the reconstructions and
high inverse power spectra. To capture the performance across depth, Fig.2.5(b) shows the
integrated IPSD (up to the cutoff frequency) of each design versus depth. As expected, our
multifocal design is slightly worse than a unifocal design in focus, but achieves far better
(lower) values across the full depth range.

In the compact system architecture we propose, it is clear that our nonuniform multifocal
microlenses are a good choice of phase mask. This motivates the next sections which provide
guidance on optimizing the nonuniform spacing, as well as the focal lengths and aberrations
of the microlenses for achieving a target resolution and depth range. For our prototype, we
aim for 3.5 µm lateral resolution, and show that this can be achieved over a depth range up
to 360 µm, which agrees with our experimental characterization.

Lateral Resolution

Lateral resolution will be primarily determined by the diffraction-limited aperture size of the
microlenses, which also determines the number of microlenses that fit across the objective’s
full aperture, and thus, the depth range we can target. We design for lateral resolution that
does not require the full pupil, so that we can fit multiple microlenses in the aperture for
better depth coding. The example in Fig. 2.5 targets 3.5 µm resolution (cutoff frequency of
0.35 cycles/µm) using 36 microlenses with average NA=0.09. Because each design has the
same number of microlenses, each has a similar resolution limit.

To quantify, we perform a diffraction analysis to find the clear aperture a single microlens
needs to support a δx lateral resolution at the sample. Note that this assumes we will recover
resolution no better than the band-limit of the measurement, neglecting any resolution gained
from the non-linear solver. We start by calculating the magnification for our system:

M ≈ −t

fG

, (2.7)

where fG is the GRIN focal length and t is the mask-to-sensor distance (derivation in Sec.
2.7). Note that M is approximately independent of the microlens focal length. For our
system, fG = 1.67 mm and t = 8.7 mm, so M ≈ −5.2. Using Eq. 2.7 and the Rayleigh
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criterion, the microlens clear aperture, ∆M , needed for a target object resolution δx at
wavelength λ is:

∆ML = 1.22λt

|M |δx
≈ 1.22λfG

δx
. (2.8)

This expression is also independent of the microlens focal length because we have assumed
the microlens is focused. Equation 2.8 allows us to select the appropriate average microlens
spacing for a desired resolution. Our system is designed for 3.5 µm lateral resolution (though
experimentally we achieve 2.76 µm, due to the non-linear solver), which gives an average
microlens diameter of 300 µm. Given that the GRIN clear aperture has diameter 1.8 mm,
this results in 36 microlenses that can fit in the phase mask. Note that since the GRIN
is aberration limited, the 2D Miniscope does not achieve the diffraction-limited resolution
predicted by its full aperture size. Hence, our experimentally-measured resolution is not
much worse than the 2D Miniscope (lateral resolution of 2 µm), despite dividing the GRIN
pupil into 36 regions to add depth sensing capabilities.

Multifocal Design for Extended Depth Range

Focal length diversity in the microlens array results in an extended depth range, a key ad-
vantage of our architecture over conventional LFM. To maintain a uniform lateral resolution
across all depths in the volume of interest, the PSF should have sharp, high-frequency focal
spots for each axial position. This requires at least one microlens to be in focus for each
object axial plane, with planes spaced by the microlens depth-of-field (DoF). The DoF of a
single microlens, dML, is inversely proportional to the microlens clear aperture, ∆ML, giving
dML = ±20 µm in our system (see Sec. 2.8 for details).

Our design aims to have a minimum of 4 microlenses in focus within each DoF. Given that
our lateral resolution criterion allows 36 microlenses, this means we should have 9 different
focal lengths and a depth range of 360 µm, nearly 10× what a single focal length achieves.
Note that there is a trade-off between the imaging depth range and lateral resolution. We can
increase the depth range by including more microlenses in the mask; however, that decreases
their clear aperture (Eq. 2.8) and thus the lateral resolution. Conversely, for imaging thin
samples where only a narrow range of focal lengths is required, better lateral resolution is
possible.

To determine the focal length distribution, we find the focal length needed to focus at the
beginning of the depth range (fmin = 7mm) and at the end of the depth range (fmax = 25
mm). Then, we dioptrically space the focal lengths across the target range because this leads
to microlenses that come into focus at linearly-spaced depth planes in the sample space.

Phase Mask Parameterization

The previous sections outlined first-order design principles, considering only a single mi-
crolens. In the next section, we will optimize the ensemble of microlenses (their positions
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and added aberrations) with metrics based on compressed sensing theory. Here, we first
build our representation of the microlens phase mask by parameterizing the ith microlens by
its lateral vertex location, (ρi

xc, ρi
yc) := ρi

c and radius of curvature, Ri. The spherical sag of
the microlens is:

si = di + Ri

√√√√1 −
(
ρ − ρi

c

Ri

)2

, (2.9)

where di is an offset constant added to each microlens to control its clear aperture. We
parameterize aspheric terms in the microlenses by using Zernike polynomials. The jth Zernike
coefficient for microlens i is denoted αij, so the total aspheric component at that microlens
is ∑j αijZj(ρ − ρi

c) with Zj being the jth Zernike polynomial. As long as the microlenses
are all convex (Ri > 0), a phase mask with full fill-factor can be constructed by taking the
point-wise maximum thickness (see Fig. 2.6). The phase mask surface is thus:

T (ρx, ρy;θ) = max
i

si +
∑

j

αijZj(ρ − ρi
c)
 , (2.10)

where θ denotes the collection of parameters that define the phase mask: vertex locations
{ρi

c}, radii {Ri}, offsets {di}, and Zernike coefficients {αij}. The resulting surface is guaran-
teed to be continuous and will have a well-defined local focal length given by fi = n−1

Ri
within

the region belonging to the ith microlens, provided the power Zernike j = 4 is excluded. In
practice, we optimize the Zernike coefficients for tilt (j = 1, 2) and astigmatism (j = 3, 5).

With the microlens array defined, the on-axis PSF at a given sample depth z can be mod-
eled by Fresnel propagation of the pupil wavefront from a point source at depth z, denoted
W (ρx, ρy; z), multiplied by the phase of the designed mask, ϕ(ρx, ρy;θ) = 2π(n−1)

λ
T (ρx, ρy;θ):

h(u, v; z,θ) = |Ft {P (ρx, ρy) exp [iϕ(ρx, ρy;θ)] W (ρx, ρy; z)}|2 , (2.11)
where P (ρx, ρy) is the GRIN pupil amplitude, n is the microlens substrate index of refraction,
and Ft denotes Fresnel propagation to the sensor a distance t away. Importantly, the on-axis
PSFs are differentiable with respect to the microlens parameters, θ, enabling us to optimize
the design using gradient methods, as discussed in the next section.
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Figure 2.6: Phase mask parameterized by point-wise maximum of convex spheres.
Each sphere is outlined by a dashed line, and the final optic is shaded blue (not to scale).

Phase mask Optimization Using Matrix Coherence

Given the first-principles guidance in the above sections, we set the number of microlenses,
their characteristic aperture size and their focal length distribution; next, we aim to optimize
the microlens positions and aberrations to maximize performance. In order to make the
optimization computationally feasible, we ignore the field-varying changes in the PSF and
assume that the system is shift invariant for the purposes of design.

To optimize the microlens parameters, θ, in terms of the on-axis PSFs at each depth,
we set up a loss function to be optimized that consists of two terms. The first term, a
cross-coherence loss, promotes good axial resolution by ensuring that the PSFs at different
depths are as dissimilar as possible. Cross-coherence between any two depths is defined as
∥h(u, v; zn) ⋆ h(u, v; zm)∥∞ := max [h(u, v; zn) ⋆ h(u, v; zm)], where ⋆ represents 2D correla-
tion and max · is the element-wise maximum. Intuitively, we want the cross-coherence to
be small, since it represents the worst-case ambiguity that would arise by placing two point
sources adversarially at depths spaced according to the separation of their PSF’s cross-
correlation peaks. By computing this quantity for all pairs of z-depths, we can produce a
differentiable figure-of-merit that optimizes the matrix coherence [19] between depths. In
practice, rather than optimizing the cross-coherence, we smoothly approximate the max [25]
using ∥x∥∞ ≈ σ ln∑ exp (x2/σ). Here, σ > 0 is a tuning parameter that trades accuracy
of the approximation against smoothness. For our purposes, this has the advantage of pe-
nalizing all large cross correlation values, not just the single largest. We will denote this
∥ · ∥∞.

The total cross-coherence loss is then:

q(θ) =
∑

n

∑
m>n

∥h(u, v;θ, zn) ⋆ h(u, v;θ, zm)∥∞. (2.12)

The second term in the optimization ensures that lateral resolution is maintained. To do
so, we optimize the autocorrelation of the PSF at each depth using the frequency domain
least-squares method. The analysis in the Lateral Resolution section above only applies to a
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single microlens; building a phase mask of multiple lenses generally degrades resolution by
introducing dips in the spectrum that reduce contrast at certain spatial frequencies. Hence,
we treat the single-lens case as an upper limit that defines the bandlimit of the multi-lens
PSF. To reduce spectral ripple, we penalize the ℓ2 distance between the MTFs of the PSF
and a diffraction-limited single microlens, |H|. We include a weighting term, denoted D, that
ignores spatial frequencies beyond the bandlimit, as well as low spatial frequencies which are
less critical and difficult to optimize due to out-of-focus microlenses. The autocorrelation
design term is then

p(θ) =
∑

n

∥∥∥D [
F {h(u, v;θ, zn) ⋆ h(u, v;θ, zn)} − |H|2

]∥∥∥2

2
, (2.13)

where F {·} is the 2D discrete Fourier transform.
The total loss is the weighted sum of the two terms:

f(θ) = p(θ) + τ0q(θ), (2.14)
where τ0 is a tuning parameter to control their relative importance. To initialize, we ran-
domly generate 5,000 heuristically-designed candidate phase masks, each with 36 microlenses
spaced according to Poisson disc sampling across the GRIN aperture stop. The focal lengths
are distributed dioptrically between the minimum and maximum values computed in the
Multifocal Design section. The best candidate from these 5,000 is then optimized using
gradient descent applied to f(θ). This is implemented in Tensorflow Eager to enable GPU-
accelerated automatic differentiation.

The results of our optimized design are shown in Fig. 2.7, where we compare our opti-
mized mask to the random multifocal design that scored worst during initialization, and a
regular unifocal array. The optimized design has the best axial cross-coherence (Fig. 2.7(b)),
with the random array having worse off-diagonal terms. Hence, in the 3D reconstructions
(Fig. 2.7(c)) the optimized design performs slightly better than the random design. The
regular microlenses produce large off-diagonal peaks in the cross-coherence which manifests
as poor 3D reconstruction performance off-focus.

Phase Mask Fabrication
Since our phase mask designs can be tailored to specific applications with different resolution
requirements and volumes-of-interest, the ability to rapidly generate phase mask prototypes
is very useful. Recently, the Nanoscribe two-photon polymerization 3D printer has been
shown to print free-form microscale optics on-demand [101]. However, in its current imple-
mentation, Nanoscribe uses planar galvanometric scanning to polymerize the resist, resulting
in a limited FoV (diameter of approximately 350 µm with the 25× Nanoscribe objective). If
larger objects need to be printed, several blocks need to be stitched together by moving the
substrate with a mechanical stage. Stitching artifacts from this process can seriously impact
the produced object [26], usually by causing rectangular or hexagonal blocking artifacts. As
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can be seen in Fig. 2.8(a), rectangular seams going trough the center of the microlenses can
be very detrimental to our design.

One solution to this is an adaptive stitching algorithm that has been demonstrated for
slender objects and a non-overlapping microlens array [26]. Here, we propose a new height-
based segmentation algorithm capable of placing the stitching seams in the overlapping
region between the overlapping microlenses (Fig. 2.8(a)). This is based on the local height
functions for each microlens, described in the Phase Mask Parameterization section. Each
of these functions has a region where they result in the largest values and this region is
precisely the printing block that will be printed from that microlens center location (see Sec.
2.14). Once the adaptive stitching mask is obtained, the writing instructions per block can
be generated using TipSlicer [88]. Figure 2.8(b) compares the designed and experimental
PSFs at three depth planes, showing a good match with some degradation at the end of the
volume.

