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Abstract

Design, Control, and Motion Planning of Cable-Driven Flexible Tensegrity Robots

by

Angelo Brian Micubo Cera

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Alice M. Agogino, Chair

Tensegrity structures are an emergent type of soft-robotics that are compliant, lightweight,
and impact-resilient. In collaboration with NASA Ames Research Center, research in the
Berkeley Emergent Space Tensegrities Lab at UC Berkeley has largely focused on the design
and control of these novel structures as potential surface exploration robots which could act
as both landers and rovers. More recently, tensegrity robots have also been proposed for
applications closer to home – working as disaster response and emergency co-robots to help
first responders obtain situational awareness faster and safer. Constructed using isolated
rigid bodies suspended in a tension network of elastic elements, tensegrity structures exhibit
unique and advantageous mechanical properties for applications in uncertain and potentially
hazardous environments, albeit at the cost of increased complexity for dynamic feedback
control.

In addressing these challenges, this work explores possible approaches for feedback control
and state estimation for ground-based rolling locomotion with six-bar spherical tensegri-
ties. In this dissertation, we explore problems pertaining to practical implementation – state
estimation, modeling, motion planning, and optimal control of tensegrity robots under uncer-
tainty. Leveraging the well-structured dynamics of Class-1 tensegrity robots, we implement
and evaluate model-based Model Predictive Control and iterative local quadratic methods
for tensegrity motion planning. Additionally, we consider alternative tensegrity topologies
and actuator schema which may enable improved performance for task-specific objectives.
Due to the many degrees of freedom and compliant nature of tensegrity structures, however,
excessive state estimate errors may propagate catastrophically. To evaluate these effects,
Bayesian state estimators are applied to tensegrity ground mobility in simulation, evaluat-
ing their performance under the additional constraints of low-cost sensors and potentially
scarce and noisy sensor data. An imitation learning approach is introduced to achieve di-
rected rolling motion using a contextual neural network policy, combining deep learning and
optimal control for real-time feedback control of highly nonlinear tensegrity systems. Fi-
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nally, a robust minimax control approach is proposed in order to address challenges which
arise at the intersection and interaction of state estimation and trajectory optimization for
flexible tensegrity robotics. Combined, these pragmatic research developments help advance
the progression of this novel technology towards becoming a viable and more widely adopted
robotics paradigm.
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Chapter 1

Introduction

This dissertation studies design, control, and motion planning of novel robotic systems based
on tensegrity concepts. Tensile-integrity tensegrity robots are an emergent technology of
lightweight, shape-shifting flexible robotics with cable-driven designs that are bio-inspired
and mechanically efficient. Tensegrity designs are characterized by rigid bodies that are
suspended in a balanced tension network of elastic elements. Consequently, they feature
passive flexible compliance that enables these robots to detect and absorb large external
forces, and their deformable bodies help naturally mitigate damage resulting from impact
forces from their surrounding environment. The rigid rods and elastic cables which form
these structures experience only compressive or tensile axial forces while in equilibrium, and
because there are little to no bending moments or stress concentrators, tensegrity systems
are inherently resistant to failure [87]. Additionally, these structures’ natural compliance
facilitates their potent ability to quickly distribute external forces throughout their entire
tension network. This key mechanical property provides intrinsic shock protection from
impact and makes the flexible structure a robust robotic platform for manipulation and
mobility. Thus, tensegrity robots are mechanically robust and promising candidates for
exploratory tasks in uncertain environments.

Through joint research efforts from NASA Ames Intelligent Robotics Group (IRG) and
the Berkeley Emergent Space Tensegrities research lab, we have demonstrated that tensegrity
robots are an elegant form-driven solution to critical problems that can arise during operation
in rugged, uncertain environments. Namely, they possess valuable properties such as impact-
resilience, passive compliance, and mechanical robustness, which are useful traits for complex
co-robotic applications. These structural properties of compliant and lightweight tensegrities
have proven to be advantageous in applications that involve high-impact loads and co-robotic
cooperation with humans.

Motion planning and optimal control for rolling mobility has been a major driving force
for tensegrity robotics research in recent years. Tensegrity robotics’ high-dimensional highly-
coupled nonlinear dynamics in contact-rich environments present a natural challenge for
conventional control and motion planning techniques. As a result, innovative approaches
utilizing evolutionary algorithms, data-driven methods, and model-based optimal control



CHAPTER 1. INTRODUCTION 2

have all been developed to control these novel complex robots. In particular, great emphasis
has been placed on optimal performance with respect to rolling speed under non-ideal condi-
tions and rough terrain, but less consideration has been made for practical implementation
challenges such as energy efficiency, controllability, and directional trajectory-tracking accu-
racy. Notably, the hardware performance and energy efficiencies of mobile tensegrity robots
have yet to be thoroughly evaluated for practical use cases in realistic scenarios.

