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ABSTRACT OF THE DISSERTATION

Real-time Vehicle Reidentification System for Freeway Performance Measurements

By 

Shin-Ting Jeng

Doctor of Philosophy in Civil Engineering

University of California, Irvine, 2007

Professor Stephen G. Ritchie, Chair

Computational resources in the traffic operation field as well as the bandwidth of field 

communication links, are often quite limited.  Accordingly, for real-time implementation 

of Advanced Transportation Management and Information Systems (ATMIS) strategies, 

such as vehicle reidentification, there is strong interest in development of field-based 

techniques and models that can perform satisfactorily while minimizing computational 

and communication requirements in the field.  The ILD (Inductive Loop Detector)-based 

Vehicle ReIDentification system (ILD-VReID) is an example of a currently applied 

approach.  Although ILDs are not without limitations as a traffic sensor, they are widely 

used for historical reasons and the sunken investment in the large installed base makes 

their use in this research highly cost-effective.  Therefore, this dissertation develops a 
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new vehicle reidentification algorithm, RTREID-2, for real-time implementation by 

adopting a PSR (Piecewise Slope Rate) approach that extracts features from raw vehicle 

signature data.  The results of cases studies indicate that RTREID-2 is capable of 

accurately providing individual vehicle tracking information and performance 

measurements such as travel time and speed.  The potential contributions of RTREID-2 

are: application to square and round single loop configurations, and reduced 

computational requirements because re-estimation or transferability of the speed models 

used in the previously developed approach is not necessary.  As a consequence, 

RTREID-2 is free of site-specific calibration and transferability issues.  A freeway 

corridor study also demonstrates that RTREID-2 has the potential to be implemented 

successfully in a congested freeway corridor, utilizing data obtained from both 

homogenous and heterogeneous loop detection systems.  A real-time vehicle 

classification model, which is based on the PSR approach, was also developed on the part 

of RTREID-2.  The classification model can successfully classify vehicles into 15 classes 

using single loop detector data without any explicit axle information.  The initial results 

also suggest the potential for transferability of the vehicle classification approach and are 

very encouraging.  To investigate real-time freeway performance measurement in a real-

world setting, the design of a RTPMS (Real-time Traffic Performance Measurement 

System) that is based on RTREID-2 is also presented in this dissertation.  A simulation of 

RTPMS is conducted to evaluate its feasibility.  The simulation results demonstrate the 

potential of implementing RTPMS in real world applications.
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1

CHAPTER 1 INTRODUCTION

1.1 BACKGROUND

Vehicle reidentification has emerged due to its substantial potential for effective 

implementation of ATMIS (Advanced Transportation Management and Information 

Systems).  In the studies of vehicle reidentification, the main stress falls on travel 

information, travel time estimation, and origin-destination (OD) estimation.  According 

to the technologies applied, the vehicle reidentification systems can be categorized as the 

vehicle signature based system (signatures are obtained from the traffic detectors such as 

inductive loop detector and radar detector), the VIP (video image processing) based 

system, the AVI (automatic vehicle identification) based system, the GPS (global 

positioning systems) based system, and the CP (cellular phone)-based system.  Among all 

of the aforementioned systems, however, the ILD (inductive loop detector) based systems 

are cost-effective because the ILDs are largely installed in the field.

ILD-based vehicle ReIDentification (ILD-VReID) systems track vehicles via 

vehicle signature reidentification algorithms.  Starting from Böhnke and Pfannerstill 

(1986), numerous studies have been made on ILD-VReID systems since 1980's.  The 

research field initially focused on freeways (Kühne and Immes, 1993; Sun et al., 1999; 

Ritchie et al., 2001) and was extended into arterials (Oh and Ritchie, 2003) utilizing 

homogeneous detection systems.  Moreover, Oh, Ritchie, and Jeng (2004) proposed a 
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new analysis to expand the capabilities of ILD-VReID, which attempted to reidentify 

vehicles via heterogeneous detectors.

Although a great deal of effort has been made on ILD-VReID systems over the 

past decades, and the outcomes of the previous studies are valuable, little is known about 

reidentifying vehicles along a corridor, and real-time implementation.  What seems to be 

lacking is a real-time ILD-VReID system, which can provide performance for a freeway 

corridor.  In addition, the current ILD-VReID algorithms are limited in several ways.  For 

example, the speed estimation procedure of the ILD-VReID algorithms may become an 

obstacle to systems equipped with single loop detectors.

Therefore, this dissertation research presents a new ILD-VReID system for real-

time implementation by utilizing vehicle signature data obtained from single loop 

detectors.  The proposed system is capable of providing individual vehicle tracking and 

vehicle class information, and performance such as travel time along a freeway corridor.

1.2 RESEARCH OBJECTIVE

The purpose of this dissertation is to develop an algorithm for vehicle reidentification to 

be implemented in real-time, and to provide traffic performance measurements.  This 

dissertation focuses on an ILD-VReID system and evaluating the feasibility of 

implementing the proposed vehicle reidentification algorithm in a freeway corridor.  The 

objectives of this dissertation can be categorized as follows:
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 Develop an ILD-VReID algorithm that is readily applied:

The existing ILD-VReID algorithms involve speed estimation processes and 

are less flexible while implementing in real-time and applying to a single loop 

detection system.  A new approach using an interpolation method (REID-2), 

which is straightforward, adopts no speed estimation models, and is readily 

applied to both single and double loop detectors, is proposed in this dissertation.

 Improve the proposed vehicle reidentification algorithm (REID-2) for real-

time implementation:

Computational resources in the traffic operations field as well as the bandwidth 

of field communication links are often quite limited.  Accordingly, for real-

time implementation of vehicle reidentification, there is strong interest in 

development of field-based techniques and models that can perform 

satisfactorily while minimizing field computational and communication 

requirements.  Therefore, this dissertation investigates a relatively simple data 

compression and transformation technique that could be applied successfully to 

real-time vehicle reidentification (RTREID-2).  A Piecewise Slope Rate (PSR) 

approach is developed to compress and transform the raw vehicle signatures.
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 Perform RTREID-2 along a freeway corridor:

Section-related or link-based data can arguably provide reliable and accurate 

inputs for traffic surveillance and performance measurement systems.  To 

obtain section-related data, vehicle reidentification plays an important role 

since section performance measurements can be generated easily via a vehicle 

reidentification system.  This dissertation evaluates the performance of the 

proposed algorithm, RTREID-2, based on a 6.2-mile freeway corridor on 

northbound I-405 under congested morning peak-period conditions.  The 

corridor consists mostly of round inductive loop detectors with some square 

loops, providing an opportunity to assess the applicability and transferability of 

the proposed algorithm for homogenous and heterogeneous loop detection 

systems.

 Apply the proposed Piecewise Slope Rate (PSR) approach to vehicle 

classification:

Vehicle class is an important characteristic of traffic measurement.  It is helpful 

to monitor heavy vehicle traffic for road maintenance and safety, have insight 

into traffic composition for modeling traffic flow, and to obtain performance 

measurements based on each vehicle class for traffic surveillance.  In this 

dissertation, a heuristic method combined with a decision tree and K-means 

clustering approach is proposed to develop a vehicle classification model.  The 

features used in the proposed model are extracted from PSR values.
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 Design a Real-time Traffic Performance Measurement System (RTPMS) 

scheme based on an ILD-VReID system

A real-time performance measurement system is discussed in this dissertation.  

The overall system can be divided into two sub-systems:  field data 

preprocessing system and performance measurement system.  The field data 

preprocessing system extracts PSR features, while the performance 

measurement system generates vehicle tracking and vehicle class information,

and presents real-time performance measurements.  A simulation of this system 

is also conducted to access its feasibility.

1.3 RESEARCH OUTLINE

The overall dissertation framework is described in Figure 1-1:

Figure 1-1  Dissertation framework.
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This dissertation consists of eight chapters as follows:

Chapter 1 introduces the background and objectives of this dissertation, and 

Chapter 2 gives reviews of ILD-VReID algorithms and applications.

In Chapter 3, methodologies that are adopted to develop the proposed ILD-VReID 

algorithm (REID-2) are described and discussed.  A case study utilizing REID-2 is 

demonstrated, and travel time estimation is performed to evaluate the performance of the 

proposed algorithm.  Furthermore, REID-2 is compared with REID-1, which is a 

lexicographic optimization method for vehicle reidentification developed by Sun et al.

(1999).

Chapter 4 provides a description of the proposed vehicle signature compression 

and transformation approach (PSR approach), which is applied to the proposed real-time 

vehicle reidentification algorithm (i.e., RTREID-2).  The procedure of RTREID-2 is 

presented.  Analyses of sensitivity and computational performance are conducted to 

investigate the performance of RTREID-2.  Travel time estimation based on vehicle 

reidentification with RTREID-2 is undertaken to evaluate the performance of RTREID-2.  

RTREID-2 is also compared with REID-2 and REID-1.

In Chapter 5, a freeway corridor analysis is performed.  The study sites and 

datasets used in this study are discussed first.  A single-section freeway analysis is 

performed to investigate the performance of RTREID-2 given three cases including 
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square-to-square loops, round-to-round loops, and square-to-round loops cases.  A 

freeway corridor analysis is then presented, where travel time and speed measures from 

RTREID-2 are compared with GPS data obtained from control vehicles.

In Chapter 6, a vehicle classification model, which is an application of the PSR 

approach, is introduced.  The features used in the proposed model are extracted from PSR 

values, and a heuristic method combined with decision tree and K-means clustering 

methods is suggested to perform the vehicle classification tasks.

Chapter 7 demonstrates the framework of RTPMS.  The sub-systems of RTPMS 

are detailed, and modules adopted in RTPMS are described.  In addition, a simulation is 

performed to assess the proposed RTPMS framework.

Chapter 8 summarizes remarks and findings of this dissertation along with 

directions and recommendations for future research.
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CHAPTER 2 REVIEWS OF ILD-VReID VEHICLE 

REIDENTIFICATION

Several technologies have been studied for vehicle reidentification in the last three 

decades such as the AVI based system, the GPS based system, the CP based system, the 

VIP based system, and the ILD-based system.  For AVI based system, an in-vehicle tag is 

used to provide individual vehicle information including location, unique ID, and speed 

for roadside tag reader.  The information is then sent back to control center for vehicle 

reidentification purpose.  The GPS based system utilizes GPS-equipped vehicles and 

geographical information system (GIS) to locate a vehicle and its traveling information 

including latitude and longitude information and timestamp.  As indicated in its name, the 

CP based system obtains vehicle travel information via cell phones.  The wireless cell 

phone tower picks up the emitting signals from drivers’ cell phones and sends them back 

to a control center.

The three systems described above can be categorized as “Intrusive detection 

systems” which employ vehicles as a sensor.  Although intrusive detection systems could 

provide more accurate vehicle tracking results, the limitations involved due to market 

penetration problems and privacy concerns are major obstacles to deploy intrusive 

sensors in a wide-area traffic surveillance system (Oh, 2003).   

The VIP based system and the ILD-based system are considered “non-intrusive 

detection systems” which utilize sensors installed within the road or at the roadside.  The 
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VIP based system uses video or cameras to catch images of each passing vehicle, and 

extracts individual vehicle information including vehicle length, width, color, and 

sometimes, license plate.  The extracted vehicle features from both upstream and 

downstream detection stations are then compared with each other to find the best matches.  

For the ILD-based system, an advanced high-speed scanning loop detector card captures 

inductance changes that are different from a traditional detector card.  While the outputs 

obtained from the traditional detector card are usually binary to indicate the presence of a 

vehicle, more features that represent unique characteristics of individual vehicles can be 

extracted from the outputs of the advanced detector card.

As opposites of intrusive detection systems, non-intrusive detection systems are 

almost free from privacy concerns and market penetration problem.  Among the non-

intrusive detection systems ILDs, although not without limitations as a traffic sensor, are 

widely used for historical reasons and the sunken investment in the large installed base 

makes their use in this dissertation highly cost-effective.  Moreover, the ILD-based 

systems have proven their capability for anonymous vehicle tracking in previous studies, 

and could be potentially applied to reidentify individual vehicles across multiple 

detection stations.  Therefore, the ILD-based system is chosen in this dissertation to 

investigate its capabilities for real-time implementation and freeway corridor deployment.

In this chapter, ILDs-VReID algorithms are reviewed.  In addition, the 

applications of ILD-VReID are demonstrated and discussed.  Details of vehicle detection 

technologies utilized in other vehicle reidentification systems can be found elsewhere 
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(ITE, 1990; Mimbela et al., 2000; Jet Propulsion Laboratory, 1997; Knee et al., 2004).  

The operating principles of ILDs can be found in the Traffic Detector Handbook (ITE, 

1990).

2.1 ILDs-VReID ALGORITHMS

An ILD-VReID system aims to reidentify vehicles by utilizing inductive vehicle 

signatures.  The resulting change in inductance due to the passage of a vehicle over a 

loop detector makes it possible to measure an inductive vehicle signature, which ideally 

is unique to that vehicle.  Advantages of employing an ILD-based system include tracing 

vehicles individually across multiple detection stations without privacy concerns, 

relatively inexpensive deployment, reproducible vehicle signatures, less complexity of 

analysis, and fewer market penetration problems.

The initial investigation of ILD-VReID system was carried out in 1980’s.  Böhnke 

and Pfannerstill (Böhnke and Pfannerstil, 1986; Pfannerstil, 1989) first noticed that 

section-related traffic data could be obtained via reidentifying platoons of vehicles 

passing through a section of a road.  The inductive vehicle signatures were treated as the 

input of a pattern recognition system developed by this research, and the system was 

intended to reidentify a platoon of vehicles.

 Kühne and Immes (1993) proposed an approach, which can reidentify a platoon 

of vehicles via finding the correlation of vehicle feature series at downstream and 
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upstream sites.  However, the algorithm aimed to identify vehicle types rather than 

reidentifying each individual vehicle.  Later on, Kühne et al. (1997) suggested a more 

sophisticated method, which can identify single vehicles (vehicle types) and vehicle 

platoons.

The improved algorithm first normalized vehicle signatures in order to eliminate 

the system sensitivity and detector-specific effects.  The features thus obtained were 

processed for feature comparison.  The authors suggested that reidentifying a single 

vehicle with absolute accuracy was not necessary for accurate section-related measures 

and ten percent of the traffic population was able to generate significant results.  

Furthermore, they also suggest that, “The most promising approach is a mixture of single 

vehicle and vehicle platoon reidentification which use weighting functions… (Kühne et 

al., 1997)."

Sun et al. (Sun, 1998; Sun et al., 1999) suggested an approach, which provided a 

solution to reidentify single vehicles via lexicographic optimization method for freeways.  

In this algorithm, the vehicle reidentification problem was defined as:  given a 

downstream vehicle signature, find the corresponding vehicle signature within a 

candidate vehicle set obtained from an immediately upstream station.  Accordingly, five 

levels were defined in this lexicographic optimization problem including time window 

determination, vehicle classification, vehicle length restriction, vehicle features 

differences minimization and vehicle matching.  The reidentification rates of passenger 

vehicle and non-passenger vehicle were 75% and 78% respectively.
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Furthermore, Tabib and Abdulhai (Tabib, 2001; Tabib and Abdulhai, 2002) 

attempted to improve the fourth level of Sun et al.’s model using different distance 

measurements.  It was found that adopting “waveform shift” could bring in more 

consistent and reliable reidentification results due to its insensitivity to congestion level.

Following Sun et al.’s framework, Oh and Ritchie (Oh and Ritchie, 2002; Oh, 

2003) extended the vehicle reidentification techniques from freeway to a single 

signalization intersection.  To address the turning movement characteristic at intersection, 

a turning filtering optimization level was added to the original model.  The turning 

filtering algorithm mainly depended on travel time estimation for each turning movement 

(left turn, through, and right turn movements).  The reidentification rates under congested 

and non-congested traffic condition for through movement vehicles were 72.1% and 

80.9% respectively.

A decision tree for ILD-VReID was suggested by Tawfik et al. (2004).  Their 

model integrated distances measurements (Abdulhai and Tabib, 2002) into the decision 

tree developed by their previous study (Tawfik et al., 2002).  The authors pointed out that 

although the results demonstrated significant improvement of reidentification rate (90%), 

this method was recommended as a post-processing method for system performance 

evaluation.
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Although the aforementioned studies obtained improved results, some potential 

limitations and disadvantages exist.  For instance, speed estimation processes are 

involved to extract vehicle length information, challenging implementation under single 

loop detection system.  Discussion of these potential limitations is detailed in Section 2.3.

To address this issue, an inductive loop signature-based method for vehicle 

reidentification, named REID-2 was proposed by the author (Jeng and Ritchie, 2005).  

REID-2 used an interpolation method, involved no speed estimation models, and was 

straightforward and readily applied to both single and double loop detectors.  The results 

showed that REID-2 was comparable with the lexicographic vehicle reidentification 

method (REID-1) previously developed and used at UCI (Park and Ritchie, 2004; Sun et 

al., 1999), and was even superior when applied to the single loop case.  The details of 

REID-2 are discussed in Chapter 3.

Kwon and Parsekar (2005) presented a deconvolution method of processing 

inductance waveforms for vehicle reidentification.  The research goal was to restore the 

lost features of vehicle signatures caused by a relatively large detection zone via applying 

a deconvolution process.  The results showed that about 89% reidentification accuracy 

could be achieved by moving the deconvolved signature over likely matches and finding 

the minimum difference.  The performance summary also indicated that the computation 

time was 6.8 seconds with 562 vehicles given deconvolved signatures.  The concept of 

restoring “the details of vehicle signatures that were lost in the raw ILD outputs (Kwon 
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and Parsekar, 2005)” demonstrates a new way to pre-process raw vehicle signature for an 

ILD-VReID system.

2.2 APPLICATIONS OF ILD-VREID

Although individual detection stations can provide essential traffic information, section-

related data is seen to provide more reliable and accurate inputs for traffic surveillance 

and performance measurement systems (Böhnke and Pfannerstill, 1986; Kühne et al., 

1997; Sun et al., 1999; Oh and Ritchie, 2002; Oh and Ritchie, 2003; Park and Ritchie, 

2004; Oh, Tok and Ritchie, 2004).  The development of traffic surveillance and 

performance measurement systems can benefit from utilizing ILD-VReID since section-

related data can be easily generated using the results of ILD-VReID.

Kühne et al. (1997) pointed out that a traffic control system using section-related 

data was more sensitive for congestion detection and delay estimation than using local 

data in their case study.  The results of Sun et al. (1999) also indicated that estimated 

section travel times and section densities for both congested and moderate flow data had 

trivial error (less than 4%).  Furthermore, Park and Ritchie (2004) demonstrated the 

capability of ILD-VReID in vehicle classification, speed variance analysis and driver’s 

lane changing behavior analysis.  The results of this case study show that section speed 

variability was highly influenced by lane change behaviors and long vehicles.
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In addition, ILD-VReID can be applied to real-time level-of service (LOS) criteria 

development.  Oh and Ritchie (2002) suggested that the real-time LOS criteria for 

signalized intersections are useful for real-time performance evaluation and travel 

information.  More recently, Oh, Tok, and Ritchie (2004) extended their original work to 

freeway LOS.  It is worth noting that the real-time LOS criteria for both intersections and 

freeway surveillance systems are readily transferable to other similarly equipped systems.