Device Assembly
Our prototype Miniscope3D system consists of a custom phase mask, a CMOS sensor (Ximea
MU9PM-MH), fluorescent filter set (Chroma ET525/50m, T495lpxr, ET470/40x), GRIN lens
(Edmund Optics 64-520), and half-ball lens (Edmund 47-269), with a 3D-printed optome-
chanical housing. The 55 µm thick phase mask is glued to the back surface of the GRIN
lens using optical epoxy. Note that our experimental PSF calibration accounts for slight
misalignment in the phase mask. The final device is 17 mm tall and weighs 2.5 grams.

2.5 Microlenses vs Gaussian Diffuser
For our phase mask, we choose a microlens array instead of the Gaussian diffuser used in our
previous work3. This is because the microlenses can achieve point spread functions (PSFs)
with higher SNR and frequency content than the diffuser (see Fig. 2.9), due to their better
concentration of light in focus. Microlenses focus light into small focus spots, with dark areas
between them, as opposed to the diffuser, which has some light spread between the caustics,
generating unwanted low frequencies in the PSFs. Sharper focus spots in the microlens PSF
mean that the SNR of the measurements is better and the inverse problem better posed.
While using fewer focal spots would improve 2D measurement SNR and resolution, using
a small number of microlenses does not provide enough multiplexing to gain 3D capability
over a large depth range.

2.6 Axial Resolution
We determined the axial resolution by imaging a thin layer of 4.8 µm fluorescent beads.
Because it is difficult to controllably place two beads at specific axial separation distances,
raw data from a single bead at different depths are digitally added in order to synthesize
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a measurement of two layers of beads with varying separations. Figure 2.10 shows that we
achieve a uniform 15µm axial resolution across our depth range of 360 µm. This closely
matches with the axial full-width-half-maximum (FWHM) we observe in the 3D fluorescent
beads sample in Fig. 2.2.

2.7 Lateral Resolution
Examining a single microlens, the Rayleigh criterion defines the minimum resolvable sepa-
ration of two diffraction-limited spots on the sensor, δx′, in terms of the wavelength, λ, the
microlens clear aperture, ∆ML, and the distance from the mask to the sensor, t:

δx′ = 1.22λt

∆ML

= Mδx (2.15)

Here we have used the fact that two points in object space separated by δx will appear as a
separation of Mδx on the sensor. Thus, we need to calculate the magnification of our system.

We use ray transfer matrices (with a paraxial approximation) to evaluate the magnifica-
tion of the system. The system ABCD matrix is:[

A B
C D

]
=
[
1 t
0 1

] [
1 0

−1/fµ 1

] [
AG BG

CG DG

] [
1 Q
0 1

]
(2.16)

and the system magnification, which is used in the lateral resolution derivation, is:

M = A =
(

1 − t

fµ

)
AG + tCG (2.17)

where AG, BG, CG, & DG are elements for the GRIN’s ray transfer matrix (AG = 0.0725,
BG = 1.6931, CG = −0.599, and DG = 0.124) and t is the distance from the phase mask to
the sensor. Given that fµ, the microlens focal length, ranges from 7 mm to 25 mm, combined
with the small value for AG, this results in the first term, (1 − t/fµ)AG, being negligible and
the magnification can be approximated simply as tCG. This shows that for our system, the
magnification is given by:

M ≈ tCG (2.18)
Substituting Eq. 2.18 into Eq. 2.15 and solving for ∆ML, we get an expression for the

microlens clear aperture needed for a target object resolution:

∆ML = 1.22λt

Mδx
≈ 1.22λ

CGδx
(2.19)
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2.8 Depth of Focus
We aim to determine the microlens depth-of-focus (DoF), defined as the distance that a
point source in-focus can move axially before the blur spot on the camera sensor is bigger
than a target circle of confusion radius, γc. To do so, we examine a single microlens’ image
in the GRIN entrance pupil for an object at distance z from the first principal plane of the
GRIN. As the object moves axially by a distance dML, we can use similar triangles to derive
(see Fig. 2.12 for variable definitions):

y

dML

= ∆EP

dML + z + L
≈ ∆EP

L
(2.20)

where ∆EP is the radius of the microlens’ clear aperture in the entrance pupil (i.e. object
side) of the GRIN and L is the distance from the first principal plane to the entrance pupil.
Given that L = 13 mm is much larger than z, dML, which are on the order of 0.2 mm, we
drop both z and dML. By substituting y = γc/M into Eq. 2.20, we can solve for the microlens
DoF as a function of our system parameters:

dML = γcL

∆EP M
(2.21)

Since the entrance pupil of the GRIN is very far from the object (it is approximately tele-
centric in object space), the object axial position is negligible in determining the microlens
DoF. Designing for γc = 12 µm, a circle-of-confusion smaller than the diffraction-limited
spot size, |M |δx, and using ∆EP = 4 mm (calculated using Zemax for a microlens with a
clear aperture of 300 µm), we determine the DoF to be ±20 µm.

2.9 Choice of Reconstruction Grid
To successfully reconstruct v, we should define the reconstruction grid with sufficient sam-
pling to realize the best resolution possible, but without oversampling, which increases com-
putation and memory requirements. The theory above defines a band-limit for the measure-
ments, so our goal is to use a sensor with a matching effective pixel size. In our architecture,
increasing the sensor pixel size directly corresponds to increased lateral reconstruction voxel
size and lower final resolution. Because of complicated interactions between nonlinear recon-
structions and grid size, we determine our choice of lateral sampling empirically by binning
the raw data from the resolution tests in Fig. 2.2 by 2×, 4×, and 8× and evaluating the
final resolution. We find that the resolution begins to degrade between 4× and 8× binning,
so we operate at 4× binning. This results in our sensor’s effective object-space pixel size
being 1.7 µm, which is sufficiently below the 2.76 µm minimum feature size that we observe
experimentally. Note that the ability to use on-chip binning allows our approach to read
data faster than a conventional LFM, which cannot use conventional on-chip binning without
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resolution loss. This allows us to achieve a 40 volume-per-second measurement rate using a
low-cost USB 2.0 camera.

The choice of axial sampling informs our sampling interval during calibration (Calibration
subsection). We measure every 5 µm, and perform axial binning (summing of consecutive
PSFs) at 1×, 2×, and 4×. We find 1× yields the best results. The resulting 5 µm axial
sampling is reasonable given the empirically observed 15 µm axial resolution. Hence our
choice of grid balances fast frame rates and efficient reconstruction with image quality and
resolution.

2.10 Choice of Regularization Parameter
One important parameter in our optimization problem is the regularization parameter τ . The
regularization parameter sets the trade-off between the data fidelity term and our sparsity
prior. In practice, this parameter sets the balance between preserving image details and
noise reduction. Very small values of τ will preserve sharp details in our object; however,
the reconstructions can be noisy. Very large values will suppress noise, but also suppress the
object’s details with it.

To test the reconstruction quality as a function of the regularization parameter, we ran
our 3D reconstruction algorithm on the experimental resolution target data at z = 270 µm
with values of τ ranging from 10−14 to 10−1. Figure 2.13(a) shows that the reconstructions
and the data fidelity term are stable for a wide range of τ values. As expected, for very large
values of τ , the Total Variation (TV) prior over-regularizes the image, resulting in smoothed
out details.

Since the experimental data lacks ground truth to compare against, we simulate a raw
measurement by running our 3D shift-varying forward model on a two-photon microscopy
zebra fish 3D dataset with our measured PSFs and adding realistic additive white Gaussian
noise. The measurement is then processed with values of τ ranging from 10−14 to 10−1.
Figure 2.13(b) shows a trend similar to experimental results - the mean-squared error is
stable for a large range of τ values, with over-smoothed reconstructions as τ gets very large.
We note that all the data shown was processed using the same value of τ , which further show
that once a good value for τ is found, it can be used to process different classes of objects.
While it may be possible to fine-tune τ for each measurement to achieve better performance,
it is, however, more practical for users to use the default value. If the user is to fine-tune τ ,
we recommend using the largest value of τ that still preserves the object’s fine details.

2.11 2D Miniscope PSNR Comparison
Our Miniscope3D design is aimed at 3D imaging, but because it is smaller and lighter weight
than 2D Miniscope, it might be useful in applications that only require 2D imaging. Because
of the inherent aberrations in the GRIN lens, the 2D Miniscope does not achieve its full-
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aperture diffraction-limited resolution and our Miniscope3D resolution is only marginally
worse than the 2D. However, we do suffer from reduced SNR as compared to the 2D Minis-
cope, because our PSFs spread the light over a larger area than a focused 2D Miniscope.
To quantify this loss of SNR, we simulate measurements using on-axis PSFs from both our
device and the 2D Miniscope (single lens with 2 µm blur). The simulation is performed at 3
light levels (100, 1000, and 10,000 photocounts) using a shift-invariant model with Poisson
and read noise added. We use our reconstruction algorithm with an optimized τ value and
display the results in Fig. 2.14. For a fair comparison, we show both the 2D Miniscope
raw image and one reconstructed from an image deconvolution process. Our Miniscope3D
system has better PNSR than the unprocessed 2D Miniscope data, but the deconvolved 2D
Miniscope result performs the best, as expected. This is because our algorithm is denoising
and deblurring. For a scene that does not fit our denoising priors, the processed results
would perform worse. Also, note that the loss of PSNR in our system for 2D imaging is a
neceessary sacrifice for gaining single-shot 3D imaging capability.

2.12 Sparsity Comparison
Our approach assumes the object to have a sparse representation in some domain. In this
paper, we use a general TV sparsity prior to promote gradient sparsity. This is a commonly-
used prior for fluorescent imaging for a number of reasons: (1) fluorescent samples are
generally sparsely labeled. (2) Even if a 2D slice of the sample is not spatially sparse, it will
be sparse when considered with respect to our full 3D volume. (3) If native sparsity does not
hold, images are generally sparse in gradient or wavelet domain. (4) Time-priors can further
render a volume sparse by only considering temporally-varying information (i.e. neural
firings). While it is an NP hard problem to generate a phase transition curve for our system
as it requires running a large number of reconstructions of many different classes of objects at
each sparsity level, we give an example of how our system performs at different sparsity levels
by thresholding a 3D volume to generate different sparsity levels and reporting mean-squared
error (MSE) and PSNR. The simulated volume is of a 3D zebrafish dataset. The simulations
are done using our 3D shift-varying model and the experimental PSFs from our system.
Figure 2.15 shows MSE and PSNR for the reconstructed volume at different sparsity levels
(33%, original volume, to 0.2%, thresholded volume). As expected, our system performs
better for sparser volumes. For denser volumes, our system recovers a lower-resolution
version of the object and does not fail catastrophically.

2.13 Guide to Different Designs Using Our Theory
Our theory is general and enables other users to design their own optimized 3D microscope
targeting different resolutions or volumes-of-interest. To do so, users should implement the
following design process:
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• For a target lateral resolution, determine the microlens’ average clear aperture needed
to support that resolution (Sec. Lateral Resolution). This also determines the number
of microlenses in the phase mask.

• For a target depth range, distribute the focal lengths dioptrically across the depth
range.

• Using our optimization criterion, optimize the microlenses positions and aberrations
to further enhance the 3D performance.

• Fabricate the phase mask using our adaptive stitching algorithm with a Nanoscribe 3D
printer.

2.14 Adaptive Stitching
The Nanoscribe 3D printer can only print across a field-of-view (FoV) of 350 µm, and so
the 1.8 mm sized phase mask must be printed in multiple stitched blocks, with the mask
translating between them. Due to the optical requirements on the microlenses, care needs
to be taken when dividing the microlens array into blocks for printing with Nanoscribe. Our
adaptive stitching approach aims to print each lens with minimal stitching artifacts. As the
clear aperture for each lens is of the same order of magnitude as the maximum printing block
size of Nanoscribe, each stitching block will correspond approximately to a single microlens.
The center location of each microlens is known, so the problem reduces to dividing the
plane in a number of regions, with each region attributed to one of the microlens centres.
Preferably, the stitching lines should then fall in the overlapping region of two (or more)
microlenses. We assume that such a division will result in the best possible optical quality.