The Berkeley Emergent Space Tensegrities1 (B.E.S.T.) Lab, in collaboration with the In-
telligent Robotics Group at NASA Ames Research Center, had explored the use of tensegrity
robotic systems for the purpose of space exploration. Due to their unique impact-resilient
properties and lightweight designs, tensegrity structures have excellent potential as easily
scalable, highly mobile, low-cost landers and surface exploration rovers. More recently, the
B.E.S.T. Lab and spin-off startup Squishy Robotics, Inc. has been evaluating their effective-
ness in earthly applications such as large-scale disaster response, emergency response, and
rapid search-and-rescue. In order for these robots to be applicable in such high-impact and
dynamic situations, however, their mobility and manipulation capabilities must be reliable,
robust, and efficient even in uncertain conditions. This need is the primary driving moti-
vation behind the work presented here - a summary of research towards further developing
robust mobility for these unique and relatively complex tensegrity robots. In presenting an
alternative to the open-loop control policies that have been used (surprisingly effectively) by
the B.E.S.T. Lab in the past, this work attempts to motivate the use of optimal feedback
controllers for robust dynamic control of these complex robots to enable faster and more
energy-efficient mobility.

1.1 Research Objectives

At a high level, this dissertation addresses the following key research goals to further tenseg-
rity robotics as a whole:

1. Application of existing controllers, estimators, and motion planning ap-
proaches to novel tensegrity robotics. Through implementing a variety of com-
mon model-based optimal control techniques, this work investigates the potential of
using deterministic control approaches with nominal system dynamic models. Meth-
ods using locally-linearized dynamics as well as iterative nonlinear control techniques
are compared and evaluated through key metrics for tensegrity mobility such as speed,
trajectory tracking, and energy efficiency. Notably, tensegrity robots present a greater
challenge for actuator and sensor selection than conventional robotics due to having
significantly more degrees of freedom, natural structural compliance, and a greater
number of moving parts and actuators. In this work, different actuation and sen-
sor configurations are evaluated to motivate reliable and robust tensegrity hardware
designs.

1Website: http://best.berkeley.edu/
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2. Robust Nonlinear Control. Due to their intrinsic compliance and flexible design,
reliable performance under uncertainty is a major concern for tensegrity robotics. The
exact state or pose of the robot is often unattainable - sensor fusion and state observers
can only provide probabilistic beliefs of the current state of the robot at any given
time. To this end, this work explores applications of nominal controllers for uncertain
systems using certainty-equivalent control assumptions and investigates other robust
control approaches such as minimax dynamic programming.

3. Data Driven Motion Planning and Control. Data-driven approaches such as
imitation learning are explored through practical applications with tensegrity robots.
Namely, tensegrity systems are utilized as a useful platform for investigating hybrid
approaches combining controls and machine learning for control and motion planning
with high-dimensional nonlinear dynamic systems. In this work, we investigate how
imitation learning with expert optimal control policies can be utilized for real-time
feedback control.

1.2 Outline of Dissertation

This dissertation is structured as follows:

• Chapter 2 provides background and motivation on tensegrity systems and discusses
their advantageous mechanical properties as well as standing challenges. Additionally,
this discussion helps elucidate why dynamic control of these structures can be difficult,
relative to traditional rigid robots.

• Chapter 3 presents some tensegrity dynamics representations for the six-bar spherical
tensegrity which helps set the context for the numerical optimization approaches we
discuss later in the work. The well-structured dynamics that are outlined in this chapter
provide the mathematical backbone upon which constrained optimization problems can
be rapidly formulated and applied to various different tensegrity topologies.

• Next, Chapter 4 demonstrates two approaches for generating dynamic rolling locomo-
tion for ground mobility using Model Predictive Control and iterative local quadratic
methods.

• Chapter 5 discusses the dual problem of state estimation, and unique challenges to
tensegrity robotics which must contend with contact-rich ground mobility.

• Chapter 6 combines and extends the work in Chapters 4 and 5 to address practical
considerations of computational time complexity and uncertainties which arise from
imperfect models and noisy sensor measurements.

• Finally, Chapter 7 concludes by summarizing the work throughout the dissertation.
We discuss potential future work in further developing and refining these approaches
to new and uncertain environments, delayed-reward learning tasks, and full tensegrity
autonomy.
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Chapter 2

Background and Motivation

2.1 Tensegrities - A Tale of Tensional Integrity

“All the categories of creatures act individually as special-case and may be
linearly analyzed; retrospectively, it is discoverable that inadvertently they are
all interaffecting one another synergetically as a spherical, interprecessionally
regenerative, tensegrity spherical integrity...” -R. Buckminister Fuller

Tensegrity structures never fail to capture the imagination. Whether you’re seeing them
for the first time or you’re putting together your hundredth tensegrity model, these unique
structures always have a fascinating allure which sparks the creativity and wonder within.
Time and time again through outreach demos, conferences, and technology expos, I’ve seen
firsthand the sense of wonder as children and adult alike hold these odd and interesting
robots in their hands for the first time. Often, they’ll relate it to reminiscent egg-drop
contests from high school or suggest some interesting new geometry or topology that no one
had ever considered. They’ll promote a seemingly endless list of new technical features or
potential applications in their field, and each time I’m reminded of why tensegrity-related
research called to me in the first place – a boundless sea of possibilities for such a unique,
unproven robotic technology.