OD Estimation is one further application of ILD-VReID.  OD information can be 

obtained via utilizing the outputs of ILD-VReID.  Oh (2003) set up a procedure of time-

variant OD estimation for a signalized network using a Monte Carlo simulation method.  

The inputs of the procedure, i.e. the estimated flow, were obtained from the results of 

ILD-VReID.  Path travel time (Oh and Ritchie, 2003) can also be obtained through the 

OD estimation procedure; however, the accuracy of the estimated path travel time may 

not be effective if a low reidentification rate is represented along the path.

2.3 DISCUSSIONS OF ILD-VREID

Following the assumption that each vehicle possesses distinct features, the procedure of 

up-to-date ILD-VReID algorithms (Sun et al., 1999; Oh and Ritchie, 2003; Oh and 

Ritchie, 2002) can be illustrated in Figure 2-1.  In Figure 2-1, raw vehicle signatures are 

normalized based on estimated speed (Sun and Ritchie, 1999; Oh, Ritchie, and Oh, 2002; 

Oh, Ritchie, and Park, 2002), and then, the salient features are extracted for the use of 

matching vehicle signatures.  Furthermore, to reduce the size of feasible search space 
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before matching vehicle features, a spatial search space reduction and a temporal search 

space reduction are performed.

Raw Vehicle Signatures
Processing

Vehicle Signatures
Normalization

Vehicle Signatures
Features Extraction

Spatial Search Space
Reduction

Temporal Search Space
Reduction

Travel Time
Estimation

Turning Movement
Classification

Speed Estimation

Vehicle Signatures
Reidentificaiton

Figure 2-1  The procedure of ILD-VReID algorithm.

The task of spatial search space reduction is to identify the upstream origin of 

each vehicle and a turning movement classification is implemented.  There are two cases 
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for spatial search space reduction:  freeway and arterial.  For the freeway case, the 

upstream origin can be mainline detection stations and/or ramp detection stations.  The 

arterial case is considered more challenging than the freeway case since the traffic flow 

on the arterials are interrupted by signal control.  Given a downstream detection station, 

there are three possible upstream origins if the downstream intersection has four 

approaches.  The details of finding upstream origins for the arterial case are described 

elsewhere (Oh, 2003; Oh, Ritchie, and Park, 2002).

For temporal search space reduction, a time window restriction is applied.  The 

aim of temporal search space reduction is to determine a feasible and reasonable time 

period so that the correct vehicle can be included in the candidate vehicle set.  Besides, 

the computational efficiency should be satisfied at the same time.  Therefore, the 

estimated travel time is utilized to set up the lower and the upper bounds of the desired 

time window.  Additionally, signal control (e.g. ramp metering and signalized 

intersection), detected speed, and posted speed limit are the key factors that affect travel 

time estimation.  A candidate vehicle set can then be found after spatial and temporal 

search space reduction processes.  Finally, each vehicle is reidentified via vehicle features 

matching among its corresponding candidate vehicle set.

Although the aforementioned algorithm can bring out up to 80% correct matching 

rate, several potential disadvantages exist.  First, there are estimation processes involved 

in the procedure of the algorithm including speed estimation, searching upstream origin, 

and travel time estimation.  The accuracy of the estimation processes may deteriorate the 
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later vehicle signature mapping to a certain extent, especially when the system is 

equipped with single loops.  This is because speed information is essential to extract 

electronic vehicle length feature, which is an important feature for the lexicographic 

optimization method (as described below).  Since single loop speed estimation is required 

for the single loop case, the accuracy of the estimated speed will affect the results of 

electronic vehicle length feature extraction.

Secondly, vehicle feature extraction aims to differentiate vehicles sufficiently.  It 

is desirable to maintain a minimum number of vehicle features to deal with the 

computational complexity; however, the selected vehicle features used in the ILD-VReID 

algorithm may not be adequate to represent a vehicle.

Thirdly, for the previously developed ILD-VReID algorithms (Sun et al., 1999; 

Oh and Ritchie, 2003; Oh, Ritchie, and Park, 2002), the lexicographic optimization 

method is adopted.  As mentioned above, five levels are defined in the optimization 

process (Sun et al., 1999):

 First level:  Construct a time window to define a set of feasible upstream 

candidate vehicles.

 Second level:  Discard vehicles that are not from the same vehicle class as the 

downstream vehicle from the candidate vehicle set obtained in the first level 

via setting a percentage tolerance for maximum inductance magnitude.
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 Third level:  Reduce the size of the candidate vehicle set by setting a 

percentage tolerance for electronic vehicle lengths.

 Fourth level:  Minimize the difference between upstream and downstream 

vehicle features including shape,  magnitude, lane position, and speed features 

(via computing distance measures).  The objective function is formulated as a 

linear function using weighted averaging.

 Fifth level:  Choose a suitable distance measure that is best given the distance 

measures used in the fourth level.

For the first level, the time window can be deterministically or dynamically 

defined using historical travel times for off-line analysis, and latest maximum and 

minimum travel times or current local speeds for real-time implementation.  However, 

when there are single loop detectors placed in the network, a single loop speed estimation 

algorithm is necessary (Sun and Ritchie, 1999; Oh, Ritchie, and Oh, 2002) in order to 

construct the time window; but our experience to date is that use of such algorithms 

causes vehicle reidentification performance to decline.

In addition, the speed estimation algorithms for single loop detector may vary for 

different types of detectors (e.g. square loops or round loops) and a calibration is 

necessary prior to the implementation.  Furthermore, for the objective function in the 
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fourth level, the weights are determined using historical data, and the optimal distance 

measure is selected in the fifth level using an historical/calibration dataset (Sun et al., 

1999).  Although these procedures can be performed in real-time, the task of defining a 

training set used for fourth and fifth levels, and the optimization procedure will 

complicate the ILD-VReID problem.

Finally, the estimated travel times are obtained using a subset of vehicles with 

higher match probability, and discriminant thresholds are used for this purpose.  However, 

since the size of the subset is a function of the discriminant threshold, it should be chosen 

carefully (Sun et al., 1999).

To address those difficulties, a new approach utilizing an interpolation method, 

which is straightforward and readily applied to both single and double loop detectors, is 

proposed in Chapter 3.
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CHAPTER 3 INTERPOLATION METHOD FOR VEHICLE 

REIDENTIFICATION

3.1 BACKGROUND STUDY OF REID-2

As discussed in Chapter 2, the previously developed ILD-VReID algorithms possess a 

number of limitations.  Therefore, a new approach utilizing an interpolation method is 

proposed to address those difficulties.  Assume there are two vehicle signatures to be 

matched as shown in Figure 3-1.  The x-axis and y-axis denote number of samples and

inductance magnitude respectively.
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Figure 3-1  Vehicle signatures obtained from ILD.
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The vertical differences between two signatures are due to the different detectors 

and external environmental factors while the horizontal differences between two 

signatures are caused by different speeds.  Those differences can be eliminated using 

normalization techniques, which avoid unnecessary estimation processes.

For example, the y-axis can be normalized using the maximum magnitude for 

each vehicle signature; however, another issue has to be addressed after data 

normalization process.  The size of the datasets of each vehicle signature may not be the 

same because the durations that the ILD are activated may vary, i.e. the same vehicle may 

travel at different speeds at upstream and downstream detection stations.

For instance, if the vehicle is traveling at a relatively higher speed, the duration 

that the ILD is activated is shorter and fewer data points are generated.  Similarly, the 

duration that the ILD is activated is longer and more data points are generated if the 

speed of the vehicle is lower.  To address this issue, an interpolation method is suggested.  

Based on an assumption that a vehicle maintains a constant speed when it traverses an 

ILD, the speed can be treated as a scalar on the x-axis.  Hence, an equidistance 

interpolation is capable of rescaling the vehicle signatures along the x-axis and 

calculating the magnitudes corresponding to the interpolated data points.  The key point 

is to match vehicle signatures via computing the vertical differences, i.e. the differences 

of magnitudes for each data point (see Figure 3-1).
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However, while the same vehicle will generate exactly the same vehicle signature 

every time it passes by an ILD in an ideal detection system (Ritchie and Sun, 1998), there 

are some common scenarios that cause detection errors and those detection errors may 

result in a “no match” case:

 Tailgating:  If a vehicle is following another vehicle too closely, the lead 

vehicle and the tailgating vehicle may generate one combined signature 

instead of two distinct signatures.

 Lane changing:  If a vehicle is changing lanes, it may hit the ILD partially.  

This will not keep vehicle signatures intact, and the traffic characteristic such 

as the occupancy and the speed will be affected.

 External factors:  Variations in ILD and adjacent environment conditions will 

bring in disturbances. 

It is important to notice that the proposed method is based on the hypothesis that 

the vehicle signatures can be seen as the fingerprint of each individual vehicle and all the 

ILDs are identical.  In other words, a vehicle will possess the same normalized signatures 

when it passes by all the detection stations (Ritchie and Sun, 1998).

To formulate the vehicle reidentification problem via the interpolation approach, 

assume the functions of the downstream target vehicle signature (DS Target) and the 
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upstream candidate vehicle signature (US Candidate) can be expressed as )(
iAxf  and 

)(
jBxf  respectively, where:

)(
iAxf DS Target, mi ,,2,1 

)(
jBxf US Candidate, nj ,,2,1 

where the function values are the changes in magnitude, and 
iAx and 

iBx  denote 

the time intervals.

All the data are at equidistant time intervals.  The objective is to find the most 

alike vehicle signature among all upstream candidate vehicle signatures given a 

downstream target vehicle signature.  If nm  , the problem can be formulated as shown 

in Equations 3.1 and 3.2:
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where l  is the number of upstream candidate vehicle.

For the case that the number of data points of the upstream candidate vehicle 

signature varies from that of the downstream target vehicle signature ( nm  ), the sizes 

of the given data sets have to be equalized, which means to set nm   and to estimate the 

function values of the added data points.  However, there are only data points instead of 

an analytic expression, and the functions of the two vehicle signatures are unknown.  

Approximation algorithms may provide a way to build a function that can approximate 

vehicle signatures, but it is computationally expensive to find an approximation function 

for each individual vehicle and this method will not promise pass through all known data 

points.  Therefore, interpolation algorithms are suggested in this dissertation.

After implementing interpolation process, the Equation 3.2 can be rewritten as:

mnifxIfxfxxf
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m
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i
BkAkBAk
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iiii
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1

1
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


(3.3)

where 
iAxI  and 

iBxI  is the new data set with interpolated points.

In general, interpolation algorithms can be categorized as follows:
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 Linear interpolation:  Assume the function values are changing at a constant 

rate.

 Polynomial interpolation:  It is a process that fitting a polynomial to a given 

data set and is often applied when the data points are not linearly correlated.

 Rational interpolation:  This method is for finding interpolation function using 

quotients of polynomials and is applied to functions with poles.

 Trigonometric interpolation:  It is a combination of the cosine and sine 

functions and is superior in finding interpolation functions that are periodic of 

a known period.

 Cubic spline interpolation:  It is a kind of piecewise curve fitting method.  

This method utilizes piecewise functions (these pieces may overlap) and 

calculates an intermediate function value between bounding values.

For the ILD-VReID problem, it is known that the data are equidistance distributed, 

and it can be observed from Figure 3-1 that interpolated function values will not be 

singularity points or lie in the proximity of a pole.  In addition, the data points are neither 

linearly nor periodically scattered.  Therefore, polynomial interpolation and spline 

interpolation methods are viable for this dissertation research, and will be further 

discussed.
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3.2 REVIEWS OF INTERPOLATION ALGORITHMS

3.2.1 Polynomial Interpolation

Newton Interpolation

In Newton interpolation, it is not necessary that the function values are given at equal 

intervals and the function is defined by:

nnn axxxxxxaxxxxaxxaxP )())(())(()()( 110210100   (3.4)
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if the x  values are equidistance data, Newton-Gregory forward or backward 

interpolation can simplify the computation process.

Newton-Gregory Forward Interpolation

In Newton-Gregory forward interpolation, the function is defined by:
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where,
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It is obvious that h  is a constant since the data are equispaced.

Newton-Gregory Backward Interpolation

In Newton-Gregory backward interpolation, the function values are fitted at nx  to 0x , 

and the function is defined by:
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where s  and h  are the same as defined in Newton-Gregory forward interpolation
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Hermite Interpolation

In Hermite interpolation, the function is given by n  points ),( ii fx  and by m  derivatives 

)(k
if  at each point.  The function is defined by:
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Lagrange Interpolation

In Lagrange interpolation, the function is given by n  points ),( ii fx  and the function is 

defined by:
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where
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Inverse Interpolation

Inverse interpolation is an approach that finds the x  values corresponding to given 

function values.  The function is defined by:
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Gauss Forward Interpolation

Gauss forward interpolation fits data at ]]2/[[nx  to ]]2/1[[ nx , and the function is defined by:
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where 
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Gauss Backward Interpolation

Gauss backward interpolation fits data at ]]2/1[[  nx  to ]]2/[[nx , and the function is defined 

by:
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Stirling Interpolation

Stirling interpolation is based on a diagonal difference table and the data are fitted at 

]]2/[[nx  to ]]2/[[nx  (if n  is even).  The function is defined as:
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Bessel Interpolation

Bessel interpolation utilizes diagonal difference table that is similar to Stirling 

interpolation.  The data are fitted at ]]2/[[nx  to ]]2/1[[ nx  (if n  is odd).  The function is 

defined as:
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3.2.2 Cubic Spline Interpolation

This is a method that passes “a set of cubics through the points, using a new cubic in each 

interval” (Gerald and Wheatley, 1989).  In other words, cubic spline interpolation 

algorithm is a kind of piecewise curve fitting method.  For the case with equal interval, 

given ith interval, the cubic function connecting points ),( ii fx  and ),( 11  ii fx  is defined 

by:

iiiiiii dxxcxxbxxaf  )()()( 23
(3.14)
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Moreover, 0
2 f  and nf

2  are commonly set to be zero at the endpoints in order to 

construct a boundary condition.  This is called a natural spline interpolation.

3.2.3 Comparison of selected Interpolation Algorithms

For polynomial interpolation algorithms described in Section 3.2.1, all of them are the 

variation of divided differences methods except Lagrange interpolation.  For Lagrange 

interpolation, it is advantageous to build a polynomial interpolation function for unevenly 

spaced data.  However, this method produces relatively larger error due to oscillation 

when the data points are close together (Gerald and Wheatley, 1989).

Among the divided difference methods, inverse interpolation is to find the x’s, 

which is not considered in the proposed method, and Hermite interpolation is applicable 

when there exists an analytical expression and the derivatives up to a certain order are 
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known.  Furthermore, Newton-Gregory forward and backward interpolations, Gauss 

forward and backward interpolations, Stirling interpolation, and Bessel interpolation are 

suitable to be applied to equidistance data and will generate identical polynomial when 

going through the same data points.

For cubic spline interpolation, since it is a piecewise curve fitting method, this 

function represents smooth curves through the data points.  Hence, despite the drawback 

of lower computational efficiency, cubic spline interpolation yields fewer oscillations that 

other interpolation formula may create (Gerald, 1989; Recktenwald, 2000).  Therefore, 

cubic spline interpolation is preferable in practice and is chosen for implementing the 

proposed method.

After implementing the interpolation process, the vehicle reidentification problem 

can be rewritten as Equations 3.15 and 3.16.  Given a downstream target vehicle 

signature, the objective is to find the most alike vehicle signature among all upstream 

candidate vehicle signatures.
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max (3.15)
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)(
iAxf DS Target, mi ,,2,1 

)(
jBxf US Candidate, nj ,,2,1 

where, the function values of )(f  and )(f  are the reductions in magnitude, and 

iAx  and 
iBx  denote the time intervals and:

l :  The number of upstream candidate vehicles

)(
iAxf :  The function of the downstream target vehicle signature (DS Target)

)(
jBxf : The function of the upstream candidate vehicle signature (US Candidate)

iAxI  and 
iBxI :  The new data set with interpolated points
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3.3 PROCEDURE OF REID-2

Based on an assumption that a vehicle will possess the same normalized signature when it 

passes by detection stations (Ritchie and Sun, 1998), the key idea of REID-2 is to match 

vehicle signatures by computing and summing the difference in magnitudes for each 

interpolated data point.  Vehicle matches are identified based on search methods applied 

to the summed magnitude differences, within appropriate time windows.  The procedure 

of REID-2 is illustrated in Figure 3-2.

As shown in Figure 3-2, the inputs are the raw vehicle signature data for a target 

vehicle and all other vehicles that passed by its corresponding upstream detection 

station(s).  The magnitude of each individual vehicle will be normalized using its range 

and the normalized magnitudes distribute from zero to one.  Only a subset of each vehicle 

signatures that the normalized magnitudes are within the range from 0.2 to 1.0 will be 

selected in order to eliminate variations between different detection stations caused by the 

external environment factors.

To define a feasible candidate vehicle set, temporal search space reduction that 

establishes a feasible time period for searching possibly matched vehicles at upstream 

detection stations (Sun et al., 1999; Oh and Ritchie, 2003; Oh, 2003) is performed.  Since 

the aim of temporal search space reduction is to include correct vehicles in the candidate 

vehicle set, estimated travel times are utilized to set up the lower and the upper bounds of 

the desired time window.
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Figure 3-2 The procedure of REID-2 algorithm.
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After a candidate vehicle set is found, the operation of REID-2 can be 

summarized in five steps:

Step 1:  Given a downstream target vehicle signature and an upstream candidate 

vehicle signature, compare the number of data points

Step 2: Stretch the vehicle signature with fewer data points to make both 

downstream and upstream vehicle signatures have same number of data 

points using cubic spline interpolation method

Step 3: Compute and sum up the differences of normalized magnitudes between a 

downstream target vehicle and an upstream candidate vehicle

Step 4:  Find the average of the total magnitudes differences (AMD)

Step 5:  Perform minimum AMD searching approach

The minimum AMD searching approach aims to maximum the amount of 

matched vehicles.  Thus, the approach firstly defines an upstream candidate vehicle set 

for a downstream vehicle within a time window.  In addition, a reverse time window is 

applied to each upstream candidate vehicle to find its corresponding candidate vehicle set 

at its downstream.  Both upstream and downstream candidate vehicle sets are sorted in 

ascending order according to the magnitude differences.  Starting from looking into the 
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first feasible upstream candidate vehicle (i.e. with the minimum AMD), for example, 

US_3, given the downstream vehicle (DS_1), the results of vehicle signatures matching 

can be categorized into two groups:

 System correct match:  if the first feasible downstream candidate vehicle for 

US_3 is DS_1, the proposed algorithm will treat DS_1 as “system correct 

match case,” and DS_1 and US_3 will be crossed out from the candidate 

vehicle sets.  Otherwise, the approach will look into the next feasible upstream 

candidate vehicle for DS_1.  The searching procedure is repeated and will be 

terminated when there is no feasible upstream candidate vehicle exists for 

DS_1.  When the searching procedure is terminated, the minimum AMD 

searching approach will re-search the upstream candidate vehicle list, and the 

first feasible upstream candidate vehicle will be chosen as the matched vehicle 

at upstream.