This problem definition is quite similar to the basic Voronoi segmentation, where we are
given a set of points in a plane and the task is to attribute each location in the plane to one
of the given points. That problem is solved as follows. For each location in the plane, the
distance to all centres is calculated. Attribution to one centre is then decided by it being
the closest one (minimum search). As a result, a dividing line is defined by the fact that the
distance to two or more centres is equal. The question now is, how can this be adapted to
take into account finite shapes?

Rephrasing, we need to define a smooth function in the plane for each microlens followed
by attributing locations to microlenses based on a (minimum) search over these different
functions. To this end, we will use the height function for each microlens individually and
then do a maximum search for the attribution. As a result, segmentation lines would fall
exactly at those locations where the height of two or more microlenses are equal (see Fig
2.6). This is precisely what we want to achieve.

The resulting height-based segmentation is shown in Fig. 2.16. Here, different slices are
shown (50 to 53 µm height). Colored regions need to be printed by Nanoscribe as a single
FoV. The different colors correspond to different stitching blocks.
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2.15 Discussion
Our device is designed with compressed 3D imaging and miniaturization in mind. For some
2D imaging applications where the loss of SNR (see Fig. 2.14) and lateral resolution (2.76
µm vs 2 µm) are acceptable, our device may have advantages over 2D Miniscope, due to its
smaller size (17 mm vs. 23.5 mm tall) and weight (2.5 grams vs. 3 grams), or the ability
to digitally refocus via 3D reconstruction. However, we expect that most applications of
Miniscope3D will be for true 3D microscopy, so we mainly compare our specifications to
MiniLFM, which is considered the gold-standard for single-shot miniature 3D fluorescence
imaging.

Miniscope3D offers multiple improvements over MiniLFM. First, using multifocal mi-
crolenses (as opposed to unifocal in LFM) allows us to achieve better lateral resolution
(2.76 − 3.9 µm) across a larger depth range (390 µm3). In contrast, MiniLFM [96] demon-
strated best-case lateral resolution of 6 µm at a particular depth and, while their resolution
at other depths was not reported, we predict that their unifocal microlens design will result
in lateral resolution that degrades significantly beyond 40 µm depth, based on previous anal-
ysis [17] and that in the Multifocal Design section below. We estimate that our Miniscope3D
provides approximately 10× increase in the usable measurement volume over MiniLFM,
with 2.2× better peak lateral resolution. Taken together, our Miniscope3D reconstructs ap-
proximately 50× more usable voxels than MiniLFM, significantly improving the utility of
the device. This improved performance comes in a hardware package that is smaller than
MiniLFM (17 mm tall vs. 26 mm tall) and lighter weight (2.5 grams vs. 4.7 grams), because
we replace the heavy doublet tube lens and the microlens array assembly with a thin phase
mask. This will be particularly valuable in head-mounted experiments with freely-moving
animals.

Both our method and MiniLFM make sparsity assumptions on the sample in order to
solve the inverse problem to recover a 3D volume from a 2D image. We require the sam-
ple to be sparse in some domain, meaning that there is some representation of the sample
that has many zeros in its coefficients [19, 3]. Fluorescence imaging is a good candidate for
such priors, since most biological samples are sparsely labelled. Because we optimize the
microscope optics explicitly for single-shot 3D imaging, typical sparsity priors such as native
sparsity, sparse 3D gradients (Total Variation (TV), as used in this paper), or sparse wavelets
work well in our system. The MiniLFM is designed specifically for neural activity tracking
and so makes further structural and temporal sparsity assumptions, which improves their
axial resolution from 30 µm (single-shot performance) to 15µm (temporal video processing
performance). In contrast, our Miniscope3D achieves 15 µm single-shot axial resolution,
across a large depth range, and could presumably improve upon that by incorporating tem-
poral application-specific priors. In this paper, however, we aim to record highly dynamic
samples (see supplementary videos) and so only impose sample sparsity. We demonstrate
the generality of our approach experimentally with samples that exhibit different levels of
sparsity (Fig. 2.2,2.3), achieving resolution sufficient for single-neuron imaging. As sparsity
decreases, image quality and resolution degrade smoothly (see Fig. 2.15), roughly following
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previous theoretical analyses [19, 18, 3].
Scattering is a limitation for all single-photon microscopes, including ours. For appli-

cations such as neural imaging and studying the 3D motion of freely-swimming samples
like C. elegans or tardigrades, the small amount of scattering should not hinder resolution.
However, as the imaging depth within the scattering medium increases, we expect the resolu-
tion to degrade in a way similar to other single-photon microscopes. We show experimental
reconstructions with and without scattering for the 100 µm thick scattering mouse brain tis-
sue, and the 300 µm thick cleared brain tissue. Both reconstructions achieve single-neuron
resolution.

Another limitation of our model is that it assumes no partial occlusions. This is a common
limitation of 3D recovery methods in fluorescence microscopy (e.g. double helix [81], light
field deconvolution microscopy [17], 3D localization microscopy) and generally works well in
non-absorbing fluorescent samples. Modeling occlusions would be valuable in many practical
situations, but remains a challenging problem.

Accessibility was a key consideration in our Miniscope3D design. By building on the
popular open-source Miniscope platform, our method can be easily adopted into existing
experimental pipelines. Any of the 450 labs currently using the 2D Miniscope can upgrade
to our 3D prototype with minimal effort. Also, our method for 3D printing custom phase
masks can enable others to fabricate their own mask designs tailored to particular applica-
tions. Because experimental results are in good agreement with our theoretical design and
analysis, we are confident that our design theory can provide a useful framework for future
customization of single-shot 3D systems.
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(b) Lateral Dependance of the PSF
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Figure 2.4: Each 3D voxel maps to a different PSF: (a) As a point source translates
axially, the PSF scales and different spots come into focus. (b) As a point source translates
laterally, the PSF shifts and incurs field-varying aberrations which destroy shift invariance.
(c) When a shift-invariant approximation is made, reconstructions of a fluorescent resolution
target (at z = 250 µm) display worse resolution (6.2 µm resolution) and more artifacts than
when our field-varying model is used (2.76 µm resolution).
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Figure 2.5: Simulations to motivate our phase mask design, comparing our pro-
posed nonuniform multifocal design with regular unifocal and nonuniform uni-
focal designs. (a) Surface height profiles. (b) Sum of each design’s PSF inverse power
spectral density (IPSD) versus object depth (up to the designed cutoff frequency, lower is
better). (c) PSFs and simulated reconstructions in-focus (at the unifocal arrays’ native fo-
cus), with the reconstruction peak signal-to-noise ratio (PSNR) listed. The measurement is
corrupted with 100 e−1 (peak) Poisson noise. In focus, the nonuniform unifocal design has
slightly better PSNR and resolution than our design, and regular unifocal performs worse.
The radially-averaged IPSD (lower is better) matches this trend. (d) Imaging 200µm off-
focus, both unifocal designs produce blurry PSFs which result in significantly worse PSNR
and resolution in the reconstruction, as compared to our design. This is also seen in the
much higher inverse power spectra curves for unifocal designs.
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Figure 2.7: Comparison of our optimized phase mask with random multifocal
and regular microlens arrays: (a) Phase mask surface height maps for all three cases,
including the designed aberrations that were added in our optimized phase mask. (b) Axial
cross-coherence matrices for all three cases: each entry is the maximum cross-correlation
between the PSFs at the depths indicated by the row and column labels. The ideal system
would be close to an identity matrix. (c) x-z slices from the 3D reconstructions of a test
object consisting of differently-spaced point sources (x-spacings of 3.5 µm and 7 µm, z-
spacings of 19.4 µm and 38 µm). We add Poisson noise with 1,000 peak counts to each
measurement. Both nonuniform multifocal designs do significantly better than the regular
unifocal array, and our optimized design performs slightly better than the random version,
particularly near the edges of the depth range.
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Figure 2.8: Phase mask fabrication with Nanoscribe: (a) Rectangular stitching leads
to seams (black lines) going trough the many microlenses, while adaptive stitching puts the
seams at the boundaries of the microlenses to mitigate artifacts. (b) Comparison between
designed and experimental PSFs at a few sample depths, showing good agreement, with
slight degradation at the edge of the volume.
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Figure 2.9: Comparison of experimental PSFs resulting from a Gaussian diffuser
and our microlens phase mask. The microlenses generate PSFs with more high-frequency
content, as seen in the power spectrum. The microlenses also have better light concentration;
to achieve the same brightness as the microlenses PSF, the diffuser requires 4× the exposure
time.
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Figure 2.10: Reconstructions results demonstrating 15µm axial resolution across
our depth range. On left are x-z projections of the 3D reconstruction for the case of
two layers of 3 beads each, separated by 15 µm axially. At right we show cross-cuts of the
projections demonstrating clear resolving of the beads. The rows show results for placing
the pairs of beads at different axial distances from the native focus plane.
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Figure 2.11: Lateral resolution derivation. Examining a single microlens placed imme-
diately after the main objective.
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Figure 2.12: Depth-of-focus (DoF) derivation setup, with distance variables defined.
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Figure 2.13: Reconstruction quality as a function of regularization parameter, τ .
(a) Maximum intensity projections of an experimental volume reconstructed with different τ
settings, along with a plot of the data fidelity term as a function of τ on a semi-log scale. (b)
Maximum intensity projections of a simulated volume reconstructed with different τ settings,
along with a plot of mean-squared error as a function of τ on a semi-log scale. The results
demonstrate the stability of reconstructions for a large range of τ values.
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Figure 2.14: PSNR comparison of Miniscope3D and 2D Miniscope. (Left) Simulated
reconstructions from our system at different light levels. (Middle) 2D Miniscope (simulated)
raw measurement. (Right) 2D Miniscope deconvolved reconstructions. The multiplexing
properties of our system that enable 3D capabilities result in a loss of PSNR.
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Figure 2.15: Simulations of reconstruction quality at different sparsity levels. Max-
imum intensity projections (y-x, z-x) show the quality of our reconstructions as compared
to the ground truth at different sparsity levels. As the volume gets more dense, our recon-
struction resolution degrades.
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Figure 2.16: Different slices are shown, with different colors corresponding to different
stitching blocks.
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Chapter 3

Lensless snapshot hyperspectral
imaging with a spectral filter array

This chapter is based on [77] and is joint work with Kristina Monakhova, Neerja Aggarwal,
and Laura Waller.

3.1 Abstract
Hyperspectral imaging is useful for applications ranging from medical diagnostics to agricul-
tural crop monitoring; however, traditional scanning hyperspectral imagers are prohibitively
slow and expensive for widespread adoption. Snapshot techniques exist but are often con-
fined to bulky benchtop setups or have low spatio-spectral resolution. In this paper, we
propose a novel, compact, and inexpensive computational camera for snapshot hyperspec-
tral imaging. Our system consists of a tiled spectral filter array placed directly on the image
sensor and a diffuser placed close to the sensor. Each point in the world maps to a unique
pseudorandom pattern on the spectral filter array, which encodes multiplexed spatio-spectral
information. By solving a sparsity-constrained inverse problem, we recover the hyperspectral
volume with sub-superpixel resolution. Our hyperspectral imaging framework is flexible and
can be designed with contiguous or non-contiguous spectral filters that can be chosen for
a given application. We provide theory for system design, demonstrate a prototype device,
and present experimental results with high spatio-spectral resolution.

3.2 Introduction
Hyperspectral imaging systems aim to capture a 3D spatio-spectral cube containing spectral
information for each spatial location. This enables the detection and classification of differ-
ent material properties through spectral fingerprints, which cannot be seen with an RGB
camera alone. Hyperspectral imaging has been shown to be useful for a variety of applica-
tions, from agricultural crop monitoring to medical diagnostics, microscopy, and food quality
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analysis [27, 53, 71, 97, 40, 2, 72, 79, 47, 9]. Despite the potential utility, commercial hyper-
spectral cameras range from $25,000 - $100,000 (at the time of publication of this paper).
This high price point and the large size have limited the widespread use of hyperspectral
imagers.