The tensegrity concept’s origin is more humble than futuristic robots, however. Whereas
today some research groups focus on enabling dynamic movement of tensegrity robots,
tensegrity structures were originally rooted in the flowing flexibility of static artistic archi-
tecture. Buckminister Fuller – an eccentric 20th century inventor, quack, and/or visionary
(depending on who you ask) best known for his invention of geodesic domes1 - coined the
term ‘tensegrity’ to describe “self-tensioning structures composed of rigid structures and ca-
bles, with forces of traction and compression, which form an integrated whole.” For him and

1This is an often contentious point of debate, with some evidence of earlier European architecture dating
back 40 years prior.
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Figure 2.1: Early prototypes of spherical tensegrity robots, courtesy of the Berkeley Emer-
gent Space Tensegrities Research Lab.

many others, tensegrities represented a harmonious balance or equilibrium that existed not
only in structures, but in organizations, systems, and living beings as well.

The often-debated ‘original tensegrity’ structure is usually cited as the X-Piece, which was
created by artist Kenneth Snelson in 1948 at Black Mountain College where Buckminister
Fuller was lecturing at the time. The structure, shown in Figure 2.2, was modular and
demonstrated the versatility of tensegrities by allowing for combining the three-bar tensegrity
design into long tensegrity ‘chains’, such as in Snelson’s iconic 18-meter tall Needle Tower of
1968. In 1949, one year after the first tensegrity piece was created by Snelson, he introduced
the now canonical six-bar or six-rod icosahedral tensegrity (also known colloquially as the six-
bar spherical tensegrity). This structure, example shown in Figure 2.1, is the most ubiquitous
form of tensegrity robots, in part thanks to the popularity of NASA Ames’ research as well
as original children’s toys which were pervasive in the 1980’s (see ‘Skwish’ toys). This
canonical spherical six-bar tensegrity robot topology, which enables rolling mobility, is the
primary focus of this work.
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(a) The X-Piece tensegrity structure cre-
ated by Kenneth Snelson in 1948.

(b) The Needle Tower located outside of the
Hirshhorn Museum and Sculpture Garden
in Washington, D.C.

Figure 2.2: Early examples of tensegrity structures.

2.2 Tensegrity Applications

Prior to robotics, tensegrity structures have been recognized as exceptionally strong and
lightweight mechanical designs, making structural bridges and domes a natural application
[34]. Similarly, they’ve been used towards unique lightweight structures such as deployable
masts [30], antennas [51], and even space structures [99].

Although a more nascent technology compared to traditional applications in structural
architecture, tensegrity robotics have also already seen some experimental applications to
date. In most cases, tensegrity robots excel in situations which must deal with unique design
constraints, uncertainty, and/or close proximity with humans. In these situations, tensegrity
robots’ natural compliance ends up being a significant advantage for some interesting and
impactful applications.

One interesting example - and the initial push for research in the lab - is NASA’s interest
in researching and developing a tensegrity platform for an innovative surface exploration rover
as part of their NASA Innovative Advanced Concepts Program [2, 1, 93]. Initiated in 2012,
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the project aims to address the challenges of increasingly important small, lightweight, and
low-cost missions. In their vision, compliant tensegrity robots may be compactly squeezed
into a small launching platform and spring away upon landing without any need for extensive
entry, descent, and landing technology. Their tensegrity form enables these robots to reorient
themselves and survive significant falls without the need for additional specialized hardware.
Additionally, characteristics of reusability, redundancy, and reliability make tensegrity plat-
forms a compelling option. Their modular design allows for assemblies to be reused for many
different applications, while their light weight and low cost mean that multiple robots can
be assigned to collaboratively achieve a given task.

Other applications utilize tensegrity for biomechanical or co-robotics applications in close
proximity to people. As an example, [4] from UC Santa Cruz presents an exploration into
biomimetic tensegrity robotic manipulators inspired by the human shoulder. Tensegrities
naturally pose as an analog to biological musculoskeletal systems of vertebrates, with rigid
bodies and tension elements being analogous to the structural skeletal scaffolding and ten-
dons/muscles in the system.