 System no match:  If there is no feasible upstream candidate vehicle after 

performing the searching procedure described above, the proposed algorithm 

will treat DS_1 as “system no match” case.

The process is implemented for all downstream vehicles first, and then the process 

is implemented for all upstream vehicles.  “Iteration” thus consists of one search for 

downstream vehicles and one search for upstream vehicles.  The iterations end when all 

downstream vehicles are assigned to the aforementioned groups.  This minimum AMD 
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searching approach ensures that vehicles can only be matched once, and decreases the 

number of system no match cases.  It must be noted that for the system correct match 

case, a vehicle may be mismatched, and it can be examined via ground-truthed data.

Five performance indices (Oh, 2003) including total matching rate (TMR), correct 

matching rate (CMR), mismatching rate (MR), reliability rate (RR), and mean absolute 

percentage error (MAPE) of estimated travel times are selected for the performance 

evaluation:

 vehiclesofnumber total

 vehiclesmatchedofnumber total
TMR (3.17)

 vehiclesofnumber total

 vehiclesmatchedcorrect ofnumber total
CMR (3.18)

 vehiclesofnumber total

 vehiclesmismatchedofnumber total
MR (3.19)

TMR

CMR
RR  (3.20)
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where,

nobsTTime , : Observed average travel time at time step n  (ground-truthed)

nestTTime ,  : Estimated average travel time at time step n  (reidentification 

algorithm)

N      : Total number of time steps

3.4 CASE STUDY

3.4.1 Data Description

A dataset including twenty minutes of vehicle signature and video ground-truthed data 

for case study was obtained from the northbound I-405 freeway on July 23rd, 2002, 

between 15:00 and 15:20.  The study site was about 0.63-mile in length, and there were 

two contiguous detection stations at Laguna Canyon (LC; upstream) and Sand Canyon 

(SC; downstream).  Both detection stations were equipped with square double loop 

detectors in each lane.  In this dissertation, results from the first loop of each double loop 

pair were used in order to replicate single loop operations.  This dataset was collected 

under moderate flow traffic (1,300 VPHPL (vehicles-per-hour-per-lane)), and consisted 

of 2,533 vehicle signatures for each detection station.  The same dataset has been utilized 

for other research purposes and the research outcomes can be found elsewhere (e.g. Park 

and Ritchie, 2004; Oh, Tok and Ritchie, 2004).
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To evaluate the performance of REID-2, the lexicographic optimization method 

(REID-1) previously developed at UCI (Park and Ritchie, 2004; Sun et al., 1999) was 

also implemented.  The approach of REID-1 is discussed in Chapter 2.  The size of the 

time window for REID-2 was the same for all vehicles and was calculated based on the 

speed distribution at Laguna Canyon, where the minimum was 50mph and the maximum 

was 90mph.  The lower bound and upper bound of the time window were set to be 28.0 

seconds (i.e., 90mph) and 48.0 seconds (i.e., 50mph), respectively.  For the time window 

setting applied to REID-1, vehicle types and lane types were considered in addition to 

speed.  The size of the time window for REID-1 is described as follows:

If (HOV (High Occupancy Vehicle) lane)

{ 

lower bound = 28.0 sec;

upper bound = 37.0 sec;

}

else

{

if (vehicle type = long trailer)

{

lower bound = 35.0 sec;

upper bound = 48.0 sec;

}

else
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{

lower bound = 29.0 sec;

upper bound = 43.0 sec;

}

}

In addition, vehicle signatures obtained from the front loop of the double loop 

detectors were selected to emulate single loop detectors.  REID-1 was also implemented 

for single loop and double loop cases, and the results were then compared with the results 

obtained from REID-2.

Furthermore, for the case with double loop, both front and rear loops’ signatures 

at downstream and upstream detection stations can be utilized to increase the probability 

of obtaining good vehicle signatures for REID-2.  For instance, a vehicle, DS_1, can 

produce two vehicle signatures at downstream detection station (say d1 and d2) and its 

corresponding candidate vehicle, US_1, can produce two vehicle signatures at upstream 

detection station (say u1 and u2).

These four vehicle signatures are grouped as (d1, u1), (d1, u2), (d2, u1), and (d2, 

u2).  The process of finding magnitude difference (MD) is performed for all four groups, 

and the group with minimum MD is chosen as the final MD for DS_1 and US_1.  This 

method is significant when only one of the vehicle signature obtained from a double loop 

detector is clean.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


44

It was observed that the total number of iterations to perform the AMD searching 

approach for the double loop case was 41 in contrast to 52 for the single loop case.  The 

performance indices for both double and single loop cases are plotted in Figure 3-3, and 

the results of the first 10 iterations are detailed in Table 3-1.
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Figure 3-3  Performance evaluation of REID-2.
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As shown in Figure 3-3, there is an immediate sharp increase in the TMRs, and at 

the same time, there is a rapid drop in the RRs, at the beginning of the minimum AMD 

searching iterations.  After approximately five iterations, all of the performance indices 

remain stable.  The declines in the RRs indicate that although the matching possibility is 

increased via REID-2, the longer iterations result in more mismatched cases and fewer 

correctly matched cases.

Since the system performance was evaluated via the RRs, the results obtained 

from the first iteration for both double and single loop cases, which generate the best RR, 

were selected for further analyses as discussed in the following sections.  It must be 

noticed that although the RRs thus obtained were improved, the CMRs were decreased as 

a trade-off for both cases.
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Table 3-1 The Results of the Performance Indices for REID-2 (10 iterations)

1 2 3 4 5
No. of Iterations Double 

Loop
Single 
Loop

Double 
Loop

Single 
Loop

Double 
Loop

Single 
Loop

Double 
Loop

Single 
Loop

Double 
Loop

Single 
Loop

Correct Matched Volume 1864 1767 1907 1812 1922 1832 1924 1843 1924 1844

Mismatched Volume 358 366 479 474 537 555 560 588 564 608

No Matched Volume 311 400 147 247 74 146 49 102 45 81

Total Matched Volume 2222 2133 2386 2286 2459 2387 2484 2431 2488 2452

Total Volume 2533 2533 2533 2533 2533 2533 2533 2533 2533 2533

Matching Rate --------------------------------------------------------------------------------------

CMR 73.59% 69.76% 75.29% 71.54% 75.88% 72.33% 75.96% 72.76% 75.96% 72.80%

MR 14.13% 14.45% 18.91% 18.71% 21.20% 21.91% 22.11% 23.21% 22.27% 24.00%

No Matched Rate (NMR) 12.28% 15.79% 5.80% 9.75% 2.92% 5.76% 1.93% 4.03% 1.78% 3.20%

TMR 87.72% 84.21% 94.20% 90.25% 97.08% 94.24% 98.07% 95.97% 98.22% 96.80%

RR 83.89% 82.84% 79.92% 79.27% 78.16% 76.75% 77.46% 75.81% 77.33% 75.20%

6 7 8 9 10
No. of Iterations Double 

Loop
Single 
Loop

Double 
Loop

Single 
Loop

Double 
Loop

Single 
Loop

Double 
Loop

Single 
Loop

Double 
Loop

Single 
Loop

Correct Matched Volume 1924 1845 1924 1845 1924 1845 1924 1845 1924 1845

Mismatched Volume 564 620 564 626 564 628 564 628 564 628

No Matched Volume 45 68 45 62 45 60 45 60 45 60

Total Matched Volume 2488 2465 2488 2471 2488 2473 2488 2473 2488 2473

Total Volume 2533 2533 2533 2533 2533 2533 2533 2533 2533 2533

Matching Rate --------------------------------------------------------------------------------------

CMR 75.96% 72.84% 75.96% 72.84% 75.96% 72.84% 75.96% 72.84% 75.96% 72.84%

MR 22.27% 24.48% 22.27% 24.71% 22.27% 24.79% 22.27% 24.79% 22.27% 24.79%

NMR 1.78% 2.68% 1.78% 2.45% 1.78% 2.37% 1.78% 2.37% 1.78% 2.37%

TMR 98.22% 97.32% 98.22% 97.55% 98.22% 97.63% 98.22% 97.63% 98.22% 97.63%

RR 77.33% 74.85% 77.33% 74.67% 77.33% 74.61% 77.33% 74.61% 77.33% 74.61%
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3.4.2 Reidentification Performance

The comparisons between REID-1 and REID-2 are tabulated in Table 3-2.  It can be seen 

from Table 3-2 that, for the double loop case, the CMR of REID-2 is 73.59%, while the 

CMR of REID-1 is 72.13%.  For the single loop case, the CMR of REID-2 is 69.76%, 

while the CMR of REID-1 is only 58.07%.

In addition, although the TMR of REID-2 (87.72%) is greater than that of REID-1 

(80.77%), the RR is 83.89%, which is less than the RR of REID-1 (89.30%) for the 

double loop case.  The more important findings are observed from the single loop case.  

Not only the TMR of REID-2 (84.21%) is greater than that of REID-1 (72.52%), but also 

the RR (82.84%) is higher than the RR of REID-1 (80.08%).  The effects on the different 

levels of the reliability rate can be examined via the accuracy of the estimated travel 

times and that will be discussed in the next section.

In spite of the lower RR of REID-2 for the double loop case, the results are quite 

encouraging since the CMR of REID-2 for double and single loop cases is superior to 

that of REID-1.  Moreover, for the single loop case, the higher RR implies that REID-2 is 

more reliable than REID-1.
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Table 3-2 Comparisons between REID-1 and REID-2

REID-2 REID-1
Speed Configuration

Methods for
Vehicle Reidentification Double Loop Single Loop

Double Loop Single Loop
Correct Matched Volume 1864 1767 1827 1471
Mismatched Volume 358 366 219 366
No Matched Volume 311 400 487 696
Total Matched Volume 2222 2133 2046 1837
Total Volume 2533 2533 2533 2533

Matching Rate -----------------------------------------------------------------
CMR 73.59% 69.76% 72.13% 58.07%
MR 14.13% 14.45% 8.65% 14.45%

NMR 12.28% 15.79% 19.23% 27.48%
TMR 87.72% 84.21% 80.77% 72.52%
RR 83.89% 82.84% 89.30% 80.08%

It is worth reiterating that a major potential contribution of REID-2 is application 

to single loop vehicle reidentification and performance measurement.  This is due to 

elimination of the speed estimation procedure for the single loop case.  In addition, 

REID-2 for vehicle reidentification may be potentially applied to square and round single 

loops without speed model re-estimation, or suffering the degradation without speed re-

estimation.

3.4.3 Travel Time Accuracy Evaluation

The results of travel time accuracy evaluation are shown in Figures 3-4 to 3-7.  It can be 

expected that the double loop case will perform better than the single loop dose, since the 

double loop case possesses higher RR.  Figure 3-4 depicts the average MAPEs for each 
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aggregation time interval.  There are 60 aggregation periods ranging from 5-seconds to 

300-seconds in this study.  Overall, the average MAPEs are about within the range of 

1.00% to 2.50% for REID-2.  In addition, it was observed that the double loop case 

results brought out less MAPEs (about 21.97% lower on the whole) than the single loop 

case did for REID-2.  It is because the double loop case has higher possibility to produce 

and to find “good” vehicle signatures.
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Figure 3-4  Mean absolute percentage error (MAPE) for travel time estimation.
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The average travel times for each aggregation time interval are demonstrated in 

Figure 3-5.  It can be observed that for both double and single loop cases, REID-2 has the 

tendencies to overestimate the travel times.  It may be due to the algorithm is more likely 

unable to catch those vehicles traveling with relatively higher speed.  In other words, 

vehicles traversing with relative higher speed are less likely to be matched by REID-2.
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Figure 3-5  Average estimated travel time accuracy analysis.

This is explainable since a vehicle traveling at a relatively higher speed will 

generate fewer data points, and less information can be used for REID-2.  That means the 

errors caused by the interpolation function will emerge as an issue for the magnitude 
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differences calculation.  That is to say, the results of the magnitude differences 

calculation will involve more interpolation errors for the vehicles traveling at higher 

speeds (i.e., less possibility to be reidentified).  Since it is relatively easy to reidentify 

vehicles with lower speeds, the estimated travel times for the interpolation method are 

greater than the true travel times.

Moreover, it can be seen that REID-1 can provide more accurate estimates of 

travel times than REID-2 does, in general.  However, in view of stability, REID-2 leads 

to more stable average MAPEs than REID-1 does (see Figure 3-4); the estimated travel 

times follow the trend of the actual travel times (see Figure 3-5).  This is because REID-1 

brings in more no-match cases, and it is more likely that no vehicle can be reidentified for 

certain time intervals.  If the time window restriction is constructed based on the 

estimated travel time obtained from the previous time interval, the size of the time 

window may not be well defined because of the instability of MAPEs.  This may cause 

possibly matched vehicles at upstream detection stations not to be properly included.

Figure 3-6, Figure 3-7, Figure 3-8, and Figure 3-9 demonstrate the selected results 

of the comparison of estimated travel times given different aggregation periods including 

10-seconds, 20-seconds, 30-seconds, 60-seconds, 180-seconds, and 300-seconds.  There 

are zero travel times when the aggregation interval is less than 20 seconds.  This is 

because there is no vehicle passing by the downstream detection station or no vehicle is 

reidentified at the aggregation interval.
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Figure 3-6  Comparisons of travel times (Double loop):  10-sec, 20-sec, and 30-sec.
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Figure 3-7  Comparisons of travel times (Double loop):  60-sec, 180-sec, and 300-sec.
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Figure 3-8  Comparisons of travel times (Single loop):  10-sec, 20-sec, and 30-sec.
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Figure 3-9  Comparisons of travel times (Single loop):  60-sec, 180-sec, and 300-sec.
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For both single and double loop cases, it can be found that smaller errors and 

stability can be achieved when the aggregation time interval is greater than 30 seconds.  

Additionally, the 180-second and 300-second aggregation result in smooth curves and 

hence they are relatively insensitive to reflect the real world.

3.5 SUMMARY

In this chapter, a new vehicle reidentification algorithm using an interpolation method, 

named REID-2, was explored.  The key idea of the proposed method is to find the 

minimum magnitude differences given a downstream vehicle and its corresponding 

upstream candidate vehicles.  The case study showed that REID-2 is comparable with 

REID-1 and is even advantageous because REID-2 involves no speed estimation models, 

is straightforward, and is readily applied to both single and double loop detectors.

The potential contribution of the proposed method is application to square and 

round single loop (which in California are far more common than double loop 

installations) vehicle reidentification, while avoiding issues associated with re-estimation 

or transferability of the speed models used in the previously developed approach.

The next step is to investigate the feasibility of REID-2 for real-time 

implementation, and these investigations are presented in Chapter 4.  In addition, the 

study site described in this chapter included only one single freeway section, and REID-2 
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was implemented under moderate traffic flow conditions.  Therefore, further research is 

conducted to extend single-sections to multi-sections along a freeway, as demonstrated in 

Chapter 5.  Different levels of traffic flows are also taken into account in that chapter.
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CHAPTER 4 DATA COMPRESSION AND

TRANSFORMATION METHOD FOR REAL-TIME 

VEHICLE REIDENTIFICATION (RTREID-2)

A new vehicle reidentification algorithm (REID-2) developed in Chapter 3 is oriented 

toward algorithm simplification, but also demonstrates the added benefits of improved 

performance and much broader potential applicability (to both round and square single 

inductive loops) compared with earlier methods.  However, the basis of REID-2 is 

directly matching inductive vehicle signatures, which typically consist of 200~1,200 data 

points (stored as integers, and obtained from IST-222 detector cards) per signature.  The 

size of the vehicle signature may become an issue since the field computational resources 

in traffic operations and the bandwidth of field communication links are often quite 

limited.

Therefore, the purpose of this chapter is to investigate if a relatively simple data 

compression and transformation technique could be applied successfully to the raw 

inductive signatures of individual vehicles, with the resulting transformed vehicle 

signatures used as the inputs of the vehicle reidentification system.  To achieve this aim, 

a Piecewise Slope Rate (PSR) approach is utilized to compress and transform the raw 

vehicle signatures, and the PSR approach is adopted for Real-Time REID-2 (RTREID-2).
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4.1 INTRODUCTION

Field computational resources in the traffic operations as well as the bandwidth of field 

communication links are often quite limited.  Accordingly, for real-time implementation 

of ATMIS strategies, such as vehicle reidentification, there is strong interest in 

development of field-based techniques and models that can perform satisfactorily while 

minimizing field computational and communication requirements.

This can be achieved through use of simplified algorithms, and reducing the 

number and size of data items to be communicated from the field.  The relative 

importance of each of these aspects may vary with different applications, system 

architectures, and hardware and software environments, but each can play an important 

role.

The development of REID-2 is oriented toward algorithm simplification.  

However, the basis of REID-2 is to directly match inductive vehicle signatures, which 

typically consist of 200~1,200 data points (stored as integers).  To compress and 

transform raw vehicle inductive signatures, a Piecewise Slope Rate (PSR) approach is 

adopted for Real-Time REID-2 (RTREID-2).  If successful, the reduction in 

computational effort and in computer memory needed to store individual signatures could 

potentially benefit both the field computational and communication requirements for 

implementing RTREID-2 in a real-time setting.
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4.2 VEHICLE SIGNATURE TRANSFORMATION

As mentioned above, raw vehicle signatures are used as the inputs for REID-2, and each 

signature typically consists of about 200~1,200 data points.  The variation of the data 

points for each vehicle signature mainly results from different vehicle lengths and 

traveling speeds.  Since the purpose of this chapter is to reduce the size of the input data 

for REID-2, any approach that is capable of compressing raw vehicle signatures can be 

considered.

However, in order to compress and transform raw vehicle signatures at the same 

time (i.e., to reduce the data size and keep as much of the information of the raw 

signature), a set of piecewise information obtained from the raw vehicle signature is 

preferred.  A simple way to compress and transform the raw vehicle signature is to use 

slope rate features.  While various statistics such as mean, median and others have some 

potential for this aim, a slope value is more useful.  This is because the slope feature can 

be seen as a linear approximation to the raw vehicle signature.