Traditional hyperspectral imagers rely on scanning either the spectral or spatial dimen-
sion of the hyperspectral cube with spectral filters or line-scanning [41, 35, 110]. These
methods can be slow and generally require precise moving parts, increasing the camera
complexity. More recently, snapshot techniques have emerged, enabling capture of the full
hyperspectral data cube in a single shot. Some snapshot methods trade-off spatial resolution
for spectral resolution by using a color filter array or splitting up the camera’s field-of-view
(FOV). Computational imaging approaches can circumvent this trade-off by spatio-spectrally
encoding the incoming light, then solving a compressive sensing inverse problem to recover
the spectral cube [103], assuming some structure in the scene. These systems are typically
table-top instruments with bulky relay lenses, prisms, or diffractive elements, suitable for
laboratory experiments, but not the real world. Recently, several compact snapshot hy-
perspectral imagers have been demonstrated that encode spatio-spectral information with a
single optic, enabling a practical form factor [87, 34, 49]. Using a single optic to control both
the spectral and spatial resolution, they are generally constrained to measuring contiguous
spectral bins within a given spectral band.

diffuser
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Figure 3.1: Overview of the Spectral DiffuserCam imaging pipeline, which recon-
structs a hyperspectral datacube from a single-shot 2D measurement. The system
consists of a diffuser and spectral filter array bonded to an image sensor. A one-time cali-
bration procedure measures the point spread function (PSF) and filter function. Images are
reconstructed using a non-linear inverse problem solver with a sparsity prior. The result is a
3D hyperspectral cube with 64 channels of spectral information for each of 448×320 spatial
points, generated from a 2D sensor measurement that is 448×320 pixels.

Here, we propose a new encoding scheme that takes advantage of recent advances in
patterned thin film spectral filters [91], and lensless imaging, to achieve high-resolution
snapshot hyperspectral imaging in a small form factor. Our system consists of a tiled spectral
filter array placed directly onto the sensor and a randomizing phase mask (i.e. diffuser) placed
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a small distance away from the sensor, as in the DiffuserCam architecture [3]. The diffuser
spatially multiplexes the incoming light, such that each spatial point in the world maps to
many pixels on the camera. The spectral filter array then spectrally encodes the incoming
light via a structured erasure function. The multiplexing effect of the diffuser allows recovery
of scene information from a subset of sensor pixels, so we are able to recover the full spatio-
spectral cube without the loss in resolution that would result from using a non-multiplexing
optic, such as a lens.

Our encoding scheme enables hyperspectral recovery in a compact and inexpensive form
factor. The spectral filter array can be manufactured directly on the sensor, costing under
$5 for both the diffuser and the filter array at scale. A key advantage of our system over
previous compact snapshot hyperspectral imagers is that it decouples the spectral and spatial
responses, enabling a flexible design in which either contiguous or non-contiguous spectral
filters with user-selected bandwidths can be chosen. Given some conditions on scene sparsity
and the diffuser randomness, the spectral sampling is determined by the spectral filters and
the spatial resolution is determined by the autocorrelation of the diffuser response. This
should find use in task-specific/classification applications [89, 23, 62, 46], where one may
wish to tailor the spectral sampling to the application by measuring multiple non-contiguous
spectral bands, or have higher-resolution spectral sampling for certain bands.

We present theory for our system, simulations to motivate the need for a diffuser, and
experimental results from a prototype system. The main contributions of our paper are:

• A novel framework for snapshot hyperspectral imaging that combines compressive sens-
ing with spectral filter arrays, enabling compact and inexpensive hyperspectral imag-
ing.

• Theory and simulations analyzing the system’s spatio-spectral resolution for objects
with varying complexity.

• A prototype device demonstrating snapshot hyperspectral recovery on real data from
natural scenes.

3.3 Related Work

Snapshot Hyperspectral Imaging
There have been a variety of snapshot hyperspectral imaging techniques proposed and
evaluated over the past decades. Most approaches can be categorized into the following
groups: spectral filter array methods, coded aperture methods, speckle-based methods, and
dispersion-based methods.

Spectral filter array methods use tiled spectral filter arrays on the sensor to recover
the spectral channels of interest [61]. These methods can be viewed as an extension of Bayer
filters for RGB imaging, since each ‘super-pixel’ in the tiled array has a grid of spectral filters.
As the number of filters increases, the spectral resolution increases and the spatial resolution
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decreases. For instance, with an 8×8 filter array (64 spectral channels), the spatial resolution
is 8× worse in each direction than that of the camera sensor. Demosaicing methods have
been proposed to improve upon this in post-processing; however, they rely on intelligently
guessing information that is not recorded by the sensor [75]. Recently, photonic crystal slabs
have been demonstrated for compact spectroscopy based on random spectral responses (as
opposed to traditional passband responses) and extended to hyperspectral imaging through
the tiling of the photonic crystal slab pixels [105, 106]. While these methods have high
spectral accuracy, they have only been demonstrated in a 10×10 spatial pixel configuration.
Our system uses a spectral filter array, but combines it with a randomizing diffuser in a
lensless imaging architecture, allowing us to recover close to the full spatial resolution of
the sensor, which is not possible with traditional lens-based methods. Our method uses
traditional pass-band spectral filters, but could be extended to photonic crystal slabs and
other spectral filter designs.

Coded aperture methods use a coded aperture, in combination with a dispersive
optical element (e.g. a prism or diffractive grating), in order to modulate the light and encode
spatial-spectral information [36, 65, 103, 20]. These systems are able to capture hyperspectral
images and videos but tend to be large table-top systems consisting of multiple lenses and
optical components. In contrast, our system has a much smaller form factor, requiring only
a camera sensor with an attached spectral filter array and a thin diffuser placed close to the
sensor.

Speckle-based methods use the wavelength dependence of speckle from a random me-
dia to achieve hyperspectral imaging. This has been demonstrated for compact spectrome-
ters [84, 22] and extended to hyperspectral imaging [87, 34]. These systems can be compact,
since they require only a sensor and scattering media as their optic; however their spectral
resolution is limited by the speckle correlation through wavelengths. This is challenging to
design for a given application, since the spatial and spectral resolutions are highly coupled.
In contrast, our system uses spectral filters that can easily be adjusted for a given application
and can be selected to have variable bandwidth or non-uniform spectral sampling.

Dispersive methods utilize the dispersion from a prism or diffractive optic to encode
spectral information on the sensor. This can be accomplished opportunistically by a prism
added to a standard DSLR camera [10]. The resulting system has high spatial resolution,
equal to that of the camera sensor, but spectral information is encoded only at the edges of
objects in the scene, resulting in a highly ill-conditioned problem and lower spectral accuracy.
Other methods use a diffuser (as opposed to a prism) as the dispersive element [39]. This
can be more compact than prism-based systems and can have improved spatial resolution
when combined with an additional RGB camera [44]. To further improve compactness, [49]
uses a single diffractive optic as both the lens and the dispersive element, uniquely encoding
spectral information in a spectrally-rotating point spread function (PSF).

Our system uses a lensless architecture and a spectral filter array, together with sparsity
assumptions, to reconstruct 3D hyperspectral information across 64 wavelengths. The design
is most similar to [49] and achieves a similar compact size; however, our system achieves
better spectral accuracy, and the use of the color filter array and diffuser results in more
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high NA lens low NA lens Spectral DiffuserCam

super-pixel
filter pixel

Figure 3.2: Motivation for multiplexing: A high-NA lens captures high-resolution spatial
information, but misses the yellow point source, since it comes into focus on a spectral filter
pixel designed for blue light. A low-NA lens blurs the image of each point source to be
the size of the spectral filter’s super-pixel, capturing accurate spectra at the cost of poor
spatial resolution. Our DiffuserCam approach multiplexes the light from each point source
across many super-pixels, enabling the computational recovery of both point sources and
their spectra without sacrificing spatial resolution. Note that a simplified 3×3 filter array is
shown here for clarity.

design flexibility, as our spectral and spatial resolutions are decoupled, enabling custom
sensors tailored to specific spectral filter bands that do not need to be contiguous.

Lensless Imaging
Lensless, mask-based imaging systems do not have a main lens, but instead use an amplitude
or phase mask in place of imaging optics. These systems have been demonstrated for very
compact, small form factor 2D imaging [8, 58, 100, 99]. They are generally amenable to
compressive imaging, due to the multiplexing nature of lensless architectures; each point
in the scene maps to many pixels on the sensor, allowing a sparse scene to be completely
recovered from a subset of sensor pixels [31]. Or, one can reconstruct higher-dimensional
functions like 3D [3] or video [4] from a single 2D measurement. In this work, we use diffuser-
based lensless imaging to spatially-multiplex light onto a repeated spectral filter array, then
reconstruct 3D hyperspectral information. Because of the compressed sensing framework, our
spatial resolution is better than the array super-pixel size, despite the missing information
due to the array.
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Figure 3.3: Image formation model for a scene with two point sources of different colors,
each with narrow-band irradiance centered at λy (yellow) and λr (red). The final measure-
ment is the sum of the contributions from each individual spectral filter band in the array.
Due to the spatial multiplexing of the lensless architecture, all scene points v(x, y, λ) project
information to multiple spectral filters, which is why we can recover a high-resolution hyper-
spectral cube from a single image, after solving an inverse problem.

3.4 System Design Overview
Our system leverages recent advances in both spectral filter array technology and compressive
lensless imaging to decouple the spectral and spatial design. Furthermore, the spectral filter
arrays can be deposited directly on the camera sensor. With a diffuser as our multiplexing
optic, the system is compact and inexpensive at scale.

To motivate our need for a multiplexing optic instead of an imaging lens, let us con-
sider three candidate architectures: one with a high numerical aperture (NA) lens whose
diffraction-limited spot size is matched to the filter pixel size, one with a low-NA lens whose
diffraction-limited spot size is matched to the super-pixel size, and finally our design with a
diffuser as a multiplexing optic. Figure 3.2 illustrates these three scenarios with a simplified
example of a spectral filter array consisting of 3 × 3 spectral filters (9 total) repeated hor-
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izontally and vertically. Assume that the monochrome camera sensor has square pixels of
lateral size Npixel, the spectral filter array has square filters of size Nfilter, and each 3×3 block
of spectral filters creates a super-pixel of size Nsuper-pixel, where Npixel < Nfilter < Nsuper-pixel.

In the high-NA lens case, a point source in the scene will be imaged onto a single filter
pixel of the sensor, and thus will only be measured if it is within the passband of that
filter; otherwise it will not be recorded, Fig. 3.2 (left). In the low-NA lens case, each point
source will be imaged to an area the size of the filter array super-pixel, and thus recorded
by the sensor correctly, but at the price of low spatial-resolution (matched to the the super-
pixel size), Fig. 3.2 (middle). In contrast, a multiplexing optic can avoid the gaps in the
measurement of the high-NA lens and achieve better resolution than the low-NA case.

A diffuser multiplexes the light from each point source such that it hits many filter pixels,
covering all of the spectral bands. And the spatial resolution of the final image can be on
the order of the camera pixel size, provided that conditions for compressed sensing are met,
Fig. 3.2 (right). In practice, the spatial resolution of our system will be bounded by the
autocorrelation of the point spread function (PSF), as detailed in Sec. 3.8, and the diffuser
PSF must span multiple super-pixels to ensure that each point in the world is captured. Since
compressive recovery is used to recover a 3D hyperspectral cube from a 2D measurement,
the resolution is a function of the scene complexity, as described in Sec. 3.8.

3.5 Imaging Forward Model
Given our design with a diffuser placed in front of a sensor that has a spectral filter array
on top of it, in this section we outline a forward model for the optical system, illustrated in
Fig. 3.3. This model is a critical piece of our iterative inverse algorithm for hyperspectral
reconstruction and will also be used to analyze spatial and spectral resolution.