A research group out of UC San Diego utilizes tensegrities in [28, 27] to traverse complex
duct systems, an application which requires small, agile robots and complex control with
a wide variety of actions and large uncertain workspace. In this work, a simple design
using two tetrahedral tensegrity frames is manipulated using a linear actuator and actuated
cables. Periodic controllers control an alternating motion which allows the robot to make
incremental progress in a inchworm-like crawling motion.

Finally, other research groups have also developed spherical tensegrity robots to explore
their potential for ground mobility. Research groups in Japan first demonstrated tensegrities’
capability for ground locomotion through ‘crawling’ in [84, 83]. Through deformation of the
structure, gravitational potential energy is used to force the robot to transition from a stable
neutral state to an unstable state, resulting in a punctuated rolling locomotion.

2.3 Motivations for the Tensegrity Robot Paradigm

Tensegrity robots are often unfairly characterized as a flexible robot paradigm that is need-
lessly complex or unnecessarily redundant, with potentially more actuators, sensors, and
on-board computation than conventional robots. Admittedly, while there are kernels of
truth to this sentiment (largely due to it being a new underdeveloped technology), there are
strong arguments for the enticing advantages that novel tensegrity robot designs can provide.

Passive Compliance. Due to their flexible robot design, tensegrities exhibit structural
compliance in the presence of external disturbances. Additionally, when combined with
intrinsically applied internal forces, external disturbance forces from the environment can
potentially enable a larger configuration space (i.e., the space of possible positions the robot
may attain) than the robot acting solely on its own. Consider a flexible tensegrity manip-
ulator working cooperatively with a human operator in order to move an object. Because
of the robot’s natural compliance, simpler impedance-based controllers and fewer cheaper
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sensors (e.g., IMUs rather than vision/LIDAR) can be sufficient when using a soft, flexible
robot design. Furthermore, when the robot is finished with its operational tasks, the robot
can be compactly packed away through externally applied forces from the operator.

Variable Stiffness. Tensegrity robots also have the unique ability to control their overall
effective structural stiffness. This variable stiffness is an advantage that enables tensegrities
to fully capture the wide range of compliance inherent to biological systems. In contrast to
traditional robotic systems which utilize rigid and precise mechanical linkages that need to
be compensated with complex software control, tensegrities have the ability to mechanically
represent several orders of magnitude of stiffness, dynamically responding to changing design
requirements and the environment.

Intrinsic safety. Tensegrity structures feature low mass, high strength-to-weight ratio,
and passive compliance. Combined, these intrinsic characteristics of tensegrities mean that
they naturally mitigate any potential damage to their surroundings. While tensegrity robots
have the capability to increase their stiffness for more demanding tasks with greater loads
and higher precision, their passive compliance can further provide system-level information
for rich high-fidelity impedance control. While unintentional physical interactions may occur
during complicated dexterous tasks, their low mass and inertia help mitigate any unforeseen
risks from the robot.

Redundant sensors/actuators. Redundant sensors and actuators that are common
to tensegrities can be viewed negatively, necessitating higher costs and complexity. In some
cases, however, such as working in adversarial environments, this redundancy can enable
the robot to continue its tasks under sub-optimal operating conditions. Rolling mobility for
the six-bar spherical tensegrity, for example, can continue even in the presence of broken
actuators. The degree of degradation in performance is dependent on the design and which
specific actuators are non-functioning, but a sub-optimal robot is in many practical cases
infinitely better than an entirely obsolete robot (e.g., remote space exploration rovers millions
of miles from earth).

Modular design. Tensegrities may seem intricately complex at first glance – they have
dozens of passive and active cables interconnecting floating rigid bodies in a seemingly ran-
dom manner. In reality, however, they feature only a few repeated modules of individual
parts representing two key components - actuated rods and cables. This modularized de-
sign lends itself to scalable manufacturing, rapid repairs, and plug-and-play substitution of
system components. Unfortunately, tensegrity hardware is still nascent, and challenges in-
herent to cable-driven robotics still remain a significant challenge. Despite this, research and
development along useability and reliability of tensegrity hardware may provide increasing
returns, as the individual modular components themselves can be minimally modified for
use in a huge variety of tensegrity topologies.
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2.4 Challenges for Tensegrity Robotics

Despite their compelling and unique advantages, tensegrity robots must address many real
challenges before they may be considered a mature technology viable for widespread use.
As intrinsically flexible robots, tensegrities face numerous technical obstacles regarding dy-
namic modelling, distributed control/sensing, and control of compliant systems in the face of
uncertainty. In particular, dynamic modeling is a standing challenge for all flexible robotics,
with various approaches to tackling the issue including lumped-parameter models [110][92],
finite element methods [72][6], and assumed modes models [96]. Notably, tensegrity robots
naturally lend themselves towards lumped-parameter models due to their natural discretiza-
tion between rigid rods and compliant cable elements. A few lumped-mass dynamics models
are presented in Chapter 3.