Therefore, instead of using the whole raw vehicle signature as the input, the 

proposed method of RTREID-2 uses piecewise slope rate (PSR) values to reidentify 

individual vehicles.  The idea of RTREID-2 is to match vehicle signatures by computing 

and summing the differences among extracted PSR values.  Vehicle matches are then 

identified by applying a search across the averaged PSR differences, within appropriate 

time windows.  Given a downstream target vehicle and its corresponding upstream 
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candidate vehicle set, the first three steps for REID-2 are therefore modified and the 

procedure of RTREID-2 can be summarized in five steps, as illustrated in Figure 4-1:

Step 1:  Stretch or shrink vehicle signatures to obtain an identical number of data 

points per vehicle signature (assigned arbitrarily; say 840 data points, 

denoted as CASE_840, as shown in Figure 4-1) using a cubic spline 

interpolation method.

Step 2:  Calculate slope rate (SR) at a fixed size of interval (assigned arbitrarily; 

say every 28 data points, which will generate 30 piecewise slope rate 

(PSR) values (or PSR = 30) given 840 data points).  For example, assume 

a data point located at    2236.0  ,28  , 11 yx .  Given that the slope rate 

is calculated every 28 data points, the next data point of interest will be 

located at    4747.0  ,56  , 22 yx .  Therefore, the slope rate is:  

 
 

 
  007986.0

2856

2236.04747.0

12

12 







xx

yy
.

Step 3:  Sum up the differences between the PSRs obtained from the downstream 

target vehicle and the upstream candidate vehicle signatures directly.

Step 4:  Find the average of the total PSRs differences obtained from Step 3 

(AMD).

Step 5:  Perform a minimum AMD search.
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(a) Step 1:  Data Interpolation (CASE_840)
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(b) Step 2:  Slope Rate Calculation

Piecewise Slope Rate (PSR = 30)
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(c) Step 2 (cont):  Piecewise Slope Rate Plot
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(d) Steps 3 - 5:  Vehicle Signature Matching

Figure 4-1  The procedure of RTREID-2.
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It must be noted that since the size of the interpolated vehicle signature and the 

number of PSR values are assigned arbitrarily, a sensitivity analysis is performed in the 

next section to evaluate the effects caused by these assignments.  To facilitate comparison, 

a case study for implementing RTREID-2 is constructed based on the framework 

designed in Chapter 3.  In addition, five performance indices (Oh, 2003) including total 

matching rate (TMR), correct matching rate (CMR), mismatching rate (MR), reliability 

rate (RR), and mean absolute percentage error (MAPE) of estimated travel times are 

selected for the performance evaluation.

  

4.3 CASE STUDY

4.3.1 Sensitivity Analysis for Reidentification Performance

For analyzing the effects of the different sizes of the interpolated vehicle signatures, eight 

cases were constructed for sensitivity analysis.  Furthermore, different PSR values were 

assigned to each case for further evaluation, and the details are tabulated in Table 4-1.  

The CMR, MR, TMR, and RR were used for performance evaluation.  In addition to the 

four performance indices, a travel time estimation accuracy index (TTEst) was also 

computed (see Equation 4.1) based on the vehicle reidentification results:

  %1001  MAPETTEst (4.1)
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Table 4-1  Cases for Sensitivity Analysis

# of Data Points after Performing Interpolation
30 60 120 180 280 560 840 1120

Case_ID

# of PSR
Case_30 Case_60 Case_120 Case_180 Case_280 Case_560 Case_840 Case_1120

PSR = 5 X X X X
PSR = 7 X X X X
PSR = 10 X X X X X X X X
PSR = 14 X X X X
PSR = 15 X X X X
PSR = 20 X X X X X X X
PSR = 28 X X X X
PSR = 30 X X X
PSR = 40 X X X X
PSR = 60 X X
PSR = 70 X X X X
PSR = 90 X
PSR = 140 X X X X
PSR = 280 X X X

Representative results of the sensitivity analysis are summarized in Figure 4-2 and 

Figure 4-3.  High values of all indices, except for MR, are preferred.  It can be observed 

from Figure 4-2 that larger sizes (Case_ID) for the interpolated vehicle signature and 

larger PSR values result in better performance, i.e. higher values of reliability rate (RR).  

Moreover, all the cases have comparable performance if PSR is equal to or greater than 

20.  However, with larger PSR values (i.e., PSR > 20), the size of the interpolated vehicle 

signature has less effect on the overall performance of the travel time estimation (see 

Figure 4-3).
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Figure 4-2  Summary of sensitivity analysis based on RR.
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Figure 4-3  Summary of sensitivity analysis based on average MAPE.
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For computational performance, the computation time included the time to 

complete the five steps for implementing RTREID-2 and to write the outputs into text 

files.  The results show that the computation time ranges from 0.628 seconds to 1.124 

seconds per vehicle and larger PSR values require more computational effort (see Figure 

4-4).

Although it was found that CASE_180 with PSR = 90 generated the best 

performance, smaller PSR values, such as PSR ≤ 30, are preferable to alleviate 

computational effort.  Given PSR ≤ 30, Case_60 with PSR = 30 provided the best 

outcomes.  Hence, both Case_180 with PSR = 90 and Case_60 with PSR = 30 were 

selected for further evaluation as discussed below.
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Figure 4-4  Summary of sensitivity analysis based on computational performance.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


67

4.3.2 Reidentification Performance

The comparisons of three vehicle reidentification algorithms including REID-1, REID-2, 

and RTREID-2 are illustrated in Figure 4-5 and Table 4-2.  Since the values of MAPE 

were too small compared with all other performance indices, TTEst was used instead of 

MAPE for displaying and comparing the results graphically.  It can be observed form 

Figure 4-5 that RTREID-2 is superior to REID-1 and REID-2, and both cases of the 

RTREID-2 provide the same good performance.
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Figure 4-5  Comparisons of three vehicle reidentification algorithms.
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It can also be seen from Table 4-2 that the CMR and TMR of RTREID-2 are 

about 80% and 98% respectively.  Both of the performance indices are significantly 

improved for RTREID-2.  Although the MR is also increased for RTREID-2, the 

reliability rate (RR) of RTREID-2 remains comparable with REID-2.  The effects on the 

different levels of the reliability rate can be examined via the accuracy of the estimated 

travel times, which will be discussed in the next section.  In addition, the computation 

times for the two cases of RTREID-2 are significantly less than that of REID-2.

Table 4-2  Comparisons of Vehicle Reidentification Algorithms

Methods for
Vehicle Reidentification

REID-1* REID-2**
RTREID-2:

Case_60 (PSR = 30)
RTREID-2:

Case_180 (PSR = 90)

Correct Matched Volume 1471 1767 2046 2050

Mismatched Volume 366 366 453 448

No Matched Volume 696 400 34 35

Total Matched Volume 1837 2133 2499 2498

Total Volume 2533 2533 2533 2533

Matching Rate ---------------------------------------------------------------------------------------

CMR 58.07% 69.76% 80.77% 80.93%

MR 14.45% 14.45% 17.88% 17.69%

NMR 27.48% 15.79% 1.34% 1.38%

TMR 72.52% 84.21% 98.66% 98.62%

RR 80.08% 82.84% 81.87% 82.07%
Computation Time

 (seconds per vehicle)
N/A 1.549 0.698 0.818

*  REID-1 is the lexicographic method (Jeng and Ritchie, 2005)
** REID-2 is the interpolation method (Jeng and Ritchie, 2005)
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The results are quite encouraging since the CMR and TMR of both cases of 

RTREID-2 are superior to those of REID-1 and REID-2.  The comparable RR implies 

that RTREID-2 can achieve similar performance to REID-2 using the transformed 

vehicle signatures as input data.  Since Case_60 with PSR = 30 is comparable to 

Case_180 with PSR = 90, the number of data points required by a transformed vehicle 

signature can be 20~40 data points, which is about 80.00%~98.33% less than the original 

raw vehicle signature.

Moreover, it is worth noting that in addition to inheriting the major potential 

contributions of REID-2, the higher CMR and TMR together with the comparable RR of  

RTREID-2 imply a potential to correctly reidentify more vehicles without suffering the 

degradation of system reliability.  In other words, the high CMR, TMR, and RR of 

RTREID-2 show the potential contribution of tracking a vehicle more successfully along 

its path leading to a destination.

4.3.3 Travel Time Accuracy Evaluation

The results of travel time accuracy evaluation are shown in Figure 4-6, Figure 4-7, Figure 

4-8, and Figure 4-9.  Given different aggregation time periods, selected results from the 

comparison of estimated travel times are demonstrated in Figure 4-6 and Figure 4-7.  It 

was found that smaller errors and stability could be obtained when the aggregation 

interval was greater than 30 seconds, which is similar to the previous studies discussed in 

Chapter 3.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


70

10-sec

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

Time Slice (sec)

T
ra

ve
l 

T
im

e 
(s

ec
)

Ground-Truthed Travel Time

Estimated Travel Times for REID-1

Estimated Travel Times for REID-2

Estimated Travel Times for RTREID-2: Case_60 (PSR = 30)

Estimated Travel Times for RTREID-2: Case_180 (PSR = 90)

20-sec

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

Time Slice (sec)

Tr
av

el
 T

im
e 

(s
ec

)

Ground-Truthed Travel Time

Estimated Travel Times for REID-1

Estimated Travel Times for REID-2

Estimated Travel Times for RTREID-2: Case_60 (PSR = 30)
Estimated Travel Times for RTREID-2: Case_180 (PSR = 90)

30-sec

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

Time Slice (sec)

T
ra

ve
l 

T
im

e 
(s

ec
)

Ground-Truthed Travel Time
Estimated Travel Times for REID-1
Estimated Travel Times for REID-2

Estimated Travel Times for RTREID-2: Case_60 (PSR = 30)
Estimated Travel Times for RTREID-2: Case_180 (PSR = 90)

Figure 4-6  Comparisons of travel times:  10-sec, 20-sec, and 30-sec.
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Figure 4-7  Comparisons of travel times:  60-sec, 180-sec, and 300-sec.
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Figure 4-8 depicts the average travel times for each aggregation time interval.  It 

can be observed that the estimated travel times of both cases of RTREID-2 follow the 

trend of the actual travel times very well.  In addition, the two cases of RTREID-2 

generate similar results as compared with REID-2, and have a tendency to overestimate 

the travel time slightly.  This may be due to the system not capturing some vehicles 

traveling at relatively high speed, which is observed from the previous studies shown in 

Chapter 3.  Since it is relatively easy to reidentify vehicles with lower speeds, the 

estimated travel times for the interpolation method are higher than the true travel times.
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Figure 4-8  Average estimated travel time accuracy analysis.
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The average MAPEs for each aggregation time interval are shown in Figure 4-9.  

There are 60 aggregation periods ranging from 5-seconds to 300-seconds.  Overall, the 

average MAPEs are within the range of 1.23% to 1.79% for RTREID-2.  Although, in 

general, REID-1 can provide slightly more accurate travel time estimates, in view of 

stability, both REID-2 and RTREID-2 lead to more stable average MAPEs than REID-1 

does.  This is because it is more likely that no vehicle can be reidentified for certain time 

intervals for REID-1, and this may cause possibly matched vehicles at upstream detection 

stations to not be properly included in the candidate vehicle set (see Chapter 3).
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Figure 4-9  Mean absolute percentage error (MAPE) for travel time estimation.
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4.4 SUMMARY

In this Chapter, RTREID-2, a modified vehicle reidentification algorithm based on 

REID-2 using a piecewise slope rate (PSR) data compression method for vehicle 

signature transformation, was developed.  The results of this investigation, including 

sensitivity analyses, vehicle reidentification performance, and the accuracy of section 

travel time measurement, are very promising and suggest that the reduction in both 

computational effort and computer memory needed to store individual signatures with 

this approach could potentially benefit real-time implementation.

It was found that excellent results could be obtained when a raw vehicle signature 

was represented by only 30 piecewise slope rates, based on a total of only 60 interpolated 

data points.  This compares with a typical raw signature size of 200-1200 data points.  

Qualitative experience with RTREID-2, which employs this data compression scheme, 

indicates that the computational requirements are much lower than those needed for 

REID-2.

The case study demonstrated that RTREID-2 inherits the potential benefits of 

REID-2.  Moreover, it was observed that RTREID-2 performed better than REID-1 and 

REID-2, and high values of the indices CMR, TMR, and RR of the RTREID-2 implied a 

potential to track a vehicle more successfully along its path.  On the basis of this study, 
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the applicability of RTREID-2 to real-time freeway corridor implementation as well as 

the different levels of traffic flow condition are investigated in Chapter 5.
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CHAPTER 5 FREEWAY PERFORMANCE 

MEASUREMENTS BASED ON RTREID-2

As mentioned in Chapter 2, section-related or link-based data can arguably provide more 

reliable and accurate inputs for traffic surveillance and performance measurement 

systems.  To obtain section-related data, vehicle reidentification plays an important role 

since section performance measurements can be generated easily via a vehicle 

reidentification system.  Among vehicle reidentification systems, ILD-based systems are 

cost-effective because the ILDs are largely installed in the field, and are essentially 

anonymous systems with few if any privacy concerns.

Accordingly, RTREID-2, using inductive loop signature-based methods for 

vehicle reidentification, is dedicated to meet the needs for real-time implementation and 

section performance measurement.  Therefore, RTREID-2 is applied along a freeway 

corridor in this chapter for further investigation.  This chapter reports the results of a 6.2-

mile freeway corridor implementation of RTREID-2 under congested morning peak-

period conditions.  Although RTREID-2 has been designed for real-time operation, this 

initial corridor investigation is conducted off-line.  The corridor contained mostly round 

inductive loop detectors with some square loops, providing an opportunity to assess the 

applicability and transferability of RTREID-2 to homogenous and heterogeneous loop 

detection systems.
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5.1 BACKGROUND STATEMENT

RTREID-2 developed in Chapter 4 utilizes inductive loop signature-based methods for 

vehicle reidentification and is dedicated to meet the needs for real-time implementation 

and section performance measurement.  A Piecewise Slope Rate (PSR) approach is 

applied to transform the raw vehicle signatures obtained from square loops.  The key 

advantage of RTREID-2 is straightforward application to square, as well as potentially 

round, inductive loop detectors in a single loop configuration.  In other words, 

implementing RTREID-2 can eliminate the requirement for either double-loop speed trap 

configurations or single loop speed estimation models.

However, the development of RTREID-2 was conducted under moderate flow 

conditions along a single section of freeway.  In addition, the detection stations were 

equipped with square double loops, whereas round single loop detection stations are far 

more common than square loop detection stations in many locations, including California.  

A further evaluation of RTREID-2 for a freeway corridor under congested traffic 

condition using round loops data is therefore desired to assess its ability to meet real 

world needs.

Therefore, this chapter presents a case study for a 6.2-mile freeway corridor 

implementation of RTREID-2 under congested morning peak-period conditions.  The 

corridor consists of four round loop detection stations and two square loop detection 
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stations.  Thus the applicability and transferability of RTREID-2 to homogenous and 

heterogeneous loop detection systems can be evaluated.

The resulting data will be analyzed at the level of single freeway sections and then 

the whole corridor.  For single-section freeway analysis, the repeatability of RTREID-2 

will be first examined using square single loop data.  Then the applicability of RTREID-2 

will be assessed using round single loop data.  The transferability of RTREID-2 to a 

heterogeneous detection system including one square single loop detection station and 

one round single loop detection station will also be investigated.

For freeway corridor analysis, RTREID-2 will be firstly implemented for each 

single-section within the corridor, and the results obtained from each single-section will 

be aggregated to represent the performance along the corridor.

In this study, 60 interpolated data points will be used in Step 1 and 30 PSR values 

will be used in Step 2 for RTREID-2 since this assignment has been found to have good 

performance in Chapter 4.  Five indices will be adopted for evaluating the performances 

of RTREID-2, including total matching rate (TMR), correct matching rate (CMR), 

mismatching rate (MR), reliability rate (RR), and mean absolute percentage error (MAPE) 

of estimated travel times.
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5.2 STUDY SITE DESCRIPTION AND DATA COLLECTION

5.2.1 Study Site Description

The study site spanned six detection stations along a 6.2-mile corridor in the northbound 

direction of the I-405 interstate freeway in the City of Irvine, California (see Figure 5-1).  

The freeway consisted of one high occupancy lane, and between five and seven mainline 

lanes along this corridor.  A buffer lane that separated the high occupancy lane from the 

other mainline lanes existed from the south end of the study corridor and extended to the 

Jeffrey interchange, except for a stretch at the vicinity of the Sand Canyon interchange 

that allowed entry into and exit from the high occupancy lane as shown in Figure 5-1.

Two detection stations, Laguna Canyon 1 and Sand Canyon, were equipped with 

square double loops embedded in each lane of the freeway.  All other detection stations 

were equipped with round single loops.  The loop detectors at each detection station were 

connected to IST-222 advanced loop detector cards via a card file interface.  These 

detector cards were in turn connected to an industrial PC running the Microsoft Windows 

2000 operating system via the USB interface.
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Figure 5-1  Study site:  Northbound I-405 in Irvine, California
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All detector equipments as well as industrial PCs were housed in existing traffic 

cabinets located by the side of the shoulder at each detection station.  The advanced 

detector cards process inductance signals induced by vehicles passing over the loops and 

operate at a rate of 1200 samples per second.  A proprietary client program stores these 

signals in continuous mode in binary format to the PC hard drive for future off-line 

analysis.

The industrial PCs at each detector station were synchronized with an external 

clock just prior to each data collection to ensure accurate analysis of travel time 

information.  Where video coverage was provided, the clocks of the camcorders were 

also synchronized to ensure accurate ground-truthing of video information with 

inductance signature records.  The synchronization was performed manually, with an 

expected accuracy within fractions of a second.  It was found that drifting of the clocks in 

each device was generally negligible, and did not significantly adversely affect the 

accuracy of the travel time investigation.

5.2.2 Data Collection and Description

Two data collection exercises were conducted during the morning peak hours in this 

corridor.  Data collection I was performed on March 11th, 2005, for the sub-corridor 

from Laguna Canyon 1 to Jeffrey, and was used for single-section analysis.  Data 

collection II was performed on November 17th, 2005 throughout the entire corridor and 

was used for freeway corridor analysis.
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For data collection I, camcorders were used to monitor traffic from the on and off 

ramps along the corridor in addition to detector station locations (as shown in Figure 5-2) 

to obtain a complete ground-truth dataset.  In data collection II, five control vehicles were 

used for collecting travel time information.  The control vehicles were equipped with a 

GPS unit providing an accuracy of within 3 feet.  These GPS offered data logging at one-

second intervals, and provided physical position as well as speed information.

The precise positioning obtained from these units allows accurate matching of 

control vehicle signatures.  Since the GPS data was used for determining section and 

corridor travel times, the drivers of control vehicles were instructed to utilize the floating-

car driving technique to obtain travel-time data in the traffic stream.