Spectral filter model
The spectral filter array is placed on top of an imaging sensor, such that the exposure on
each pixel is the sum of point-wise multiplications with the discrete filter function,

L[x, y] =
K−1∑
λ=0

Fλ[x, y] · v[x, y, λ], (3.1)

where · denotes point-wise multiplication, v[x, y, λ] is the spectral irradiance incident on
the filter array and Fλ[x, y] is a 3D function describing the transmittance of light through
the spectral filter for K wavelength bands, which we call the filter function. In this model,
we absorb the sensor’s spectral response into the definition of Fλ[x, y]. Our device’s filter
function is determined experimentally (see Sec 3.7.C) and shown in Fig. 3.4(b). This can be
generalized to any arbitrary spectral filter design and does not assume alignment between
the filter pixels and the sensor pixels. Here, we focus on the case of a repeating grid of
spectral filters, where each ’super-pixel’ consists of a set of narrow-band filters. Our device
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has a 8×8 grid of filters in each super-pixel; Fig. 3.3 illustrates a simplified 3×3 grid, for
clarity.

Diffuser model
The diffuser (a smooth pseudorandom phase optic) in our system achieves spatial multiplex-
ing; this results in a compact form factor and enables reconstruction with spatial resolution
better than the super-pixel size via compressed sensing. The diffuser is placed a small dis-
tance away from the sensor and an aperture is placed on the diffuser to limit higher angles.
The sensor plane intensity resulting from the diffuser can be modeled as a convolution of the
scene, v[x, y, λ] with the on-axis PSF, h[x, y] [58]:

w[x, y, λ] = crop
(

v[x, y, λ]
[x,y]
∗ h[x, y])

)
(3.2)

where
[x,y]
∗ represents a discrete 2D linear convolution over spatial dimensions. The crop

function accounts for the finite sensor size. We assume that the PSF does not vary with
wavelength and validate this experimentally in Sec. 3.7.B. However, this model can be easily
extended to include a spectrally-varying PSF, h[x, y, λ] if there is more dispersion across
wavelengths.

We assume that objects are placed beyond the hyperfocal distance of the imager, therefore
the PSF has negligible depth-variance and a 2D convolutional model is valid [58]. If objects
are placed within the hyperfocal distance, a 3D model will be needed to account for the
depth-variance of the PSF.

Combined model
Combining the spectral filter model with the diffuser model, we have the following discrete
forward model:

b =
K−1∑
λ=0

Fλ[x, y] · crop
(

h[x, y]
[x,y]
∗ v[x, y, λ]

)
(3.3)

=
K−1∑
λ=0

Fλ[x, y] · w[x, y, λ] (3.4)

= Av. (3.5)

The linear forward model is represented by the combined operations in matrix A. Figure 3.3
illustrates the forward model for several point sources, showing the intermediate variable
w[x, y, λ], which is the scene convolved with the PSF, before point-wise multiplication by
the filter function. The final image is the sum over all wavelengths.
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3.6 Hyperspectral Reconstruction
To recover the hyperspectral datacube from the 2D measurement, we must solve an under-
determined inverse problem. Since our system falls within the framework of compressive
sensing due to our incoherent, multiplexed measurement, we use l1 minimization. We use a
weighted 3D total variation (3DTV) prior on the scene, as well as a non-negativity constraint,
and a low-rank prior on the spectrum. This can be written as:

v̂ = arg min
v≥0

1
2∥b − Av∥2

2 + τ1∥∇xyλv∥1 + τ2∥v∥∗, (3.6)

where ∇xyλ = [∇x∇y∇λ]T is the matrix of forward finite differences in the x, y, and λ
directions, ∥ · ∥∗ represents the nuclear norm, which is the sum of singular values. τ1 and
τ2 are the tuning parameters for the 3DTV prior and low-rank priors, respectively. We use
the fast iterative shrinkage-thresholding algorithm (FISTA) [12] with weighted anisotropic
3DTV to solve this problem according to [51].

3.7 Implementation Details
We built a prototype system using a CMOS sensor, a hyperspectral filter array provided
by Viavi Solutions (Santa Rosa, CA)[91], and an off-the-shelf diffuser (Luminit 0.5°) placed
1cm away from the sensor. The sensor has 659×494 pixels (with a pixel pitch of 9.9µm),
which we crop down to 448×320 to match the spectral filter array size. The spectral filter
array consists of a grid of 28×20 super-pixels, each with an 8×8 grid of filter pixels (64 total,
spanning the range 386-898nm). Each filter pixel is 20µm in size, covering slightly more than
4 sensor pixels. The alignment between the sensor pixels and the filter pixels is unknown,
requiring a calibration procedure (detailed in Sec. 3.73.7). The exposure time is adjusted for
each image, ranging from 1ms-13ms, which is short enough for video-rate acquisition. The
computational reconstruction typically takes 12-24 minutes (for 500-1000 iterations) on an
RTX 2080-Ti GPU using MATLAB.

Filter Function Calibration
To calibrate the filter function (Fλ[x, y] in Eqn. 3.3), including the spectral sensitivity of
both the sensor and the spectral filter array, we use a Cornerstone 130 1/3m motorized
monochromator (Model 74004). The monochromater creates a narrow-band source of 5nm
full-width at half-maximum (FWHM) and we measure the filter response (without the dif-
fuser) while sweeping the source by 8nm increments from 386nm to 898nm. The result is
shown in Fig. 3.4(b).
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PSF Calibration
We also need to calibrate the diffuser response by measuring the diffuser PSF pattern without
the spectral filter array. Because the diffuser is relatively smooth with large features (relative
to the wavelength of light), the PSF remains relatively constant as a function of wavelength,
as shown in Fig. 3.4(a). Hence, we only need to calibrate for a single wavelength by capturing
a single point source calibration image [3]. However, this is not trivial because the spectral
filter array is bonded to the sensor and cannot be removed easily. In our setup, we instead
take advantage of the fact that our filter array is smaller than our sensor, so we can measure
the PSF using the edges of the raw sensor, by shifting the point source to scan the different
parts of the PSF over the raw sensor area and stitching the sub-images together. In a
system where the filter size is matched to the sensor, this trick will not be possible, but an
optimization-based approach could be developed to recover the PSF from measurements.

System Non-idealities
Our reconstruction quality and spectral resolution are limited by two non-idealities in our
system. First, our camera development board performs an undefined and uncontrollable
non-linear contrast-stretching to all images. This makes the measurement non-linear and
impedes our imaging of dim objects (since the camera performs a larger contrast stretching
for dimmer images). Further, our spectral calibration may have errors, since each calibration
image cannot be normalized by the intensity of light hitting the sensor. This may cause
certain wavelength bands to appear brighter or dimmer than they should in our spectral
reconstructions. A better camera board without automatic contrast stretching should fix
this problem and provide more quantitative spectral profile reconstructions in the future.

Second, we used a simplified spectral calibration in which we measured the response with
uniform spectral sampling, instead of at the true wavelengths of the filters. Due to the
mismatch between our calibration scheme (measured every 8nm with constant bandwidth)
and the actual spectral filters (center wavelengths spaced 5-12nm apart with bandwidths
between 6-23nm), sometimes our calibration wavelengths fall between two filters, resulting
in an ambiguity. Given this non-ideal calibration, our effective spectral bands are limited to
49 bands, instead of 64. In our results, we show all 64 bands, but note that some will have
overlapping spectral responses. In the future, we will calibrate at the design wavelengths of
the filter to fix this issue. Further, the deposition of the spectral filters directly on-top of the
camera pixels (requiring precise placement during the manufacturing stage) would alleviate
the need for this calibration entirely.

3.8 Resolution Analysis
Here, we derive our theoretical resolution and experimentally validate it with our prototype
system. First, we discuss spectral resolution, which is set by the filter bandwidths, and then
we compute the expected two-point spatial resolution, based on the PSF autocorrelation.
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Since our resolution is scene-dependent, we expect the resolution to degrade with scene
complexity. To characterize this, we present theory for multi-point resolution based on the
condition number analysis introduced in [3]. We compare our system against those with a
high-NA and low-NA lens instead of a diffuser. Our results demonstrate two-point spatial
resolution of ∼0.19 super-pixels and multi-point spatial resolution of ∼0.3 super-pixels for 64
spectral channels ranging from 386-898nm.

Spectral Resolution
Spectral resolution is determined by the spectral channels of the filter array. As such, we
expect to be able to resolve the 64 spectral channels present in our spectral filter array. The
filters have an average spacing of 8nm across a 386-898nm range with bandwidths between
6-23nm. To validate our spectral resolution, we scan a point source across those wavelengths
using a monochrometer. Figure 3.6 shows a sampling of spectral reconstructions overlaid
on top of each other, with the shaded blocks indicating the ground-truth monochrometer
spectra. Our reconstructions all match the ground-truth peaks within 5nm of the true
wavelength. The small red peaks around 400nm are artifacts from the monochrometer,
which emitted a 2nd peak around 400nm for the longer wavelengths.

Two-point Spatial Resolution
Spatial resolution of our system, in terms of the two-point resolution, will be bounded by
that of a lensless imager with the diffuser only (without the spectral filter array). The ex-
pected resolution can be defined as the autocorrelation peak half-width at 70% the maximum
value [58], Fig. 3.5(a). For our system, this is ∼3 sensor pixels, or 0.19 super-pixels. To exper-
imentally measure the spatial resolution of our system, we image two point sources at three
different wavelengths (618 nm, 522 nm, 466 nm). The reconstructions in Fig. 3.5 show that
we can resolve two point sources that are 0.19 super-pixels apart for each wavelength and
orientation, as determined by applying the Rayleigh criterion. This demonstrates that our
system achieves sub-super-pixel spatial resolution, consistent with the expected resolution
that would be achieved without the spectral filter array.

Multi-point resolution
Because our image reconstruction algorithm contains nonlinear regularization terms, our re-
construction resolution will be object dependent. Hence, two-point resolution measurements
are not sufficient for fully characterizing the system resolution, and should be considered
a best case scenario. To better predict real-world performance, we perform a local condi-
tion number analysis, as introduced in [3], that estimates resolution as a function of object
complexity. The local condition number is a proxy for how well the forward model can be
inverted, given known support, and is useful for systems such as ours in which the full A
matrix is never explicitly calculated [18].
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The local condition number theory states that given knowledge of the a priori support of
the scene, v, we can form a sub-matrix consisting only of columns of A corresponding to the
non-zero voxels. The reconstruction problem will be ill-posed if any of the sub-matrices of
A are ill-conditioned, which can be quantified by the condition number of the sub-matrices.
The worst-case condition number will be when sources are near each other, therefore we
compute the condition number for a group of point sources with a separation varying by an
integer number of voxels and repeat this for increasing numbers of point sources.

In Fig. 3.7, we calculate the local condition number for two cases: the 2D spatial recon-
struction case, considering only a single spectral channel, and the 3D case, considering points
with varying spatial and spectral positions. For comparison, we also simulate the condition
number for a low-NA and high-NA lens, as introduced in Sec. 3.4. The results show that our
diffuser design has a consistently lower condition number than either the low- or high-NA
lens, having a condition number below 40 for separation distances of greater than ∼0.3 super-
pixels. The low-NA lens needs a separation distance closer to ∼1 super-pixel, as expected,
and the high-NA lens has an erratic condition number due to the missing information in the
measurement.

From this analysis, we can see that, beyond 0.3 super-pixels separation, the condition
number for the diffuser does not get arbitrarily worse for increasing scene complexity. Thus,
our expected spatial resolution is approximately 0.3 super-pixels.

Simulated Resolution Target Reconstruction
Next, we validate the results of our condition number analysis through simulated reconstruc-
tions of a resolution target with different spatial locations illuminated by different sources
(red, green, blue and white light), as shown in Fig. 3.8. For each simulation, we add Gaussian
noise with a variance of 1 × 10−5 and run the reconstruction for 2,000 iterations of FISTA
with 3DTV. Our system resolves features that are 0.3 super-pixels apart, whereas the low-
NA lens can only resolve features that are roughly 1 super-pixel apart and the high-NA lens
results in gaps, validating our predicted performance.