More interestingly, tensegrity robots must also deal with the challenges of controlling
high-dimensional, coupled nonlinear dynamics with uncertainty, all of which result from their
soft-bodied designs. In the past, many previous works leveraged heuristic based approaches
such as Monte Carlo simulation, evolutionary algorithms, biologically-inspired central pat-
tern generators, and/or relied on quasi-static assumptions. Currently, there exists very little
to no existing work on controlling dynamic tensegrities under uncertainty, though some ex-
amples of robust vibration control of static tensegrity structures are available [57, 22], as a
result of tensegrity’s historic roots in structural architecture. This work strives to elucidate
and address many of the practical challenges surrounding optimal control of dynamic mobile
tensegrity robots.
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Chapter 3

Tensegrity Dynamics and Simulation

3.1 Introduction

This dissertation primarily investigates the canonical six-bar spherical topology; in this chap-
ter we explore in greater detail the dynamics model representations of this tensegrity topology
which are useful for controls and state estimation in later chapters. Notably, this tensegrity
design is a Class-1 tensegrity structure, meaning that in an idealized model, each node is at-
tached to (at most) one rod and, equivalently, that the rods and cables act only as two-force
members under pure compression or pure tension, respectively. In particular, we assume that
the rigid bodies are rod-shaped and have negligible inertia about their longitudinal axis.

Class-k tensegrity systems are defined by the maximum number k of rigid bodies that
are connected to a single node. Class-1 tensegrities, the main topology of interest in this
work, are specific tensegrity structures constructed with compressive bodies that bear no
rigid joints and which are interconnected solely through series-elastic tensile elements. For
this reason, the highly-coupled nonlinear tensegrity dynamic equations of motion are well-
structured and can be procedurally obtained when given a fixed set of model parameters.
Forming the rigid-body dynamics of the tensegrity system can therefore be simply achieved
in a straightforward manner once the physical parameters (i.e., rod mass, rod length, cable
stiffness) and rod and cable connections are known, thus making tensegrity structures well-
suited for model-based optimal control.

3.2 Prior Work

Tensegrity dynamical systems in existing literature have universally been represented as rigid
body rods connected by spring-cable assemblies, often taking the assumption of discrete ideal-
ized two-force members. Nevertheless, numerous different lumped-parameter representations
have been proposed over time as the field has developed. Due to the dynamic complexities
that arise from such interconnected systems, it can be argued that a lack of universal, simple
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equations of motion have been a limiting factor for the adoption of tensegrity robotic systems
[88].

Skelton et al. present some of the earliest formulations of Class-1 and Class-2 tensegrity
systems in [89, 91]. This representation is summarized later in this work in Section 3.5. In the
prior work, they represent tensegrity rigid body dynamics as a matrix differential equation
rather than a traditional state space representation, with special emphasis on quasi-static
analyses of tensegrity systems. In particular, the authors introduce the importance of a
connectivity matrix describing cable-rod interconnections and introduce some of the earliest
notions of tensegrity control problems with string force density as control variables.

Unfortunately, while this early formulation has the benefit of removing trigonometric
nonlinearities due to the unique configuration space representation, control analyses of the
system is limited, as it becomes difficult to reason about desired behavior through the unique
tensegrity configuration matrix in comparison to a traditional Euclidean state space vector
form. Nevertheless, the authors demonstrate applicability of these early representations for
locally stabilizing control problems about linearized equilibrium states.

Later results in [88] by the same group represent the rigid body rods using a minimal
representation state that keeps track of each rod’s center of mass and orientation, specified
by Euclidean coordinates and a unit vector’s spherical coordinates, respectively. The details
of this vectorized representation can be found in Section 3.5. More recent results in [25]
introduce a numerical corrective algorithm for dynamic constraint violations in the minimal
representation that arise due to machine round-off error.

While traditional tensegrity models have neglected string mass, very recent results in [33]
present a new approach incorporating rigid bars with massive strings. The paper presents
a matrix-second-order nonlinear differential equation that permits the distribution of cable
mass among arbitrary point masses along the length of the string, while still maintaining
exact rigid body dynamics for the rods. To reduce complexity of the model, the authors
adopt a non-minimal representation for each rod, with each rod having six states, and cite
that this non-minimal representation ‘enables the model [to be] simplified and exploited
during numerical computations’.

In a similar vein, [77, 76] represents rigid rods using point masses distributed along the
longitudinal axis of each rod. Primarily concerned with transient behavior upon dynamic
impacts, the authors adopt this representation to allow bending in each rod, which they
argue is a critical component of tensegrities’ unique impact resilient characteristics. In [75],
Rimoli et al. present experimental results of tensegrities upon impact and argue that more
efficient structural design of tensegrities could be achieved by exploiting rather than avoiding
buckling behavior of compression members.