JEFF

1

2

3

4

5

7

On-site Assistant: 1
Camcorder: 1

Figure 5-2  Camcorder locations for data collection I
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5.2.2.1 Data Description for Single-Section Freeway analysis

To evaluate the repeatability of RTREID-2 and its applicability to round-to-round loops 

and square-to-round loops, the dataset obtained from data collection I was used which 

included about 6.5 minutes of vehicle signatures and video-ground-truthed data.  The 

traffic flows at Laguna Canyon 1, Laguna Canyon 2, Sand Canyon, and Jeffrey during 

this period were 1250 vehicles-per-hour-per-lane (VPHPL), 1894 VPHPL, 1458 and 

1578 VPHPL, respectively.

Laguna Canyon 1 and Sand Canyon detection stations were considered for the 

square-to-square loops case study with 834 ground-truthed vehicle signatures between 

these detection stations.  The Laguna Canyon 2 and Jeffrey detection stations were 

considered for the round-to-round loops case study, with 957 ground-truthed vehicle 

signatures between the stations.  For the square-to-round loops case study, Sand Canyon 

and Jeffrey were chosen, with 992 vehicle signatures.  The size of the time window was 

the same for all vehicles for each case described above and was calculated based on the 

mean travel time.

During signature analysis, it was found that detectors at lane 3 in Laguna Canyon 

1 and at lane 6 in Laguna Canyon 2 produced abnormal vehicle signatures that were not 

due to driver behavior.  It was observed that signature records of vehicle types such as 

passenger cars and minivans that typically produce larger magnitude inductive signatures 
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among the vehicle population were found to have a somewhat squashed peak in lane 3 at 

Laguna Canyon 1.  Samples of such signatures are shown in Figure 5-3.

Normal Signatures        Abnormal Signatures

Laguna Canyon 1—Lane 3

Figure 5-3  Comparison between normal and abnormal signatures (LC1).

In addition, some abnormal signatures with inverted peaks were observed in lane 

6 at Laguna Canyon 2.  These observed abnormalities prevent low profile vehicles from 

obtaining a larger recorded inductance magnitude change than they should otherwise 

have with good detectors.  Samples of such signatures are shown in Figure 5-4.  The 

reasons for these abnormal signatures could not be precisely determined.
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Normal Signatures Abnormal SignaturesNormal Signatures Abnormal Signatures

Laguna Canyon 2—Lane 6

Figure 5-4  Comparison between normal and abnormal signatures (LC2).

Moreover, the stop-and-go vehicles under congestion caused abnormal vehicle 

signatures.  This is because a vehicle is less likely to maintain constant speed when it 

travels over a detector under congestion.  Samples of such signatures are shown in Figure 

5-5.  These abnormalities would adversely affect applications of vehicle signature studies 

such as vehicle signature-based reidentification (Sun et al., 1999; Jeng and Ritchie, 2006; 

Jeng and Ritchie, 2005), speed estimation (Sun and Ritchie, 1999), and level-of-service 

(Oh, Tok, and Ritchie, 2005) models where good quality signatures are essential.
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Normal Signatures        Abnormal Signatures

Laguna Canyon 2—Lane 3

Normal Signatures        Abnormal Signatures

Jeffrey—Lane 4

Figure 5-5  Comparison between normal and abnormal signatures (LC2 and Jeff).

5.2.2.2 Data Description for Freeway Corridor analysis

To perform corridor (i.e., from Laguna Canyon 1 to Red Hill) travel time estimation, the 

corridor was divided into five sections comprising Laguna Canyon 1 – Sand Canyon, 

Sand Canyon – Jeffrey, Jeffrey – Yale, Yale – Harvard, and Harvard – Red Hill.  The 

dataset was obtained from data collection II, and included 3.5 hours of vehicle signature 

data and GPS data between 6:00am and 10:00am.  The traffic flow is illustrated in Figure 

5-6.
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Figure 5-6  Traffic flow observation of freeway corridor analysis.
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RTREID-2 was first implemented for each of these sections.  The estimated travel 

times thus obtained from each section were summed to represent the estimated travel 

time for the corridor.  The estimated travel times were calculated every 30 seconds.  Then 

the time window restriction was recalculated according to the latest estimated travel times 

obtained from the past 30 seconds.

5.3 SINGLE-SECTION FREEWAY ANALYSIS

5.3.1 Reidentification Performance

The reidentification performances for the single-section freeway analysis are tabulated in 

Table 5-1.  For the square-to-square loops case, it was found that the reidentification 

performance for this dataset decreased when compared with the previous study discussed 

in Chapter 4.  The correct match rate (CMR) was previously 80.77% but it decreased to 

54.20% in this study.  The previous study also demonstrated a potential of up to 81.87% 

system reliability, while the reliability rate (RR) in this case study is 56.15%.

However, it must be noted that as mentioned in the Data Collection section, this 

dataset involved problematic vehicle signatures.  The abnormal signatures were observed 

in lane 3 at Laguna Canyon 1, which contributes 24.10% of the total number of vehicles.  

Those abnormalities were not easy to detect via the signature quality examination module, 

and 97.51% of the abnormal signatures are passenger cars.  The effects of this were 
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spread out along the freeway section spatially as well as temporally; thus, the 

reidentification performances were affected and degraded.

Table 5-1  RTREID-2 Reidentification Performance

(a) Matched Volume
Loops Configuration (Upstream/Downstream)

Matched Volume (Vehicles)
Square/Square Round/Round Square/Round

 Correct Matched Volume 452 485 507

 Mismatched Volume 353 444 455

 Total Matched Volume 805 929 962

 Total Volume 834 957 992

(b) Performance Index
Loops Configuration (Upstream/Downstream)

Performance Index
Square/Square Round/Round Square/Round

 Correct Matching Rate (CMR) 54.20% 50.68% 51.11%

 Mismatching Rate (MR) 42.33% 46.39% 45.87%

 Total Matching Rate (TMR) 96.52% 97.07% 96.98%

 Reliability Rate (RR) 56.15% 52.21% 52.70%

For the round-to-round loops case, the CMR is 50.68% and the RR is 52.21%.  

Again, 7.52% of the vehicle signatures were found to be problematic in lane 6 at Laguna 

Canyon 2.  Since 95.83% of the abnormal signatures were passenger cars, the effects 

were again observed along both space and time dimensions.  Although abnormalities of 

the vehicle signatures may account for the degradation of the reidentification 

performance, further investigations are suggested to address vehicle signature data 

quality issues and the improvement of system reliability for the round loops detection 

system.
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For the square-to-round loops case, RTREID-2 was applied directly, disregarding 

the fact that characteristics of vehicle signatures obtained from square loops may differ 

from round loops.  It is found that a CMR of 51.11% and a RR of 52.70% could be 

obtained.  Although further studies are required to improve the RR for a square-to-round 

loop system, these results are deemed sufficient for application to travel estimation and 

O-D estimation.

In fact, a probe vehicle study by Van Aerde et al. (1993) showed that “a 20% level 

of market penetration” is reliable for freeway link travel time estimation.  In addition, for 

O-D estimation, 50% market penetration yields less than about 18% root-mean square 

error.  Therefore, RTREID-2 is capable of providing reliable results for travel estimation 

and O-D estimation.

5.3.2 Travel Time Accuracy Evaluation

Single-section travel time accuracy evaluation results are shown in Figures 5-7 and 

Figure 5-8.  Figure 5-7 illustrates the selected results of the estimated travel times given 

an aggregation time interval of 30 seconds, which has be shown to yield smaller errors 

and better stability in Chapter 3 and Chapter 4.  It can be observed from Figure 5-7 that 

the estimated travel times of all the three cases follow the trend of the actual travel times 

quite well.
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Figure 5-7  Results of single-section freeway travel time estimation.
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The average MAPEs for different aggregation time intervals are presented in 

Figure 5-8.  It is expected that the square-to-round loops case will perform better since no 

abnormal signature data was observed within this section.  For square-to-square loops 

and round-to-round loops cases, the average MAPEs are within the range of 2.40% to 

5.98%.  The square-to-round loops case generates better performance, with the average 

MAPEs within the range of 1.63% to 2.72%.
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Figure 5-8  Average estimated travel time accuracy analysis for single-section 

freeway.
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These results are encouraging because it can be seen that with system reliability 

(i.e., RR) above 52%, very good travel time estimates can be obtained from RTREID-2.  

In addition, as mentioned in Section 5.2.2, the datasets for square-to-square loops and 

round-to-round loops contain some problematic vehicle signatures.  These results support 

the potential of implementing RTREID-2 for generating freeway performance 

measurements under congested conditions.

5.4 FREEWAY CORRIDOR ANALYSIS

5.4.1 Section Travel Time and Speed Estimations

As mentioned in the Data Collection section for freeway corridor analysis, RTREID-2 

was first implemented for each single section along the corridor and the estimated travel 

times were calculated every 30 seconds.  Moreover, since travel time information can be 

directly obtained from RTREID-2, space-mean-speed measurements can also be 

calculated.  The results of section travel times and speed estimations are shown from 

Figures 5-9 to 5-13.

It can be seen from Figure 5-9(a) to Figure 5-13(a) that the estimated travel times 

generally follow the trend of the GPS travel times very well.  Although the estimated 

travel times have some large variations during this congested time period in these five 

freeway sections, large variations of the GPS travel times are also observed during the 

same period for those sections.
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 (a) Travel time estimation.
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Figure 5-9  Freeway corridor analysis:  Laguna Canyon 1—Sand Canyon section 

travel time and speed estimations.
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Figure 5-10  Freeway corridor analysis:  Sand Canyon—Jeffrey section travel time 

and speed estimations.
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Figure 5-11  Freeway corridor analysis:  Jeffrey—Yale section travel time and speed 

estimations.
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(b) Speed estimation.

Figure 5-12  Freeway corridor analysis:  Yale—Harvard section travel time and 

speed estimations.
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Figure 5-13  Freeway corridor analysis:  Harvard—Red Hill section travel time and 

speed estimations.
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Moreover, as shown in Figure 5-9(b) to Figure 5-12(b), congestion was first 

observed around 6:40am and peaks around 8:00-8:10am when speeds varied between 20 

to 30mph.  The congestion was alleviated after 9:30am, and the traffic in these four 

sections was back to normal around 10:00am.  The Harvard—Red Hill section behaved 

differently from the other sections.  The congestion at this section was first observed 

around 9:00am and peaks around 9:30am but the speed did not go below 35mph.  The 

congestion did not stay long and the traffic alleviated after 9:40am.

5.4.2 Corridor Travel Time and Speed Estimations

The corridor travel time and speed estimations were obtained from aggregating the results 

of the section estimations.  The results are presented in Figure 5-14.  It can be seen from 

Figure 5-14 that the RTREID-2 results follow the GPS travel times and speeds of the 

corridor quite closely.

In addition, it can be seen from the RTREID-2 results in Figure 5-14(b) that the 

onset of corridor congestion was around 6:40am and reaches morning peak around 

8:00am when the speed dropped to 30mph.  The congestion situation lingered for one and 

half hours and the corridor traffic returned to “normal” speeds around 10:00am.
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Figure 5-14  Freeway corridor analysis:  Corridor travel time and speed estimations.
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5.5 SUMMARY

This chapter reported the results of a 6.2-mile freeway corridor implementation of 

RTREID-2 to provide traffic performance measurements under congested morning peak-

period conditions.  The corridor consisted of both round inductive loop detectors and 

square loops, providing an opportunity to assess the applicability and transferability of 

RTREID-2 to homogenous and heterogeneous loop detection systems.

Although problematic signature data were observed from single-section freeway 

analysis, the results are encouraging because with system reliability above 52%, very 

good travel time estimates can be obtained from RTREID-2.  The results also 

demonstrated the potential of implementing RTREID-2 for generating freeway 

performance measurements under congested conditions.

Furthermore, for freeway corridor analysis, excellent results were obtained 

compared with GPS measurements from control vehicles.  The RTREID-2 travel times 

and speeds followed the GPS travel times and speeds quite closely in all cases.  The 

results suggest that RTREID-2 has the potential to be implemented successfully in a 

congested freeway corridor, utilizing either or both round or square inductive loop 

detectors.
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CHAPTER 6 APPLICATION OF THE PSR APPROACH TO 

VEHICLE CLASSIFICATION

Vehicle class is an important characteristic of traffic measurement, and classification 

information can contribute to many important applications in various transportation fields.  

Foe instance, vehicle classification is helpful to monitor heavy vehicle traffic for road 

maintenance and safety, for modeling traffic flow, and for obtaining performance 

measurements based on each vehicle class for traffic surveillance.  In this chapter, a 

vehicle classification model, which is an application of the PSR approach, is introduced.  

A heuristic method combined with decision tree and K-means clustering approaches is 

proposed to develop a vehicle classification model.  The features used in the proposed 

model are extracted from PSR values.

6.1 BACKGROUND STATEMENT

According to various predefined classes, vehicle classification is the process of separating 

vehicles based on given vehicle features.  Vehicle classification information is useful in 

different transportation applications including vehicle reidentification, road management 

and maintenance, roadway design, emissions evaluation, multi-mode traffic modeling 

development, transportation planning, traffic control, traffic signal design (especially for 

public transit), traffic safety improvement, toll systems assessment, etc.  
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For example, heavier vehicles such as trucks and oversized vehicles possess 

different performance characteristics from light vehicles and passenger cars.  The former 

have longer braking distances and at slower speeds on average, occupy more road space, 

may be lane-restricted, and hence, cause more damage to pavements.  Monitoring those 

heavy vehicles on a roadway will help to design pavements, estimate the life of current 

road surface and schedule road maintenance.  With vehicle classification information, 

traffic agencies can efficiently allocate resources for roadway design.

Obtaining vehicle classes is also useful for evaluating environmental impacts 

since the degree of airborne and noise emissions vary between different vehicle classes.  

Moreover, in terms of traffic flow modeling, more reliable modeling and simulation of 

the real world can be achieved by observing the heterogeneity of traffic.  For traffic 

control, since vehicle class is one of the important traffic measurements, it may help to 

convey and predict traffic conditions accurately through traffic control strategies.

Furthermore, the severity of traffic accidents is highly correlated with vehicle 

types (Garrott et al., 1999), because the speeds are usually significantly different between 

trucks and passenger cars, and trucks are much larger than passenger cars.  Therefore, 

improvement of freeway safety can also benefit from vehicle classification information.

Various detection technologies (Davies, 1986) have been investigated and applied 

to perform vehicle classification, such as imaging-based sensors including infrared 

imaging, video imaging, and laser range imaging systems (Lu et al., 1992; Yuan et al, 
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1994; Gupte et al., 2002), acoustic signature analysis (Nooralahiyan et al., 1997), 

magnetic sensor (Cheung et al., 2006), and inductive signature systems (Pursula and 

Pikkarainen, 1994; Sun et al., 2003; Ritchie et al., 2005).

To apply inductive vehicle signature data to vehicle classification, Pursula et al. 

(1994) firstly proposed a classification scheme that consisted of seven vehicle classes.  

Their approach adopted a Self-Organizing Feature Map (SOFM) and the classification 

rate of the training data set was around 80%.  More recently, Sun et al. (2003) suggested 

two methods for vehicle classification utilizing the inductive vehicle signature data.  One 

method employed heuristic discriminant algorithms and multi-objective optimization for 

training the heuristic algorithms, and the classification rates were around 81%-91%.  

SOFM was applied to the second method and results with 80% classification rates were 

obtained.

These two studies demonstrate the potential of developing vehicle classification 

models using inductive vehicle signature data.  However, both Pursula and Sun’s studies 

utilized double inductive loop signatures for model development.  Although Sun et al. 

suggested adopting a single loop estimation model for single loop data, their model has to 

be re-calibrated.  Therefore, a new vehicle classification model, which is part of 

RTREID-2, is introduced.  

The proposed model is not only capable of categorizing vehicle types based on the 

Federal Highway Administration (FHWA) scheme (USDOT, 2007) but is also capable of 
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grouping vehicles into more detailed classes.  Since the proposed model is intended for 

real-time implementation, this dissertation suggests a simple but efficient method that is 

based on a heuristic decision tree approach combined with the K-means clustering 

method.

This heuristic multi-level decision tree method classifies vehicles by applying K-

means clustering approach to decide on the number of branches at each step using the 

most distinguishable PSR feature, which is extracted from single square loop detector 

data.  Moreover, a dataset obtained from single round loop detector is applied to test 

transferability of the developed algorithm.  The advantages of the proposed method are 

its transferability without model re-calibration, and employing the current infrastructure.  

In addition, this approach will also help to enhance the use of single loop detectors for 

vehicle classification.

6.2 VEHICLE CLASSIFICATION SCHEME

There are three vehicle classification schemes applied to develop the proposed vehicle 

classification model.  Table 6-1 displays the FHWA classification scheme, which consists 

of thirteen vehicle classes and the figures of each vehicle class are illustrated in Figure 6-

1.  In Table 6-2, FHWA-I classification scheme is designed based on FHWA 

classification scheme but extends to fifteen vehicle classes according to data availability.  

In Table 6-3, the Real-time Traffic Performance Measurement System (RTPMS) 

classification scheme collapses the FHWA classes into five vehicle classes.
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Table 6-1  FHWA Classification Scheme

FHWA Class Description

1 Motorcycles

2 Passenger Cars

3 Two Axle, Four Tire Single Units

4 Buses

5 Two Axle, 6 Tire Single Units

6 Three Axle Single Units

7 Four or More Axle Single Units

8 Four or Less Axle Single Trailers

9 Five Axle Single Trailers

10 Six or More Axle Single Trailers

11 Five or Less Axle Multi-Trailers

12 Six Axle Multi-Trailers

13 Seven or More Axle Multi-Trailers

The FHWA-1 classification scheme attempts to distinguish vehicle with trailer 

from other vehicles and four classes are designed to display those cases.  Buses are 

classified into three classes including regular buses, 20’ buses, and 30’ buses.  In addition, 

bobtail tractor, and goose-neck trailer and moving van are classified as new vehicle 

classes due to their apparent characteristics.

The design of the RTPMS classification scheme aims to classify vehicles into few 

groups so that the vehicle classification information can be displayed and understood 

easily.  Therefore, vehicles are grouped into five vehicle classes including passenger cars, 

small single unit trucks, buses, medium/large single unit trucks, and trailer trucks (see 

Table 6-3).
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Source:  USDOT, 2007

Figure 6-1  FHWA classification scheme.
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Table 6-2  FHWA-I Classification Scheme

FHWA-I Class Description

1 Passenger Cars

2 Two Axle, Four Tire Single Units

3 Buses

4 Two Axle, 6 Tire Single Units

5 Three Axle Single Units

6 Four or Less Axle Single Trailers

7 Five Axle Single Trailers

8 Class 1 + Trailer

9 Class 2 + Trailer

10 Class 4 + Trailer

11 Class 5 + Trailer

12 Bobtail Tractor (Semi Without Any Trailers)

13 Goose-neck Trailer or Moving Van

14 30’ Buses

15 20’ Buses

Table 6-3  RTPMS Classification Scheme

RTPMS Class Description

1 Passenger Cars

2 Small Single Unit Trucks

3 Buses

4 Medium/Large Single Unit Trucks

5 Trailer Trucks

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


109

The proposed vehicle classification model will be developed based on the FHWA-

I classification scheme (as shown in Table 6-2).  Once vehicle classes are generated for 

the FHWA-I classification scheme, the classification results can be re-assigned to the 

FHWA classification scheme and RTPMS classification scheme according to Table 6-4 

and Table 6-5.