3.9 Experimental Results
We start with experimental reconstructions of simple objects with known properties - a
broadband USAF resolution target displayed on a computer monitor, and a grid of RGB
LEDs (Fig. 3.9). We resolve points that are ∼.3 super-pixels apart, which matches our
expected multi-point resolution based on the condition number analysis above. For the
RGB LED scene, the ground truth spectral profiles of the LEDs are measured using a
spectrometer, and our recovered spectral profile closely matches the ground truth, as shown
in Fig. 3.9(b).

Next, we show reconstructions of more complex objects, either displayed on a computer
monitor or illuminated with two halogen lamps (Figure 3.10). We plot the ground truth
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spectral line profiles, as measured by a Thorlabs CCS200 spectrometer, from four points in
the scene, showing that we can accurately recover the spectra. A reference RGB scene is
shown for each image, demonstrating that the reconstructions spatially match the expected
scene.

3.10 Discussion
A key advantage of our design over previous work is its flexibility to choose the spectral
filters in order to tailor the system to a specific application. For example, one can non-
linearly sample a wide range of wavelengths (which is difficult with many previous snapshot
hyperspectral imagers). In future, we plan to design implementations specific to various task-
based applications, which could make hyperspectral imaging more easily adopted, especially
since the price is several orders-of-magnitude lower than currently available hyperspectral
cameras.

Currently, we experimentally achieve a spatial resolution of ∼0.3 super-pixels, or 5 sensor
pixels. In future designs, we should be able to achieve the full sensor resolution (along with
better quality reconstructions) by optimizing the randomizing optic, instead of using an
off-the shelf diffuser. This could be achieved by end-to-end optical design [95, 82].

Our system has two main limitations: light-throughput and scene-dependence. Due to
the use of narrow-band spectral filters, much of the light is filtered out by the filters. This
provides good spectral accuracy and discrimination, but at the cost of low light throughput.
In addition, since the light is spread by the diffuser over many pixels, the signal-to-noise ratio
(SNR) is further decreased. Hence, our imager is not currently suitable for low-light condi-
tions. This light-throughput limitation can be mitigated in the future by the use of photonic
crystal slabs instead of narrowband filters, in order to increase light-throughput while main-
taining spatio-spectral resolution and accuracy [106]. In addition, end-to-end design of both
the spectral filters and the phase mask should improve efficiency, since application-specific
designs can use only the set of wavelengths necessary for a particular task, without sampling
the in-between wavelengths. Reducing the number of spectral bands improves both light
throughput (because more sensor area will be dedicated to each spectral band) and spatial
resolution (because the super-pixels will be smaller).

Our second limitation is scene-dependence, as our reconstruction algorithm relies on ob-
ject sparsity (e.g. sparse gradients). Because of the non-linear regularization term, it is
difficult to predict performance, and one might suffer artifacts if the scene is not sufficiently
sparse. Recent advances in machine learning and inverse problems seek to provide better
signal representations, enabling the reconstruction of more complicated, denser scenes [68,
15]. In addition, machine learning could be useful in speeding up the reconstruction algo-
rithm [76] as well as potentially utilizing the imager more directly for a higher-level task,
such as classification [29].
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3.11 Conclusion
Our work presents a new hyperspectral imaging modality that combines a color filter array
and lensless imaging techniques for an ultra-compact and inexpensive hyperspectral cam-
era. The spectral filter array encodes spectral information onto the sensor and the diffuser
multiplexes the incoming light such that each point in the world maps to many spectral
filters. The multiplexed nature of the measurement allows us to use compressive sensing
to reconstruct high spatio-spectral resolution from a single 2D measurement. We provided
an analysis for the expected resolution of our imager and experimentally characterized the
two-point and multi-point resolution of the system. Finally, we built a prototype and demon-
strated reconstructions of complex spatio-spectral scenes, achieving up to 0.19 super-pixel
spatial resolution across 64 spectral bands.
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Figure 3.4: Experimental calibration of Spectral DiffuserCam. (a) The caustic PSF
(contrast-stretched and cropped), before passing through the spectral filter array, is similar
at all wavelengths. (b) The spectral response with the filter array only (no diffuser). (Top
left) Full measurement with illumination by a 458nm plane wave. The filter array consists of
8×8 grids of spectral filters repeating in 28×20 super-pixels. (Top right) Spectral responses
of each of the 64 color channels. (Bottom) Spectral response of a single super-pixel as
illumination wavelength is varied with a monochromater.
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b. Experimental Spatial Resolution
λ = 618 nm λ = 466 nmλ = 522 nm

a. Theoretical Spatial Resolution

super-pixels
−1.2 −0.6 0 0.6 1.2

super-pixels

0.4
0.6
0.8
1.0

vertical autocorrelation horizontal autocorrelation
0.19 super-pixel 

half-width
0.19 super-pixel 

half-width
0.19 super-pixel 

half-width
0.19 super-pixel 

half-width

−1.2 −0.6 0 0.6 1.2

1

1

0

0

0 1.4

0 1.4

0 1.4

0 1.4

0 1.4

0 1.4
super-pixels super-pixels super-pixels

0.19

0.19 0.19

0.19 0.19

0.19

Figure 3.5: Spatial Resolution analysis. (a) The theoretical resolution of our system,
defined as the half-width of the autocorrelation peak at 70% its maximum value, is 0.19 super-
pixels. (b) Experimental two-point reconstructions demonstrate 0.19 super-pixel resolution
across all wavelengths (slices of the reconstruction shown here), matching the theoretical
resolution.
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Figure 3.6: Spectral resolution analysis. Sample spectra from hyperspectral reconstruc-
tions of narrow-band point sources, overlaid on top of each other, with shaded lines indicating
the ground-truth. For each case, the recovered spectral peak matches the true wavelength
within 5nm.



CHAPTER 3. LENSLESS SNAPSHOT HYPERSPECTRAL IMAGING WITH A
SPECTRAL FILTER ARRAY 62

b. 3D condition number
       (Spatio-Spectral)

a. 2D condition number 
(Spatial)

x
y x

y
λ

0.0 1.0 2.0 3.0
0.0

1.0

2.0

3.0

d

d

0 1 2 3 0
1

2
3

0
1
2
3

d

d

dλ

co
nd

iti
on

 n
um

be
r

separation distance (super-pixels)separation distance (super-pixels)

100
101
102
103

100
101
102
103

100
101
102
103

Sp
ec

tr
al

 
D

iff
us

er
C

am
lo

w
 N

A
 le

ns
hi

gh
 N

A
 le

ns

0 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.0

9 25 64 121
number of objects

8 27 64 125
number of objects

216

Figure 3.7: Condition number analysis for Spectral DiffuserCam, as compared to
a low-NA or high-NA lens. (a) Condition numbers for the 2D spatial case (single spectral
channel) are calculated by generating different numbers of points on a 2D grid, each with
separation distance d. (b) Condition numbers for the full spatio-spectral case are calculated
on a 3D grid. A condition number below 40 is considered to be good (shown in green). The
diffuser has a consistently better performance for small separation distances than either the
low-NA or the high-NA lens. The diffuser can resolve objects as low as 0.3 super-pixels apart
for more complex scenes, whereas the low-NA lens requires larger separation distances and
the high-NA lens suffers errors due to gaps in the measurement.
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Figure 3.8: Simulated hyperspectral reconstructions comparing our Spectral Dif-
fuserCam result with alternative design options. (a) Resolution target with different
sections illuminated by narrow-band 634nm (red), 570nm (green), 474nm (blue), and broad-
band (white) sources. (b) Reconstruction of the target by Spectral DiffuserCam, (c) a
low-NA lens design, and (d) a high-NA lens design, each showing the raw data, false-colored
reconstruction and λy sum projection. The diffuser achieves higher spatial resolution and
better accuracy than the low-NA and the high-NA lens.
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Figure 3.9: Experimental resolution analysis: (a) Experimental reconstruction of a
broadband resolution target, showing the xy sum projection (top) and λy sum projection
(bottom), demonstrating spatial resolution of 0.3 super-pixels. (b) Experimental reconstruc-
tion of 10 multi-colored LEDs in a grid with ∼0.4 super-pixels spacing (four red LEDs on left,
four green in middle, two blue at right). We show the xy sum projection (top) and λy sum
projection (bottom). The LEDs are clearly resolved spatially and spectrally, and spectral
line profiles for each color LED closely match the ground truth spectra from a spectrometer.
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Figure 3.10: Experimental hyperspectral reconstructions. (a-c) Reconstructions of
color images displayed on a computer monitor and (d) Thorlabs plush toy placed in front of
the imager and illuminated by two Halogen lamps. The raw measurement, false color images,
xλ sum projections and spectral line profiles for four spatial points are shown for each scene.
The ground truth spectral line profiles, measured using a spectrometer, are plotted in black
for reference. Spectral line profiles in (a,b) show the average and standard deviation spectral
profiles across the area of the box or letter in the object, whereas (c-d) show a line profile
from a single spatial point in the scene.
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Chapter 4

Deep learning for fast
spatially-varying deconvolution

This chapter is based on [107] and is joint work with Kristina Monakhova, Richard W.
Shuai, and Laura Waller.

4.1 Abstract
Deconvolution can be used to obtain sharp images or volumes from blurry or encoded mea-
surements in imaging systems. Given knowledge of the system’s point spread function (PSF)
over the field-of-view, a reconstruction algorithm can be used to recover a clear image or
volume. Most deconvolution algorithms assume shift-invariance; however, in realistic sys-
tems, the PSF varies laterally and axially across the field-of-view, due to aberrations or
design. Shift-varying models can be used, but are often slow and computationally intensive.
In this work, we propose a deep learning-based approach that leverages knowledge about the
system’s spatially-varying PSFs for fast 2D and 3D reconstructions. Our approach, termed
MultiWienerNet, uses multiple differentiable Wiener filters paired with a convolutional neu-
ral network to incorporate spatial-variance. Trained using simulated data and tested on
experimental data, our approach offers a 625 − 1600× speed-up compared to iterative meth-
ods with a spatially-varying model, and outperforms existing deep-learning based methods
that assume shift-invariance.

4.2 Introduction
Deconvolution is integral to many modern imaging systems. Imperfections in the optics may
inadvertently blur the image (e.g. aberrations) and deconvolution can be used to computa-
tionally undo some of this blur [94, 86]. In microscopy, deconvolution can reduce out-of-focus
fluorescence to provide sharper 3D images [74, 14, 90]. Alternatively, distributed point spread
functions (PSFs) can be intentionally designed into an imaging system in order to enable new
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capabilities, such as single-shot 3D [109, 59, 66, 3, 8] or hyperspectral imaging [77, 49]. In
this case, multiplexing optics encode 2D or 3D information by mapping each point in object
space to a distributed pattern on the image sensor, then deconvolution is used to recover
the encoded image or volume. In either case, a deconvolution algorithm is needed in order
to recover a clear image or volume from the blurred or encoded measurement.

A variety of algorithms have been utilized for deconvolution over the years. Classical
methods range from closed-form approaches such as Wiener filtering to iterative optimiza-
tion approaches, such as Richardson-Lucy and the Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA). Many methods incorporate hand-picked priors, such as Total Variation
(TV) and native sparsity, to improve image quality. These approaches often assume that
the system is shift-invariant, meaning that all parts of the image have the same blur ker-
nel. Shift-invariance allows the forward model to be efficiently expressed as a convolution
between the PSF and the object. However, most imaging systems will have a blur that
varies across the field-of-view (FoV) - that is, they have spatially-varying PSFs, usually due
to field-varying aberrations. This motivates the use of spatially-varying deconvolution, for
which several methods have been proposed [5, 80, 73, 13, 28, 109, 59]. Unfortunately, many
of these algorithms are prohibitively slow and computationally intensive, making them un-
suitable for real-time image reconstruction. Furthermore, these methods can suffer from
poor image quality, especially for highly multiplexed imaging systems that have PSFs with
large spatial extent, or for poorly chosen priors. Recently, deep-learning based deconvolution
methods have been demonstrated to improve both image quality and reconstruction speed,
providing a promising improvement over iterative approaches [76, 98, 85, 55]. However, to
date, these methods rely on a shift-invariant PSF approximation and do not generalize well
to optical systems with field-varying aberrations.