This work continues the trend in recent tensegrity research to adopt a conventional state
space point mass representation that is more familiar to those coming from traditional con-
trol theory literature. The advancements presented later in this chapter are motivated by
pragmatic considerations such as numerical stability, machine precision errors, and computa-
tion speed that arise in practical application of modern control techniques towards tensegrity
robotic systems.
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3.3 Contributions of this Chapter

This chapter outlines various lumped-mass dynamics models which are useful for controlling
tensegrity robotics. The minimal and point mass representations introduced here guide us
to consider tensegrities in an idealized manner, with discrete rigid bodies and elastic cables
treated as simple two-force members. Furthermore, these simplifications allow us to reason
about how to accurately simulate dynamic tensegrities under contact-rich rolling locomotion,
as well as identify key areas where accuracy may be sacrificed for computation speed, a key
trade-off for receding horizon control. Practical considerations for: 1) wide applicability to
various tensegrity topologies and 2) computation speed, directly lead to the novel tensegrity
point mass dynamics formulation presented at the end of this chapter which is utilized in
the most recent results presented later in this work.

Furthermore, this chapter introduces the key open-source simulation framework which
was utilized to obtain many of the results presented in this paper. Critically, the creation
of this simulation framework vastly improved the tensegrity research workflow, which previ-
ously was hampered by numerous hardware reliability issues, as robust off-the-shelf tensegrity
robots currently do not exist. The chapter concludes by demonstrating how these tools can
be used to evaluate tensegrity structures for a variety of interesting use cases such as simu-
lating high-altitude drop tests and evaluating center-payload protection through tensegrities’
natural impact resilient structures.

3.4 Six-Bar Spherical Tensegrity Overview

The defining characteristic of the six-bar topology is the presence of six separate rigid rods
in compression, the minimal number of rigid bodies necessary for a symmetric spherical
tensegrity form and thus the simplest geometry to explore for ball-like rolling locomotion.
For this specific topology, the rigid bodies are interconnected through a tension network
of 24 elastic elements, such as compliant cables, with the two cable-ends connected to two
independent rods.

As an active robotic system, the six-bar spherical tensegrity robot has the ability to
control the rod lengths and/or the tensions of the actuated cables. By convention, as in [39],
[24], [109], it is common for individual cable tensions to be controlled by using motors to
spool in (retract) or extend (release) a cable’s restlength. Using this principle, cable tensions
can be readily manipulated, with special attention to slack cables which, by their nature,
can produce no compressive force.

For the six-bar topology, the neutral pose, defined as the geometry when rest length is
equal for each of the 24 elastic cables, has a convex hull enclosing the 12 endpoints of the rods
in the shape of an icosahedron with 20 triangular-shaped faces. Through manipulation of the
individual cable tensions, the robot deforms this geometry to achieve dynamic motion. This
flexible shapeshifting capability is key to the design’s versatility and enables the tensegrity
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Figure 3.1: A robot hardware example of the canonical six-bar spherical tensegrity topology,
TT-5 from the Berkeley Emergent Space Tensegrities research lab.

robot to perform rolling locomotion by shifting the center of mass of the robot in a desired
manner, as described in [48].

3.5 Minimal Six-Bar Rigid Body Dynamics

In the following sections, we introduce the dynamics model representation used in earlier
research, first presented by Wroldsen and Skelton [107], [88]. Although the previous work
is included here for completeness, for this research, the dynamic formulation was ultimately
abandoned in favor of the simpler but slightly less accurate point mass formulation introduced
in Section 3.6. The rigid body formulation introduced here has the advantage of more
accurately representing rotational inertia and being a minimal representation (i.e., having
the fewest number of states necessary to represent the full dynamical system). However,
as discussed towards the end of the section in Subsection 3.5.4, this minimal representation
suffers from dynamic singularities and stiff ordinary differential equations which make model-
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Figure 3.2: Minimal state representation of a single rod rigid body, using XYZ-coordinates
of the rod’s center of mass and spherical angles representing the directional unit vector that
runs along the rod’s axial direction. Figure by Anders Wroldsen presented in [107].

based receding horizon control difficult or impossible outside of short time-horizons or well-
conditioned cases. Nevertheless, this minimal representation may be useful for static analyses
or evaluating quasi-static interactions.