Table 6-4  FHWA-1 Classification Scheme vs. FHWA Classification Scheme

FHWA-I 
Class

Description
FHWA 
Class

Description

1 Passenger Cars 2 Passenger Cars

2 Two Axle, Four Tire Single Units 3 Two Axle, Four Tire Single Units

3 Buses 4 Buses

4 Two Axle, 6 Tire Single Units 5 Two Axle, 6 Tire Single Units

5 Three Axle Single Units 6 Three Axle Single Units

6 Four or Less Axle Single Trailers 8
Four or Less Axle Single 
Trailers

7 Five Axle Single Trailers 9 Five Axle Single Trailers

8 Class 1 + Trailer 2 Passenger Cars

9 Class 2 + Trailer 3 Two Axle, Four Tire Single Units

10 Class 4 + Trailer 5 Two Axle, 6 Tire Single Units

11 Class 5 + Trailer 6 Three Axle Single Units

12
Bobtail Tractor (Semi Without Any 
Trailers)

6 Three Axle Single Units

13 Goose Neck Trailer or Moving Van 9 Five Axle Single Trailers

14 30’ Buses 4 Buses

15 20’ Buses 4 Buses
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Table 6-5  FHWA-1 Classification Scheme vs. RTPMS Classification Scheme

FHWA-I 
Class

Description
RTPMS 
Class

Description

1 Passenger Cars 1 Passenger Cars

2 Two Axle, Four Tire Single Units 2 Small Single Unit Trucks

3 Buses 3 Buses

4 Two Axle, 6 Tire Single Units 2 Small Single Unit Trucks

5 Three Axle Single Units 4
Medium/Large Single Unit 
Trucks

6 Four or Less Axle Single Trailers 5 Single Trailer Trucks

7 Five Axle Single Trailers 5 Single Trailer Trucks

8 Class 1 + Trailer 1 Passenger Cars

9 Class 2 + Trailer 2 Small Single Unit Trucks

10 Class 4 + Trailer 2 Small Single Unit Trucks

11 Class 5 + Trailer 4
Medium/Large Single Unit 
Trucks

12
Bobtail Tractor (Semi Without Any 
Trailers)

2 Small Single Unit Trucks

13 Goose Neck Trailer or Moving Van 5 Single Trailer Trucks

14 30’ Buses 3 Buses

15 20’ Buses 3 Buses

6.3 VEHICLE CLASSIFICATION ALGORITHM DEVELOPMENT

A heuristic decision tree method combined with K-means clustering method is employed 

for the development of the proposed vehicle classification model in this dissertation.  To 

split the tree at each level, K-means clustering method is adopted to decide the number of 
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branches utilizing most distinguishable PSR feature.  This approach helps to reduce the 

dimension of possible vehicle classes at each level.  

K-means clustering method creates clusters with a self-organized approach.  The 

advantages of K-means clustering method are “its simplicity, efficiency, and self-

organization, as well as its minimization of the mean square error” (Looney, 1997).  

Although one limitation of this method is that the number K  of clusters must be provided, 

the K  is known in this study.  Since the K  can not exceeds the number of vehicle classes 

at each decision node (denoted as Q ), several runs with different K values (where the 

QK  ) are made and the K  that yields minimum total misclassified cases is selected. 

For PSR feature extraction, the PSR values are plotted for each vehicle class and 

are shown from Figure 6-2 to Figure 6-6.  As shown in those PSR plots, the first eight 

PSR values are greater than zero for class 1 and class 2, while some of the first eight PSR 

values for other classes are most likely below zero.  Therefore, a feature named 

PSR_8_IDX is derived to distinguish small vehicle classes (PSR_8_IDX = 1) and large 

truck classes (PSR_8_IDX = 2) as depicted in Equation 6.1 and Equation 6.2.  

Furthermore, considering the needs for real-time implementation, simple statistics are 

extracted from PSR values including mean, standard deviation, and median.
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Figure 6-2  PSR plots:  Class 1, Class 2, and Class 3.
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Figure 6-3  PSR plots:  Class 4, Class 5, and Class 6.
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Figure 6-4  PSR plots:  Class 7, Class 8, and Class 9.
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Figure 6-5  PSR plots:  Class 10, Class 11, and Class 12.
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Figure 6-6  PSR plots:  Class 13, Class 14, and Class 15.
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82,1_8_  iforPVPSRifIDXPSR i (6.1)

82,2_8_  iforPVPSRifIDXPSR i (6.2)

where

iPSR :  ith PSR value

iPSRSORT _ :  ith sorted PSR value

008.0PV

In order to obtain more information from the PSRs, they are categorized into five 

groups for each individual vehicle.  The statistics are calculated for each group:

Group I Features:  MEAN_1_15, STD_1_15, MDN_1_15, XMDN_1_15 (see 

Equations 6.3-6.6)

Group II Features:  MEAN_16_30, STD_16_30, MDN_16_30, XMDN_16_30 

(see Equations 6.7-6.10)

Group III Features:  MEAN_1_10, STD_1_10, MDN_1_10, XMDN_1_10 (see 

Equations 6.11-6.14)
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Group IV Features:  MEAN_11_20, STD_11_20, MDN_11_20, XMDN_11_20 

(see Equations 6.15-6.18)

Group V Features:  MEAN_21_30, STD_21_30, MDN_21_30, XMDN_21_30 

(see Equations 6.19-6.22)

15
15_1_

15

1

 i

iPSR
MEAN (6.3)

 

14

15_1_
15_1_

15

1

2



 i

i MEANPSR
STD (6.4)

8_15_1_ PSRSORTMDN  (6.5)

815_1_ PSRXMDN  (6.6)

15
30_16_

30

16

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 

14
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30

16

2

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STD (6.8)
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23_30_16_ PSRSORTMDN  (6.9)

2330_16_ PSRXMDN  (6.10)
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 
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6.4 CASE STUDY

6.4.1 Data Description

To develop the proposed vehicle classification model, the dataset obtained from data 

collection I (as described in Chapter 5), which included about 6.5 minutes of vehicle 
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signature and video-ground-truthed data, was used.  This dataset was divided into two 

sub-dataset, calibration dataset and testing dataset for model development.  The two sub-

datasets are illustrated in Table 6-6.  Since abnormal vehicle signature data were 

observed in lane 3 at Laguna Canyon 1 and in lane 6 at Laguna Canyon 2, those data 

were discarded to enhance the development process.    

Table 6-6  Dataset Description

Calibration Dataset Test Dataset

Location
Laguna 

Canyon 1
Sand Canyon

Laguna 
Canyon 2

Jeffrey

Lane 7 lanes 5 lanes 6 lanes 5 lanes

Time Period
March 11th, 2005

6:50-6:57 AM

March 11th, 2005

6:50-6:57 AM

Loop Configuration Square loop detector Round loop detector

Dataset traffic count 3718 3914

After the PSR_8_IDX is computed, vehicles were categorized into two groups:  

small vehicles and large trucks.  The PSR features that applied to each group are depicted 

in Figure 6-7.  Thirteen PSR features were applied to the small vehicles group, while nine 

PSR features were applied to large trucks group.  The heuristic decision tree thus 

obtained is illustrated in Figure 6-8 and Figure 6-9.  As shown in Figure 6-8, the tree for 

the small vehicles group has seven levels and twenty-four nodes.  In addition, it can be 

observed from Figure 6-9 that the tree for the large trucks group has three levels and there 

are fifteen nodes.
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Figure 6-7  PSR features applied to small vehicle group and large trucks group.
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Figure 6-8  Vehicle classification flow chart:  small vehicles group.
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Figure 6-9  Vehicle classification flow chart:  large trucks group.
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6.4.2 Calibration Results

The calibration results are tabulated in Table 6-7.  It can be seen from Table 6-7 that the 

three classification schemes yield similar performance.  The results are very encouraging 

since the proposed model can successfully separate small vehicles from large trucks, and 

classify vehicles based on the FHWA classification scheme using single loop detector 

data without any axle information.

Table 6-7  Vehicle Classification Result Summary:  Calibration Dataset

Correct Classified Vehicle Performance

FHWA Classification Scheme 3577 96.2%

FHWA-I Classification Scheme 3577 96.2%

RTPMS Classification Scheme 3587 96.5%

The detailed results according to the three proposed vehicle classification schemes 

are demonstrated in Table 6-8, Table 6-9, and Table 6-10.  Table 6-8 presents the 

FHWA-I vehicle classification category.  It can be observed that classification rates are 

lower in class 4, class 5, and class 15, which are “Two Axle, 6 Tire Single Units,” “Three 

Axle Single Units,” and “20’ Buses” respectively.  The misclassifications among class 1, 

class 2, class 4, and class 15 are due to similarity of signatures.  For class 5, the 

misclassification is caused by varied characteristics within class 5 as observed in Figure 

6-3.
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Table 6-8  FHWA-I Vehicle Classification Category:  Calibration Dataset

3577 96.2% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2960 39 0 2 0 0 0 0 0 0 0 1 0 0 0 3002 98.6%

2 75 525 0 6 1 0 0 0 0 0 0 0 0 0 1 608 86.3%

3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 100.0%

4 0 3 0 18 1 0 0 0 0 0 0 1 0 0 0 23 78.3%

5 0 0 0 1 7 0 1 0 0 0 0 0 1 0 0 10 70.0%

6 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 3 100.0%

7 0 0 0 0 1 1 34 0 0 1 2 0 0 0 0 39 87.2%

8 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 100.0%

9 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 6 83.3%

10 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 3 100.0%

11 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 3 100.0%

12 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5 100.0%

13 0 0 0 0 0 1 0 0 0 0 0 0 6 0 0 7 85.7%

14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 100.0%

15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 3 66.7%

3035 568 2 27 10 5 35 3 5 4 5 7 7 2 3

81.6% 15.3% 0.1% 0.7% 0.3% 0.1% 0.9% 0.1% 0.1% 0.1% 0.1% 0.2% 0.2% 0.1% 0.1%

3718
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Table 6-9  FHWA Vehicle Classification Category:  Calibration Dataset

3577 96.2% 1 2 3 4 5 6 7 8 9 10 11 12 13

1 - - - - - - - - - - - - - - -

2 0 2962 39 0 2 1 0 0 0 0 0 0 0 3004 98.6%

3 0 76 530 1 6 1 0 0 0 0 0 0 0 614 86.3%

4 0 0 1 6 0 0 0 0 0 0 0 0 0 7 85.7%

5 0 0 3 0 21 2 0 0 0 0 0 0 0 26 80.8%

6 0 0 0 0 1 15 0 0 2 0 0 0 0 18 83.3%

7 - - - - - - - - - - - - - - -

8 0 0 0 0 0 0 0 3 0 0 0 0 0 3 100.0%

9 0 0 0 0 1 3 0 2 40 0 0 0 0 46 87.0%

10 - - - - - - - - - - - - - - -

11 - - - - - - - - - - - - - - -

12 - - - - - - - - - - - - - - -

13 - - - - - - - - - - - - - - -

0 3038 573 7 31 22 0 5 42 0 0 0 0

0% 81.7% 15.4% 0.2% 0.8% 0.6% 0.0% 0.1% 1.1% 0.0% 0.0% 0.0% 0.0%

Performance Volume 
by Class

Classification 
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Estimated Volume by Class 3718

Estimated Vehicle Composition 100%
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Table 6-10  RTPMS Vehicle Classification Category:  Calibration Dataset

3587 96.5% 1 2 3 4 5

1 2962 42 0 0 0 3004 98.6%

2 76 566 2 2 0 646 87.6%

3 0 1 5 1 0 7 71.4%

4 0 1 0 9 2 12 75.0%

5 0 1 0 3 45 49 91.8%

3038 611 7 15 47

81.7% 16.4% 0.2% 0.4% 1.3%

Performance Volume by 
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Classification 
Rate

Predicted Vehicle Class
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Estimated Volume by Class 3718
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The outcomes presented in Table 6-9 and Table 6-10 demonstrate the potential of 

the proposed vehicle classification model.  The FHWA classification scheme and 

RTPMS classification scheme results are very encouraging because the correct 

classification rates are around 96% for both schemes.  Moreover, for the FHWA 

classification scheme, the worst case still maintains 80% correct classification rate. 

6.4.3 Transferability Analysis

In order to perform model transferability analysis for round loop configuration, a dataset 

collected at different locations was applied.  The testing results are presented in Table 6-

11.  As shown in Table 6-11, the three classification schemes again yield similar 

performances.  Although the performances are degraded compared with calibration 

dataset, the results are very promising since correct classification rates are around 93% 

for the three classification schemes.  
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Table 6-11  Vehicle Classification Result Summary:  Test Dataset

Correct Classified Vehicle Performance

FHWA Classification Scheme 3641 93.0%

FHWA-I Classification Scheme 3640 93.0%

RTPMS Classification Scheme 3661 93.5%

Table 6-12, Table 13, and Table 6-14 present the classification results in detail 

according to the three proposed vehicle classification schemes.  It can be observed from 

Table 6-12 that classification rates are lower in class 3, class 4, and class 6, which are 

“Buses,” “Two Axle, 6 Tire Single Units,” and “Four or Less Axle Single Trailers” 

respectively.  For class 4, the misclassifications pattern is similar compared with 

calibration dataset.  For class 3 and class 6, further investigations are needed due to lack 

of enough samples.

Despite high misclassification rates occurring in class 3 and class 6, the results are 

significant enough to conclude reliable model transferability.  It is worth nothing that the 

classification performances of the three proposed classification schemes are around 93%, 

which demonstrates the potential of employing the procedure of the proposed vehicle 

classification model for a detection system with single round loop configuration.
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Table 6-12  FHWA-I Vehicle Classification Category:  Test Dataset

3640 93.0% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3027 124 0 13 0 0 0 0 0 0 0 4 0 0 2 3170 95.5%

2 79 546 1 11 8 0 0 0 0 0 0 1 0 0 1 647 84.4%

3 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 2 0.0%

4 0 4 0 12 3 0 0 0 0 1 0 1 0 0 0 21 57.1%

5 0 1 1 1 6 0 1 0 0 0 0 0 0 0 0 10 60.0%

6 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 2 50.0%

7 0 0 0 0 1 2 34 0 0 0 2 0 0 0 0 39 87.2%

8 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 100.0%

9 0 0 0 0 0 0 1 0 4 0 0 0 0 1 0 6 66.7%

10 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 2 50.0%

11 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 3 100.0%

12 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 2 50.0%

13 0 0 0 1 0 2 0 0 0 1 0 0 2 0 0 6 33.3%

14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 100.0%

15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.0%

3107 675 4 39 19 5 36 2 4 4 5 7 2 2 3

79.4% 17.2% 0.1% 1.0% 0.5% 0.1% 0.9% 0.1% 0.1% 0.1% 0.1% 0.2% 0.1% 0.1% 0.1%
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Table 6-13  FHWA Vehicle Classification Category:  Test Dataset

3641 93.0% 1 2 3 4 5 6 7 8 9 10 11 12 13

1 - - - - - - - - - - - - - - -

2 0 3029 124 2 13 4 0 0 0 0 0 0 0 3172 95.5%

3 0 79 550 3 11 9 0 0 1 0 0 0 0 653 84.2%

4 0 1 0 1 2 0 0 0 0 0 0 0 0 4 25.0%

5 0 0 4 0 14 5 0 0 0 0 0 0 0 23 60.9%

6 0 0 1 2 1 10 0 0 1 0 0 0 0 15 66.7%

7 - - - - - - - - - - - - - - -

8 0 0 0 1 0 0 0 1 0 0 0 0 0 2 50.0%

9 0 0 0 0 2 3 0 4 36 0 0 0 0 45 80.0%

10 - - - - - - - - - - - - - - -

11 - - - - - - - - - - - - - - -

12 - - - - - - - - - - - - - - -

13 - - - - - - - - - - - - - - -

0 3109 679 9 43 31 0 5 38 0 0 0 0

0% 79.4% 17.3% 0.2% 1.1% 0.8% 0.0% 0.1% 1.0% 0.0% 0.0% 0.0% 0.0%
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Table 6-14  RTPMS Vehicle Classification Category:  Test Dataset

3661 93.5% 1 2 3 4 5

1 3029 141 2 0 0 3172 95.5%

2 80 584 4 12 1 681 85.8%

3 0 1 1 2 0 4 25.0%

4 0 1 2 7 2 12 58.3%

5 0 2 0 3 40 45 88.9%

3109 729 9 24 43

79.4% 18.6% 0.2% 0.6% 1.1%
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Moreover, it must be noted that abnormal vehicle signatures were discarded at the 

model development stage as described in section 6.4.1.  Since these abnormalities may 

not be recognized and filtered out in real-time implementation, the proposed vehicle 

classification model was also applied to the same test dataset but all of the problematic 

vehicle signatures were included.