In this work, we propose a new deep-learning based approach for fast, spatially-varying
deconvolution. Our network, termed MultiWienerNet, consists of multiple learnable Wiener
deconvolutions followed by a refinement convolutional neural network (CNN). The Wiener
deconvolution layer performs multiple Fourier-space deconvolutions, each with a different
PSF from a particular field point, yielding several intermediate images which have sharp
features in different regions of the image. These intermediate images are then fed into the
refinement CNN which fuses and refines them to create the final sharp deconvolved image.
The learnable Wiener deconvolution filters are initialized with PSFs captured at several
locations in the FoV, but then allowed to update throughout training to learn the best filters
and noise regularization parameters. This allows us to incorporate knowledge of the field-
varying aberrations into the network, providing a physically-informed initialization that is
further refined throughout training. The end result is a fast spatially-varying deconvolution
that is 625−1600× faster than the baseline iterative method (Spatially-Varying FISTA [109]),
enabling real-time image reconstruction. In addition, incorporating the field-varying PSFs
allows our network to have better image quality near the edges of the FoV than is achieved
by existing deep learning based methods which assume shift-invariance.
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4.3 Theory and Results
Our approach consists of the following steps: 1) generating a simulated training dataset by
applying measured PSFs to images from open-source microscopy datasets, 2) initializing and
training the MultiWienerNet using the simulated data, and 3) utilizing the trained network
for fast shift-varying deconvolutions, where the input to the network is a single measure-
ment. To demonstrate, we choose the challenging example of single-shot 3D microscopy
with Miniscope3D [109] as our test case. Miniscope3D uses a phase mask that consists of
a random array of multi-focal microlenses to encode 3D information in a 2D image. The
system maps each object point in the FoV to a unique pseudorandom pattern on the sensor,
then decodes the captured images by solving a sparsity-constrained inverse problem. We
select this system both for its spatially and depth-varying PSFs, Fig. 4.1, and its high degree
of multiplexing, which creates a particularly challenging deconvolution problem. We demon-
strate our approach on both 2D deconvolution, where the goal is to recover a 2D image from
a 2D measurement, as well as 3D deconvolution, where the goal is to recover a 3D volume
from a single 2D measurement.

To generate simulated datasets, we first need a forward model that can faithfully relate
how a 3D object is mapped to a 2D measurement in our microscope system, taking into
account the effects of spatially-varying blur introduced by the system. To establish this
forward model, the volumetric object intensity is treated as a 3D grid of voxels, v[x, y, z].
Each voxel produces a PSF, h[x′, y′; x, y, z], on the camera sensor, where [x′, y′] are image
space indices. Since the object voxels are mutually incoherent, the measurement can be
expressed as a linear combination of the PSFs from each voxel in the object:

b[x′, y′] =
∑

z

∑
x,y

v[x, y, z]h[x′, y′; x, y, z]

= Av,
(4.1)

where b is the measurement and A is a matrix that maps the 3D volume to the 2D mea-
surement. For the shift-invariant case - where the PSF is the same at all points within the
FoV for each depth - Eq. 4.1 reduces to a sum over 2D convolutions:

b[x′, y′] =
∑

z

∑
x,y

v[x, y, z]
[x,y]
∗ h[x, y, z], (4.2)

where
[x,y]
∗ represents a 2D convolution. However, this shift-invariant assumption is gen-

erally not true and its corresponding convolutional forward model will lead to inaccurate
deconvolution. There are multiple ways to approximate the image formation model for shift-
invariant PSFs (e.g. locally convolutional, low-rank models, etc. [5, 73, 13, 28, 109, 32, 59]).
Any of these techniques is applicable to our pipeline. In particular, we choose to use the
low-rank model from [109], approximating the spatially-varying PSFs as a weighted sum of
shift-invariant kernels:

b[x′, y′] =
∑

z

K∑
r=1

{
(v[x, y, z]wr[x, y, z])

[x,y]
∗ gr[x, y, z]

}
[x′, y′] , (4.3)
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Figure 4.1: Spatially-varying Point Spread Functions (PSFs). (left) Simplified dia-
gram of Miniscope3D showing a lateral and axial scan of a point source through the volumet-
ric field-of-view (FoV) to capture the spatially-varying PSFs. (right) Experimental images of
the PSFs from different points in the volumetric FoV, which are used to initialize the Wiener
deconvolution layer of our MultiWienerNet method.

where the weights {wr} and the kernels {gr} are computed from a singular value decom-
position (SVD) of sparsely sampled PSFs from different positions in the FoV and the inner
sum is over the K largest values in the SVD. Note that in the 2D imaging case, the object is
a thin slice in the z-dimension, so the outer sum over z is not included in the forward model.

Using this forward model, we can simulate measurements from our microscope to use in
training datasets. We run images from online microscopy datasets [57, 6, 69, 111] through
the low-rank forward model, generating pairs of ground truth volumes/images and simulated
measurements. Given a good system forward model (see Supplement for PSF calibration
details), it is possible to generate any number of image pairs, which we can use to train our
MultiWienerNet. We generate both 2D and 3D training datasets; the 2D dataset contains
2D target objects with dimensions (x,y,z) of (336,480,1), representing a FoV of 700 × 1000
µm2, while the 3D datasets contain 3D target objects with dimensions (x,y,z) of (336,480,32),
representing a FoV of 700 × 1000 × 320 µm3. We generate 5, 000 2D and 15, 000 3D training
images, with an 80/20 training/testing split.
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Figure 4.2: MultiWienerNet architecture. Our pipeline consists of two parts: 1) a learn-
able multi-Wiener deconvolution layer which is initialized with knowledge of the system’s
spatially-varying PSFs and outputs a set of deconvolved intermediate images. 2) A U-Net
refinement step which combines and refines the intermediate images into a single output im-
age. Both parts are jointly-optimized during training using simulated data. After training,
experimental measurements are fed into the optimized MultiWienerNet for fast spatially-
varying deconvolution.

Our network consists of two components: a differentiable Wiener deconvolution layer,
and a refinement CNN, Fig. 4.2. Wiener deconvolution is a fast and simple approach that
is used for linear shift-invariant systems given a known PSF and noise level. It consists of a
single Fourier filtering step, which can be efficiently computed using FFTs. However, when
the assumption of shift-invariance does not hold, Wiener deconvolution results in degraded
image quality in the areas of the image in which the PSF differs from the one assumed.
Hence, instead of performing Wiener deconvolution with a single PSF [55], we approximate
the behavior of our spatially-varying system using M PSFs taken from different field points.
Our Wiener deconvolution layer thus performs M Wiener deconvolutions, resulting in M
intermediate deconvolved images, as shown in Fig. 4.2. Each will have sharp features in a
different region of the image, corresponding to the area in the FoV from which the PSF was
taken. These M intermediate images are then fed into the refinement CNN which combines
and refines the images to produce the final image/volume.

Mathematically, our differentiable Wiener deconvolution layer can be described as follows:

V̂i(u, v) = H∗
i (u, v)B(u, v)

|Hi(u, v)|2 + λi

, i = 1, 2, ..., M, (4.4)

where (u, v) are frequency-space coordinates, B(u, v) is the Fourier transform of the mea-
surement, V̂i(u, v) is the ith Fourier transform of the estimated scene intensity, Hi(u, v) is
the Fourier transform of the ith PSF, ∗ denotes a complex conjugate and λi is a regulariza-
tion parameter related to the signal-to-noise ratio (SNR) of the measurement. Note that the
intermediate images are obtained after taking an inverse Fourier transform, v̂i = F−1(V̂i).
Here, the Hi(u, v) are initialized using the M PSFs measured from different points in the
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FoV. For 3D deconvolution, PSFs are sampled at multiple depth planes. Both Hi(u, v) and
λi are learnable and optimized during training. Finally, the M intermediate images are
fed into the U-Net refinement step which consists of a 2D U-Net for the 2D deconvolution
problem or a 3D U-Net for the 3D problem [85].

For 2D deconvolution, Hi is initialized with measured PSFs from field points sampled on
a 3×3 grid across the FoV, giving M = 9. For 3D, the PSFs are sampled on a 3×3×32 grid
across the FoV, giving M = 288. After the model is initialized with the M measured PSFs,
the simulated pairs of measurements and ground truth volumes/images are used in training
to update the parameters of the MultiWienerNet, including Hi, λi, and all the parameters
in the U-Net. We use a structural similarity index measure (SSIM) loss and L1 loss, which
generally outperforms mean squared error (MSE) or L1 loss on its own. Training details are
outlined in Supplement 1.

After training, we test our model on 1, 000 images in a held-out test set from the online
datasets, and on experimental data from the Miniscope3D setup. We compare our results
against iterative spatially-varying FISTA, a U-Net, and the U-Net with a single Wiener
deconvolution [55]. Our results show that the MultiWienerNet achieves more than 625×
speedup in 2D reconstruction and 1600× speedup in 3D reconstruction as compared to
FISTA, while also providing better PSNR and image quality, especially towards the edges
of the FoV, where off-axis aberrations dominate. Our network also outperforms current
deep-learning approaches while only being slightly slower. In addition, despite being trained
solely on simulated data, the MultiWienerNet generalizes well to experimental data. Though
FISTA achieves slightly higher resolution near the center of the FoV (Fig. 4.3(a)), Multi-
WienerNet performs better overall.

4.4 Adapting network to new systems
To adapt our method to new systems, an accurate forward model is needed in order to
generate simulated measurements for training. If a good forward model for the microscope
already exists (e.g. Zemax model, existing simulator), such a model could be used in this step
to generate simulated measurements. If such a model does not exist, or does not sufficiently
model spatial-variance, we suggest a calibration procedure (detailed below) to measure the
spatially-varying PSFs, paired with a low-rank forward model to simulate measurements.
Given a good forward model, simulated measurements can be generated using existing online
microscopy datasets and used to train the network.

System Calibration
A simple calibration procedure based on scanning a fluorescent bead (point source) across the
field-of-view (FoV) can be used to characterize the spatially-varying behavior of the system.
Rather than calibrating the PSF for every possible field point, we adopt the calibration
method presented in [109], and sparsely sample the PSFs across the field, then use a low-
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Figure 4.3: Simulation and Experimental Results. Deconvolution results for (a) 2D
and (b) 3D, showing both simulated and experimental data. MultiWienerNet achieves better
performance than other deep learning-based approaches that do not incorporate knowledge
of a spatially-varying PSF (U-net and U-Net w/Wiener), and achieves better and faster
(625 − 1600× speedup) results than spatially-varying FISTA, which has poor reconstruction
quality at the edges of the FoV, where spatially-varying aberrations are severe. For the 3D
results, xy and xz maximum projections are shown.

rank forward model to account for the shift-variance. In this work, we sample the PSF at 64
locations across the FoV for each depth. This can be done by simply scanning a bead and
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taking 64 calibration images across an 8×8 grid. If the bead is particularly dim, or there is
noticeable noise present in the image, averaging multiple images together can help reduce
noise and provide a better calibration image. If 3D deconvolution is desired, this calibration
must be repeated for each depth of interest. In our case, we repeat this procedure for 32
different depths within the depth range of the microscope. To save time on calibration, it is
also possible to do this calibration using a sample of unstructured beads instead of a single
calibration bead [60].

Simulating measurements
To simulate measurements, we use data from existing online microscopy datasets. For the
3D dataset, the CytoPacq [21] simulator is particularly helpful in obtaining time-series 3D
volumes. We follow the following pre-processing steps to generate the simulated measure-
ment:

1. Resize the image/volume to fit the Miniscope3D image/volume size which is 336 ×
480 × 1 for 2D reconstruction and 336 × 480 × 32 for 3D reconstruction

2. Using the sparsely sampled calibration PSFs, compute the weights {wr}, and the
kernels {gr}, from a singular value decomposition (SVD) procedure outlined in [109].