3.5.1 Rod and Cable Dynamics

In the minimal representation motivated by [88][107] and presented in this section, each
rod is represented by five states: x, y, z position of its center of mass and the azimuth
and polar angles of a unit vector which lies along the axial direction of the rod (see Fig.
3.2). Traditionally, rotation around the rod’s longitudinal axis is less important and often
unconstrained in the physical construction of the robot and is thus consequently neglected
in this model. The equations of motion of rod i with respect to the minimal q-coordinate
representation can therefore be represented as:

q̈i(qi, q̇i) = M−1
i

(
Hi(qi)

(
gi(qi, q̇i) + fi

))
(3.1)
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qi =


x
y
z
θ
φ


i

∈ R5 gi(qi, q̇i) =


0
0
−mg

−2Jφ̇θ̇sinφcosφ

Jθ̇2sinφcosφ


i

∈ R5

Mi =


m 0 0 0 0
0 m 0 0 0
0 0 m 0 0
0 0 0 1 0
0 0 0 0 1


i

∈ R5×5 Hi(qi) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1

Jsin2φ
0

0 0 0 0 1
J


i

∈ R5×5

where Mi is the mass matrix for rod i, Hi accounts for rotational inertia, and gi incorporates
gravitational effects and additional terms that arise as a consequence of the spherical coor-
dinate representation. fi represents the generalized forces which act on rod i (e.g., the cable
tensions, collision forces between rods, and contact forces with the ground) with respect to
the q-coordinate frame.

Individual cable tensions, ti, can be modeled using a simple linear series-elastic represen-
tation of Hooke’s Law, with the added ‘slackness’ constraint that tensile forces are strictly
non-negative:

ti = max { 0 , k(si − `i) } (3.2)

here ti is the individual cable tension, si is the separation distance between the endpoints of
the rods which cable i is connected to, and `i is the cable restlength which can be controlled
(extended or retracted) using actuators. Collision forces between two rods and contact forces
between rods and the ground are calculated using a similar piecewise-linear Hookean contact
model in compression.

3.5.2 Complete Tensegrity Robot Dynamics

With the dynamic model for a single-rod given above, generating the complete equations of
motion for the entire tensegrity structure is a straightforward procedure, given that rods are
independent and interact primarily through the known cable connections of the robot. As
alluded to previously, this principle means that modeling any Class-1 tensegrity topology is
unambiguous once the cable and rod interconnections of the robot are properly defined.

To demonstrate this process for the six-bar spherical topology, we first designate each rod
endpoint as a ‘node’ with index j ∈ {1, ..., 12}, which permits a beginning or end of a cable
or rod connection to be defined. In convention with other existing simulations in [23, 49]
from the Berkeley Emergent Space Tensegrities lab, the six rods are defined in this section
with respect to the defined nodes as follows:
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Rod 1 2 3 4 5 6
Nodes 1,2 4,3 5,6 8,7 9,12 10,11

Rod connections are represented through an analogous rod connectivity matrix, R:

R =


1 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0 1 −1 0

 ∈ R6×12 (3.3)

A cable connectivity matrix, C ∈ R24×12, is subsequently defined (an example for TT-5
robot is provided below), where each row corresponds to an individual cable and each column
corresponds to one of the 12 nodes previously defined above. Cable-node connections are
defined on each row by assigning a value of 1 or −1 (there must only be one of each; sign
determines axial unit vector direction) for each nodal endpoint and 0 elsewhere.

C =



1 0 0 0 −1 0 0 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −1 0 0 0
1 0 0 0 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0 0 0 0 0
0 0 1 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 0 0 0 −1
0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 −1 0
0 0 0 1 0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 −1
0 0 0 0 0 1 0 0 0 −1 0 0
0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 1 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 0 −1 0
0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 −1



∈ R24×12 (3.4)
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The full system robot dynamics can then be represented by a configuration vector by
simply concatenating each of the independent rod dynamics:

q̈(q, q̇) = M−1(q)
(
H(q)

(
g(q, q̇) + F(q, q̇

))
(3.5)

q =
[
qT1 ,q

T
2 ,q

T
3 ,q

T
4 ,q

T
5 ,q

T
6

]T ∈ R30

g(q, q̇) =
[
gT1 ,g

T
2 ,g

T
3 ,g

T
4 ,g

T
5 ,g

T
6

]T ∈ R30

M =


M1 0 0 0 0 0
0 M2 0 0 0 0
0 0 M3 0 0 0
0 0 0 M4 0 0
0 0 0 0 M5 0
0 0 0 0 0 M6

 ∈ R30×30

H(q) =


H1 0 0 0 0 0
0 H2 0 0 0 0
0 0 H3 0 0 0
0 0 0 H4 0 0
0 0 0 0 H5 0
0 0 0 0 0 H6

 ∈ R30×30

The vector F(q, q̇) ∈ R30 is the summation of cable, rod collision, and ground contact
generalized forces in the q-coordinate frame. Generalized forces utilize the principle of virtual
work to reframe applied forces in a new desired reference frame (e.g., transforming from
Cartesian coordinates to the generalized q-coordinates used in this section). In general,
when transforming from an initial n-dimensional reference frame x to a new m-dimensional
reference frame y, the infinitesimal work done on the dynamical system with respect to a
small shift in coordinates ∂yi is simply:

∂W = F1 ·
m∑
i=1

∂x1

∂yi
∂yi + F2 ·

m∑
i=1

∂x2

∂yi
∂yi + ...+ Fn ·

m∑
i=1

∂xn
∂yi

∂yi (3.6)