Therefore, 282 problematic vehicle signatures observed in lane 6 at Laguna 

Canyon 2 were added to the test dataset.  Because the abnormalities were observed from 

vehicle types with low profile vehicles (e.g., passenger car, minivan, and some trucks), it 

is expected that the classification rates of those groups will be affected more compared 

with other vehicle classes.
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The results are summarized in Table 6-15.  As shown in Table 6-15, although the 

overall performance for the three classification schemes declines, about 90%-91% 

classification rate could be still obtained.  Moreover, detailed results for the three 

schemes are presented in Table 6-16, Table 17, and Table 6-18

Table 6-15  Vehicle Classification Result Summary:  Test Dataset with Problematic 

Vehicle Signature

Correct Classified Vehicle Performance

FHWA Classification Scheme 3794 90.4%

FHWA-I Classification Scheme 3792 90.4%

RTPMS Classification Scheme 3818 91.0%

Table 6-16  FHWA-I Vehicle Classification Category:  Test Dataset with 

Problematic Vehicle Signature

Vehicle 
Class

Descriptions
Volume by 

Class
Classification 

Rate
Volume by 

Class
Classification 

Rate

1 Passenger Cars 3170 95.5% 3395 92.8%

2 Two Axle, Four Tire Single Units 647 84.4% 689 82.9%

3 Buses 2 0.0% 2 0.0%

4 Two Axle, 6 Tire Single Units 21 57.1% 24 50.0%

5 Three Axle Single Units 10 60.0% 12 58.3%

6 Four or Less Axle Single Trailers 2 50.0% 2 50.0%

7 Five Axle Single Trailers 39 87.2% 39 87.2%

8 Passenger (Class 2) + Trailer 2 100.0% 2 100.0%

9 Class 3 + Trailer 6 66.7% 6 66.7%

10 Class 5 + Trailer 2 50.0% 3 33.3%

11 Class 6 + Trailer 3 100.0% 3 100.0%

12 Bobtail Tractor (Semi Without Any Trailers) 2 50.0% 5 20.0%

13 Goose Neck Trailer or Moving Van 6 33.3% 7 42.9%

14 30’ Buses 1 100.0% 4 75.0%

15 20’ Buses 1 0.0% 3 0.0%

Problematical Data Excluded Problematical Data IncludedFHWA-I Classification Scheme
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Table 6-17  FHWA Vehicle Classification Category:  Test Dataset with Problematic 

Vehicle Signature

Vehicle 
Class

Descriptions
Volume by 

Class
Classification 

Rate
Volume by 

Class
Classification 

Rate

1 Motorcycles - - - -

2 Passenger Cars 3172 95.5% 3397 92.8%

3 Two Axle, Four Tire Single Units 653 84.2% 695 82.7%

4 Buses 4 25.0% 9 33.3%

5 Two Axle, 6 Tire Single Units 23 60.9% 27 51.9%

6 Three Axle Single Units 15 66.7% 20 60.0%

7 Four or More Axle Single Units - - - -

8 Four or Less Axle Single Trailers 2 50.0% 2 50.0%

9 Five Axle Single Trailers 45 80.0% 46 80.4%

10 Six or More Axle Single Trailers - - - -

11 Five or Less Axle Multi-Trailers - - - -

12 Six Axle Multi-Trailers - - - -

13 Seven or More Axle Multi-Trailers - - - -

FHWA Classification Scheme Problematical Data Excluded Problematical Data Included

Table 6-18  RTPMS Vehicle Classification Category:  Test Dataset with Problematic 

Vehicle Signature

Vehicle 
Class

Descriptions
Volume by 

Class
Classification 

Rate
Volume by 

Class
Classification 

Rate

1 Passenger Cars 3172 95.5% 3397 92.8%

2 Small Single Unit Trucks 681 85.8% 728 84.1%

3 Buses 4 25.0% 9 33.3%

4 Medium/Large Single Unit Trucks 12 58.3% 14 64.3%

5 Single Trailer Trucks 45 88.9% 48 87.5%

RTPMS Classification Scheme Problematical Data Excluded Problematical Data Included

It can be observed from Table 6-16 to Table 6-18 that as expected, classification 

rates are degraded for “Passenger Cars” and “Two Axle, Four Tire Single Units.”  

Furthermore, the results again demonstrate the potential of deploying the proposed 

vehicle classification model in real-time.
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6.5 SUMMARY

This chapter showed the application of PSR features in developing vehicle classification 

for real-time implementation.  Vehicle class is an important characteristic of traffic 

measurement and can contribute to many important transportation applications including 

vehicle reidentification, road maintenance, emissions evaluation, traffic modeling 

development, transportation planning, traffic control, traffic safety improvement, toll 

systems assessment, etc.  

Considering real-time implementation, a simple but efficient vehicle classification 

model, which utilizes heuristic decision tree combined with K-means clustering method, 

was suggested.  The proposed real-time vehicle classification model is not only capable 

of categorizing vehicle types based on the FHWA scheme, but is also capable of 

grouping vehicles into more detailed classes.  

Three vehicle classification schemes, FHWA, FHWA-I, and RTPMS 

classification schemes, were applied to develop the proposed vehicle classification model.  

A dataset obtained from square single loop detector was utilized to perform vehicle 

classification task based on the FHWA-I classification scheme.  Moreover, a dataset 

obtained from round single loop detector was applied to test transferability of the 

proposed model.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


136

The results are very encouraging since the proposed real-time vehicle 

classification model can successfully classify vehicles using single loop detector data 

without any explicit axle information, and the results demonstrate reliable model 

transferability.  In addition, the advantages of the proposed vehicle classification model 

are its simplicity, and employing the current detection infrastructure.  Furthermore, due to 

the small proportion of large trucks, future studies are suggested to improve classification 

rates for vehicle classes under the large trucks group.
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CHAPTER 7 DESIGN OF REAL-TIME TRAFFIC 

PERFORMANCE MEASUREMENT SYSTEM (RTPMS)

As mentioned in Chapter 4, field computational resources and the bandwidth of field 

communication links, are often quite limited for traffic operations.  Therefore, RTREID-2 

and the proposed real-time vehicle classification model are developed to address those 

issues.  The next step is to investigate development of a real-time freeway performance 

measurement system in a real-world setting.  Accordingly, the design of a Real-time 

Traffic Performance Measurement System (RTPMS) is presented in this chapter.  The 

framework of RTPMS is based on RTREID-2.  The overall system can be divided into 

two sub-systems:  field data preprocessing system and performance measurement system.  

Each of the sub-systems is discussed in detail.  A simulation of RTPMS is also conducted 

in this chapter to access its feasibility.

7.1 RTPMS DEPLOYMENT FRAMEWORK

RTPMS can be divided into two sub-systems: field data preprocessing system and 

performance measurement system.  The field data preprocessing system includes all field 

computers that obtain and process raw vehicle signature data.  The performance 

measurement system consists of four severs to generate and display real-time 

performance measurements.  The details of the two subsystems are described in Section 

7.3.  The framework of the RTPMS is illustrated in Figure 7-1.
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Figure 7-1  RTPMS deployment framework.
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As shown in Figure 7-1, in the field data preprocessing system a module named, 

“Data Pre-Processor” will generate two types of data: raw vehicle signatures and RTPMS 

features.  The raw vehicle signatures are unprocessed vehicle signatures obtained from 

advanced detector cards.  The RTPMS features includes PSR values and speed estimation 

results.  For the performance measurement system, there will be four servers including 

RTREID-2, Data Collector, Testbed Web, and Database.  The Data Collector will 

communicate with the field computers through an interface, which will be programmed 

in CORBA, and collect the preprocessed RTPMS features.

The vehicle reidentification and vehicle classification tasks will be managed on 

the RTREID-2 server.  The raw vehicle signature data obtained from the field as well as 

the outputs of the RTREID-2 server will be sent to the Database server for storage.  

Moreover, the Testbed Web server will obtain necessary information from the Database 

server, execute performance evaluation, and display the results.

7.2 DATABASE DESIGN

The Database server consists of two databases: Raw Vehicle Signature (RVS) Archive 

database and RTPMS database.  The raw vehicle signature files obtained from the field 

are stored as text format.  Those files will be sent back to RVS Archive database.  The 

RTPMS database will be built using Oracle.  There are 10 reference tables:  Cabinet 

Table, Card Table, Station Table, Perf_Stns Table, Vehicle reidentification (REID) 
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Performance Table, Upstream Table, Signature Table, Sample Table, REID Input Table, 

and REID Output Table.  The contents of each table are shown in Figure 7-2.

Figure 7-2  Reference tables for RTPMS database.

Moreover, the reference tables can be grouped into two types:  static table and 

dynamic table as tabulated in Table 7-1.  The static tables hold station and detector card 

configuration, while the dynamic tables hold signature data and results.  The functions of 

the reference tables, and the definition of each variable and its attributes are listed from 

Table 7-2 to Table 7-11.  Moreover, the performance indices and estimates obtained from 

the RTREID-2 server such as vehicle tracking information, vehicle class, speed, etc., will 

be stored at the RTPMS database.
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Table 7-1  Static Tables and Dynamic Tables

Static Table Dynamic Table

Cabinet Table Signature Table REID Output Table
Card Table Sample Table REID Performance Table

Station Table REID Input Table Perf_Stns Table
Upstream Table

Table 7-2  Static Tables:  Cabinet Table

Cabinet Table:  holds physical location information
cab_id int cabinet id; 3 digits
cab_name varchar[20] cabinet name; e.g. Laguna Canyon
IP varchar[15] DNS name or IP of field pc
num_cards int number of cards in field pc
loop_shape varchar[10] square, round, blade, etc
loop_config varchar[10] single, double
road_name varchar[20] e.g. I-405, Alton Parkway
postmile float post mile information
crossing varchar[20] name of nearest crossing arterial

Table 7-3  Static Tables:  Card Table

Card Table:  holds physical card configuration

card_sn int IST card serial number
cab_id int maps to cab_id in cabinet table
slot int location in PC
ch1_stn_id int station channel 1 belongs to
ch1_lane int lane channel 1 goes to
ch1_type varchar[10] HOV, ML (mainline), etc
ch1_dir varchar[1] channel 1 lane direction (N, S, E, W)
ch1_ord varchar[1] front or rear if double loop (F, R)
ch2_stn_id int station channel 2 belongs to
ch2_lane int lane channel 2 goes to
ch2_type varchar[10] HOV, ML, etc
ch2_dir varchar[1] channel 2 lane direction (N, S, E, W)
ch2_ord varchar[1] front or rear if double loop (F, R)
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Table 7-4  Static Tables:  Station Table

Station Table:  holds virtual station information

stn_id int station id; 3 digits
cab_id int maps to cab_id in cabinet table
num_lanes int number of lanes in station

Table 7-5  Static Tables:  Upstream Table

Upstream Table:  holds mapping for multiple upstream stations

ups_stn_id int upstream station id; maps to stn_id in station table
stn_id int maps to stn_id in station table
distance float

Table 7-6  Dynamic Tables:  Signature Table

Signature Table:  holds vehicle signature information

sig_id long signature id; first 3 digits are stn_id
stn_id int maps to stn_id in station table
timestamp float signature timestamp; convert to local time (second)
Lane int lane number; count from leftmost lane (including HOV lanes)
duration float duration of time the detector is on; same as last offset
sample_cnt int number of samples

Table 7-7  Dynamic Tables:  Sample Table

Sample Table:  holds magnitudes

sig_id long maps to sig_id in signature table
offset float 7 digit precision
mag_front int magnitude of front loop
mag_rear int magnitude of rear loop

Table 7-8  Dynamic Tables:  REID Input Table

REID Input Table:  holds mapping for REID input data 

sig_id long maps to sig_id in signature table
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Table 7-9  Dynamic Tables:  REID Output Table

REID Output Table:  holds REID results

sig_id long maps to sig_id in signature table
stn_id int maps to stn_id in station table
timestamp float signature timestamp
lane int lane number
reid_id int id of reidentified signature
ups_stn_id int maps to ups_stn_id in upstream table
matched_sig_id int id of matched signature

point_spd float
point speed; output from speed-trap or speed 
estimation module

section_spd float section speed (travel speed)
travel_time float travel time

vehicle_class varchar[10]
classification of vehicle types; output from vehicle 
classification module

Table 7-10  Dynamic Tables:  REID Performance Table

REID Performance Table:  holds ground-truthed results

perf_id int id of ground-truthed dataset
start_time float start-time of ground-truthed dataset
end_time float end-time of ground-truthed dataset
mape float mean absolute percentage error for travel time estimation
tmr float total match rate
cmr float correct match rate
mr float mismatch rate
nmr float no match rate
rr float reliability rate

Table 7-11  Dynamic Tables:  Perf_Stns Table

Perf_Stns Table:  contains mapping of performance info to multiple stations
perf_id int maps to perf_id in REID performance table
stn_id int maps to stn_id in station table

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


144

The inputs and outputs of the RTPMS database include configuration data, input 

data for REID and Output data from REID:

 Configuration:  describes configuration of detection station, such as detection 

station ID, detector type, road index, etc. (see Table 7-12) 

 Input data for REID:  hold raw vehicle signature data obtained from detection 

station (see Table 7-13)

 Output data from REID

� Individual vehicle level:  provide vehicle tracking information for each 

individual vehicle (see Table 7-14)

� Section level:  provide performance measurements for each single 

section (see Table 7-15)

� Lane-related:  provide performance measurements for each lane (see 

Table 7-16)

� Path-related:  provide path-related information such as path travel time 

(see Table 7-17)

� REID performance:  provide vehicle reidentification performances 

whenever ground-truthed data is available (see Table 7-18)

Examples of the above-mentioned tables are detailed and demonstrated in 

APPENDIX A.
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Table 7-12  Configurations:  Design Scheme

Name Type Description Note

Road Index
 Freeway
 Urban

Freeway or Road/Intersection 
name

Pre-defined

Detection Station ID (DS ID) - A unique ID for each detector Pre-defined

Detector Type

 Round Loop
 Square Loop
 Blade
 Video

Detector type specification Pre-defined

Detector Configuration
 Single
 Double
 Other

Configuration of the detectors Pre-defined

Upstream Detection Station 
ID (UDS ID)

 Freeway
o Mainline
o Ramp

 Urban
o Through
o Left turn
o Right turn

The adjacent upstream 
detection station(s)

Pre-defined

Distance -
Distance to the each adjacent 
upstream detection station(s)

Pre-defined

Table 7-13  Input Data for REID:  Design Scheme

Name Type Description Note
UCI Record ID (UCI ID) Header An ID assigned to each vehicle signature Detector specific data
DS ID Header A unique ID for each detector Pre-defined
Date Header Signature timestamp Detector specific data
Time Header Signature timestamp Detector specific data
Lane Header Lane number Detector specific data
Duration (sec) Header Duration of time the detector is on Detector specific data
Num samples Header Number of samples in the vehicle signature Detector specific data

Interval Data
Time interval from the beginning of the 
vehicle signature

Detector specific data

Magnitude-front Data
Magnitude of the front loop for double loops 
or magnitude of the signal loop

Detector specific data

Magnitude-rear Data Magnitude of the rear loop Detector specific data
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Table 7-14  Output Data from REID:  Individual Vehicle Level Design Scheme

Name Type Description Note

UCI ID -
An ID assigned to each 
vehicle signature

Detector specific data

Road Index
 Freeway
 Urban

Freeway or 
Road/Intersection name

Pre-defined 
(Configurations)

DS ID -
A unique ID for each 
detector

Pre-defined 
(Configurations)

Detector Type

 Round Loop
 Square Loop
 Blade
 Video

Detector type specification
Pre-defined 
(Configurations)

Detector 
Configuration

 Single
 Double
 Other

Configuration of the 
detectors

Pre-defined 
(Configurations)

Date - Signature timestamp Detector specific data
Time - Signature timestamp Detector specific data
Lane - Lane number Detector specific data

REID ID -
An ID assigned to the 
reidentified vehicle

REID result: Individual 
vehicle

UDS ID

 Freeway
o Mainline
o Ramp

 Urban
o Through
o Left turn
o Right turn

The adjacent upstream 
detection station(s)

Pre-defined 
(Configurations)

Distance (mile) -
Distance to the each 
adjacent upstream detection 
station(s)

Pre-defined 
(Configurations)

Point speed (mph) -
Output from speed-trap or 
speed estimation module

REID result: Individual 
vehicle

Section speed (mph) -
Travel speed for individual 
vehicle

REID result: Individual 
vehicle

Travel time (sec) -
Travel time for individual 
vehicle

REID result: Individual 
vehicle

Vehicle class
 FHWA
 RTPMS

Classification of vehicle 
types based on 
FHWA/RTPMS standard

Output from vehicle 
classification module
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Table 7-15  Output Data from REID:  Section Level Design Scheme

Name Type Description Note

DS ID -
A unique ID for each 
detector

Pre-defined 
(Configurations)

UDS ID

 Freeway
o Mainline
o Ramp

 Urban
o Through
o Left turn
o Right turn

The nearest upstream 
detection station

Pre-defined 
(Configurations)

Section travel time
(Sec. TT)

 Max
 Min
 Average (Avg)
 Std

Statistics of section 
travel time for each 
single section

REID result:  
Single section

Section volume
(Sec. Vol)

 Max
 Min
 Avg
 Std

Statistics of section 
volume for each signal 
section

REID result:  
Single section

Section speed
(Sec. Speed)

 Max
 Min
 Avg
 Std

Statistics of section 
speed for each single 
section

REID result:  
Single section

Section occupancy %
(Sec. Occ)

 Max
 Min
 Avg
 Std

Statistics of section 
occupancy for each 
single section

REID result:  
Single section

Section density
(Sec. Density)

 Max
 Min
 Avg
 Std

Statistics of section 
density for each single 
section

REID result:  
Single section

Section Vehicle
composition (Sec. Veh 
Comp)

 FHWA
 UCI

Output from vehicle 
classification module

REID result:  
Single section
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Table 7-16  Output Data from REID:  Lane-Related Design Scheme

Name Type Description Note

DS ID -
A unique ID for each 
detector

Pre-defined 
(Configurations)

UDS ID

 Freeway
o Mainline
o Ramp

 Urban
o Through
o Left turn
o Right turn

The nearest upstream 
detection station

Pre-defined 
(Configurations)

Lane - Lane number Detector specific data

Lane travel time
(Lane TT)

 Max
 Min
 Avg
 Std

Statistics of travel time 
for each lane

REID result:  Lane related

Lane volume
(Lane Vol)

 Max
 Min
 Avg
 Std

Statistics of volume for 
each lane

REID result:  Lane related

Lane speed

 Max
 Min
 Avg
 Std

Statistics of section 
speed for each lane

REID result:  Lane related

Lane occupancy
(Lane Occ)

 Max
 Min
 Avg
 Std

Statistics of occupancy 
for each lane

REID result:  Lane related

Lane density

 Max
 Min
 Avg
 Std

Statistics of density for 
each lane

REID result:  Lane related

Lane Vehicle 
composition (Lane Veh 
Comp)

 FHWA
 UCI

Output from vehicle 
classification module

REID result:  Lane related
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Table 7-17  Output Data from REID:  Path-Related Level Design Scheme

Name Type Description Note
Origin-Destination - O-D table REID result:  Path related
Total travel distance
(Tot. TDist)

-
Total travel distance for a 
specific path

REID result:  Path related

Path travel time in 
minute
(Path TT)

 Max
 Min
 Avg
 Std

Statistics of path travel 
time for a specific path

REID result:  Path related

Path speed (mph)

 Max
 Min
 Avg
 Std

Statistics of path speed 
for a specific path

REID result:  Path related

Path info -
Path info for individual 
vehicle (table)

REID result:  Path related

Table 7-18  Output Data from REID:  REID Performance Design Scheme

Name Description Note

MAPE
Mean absolute percentage error for travel 
time estimation (ground-truthed)

REID performance

TMR Total match rate (ground-truthed) REID performance
CMR Correct match rate (ground-truthed) REID performance
MR Mismatch rate (ground-truthed) REID performance
NMR No match rate (ground-truthed) REID performance
RR Reliability rate (ground-truthed) REID performance

7.3 MODULE DESCRIPTION

There are six modules in RTPMS, as illustrated in Figure 7-3.  In the field data 

preprocessing system, the raw vehicle signature data is first processed via the Signature 

Examination Module to detect bad and abnormal vehicle signatures.  The RTREID-2 

PSR Generation Module is then performed to extract PSR values for each vehicle 

signature.  Moreover, the single loop speed estimation is implemented via the Speed 

Estimation Module.
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Figure 7-3  RTPMS modules descriptions.
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The PSR values together with the estimated speeds from each field unit will be 

sent back to RTREID-2 server through CORBA interface.  RTREID-2 and Vehicle 

Classification modules are then performed to obtain vehicle class and vehicle tracking 

information for each individual vehicle.  Finally, the UCI_PeMS Module will query the 

RTPMS database to access necessary information, and hence, generate performance 

indices and estimates.