3. Simulate measurements by running the resized data through the low-rank forward
model in Eq. 3 of main text

4. Add appropriate levels of Gaussian and Poisson noise to the simulated measurement.

These pre-processing steps can be adapted to a new system by altering the desired im-
age/volume size and using the calibrated PSFs for the new system.

Model initialization and network architecture
Before training, the MultiWienerNet must be initialized with the spatially-varying PSFs, hi,
and additionally with regularization parameters, λi. Here, we utilize 9 PSFs from a 3×3
grid from each depth plane in our FoV to initialize hi. The number of initialized filters
can be updated based on the level of spatial-variance of the system. Given more spatial-
variance, a larger number of filters should be used; however, this comes at the price of
added computational complexity. We found that 9 filters was sufficient for the Miniscope3D.
For the U-net architecture, our contracting path consists of four repeated applications of two
3×3 convolutions, followed by a Scaled Exponential Linear Unit (SELU) and a convolutional
down-sampling layer with stride 2. The expansive path consists of four repeated applications
of two 3 × 3 convolutions, followed by a SELU and a transposed convolution up-sampling
layer with strides 2.
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Figure 4.4: Spatially varying PSFs. Measured PSFs at different lateral positions for two
different depth planes. Due to field-varying aberrations in the system, the PSFs change
structure across the field-of-view (FoV). Note that the images are contrast stretched to show
detail.

Training and Testing Details
We train for 25 epochs for the 3D reconstruction case and 100 epochs for the 2D case, using
a learning rate of 1e−4. We use the ADAM optimizer [56] with default parameters through-
out training. We allow the Wiener deconvolution filters and regularization parameters to
update throughout training. We tested having the Wiener filters and/or the regularization
parameters be fixed throughout training, but the best results were obtained when they were
allowed to change. Our loss function is an average of a structural similarity index measure
(SSIM) loss and L1 loss. For SSIM, we use an 11 × 11 Gaussian filter of width 1.5. We
test the performance on both simulated and experimental data. The experimental sample
in main-text Figure 3(a) is a 1951 USAF fluorescent resolution target, and in 3(b) is a freely
moving stained tardigrade (water bear) captured at 40 frames per second.
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4.5 Additional Results

Timing results
We compare our reconstruction time against FISTA with a spatially-varying model and
existing deep learning based models (U-Net, U-Net w/Wiener) by averaging over 100 runs
on GPU. The results are summarized in Table 4.1. We can see that our method is significantly
faster than existing spatially-varying methods, and has comparable speeds to existing deep
learning based methods. For 2D, we can perform reconstructions at 30fps for 336×480
images. For 3D, we can perform reconstructions at 2.4fps for 336×480×32 volumes. This is
significantly faster than what is possible without using deep learning-based methods (0.05
fps for 2D, 0.0015 fps for 3D), and could enable interactive previewing. Timing results were
performed on an RTX 2080 Ti GPU. The stopping criterion for FISTA was chosen to avoid
unnecessary iterations. FISTA terminates if the solution is stable within a certain threshold,
the loss is below a certain threshold, or the number of iterations exceeds a certain threshold.

Learned filters
We allow the network to learn the Wiener deconvolution filters. We initialize the network
with a grid of measured filters, 3 × 3 for 2D and 3 × 3 × 32 for 3D, each is centered on a
different region in the FoV. Fig. 4.4 shows initial filters at different positions demonstrat-
ing the shift-variance of the system. By allowing the network to update the filters, the
network can find filters that better approximate the shift-variance or better recover certain
frequencies. Fig. 4.5, shows the initialized and learned filters. The learned filters maintain
similar structure in the central region as the initialized ones, while adding more information
towards the edges of the filter. At first glance, it is unclear if the extra information added
to the learned filters is useful. However, by examining the intermediate result of the Wiener
deconvolution step using both the initialized and learned filter in Fig. 4.6, we find that the
deconvolved image using the learned filter has much sharper features than the one using
the initialized filter. This allows the multiple learnable Wiener deconvolutions to provide
the CNN with sharp intermediate images that the CNN can further refine to remove low
frequency artifacts. Note that we do not require the learned filters to be positive.

Table 4.1: Reconstruction timing comparisons (GPU)

FISTA U-Net WienerNet MultiWeinerNet
2D 20s 0.021s 0.029s 0.032s
3D 665s 0.33s 0.34s 0.41s
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Figure 4.5: Learned and initialized filters. Central learned and initialized filters at
different depths used for the 3D reconstruction. For visualization, we scale the learned
filters from 0 to 1. In general, the filters can contain negative values. Note that the images
are contrast stretched.

Deconvolution with localized PSFs
To demonstrate that our MultiWiener layer should generalize well to other imaging sys-
tems, we use Zemax to simulate PSFs from a traditional one-to-one imaging system with
off axis aberrations (e.g. coma). Specifically, we simulate a dense grid of 512 × 512 PSFs
using the specifications of the 2D Miniscope system [38]. From these PSFs, we simulate 2D
measurements of sparse beads and a dense scene, of size 512 × 512, using the superposition
principle. Fig. 4.7 shows the simulated measurement and the results of performing Wiener
deconvolution on the measurement using the on-axis PSF and an off-axis PSF. As expected,
deconvolution with the on-axis PSF in a system with spatially varying aberrations results
in an image with good reconstruction quality only near the center portion of the image. In
contrast, deconvolving with a PSF from an off-axis point results in sharper image quality in
the neighborhood from which this PSF is sampled. This demonstrates how our MultiWiener
stage can produce intermediate images where different portions of the image are sharp de-
pending on where the PSF was sampled. These intermediate images can then be fed into
the U-net, which will combine and refine the images to produce a sharp image across the
FoV. We expect this general approach to work well in a variety of imaging systems with
spatially-varying aberrations.
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Figure 4.6: Wiener deconvolution with learned filters. (a) Using the central initial
filter only, with a shift-invariance assumption. (b) Using the central learned filter with a
shift invariance assumption results in sharper features in the deconvolved image.

In summary, we propose a new network architecture to perform fast deconvolution for
microscopes with spatially-varying PSFs. Given knowledge of the system’s spatially-varying
PSFs, our proposed network is trained in simulation, fusing known system parameters in the
form of multiple differentiable Wiener deconvolutions with a CNN refinement step. After
training, our network provides a 625 − 1600× speedup over existing spatially-varying de-
convolution algorithms and improved reconstruction quality, especially at the edges of the
FoV. The code is open-source and can be utilized for imaging system with spatially-varying
aberrations.
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Figure 4.7: Deconvolution with localized PSFs. Results of performing Wiener decon-
volution with on-axis and off-axis PSFs. (top) A simulated measurement showing 4 points
(left), and the corresponding deconvolved image with an on-axis PSF (center) and an off-axis
PSF (right). The orange inset shows an on-axis deconvolved point, that is sharper when the
Wiener filter is using the on-axis PSF, and the green inset shows an off-axis deconvolved
point, which is sharper when using an off-axis PSF. (bottom) A simulated measurement of
a dense scene. The green inset shows fewer artifacts and sharper features when the off-axis
PSF is used.
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Chapter 5

Conclusion

This dissertation demonstrates how to design and model multiplexing optics to perform
single-shot high-dimensional imaging (e.g. spectral and volumetric) in a compact imaging
setup. In Chapter 2, an optimized phase mask consisting of multifocal non-uniformly spaced
microlenses is used with a GRIN lens to achieve single-shot 3D imaging in a device smaller
than a U.S. quarter. Since the PSF of the system is field-varying, we propose using a low-rank
forward model that can incorporate field-varying aberrations achieving reconstructions with
high spatial resolution. In addition, to enhance the 3D performance of the device, learned
aberrations (e.g. astigmatism and tilt) are added to the phase mask to make the axial PSFs of
the device as unique as possible, thus achieving high axial resolution. This chapter highlights
the importance of two key aspects when designing computational imaging systems. First,
having an accurate forward model is instrumental in achieving good reconstruction quality.
Fig 2.4 (c) shows how the reconstruction quality changes when using a shift-invariant forward
model as opposed to the low-rank field-varying forward model. A significant reduction in
resolution is observed when using the shift-invariant model (6.2µm lateral resolution with
shift-invariant mode vs 2.7µm with field-varying model). Thus having an accurate forward
model is a key factor for good reconstruction quality. Second, using our model for the phase
mask, we are able to design the mask to target a specific lateral and axial resolution across
a desired depth range. Our optimizer can change the microlenses’ focal lengths, location,
tilt, and add astigmatism to make the axial PFSs as unique as possible. Since we are relying
on compressed sensing to recover the 3D volume from a 2D image, optimizing the phase
mask using a merit function inspired from matrix coherence improves the quality of our
reconstructions. This is to show that computational imaging systems perform best when
they are designed with a target application in mind, an accurate forward model, and optics
that are optimized for the reconstruction algorithm used.

In Chapter 3, we demonstrate a compact hyperspectral imager consisting for a diffuser
combined with a tiled spectral filter array. The result is a single-shot hyperspectral system
with a higher spatial resolution than that achieved by using the spectral filter alone. This
chapter presents theory to quantify spatial and spectral resolution of objects with different
sparsity levels. Since the reconstruction quality of compressed sensing systems rely on the
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object’s sparsity level, we present methods to analyze the two-point spatial resolution as
well as a the multi-point resolution. The two-point resolution can be thought of as a best
case scenario and an upper limit performance for the system that will not be achieved
for all objects. Thus, we make use of local condition number theory to predict real-world
performance on complex objects. Using local condition number, we show that a diffuser
achieves better performance and higher resolution for a wider range of objects than using
either a low-NA or a high-NA lens with the spectral filter array.

In Chapter 4, we demonstrate a deep learning architecture that performs fast spatially-
varying deconvolutions. In the previous chapters, an iterative optimization algorithm is used
to recover the high-dimensional object from the 2D image. The iterative algorithm gener-
ally takes thousands of iterations to converge which prohibits real-time reconstructions. In
addition, these algorithms rely on hand-tuned priors to achieve good reconstruction quality.
Instead, our deep learning approach is able to provide real-time reconstructions as well as
handle optical systems with field-varying aberrations. Our architecture consists of multiple
differentiable Wiener filters combined with a convolutional neural network. The result of the
multiple Wiener deconvolution layers is a set of intermediate images that have sharp fea-
tures in different regions depending on where the PSF is sampled from. These intermediate
images are then fed to a refinement convolutional neural network to blend them together
and produce the final output. This chapter highlights two key points. First, combining con-
volutional neural networks with physics inspired layers (i.e. Wiener filters) provide better
reconstruction quality than relying on convolutional neural networks alone. Second, having
an accurate forward model of our optical system allows us to simulate thousands of training
images that would be very difficult to capture experimentally due to the 3D nature of the
objects. Despite being trained solely on simulated data, our architecture generalizes well to
experimental data.

Future Directions
Below I provide a list of future directions and improvements that can be further studied and
explored:

• Volumetric optics: In this dissertation, the multiplexing optic was either a phase
mask consisting of designed microlenses or an off-the-shelf diffuser. While microlenses
make a good multiplexing optic that can be easily optimized, recent fabrication devel-
opments have made metalenses, 3D diffractive optics, and 3D GRINs more available
and easier to fabricate. Co-designing these optics with reconstruction algorithms can
lead to better performing computational imaging systems.

• Physics inspired deep learning: Since iterative reconstruction algorithms require
an accurate forward model for good reconstructions. That forward model can also be
used to simulate training data to enable deep learning based reconstruction. This has
the advantage of being real-time and handling more complex objects. We combined
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differentiable Wiener filters with CNNs to achieve fast and good reconstructions for
field-varying optical systems. Designing different physics inspired layers and combining
it with different deep learning architectures can produce better and faster reconstruc-
tions.

• Using time priors: In this dissertation, we focused on using spatial sparsity priors.
However, for many imaging applications we have access to data at different time points
(e.g. videos of neural firings or videos of freely moving samples). In this case, time
priors can be used to greatly improve reconstruction quality. While incorporating these
priors with iterative optimization will result in an even slower reconstruction algorithm,
I propose using recurrent neural networks as the means to incorporate time priors. If
combined with physics-inspired layers, it has the potential to achieve faster and better
reconstructions.
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