7.4 RTPMS SIMULATION

Because key data communication links were not ready within the research time frame, the 

implementation of RTPMS was conducted off-line in this research.  A simulation of 

RTPMS was conducted to evaluate its feasibility.  The framework is illustrated in Figure 

7-4.  After the RTREID-2 server was set, Data collector (i.e., CORBA interface), 

Database and Testbed Web servers were built by UCI research team according to the 

proposed RTPMS framework.  The tasks of Data Collector were to receive raw vehicle 

signature data and RTPMS features (named, CORBA Supplier) and to feed RTPMS 

server with RTPMS features (named, CORBA Consumer).
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Figure 7-4  RTPMS simulation.
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The Data Pre-Processor was to emulate field computers.  The functions of Data 

Pre-Processor included simulating real-time scenario of generating raw vehicle signature 

data, detecting and eliminating irregular and tailgating vehicle signatures data, and 

extracting PSR values.  The task of the RTPMS server in this simulation was to emulate 

RTREID-2 server, Database server and Testbed Web server.  RTREID-2 Module and 

Vehicle Classification Module were performed once RTPMS features were received from 

CORBA Consumer, and the results were sent to database (i.e. the simulate Database 

server).  

It was found that amendment was needed for the minimum AMD searching 

approach described in Step 5 of RTREID-2 procedure when implementing RTREID-2 

Module in a real-time setting.  This searching approach firstly defines an upstream 

candidate vehicle set for a downstream vehicle within a time window, and a reverse time 

window is applied to each upstream candidate vehicle to find its corresponding candidate 

vehicle set at its downstream (details can be found in Chapter 3).

For a given upstream candidate vehicle, however, it is not possible to properly 

include all candidate vehicles at downstream since the upper bound of the reverse time 

window may exceed the current timestamp.  Accordingly, adjustment was made to hold 

those vehicles and to postpone the vehicle reidentification task until all candidate vehicles 

could be properly included.  It must be noted that since some delays may occur due to 

this change, the “current” travel time information will be an estimate obtained from the 

vehicles that can be reidentified in the current time interval.
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For the UCI_PeMS Module, which was embedded in the simulated Testbed Web 

server, it queried the database to get necessary information so that performance 

measurements could be generated.  All of the modules were programmed in C/C++ 

except the UCI_PeMS module, which has been programmed in Java by UCI research 

team.  For displaying the results of the real-time performance measurements, it can be 

shown graphically or in text format.

It is worth noting that the RTPMS simulation results have proven the feasibility of 

the proposed RTPMS framework.  The snapshots of the developed website are 

demonstrated in Figure 7-5, Figure 7-6, and Figure 7-7.  As illustrated in Figure 7-5, the 

gray shadow along the freeway corridor depicts capacity.  The widths of the colored area  

indicate traffic volumes.  The color itself shown along the freeway corridor represents 

travel speed information.  In addition, vehicle classification results are illustrated by a pie 

chart shown next to each detection station.
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Figure 7-5  Real-time corridor performance:  Graphical display.
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Figure 7-6 and Figure 7-7 demonstrate the RTPMS results in text format.  In 

Figure 7-6, each section within the freeway corridor is stated by its post mile, traffic flow, 

travel time, and speed information.  All the traffic measurements are furthered detailed 

according to the usage of lane, i.e., high occupancy vehicle (HOV) lane and mainline 

(ML). 

Figure 7-6  Real-time corridor performance:  Text display for Corridor information.
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Figure 7-7 presents vehicle classification information for a selected freeway 

section.  The first table shows mainline section performance by vehicle class, while the 

second depicts HOV section performance by vehicle class.  In addition to the vehicle 

class proportion, travel times and speeds are also provided for each vehicle class.

Figure 7-7  Real-time corridor performance:  Text display for section information.
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CHAPTER 8 CONCLUSIONS

Vehicle reidentification has emerged due to its substantial potential for effective 

implementation of ATMIS (Advanced Transportation Management and Information 

Systems).  Several technologies have been studied for vehicle reidentification in the last 

three decades including intrusive detection systems and non-intrusive detection systems.  

As opposites of intrusive detection systems, non-intrusive detection systems are free from 

privacy concerns and, usually, market penetration problems.  Among the non-intrusive 

detection systems, although ILDs (Inductive Loop Detector) are not without limitations 

as a traffic sensor, they are widely used for historical reasons and the sunken investment 

in the large installed base makes their use in this dissertation highly cost-effective.

Moreover, the ILD-based system has shown its capability of anonymous vehicle 

tracking in previous studies, and could be potentially applied to reidentify individual 

vehicles across multiple detection stations.  Therefore, this dissertation developed a new 

vehicle reidentification algorithm (i.e., RTREID-2) for real-time implementation by 

employing PSR (Piecewise Slope Rate) approach that extracts features from raw vehicle 

signature data.  The results of cases studies indicated that RTREIS-2 is capable of 

providing individual vehicle tracking information and performance such as travel time 

along a freeway corridor.
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The potential contributions of RTREID-2 are application to square and round 

single loop vehicle reidentification and straightforward implementation, while avoiding 

issues associated with re-estimation or transferability of the speed models used in the 

previously developed approach.  In addition, the results of sensitivity analyses, vehicle 

reidentification performance, and the accuracy of section travel time, are very promising 

and suggest that with this approach, the reduction in both computational effort and 

computer memory needed to store signatures information could potentially benefit real-

time implementation.

Furthermore, RTREID-2 was applied along a 6.2-mile freeway corridor under 

congested morning peak-period conditions.  The applicability and transferability of 

RTREID-2 to homogenous loop detection systems (square loops or round loops systems) 

and heterogeneous loop detection systems (mixed square and round loops system) was 

also investigated in this freeway corridor.  Excellent results are obtained compared with 

GPS measurements from control vehicles and suggest that RTREID-2 has the potential to 

be implemented successfully in a congested freeway corridor, utilizing either or both 

round or square inductive loop detectors.

A real-time vehicle classification model, which is part of RTREID-2, is also 

introduced.  The proposed vehicle classification model can not only categorize vehicle 

types based on the FHWA scheme, but also can group vehicles into more detailed classes.  

The results are very encouraging since the proposed model can successfully classify 

vehicles using single loop detector data without any axle information, and reliable model 
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transferability is also demonstrated.  The advantages of the proposed method are its 

simplicity and employing the current detection infrastructure.

Moreover, to understand the real-time freeway performance measurement system 

in a real-world setting, the design of RTPMS (Real-time Traffic Performance 

Measurement System) is presented in this dissertation.  A simulation of RTPMS is 

conducted to evaluate its feasibility.  The simulation results demonstrate the potential of 

implementing the proposed RTPMS framework in the real world.

For future study, it is proposed that RTPMS be implemented in a real world 

setting.  In addition, the investigations can be taken to address the issues arising from this 

dissertation research, including improvement of vehicle signature data quality, 

improvement of system reliability for heterogeneous detection systems, refinement of the 

proposed vehicle classification model, and corridor O-D estimation.  Further research can 

also extend RTPMS to arterials, or for network-wide implementation.
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APPENDIX A  RTPMS DATABASE DESIGN

Configurations:  Design Scheme

Name Type Description Note

Road Index
 Freeway
 Urban

Freeway or Road/Intersection 
name

Pre-defined

Detection Station ID (DS ID) - A unique ID for each detector Pre-defined

Detector Type

 Round Loop
 Square Loop
 Blade
 Video

Detector type specification Pre-defined

Detector Configuration
 Single
 Double
 Other

Configuration of the detectors Pre-defined

Upstream Detection Station ID 
(UDS ID)

 Freeway
o Mainline
o Ramp

 Urban
o Through
o Left turn
o Right turn

The adjacent upstream detection 
station(s)

Pre-defined

Distance -
Distance to the each adjacent 
upstream detection station(s)

Pre-defined

Configurations:  Example

Road Index DS ID Detector Type
Detector 

Configuration
UDS ID Distance

I-405 NB LC Square Loop Double -1 -1
I-405 NB SCONR Round Loop Double -1 -1

LC 0.63
I-405 NB SC Square Loop Double

SCONR 0.50
I-405 NB YL Round Loop Single SC 2

… … … … … …
Alton-ICD AltonICD-1 Square Loop Double -1 -1
Alton-ICD AltonICD-2 Square Loop Double -1 -1

… … … … … …
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Input Data for REID:  Design Scheme

Name Type Description Note
UCI Record ID (UCI ID) Header An ID assigned to each vehicle signature Detector specific data
DS ID Header A unique ID for each detector Pre-defined
Date Header Signature timestamp Detector specific data
Time Header Signature timestamp Detector specific data
Lane Header Lane number Detector specific data
Duration (sec) Header Duration of time the detector is on Detector specific data
Num samples Header Number of samples in the vehicle signature Detector specific data

Interval Data
Time interval from the beginning of the 
vehicle signature

Detector specific data

Magnitude-front Data
Magnitude of the front loop for double loops 
or magnitude of the signal loop

Detector specific data

Magnitude-rear Data Magnitude of the rear loop Detector specific data

Input Data for REID:  Example

UCI ID DS ID Lane Date Time Duration
Num 

samples
12345 SC 2 2004-11-02 09:00:0.26800 0.524000 630

0.000000 -329.000000 0.000000
0.000833 -358.000000 0.000000
0.001667 -396.000000 0.000000

… … …
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Output Data from REID:  Individual Vehicle Level Design Scheme

Name Type Description Note

UCI ID -
An ID assigned to each vehicle 
signature

Detector specific data

Road Index
 Freeway
 Urban

Freeway or Road/Intersection 
name

Pre-defined (Configurations)

DS ID - A unique ID for each detector Pre-defined (Configurations)

Detector Type

 Round Loop
 Square Loop
 Blade
 Video

Detector type specification Pre-defined (Configurations)

Detector 
Configuration

 Single
 Double
 Other

Configuration of the detectors Pre-defined (Configurations)

Date - Signature timestamp Detector specific data
Time - Signature timestamp Detector specific data
Lane - Lane number Detector specific data

REID ID -
An ID assigned to the 
reidentified vehicle

REID result: Individual vehicle

UDS ID

 Freeway
o Mainline
o Ramp

 Urban
o Through
o Left turn
o Right turn

The adjacent upstream 
detection station(s)

Pre-defined (Configurations)

Distance (mile) -
Distance to the each adjacent 
upstream detection station(s)

Pre-defined (Configurations)

Point speed (mph) -
Output from speed-trap or 
speed estimation module

REID result: Individual vehicle

Section speed (mph) -
Travel speed for individual 
vehicle

REID result: Individual vehicle

Travel time (sec) -
Travel time for individual 
vehicle

REID result: Individual vehicle

Vehicle class
 FHWA
 RTPMS

Classification of vehicle types 
based on FHWA/RTPMS 
standard

Output from vehicle 
classification module

Output Data from REID:  Example of Individual Vehicle Level

UCI ID Road Index US ID
Detector 

Type
Detector 

Configuration
Date Time Lane

12345 I-405 NB SC Square Loop Double 2004-11-02 09:00:0.26800 2
REID ID UDS ID Distance Point speed Section speed Travel time Vehicle class

444 LC 0.63 70 64.98 34.9 2
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Output Data from REID:  Section Level Design Scheme

Name Type Description Note

DS ID -
A unique ID for each 
detector

Pre-defined 
(Configurations)

UDS ID

 Freeway
o Mainline
o Ramp

 Urban
o Through
o Left turn
o Right turn

The nearest upstream 
detection station

Pre-defined 
(Configurations)

Section travel time
(Sec. TT)

 Max
 Min
 Average (Avg)
 Std

Statistics of section travel 
time for each single 
section

REID result:  
Single section

Section volume
(Sec. Vol)

 Max
 Min
 Avg
 Std

Statistics of section 
volume for each signal 
section

REID result:  
Single section

Section speed
(Sec. Speed)

 Max
 Min
 Avg
 Std

Statistics of section speed 
for each single section

REID result:  
Single section

Section occupancy %
(Sec. Occ)

 Max
 Min
 Avg
 Std

Statistics of section 
occupancy for each 
single section

REID result:  
Single section

Section density
(Sec. Density)

 Max
 Min
 Avg
 Std

Statistics of section 
density for each single 
section

REID result:  
Single section

Section Vehicle composition 
(Sec. Veh Comp)

 FHWA
 UCI

Output from vehicle 
classification module

REID result:  
Single section

Output Data from REID:  Example of Section Level

DS ID UDS ID Sec. TT Max Sec. TT Min Sec. TT Avg Sec. TT Std
SC LC 38 28 33 10.65

Sec. Vol Max
Sec. Vol 

Min
Sec. Vol Avg Sec. Vol Std Sec. Speed Max

Sec. Speed 
Min

110 72 90 5.86 82 58
Sec. Speed 

Avg
Sec. Speed 

Std
Sec. Occ 

Max
Sec. Occ Min Sec. Occ Avg Sec. Occ Std

72 8.70 45.00% 38.97% 41.2% 2.33
Sec. Density 

Max
Sec. Density

Min
Sec. Density 

Avg
Sec. Density 

Std
Sec. Veh Comp 

(FHWA)
Sec. Veh 

Comp (UCI)
521 487 500 4.44 2 2
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Output Data from REID:  Lane-Related Design Scheme

Name Type Description Note

DS ID -
A unique ID for each 
detector

Pre-defined (Configurations)

UDS ID

 Freeway
o Mainline
o Ramp

 Urban
o Through
o Left turn
o Right turn

The nearest upstream 
detection station

Pre-defined (Configurations)

Lane - Lane number Detector specific data

Lane travel time
(Lane TT)

 Max
 Min
 Avg
 Std

Statistics of travel time 
for each lane

REID result:  Lane related

Lane volume
(Lane Vol)

 Max
 Min
 Avg
 Std

Statistics of volume for 
each lane

REID result:  Lane related

Lane speed

 Max
 Min
 Avg
 Std

Statistics of section speed 
for each lane

REID result:  Lane related

Lane occupancy
(Lane Occ)

 Max
 Min
 Avg
 Std

Statistics of occupancy 
for each lane

REID result:  Lane related

Lane density

 Max
 Min
 Avg
 Std

Statistics of density for 
each lane

REID result:  Lane related

Lane Vehicle composition 
(Lane Veh Comp)

 FHWA
 UCI

Output from vehicle 
classification module

REID result:  Lane related

Output Data from REID:  Example of Lane-Related

DS ID UDS ID Lane
Lane

TT Max
Lane

TT Min
Lane

TT Avg
Lane

TT Std
Lane 

Vol Max
Lane 

Vol Min
SC LC 4 38 28 33 10.65 110 72

Lane 
Vol Avg

Lane
Vol Std

Lane
Speed Max

Lane
Speed Min

Lane
Speed Avg

Lane 
Speed Std

Lane 
Occ Max

Lane 
Occ Min

Lane 
Occ Avg

90 5.86 82 58 72 8.70 45.00% 38.97% 41.2%
Lane 

Occ Std
Lane

Density Max
Lane

Density Min
Lane

Density Avg
Lane

Density Std
Lane Veh Comp 

(FHWA)
Lane Veh Comp 

(UCI)
2.33 521 487 500 4.44 2 2
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Output Data from REID:  Path-Related Level Design Scheme

Name Type Description Note
Origin-Destination - O-D table REID result:  Path related
Total travel distance
(Tot. TDist)

-
Total travel distance for a 
specific path

REID result:  Path related

Path travel time in 
minute
(Path TT)

 Max
 Min
 Avg
 Std

Statistics of path travel 
time for a specific path

REID result:  Path related

Path speed (mph)

 Max
 Min
 Avg
 Std

Statistics of path speed 
for a specific path

REID result:  Path related

Path info -
Path info for individual 
vehicle (table)

REID result:  Path related

Output Data from REID:  Example of Path-Related

Path
Tot. 

TDist
Path TT 

Max
Path TT 

Min
Path 

TT Avg
Path 

TT Std

Path 
Speed 
Max

Path 
Speed 
Min

Path 
Speed 
Avg

Path 
Speed 

Std
LC to YLOFFR 4.5 5.2 4.8 5.0 2.2 81 65 77 4.44
SCONR to YL 4 5.0 4.5 4.7 3.4 77 62 70 3.33

… … … … … … … … … …

Output Data from REID:  Example of O-D Table

Destination
Origin

1 2 3 …

1 12 4 38 …
2 1,003 42 77 …
3 112 520 58 …
… … … … …

Output Data from REID:  Example of Path Info

REID ID Date Start Time Origin Destination Path TT Vehicle Type
444 2004-11-04 09:00:0.26800 LC YL 12 2

Road 
Index

DS ID Lane Time Section Speed

I-405 NB LC 2 09:00:0.26800 -
I-405 NB SC 3 09:00:35.16800 64.98

… … … … …
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Output Data from REID:  REID Performance Design Scheme

Name Description Note

MAPE
Mean absolute percentage error for travel 
time estimation (ground-truthed)

REID performance

TMR Total match rate (ground-truthed) REID performance
CMR Correct match rate (ground-truthed) REID performance
MR Mismatch rate (ground-truthed) REID performance
NMR No match rate (ground-truthed) REID performance
RR Reliability rate (ground-truthed) REID performance

Output Data from REID:  Example of REID Performance

Study 
Site

Date Start Time End Time Detector Type
REID 

Algorithm
LC
SC

2004-11-04 09:00:0.26800 09:30:00 Square Loop RTREID-2

MAPE TMR CMR MR NMR RR
1.05% 92.00% 80.00% 12.00% 8.00% 86.96%
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Output Data from REID:  RTPMS Design Scheme

Name Description Note
SMR System match rate for each section RTPMS
Section travel time Aggregated travel time for each section RTPMS
Section volume Traffic count for each section RTPMS
Section speed Statistics of average section speed for each section RTPMS
Section occupancy Statistics of average section occupancy for each section RTPMS
Section density Statistics of average section density for each section RTPMS
VMT Vehicle miles traveled for each section RTPMS
VHT Vehicle hours traveled for each section RTPMS
Vehicle composition The proportion of each vehicle class for each section RTPMS

Output Data from REID:  Example of RTPMS

From
(DS ID)

To
(DS ID)

SMR
Section 
Travel 
Time

Section 
Volume

Section 
Speed

LC SC 92% 33 110 82
Section 

Occupancy
Section 
Density

VMT VHT
Vehicle 

Composition
41.2% 500 1000 10 **Table
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