=
n∑
j=1

Fj ·
∂xj
∂y1

∂y1 +
n∑
j=1

Fj ·
∂xj
∂y2

∂y2 + ...+
n∑
j=1

Fj ·
∂xj
∂ym

∂ym (3.7)

By definition, the virtual work of the system is a summation of products of generalized forces
and displacements:

∂W = Q1∂y1 +Q2∂yi + ...+Qm∂ym (3.8)
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Thus, by identifying like terms, the generalized forces Qi associated with the generalized
coordinates y are defined as:

Qi =
n∑
j=1

Fj ·
∂xj

∂yi
i = {1, ...,m} (3.9)

In an analogous manner, generalized cable forces and torques for the tensegerity system in
the q-coordinate frame, Fcables ∈ R30, can be obtained using the equation below:

Fcables = −∂γ(q)T

∂q

24∑
i=1

(CT
i Ci ⊗ I3)γ(q)ti = B(q)T (3.10)

γ(q) =



x1 + L
2
cosθ1sinφ1

y1 + L
2
sinθ1sinφ1

z1 + L
2
cosφ1

x1 − L
2
cosθ1sinφ1

y1 − L
2
sinθ1sinφ1

z1 − L
2
cosφ1

...

x6 − L
2
cosθ1sinφ6

y6 − L
2
sinθ1sinφ6

z6 − L
2
cosφ6



=



X1

Y1

Z1

X2

Y2

Z2
...

X12

Y12

Z12


∈ R36 (3.11)

where Ci is the ith row of the connectivity matrix C, γ is the concatenated XY Z coordinates
of all 12 nodal endpoints in the global XYZ-frame, and ti is the individual cable tension
calculated using Eq. 3.2. Thus, B ∈ R30×24 is the matrix that linearly maps the column
vector T ∈ R24 of tensile forces from each cable into the generalized q-coordinate reference
frame.

The resulting complete acceleration dynamics can be compactly expressed as:

q̈(q, q̇) = M−1
(
H(q)

(
g(q, q̇) + B(q)T + Fcollision + Fcontact

))
(3.12)

where Fcollision and Fcontact are the summation of rod collision forces and ground contact
reaction forces, respectively, in the q-coordinate frame.
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3.5.3 Ground Contact Dynamics and Rod Collision

Individual force elements are calculated at each timestep of the simulation using linear and
nonlinear spring models for the ground contact and collision forces, respectively, using the
equations below:

Fcontact,i = c ·∆ground,i or Fcollision,j = c · (e∆collision,j − 1) (3.13)

where c is a constant scaling factor (in practice, 5× 104 works well) and ∆ground ∈ R12 and
∆rods ∈ R6 are measures of interference, either between a nodal endpoint and the ground or
between two different rods. For ground contact forces, ∆ground is measured by how far each
node’s Z-coordinate sits below the floor:

∆ground,i = max
{

0, Zfloor − Znode,i
}

(3.14)

Piecewise-affine rod collision forces are calculated in a similar manner by pairwise-checking
of whether the rod axis separation distances are less than a given threshold (e.g., the radius
of the rod).

3.5.4 Dynamic Singularities

The minimal representation used in the rigid body dynamics presented above lessens com-
putational complexity by reducing the number of symbolic variables from 36 down to 30.
Unfortunately, however, this model suffers from singularities at φi = 0 and φi = π, where
the rod is nearly vertical. In these cases, azimuthal rotational velocities (θ̇) and accelera-
tions (θ̈) according to Eq. 3.5.1 can become excessively large. As a result, matrix norms
of the Jacobian used for the linearized dynamics become excessively large and can lead to
non-negligible linearization errors even for very small timesteps.

To address this, φ and θ values substituted into the pre-calculated symbolic Jacobian
matrix were artificially bounded to provide a buffer around these singularity points. In
practice, a ±8× 10−2 rad (4.6 deg) for φ around the vertical orientation and a 1 rad

s
bound

on the angular velocity θ̇ works well, without sacrificing too much accuracy. A smaller buffer
lends to dynamics which are susceptible to poor ill-conditioned numerical behavior, while
a larger buffer threshold causes inaccurate representations of the state of the system. In
practice, this hyperparameter is tuned through trial and error.

Nevertheless, the dynamic singularities clearly highlighted the need for a different repre-
sentation that is simple, versatile, and applicable for a wide range of tensegrity geometries.

3.6 Simplified Point Mass Dynamics

In the previous section, a minimal representation of the 3D rigid body dynamics for tensegrity
systems is presented. While the reduced state-dimension of this minimal representation is
advantageous, this particular formulation is susceptible to two major drawbacks: (1) dynamic
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singularities exist due to the spherical coordinates representation which can make robust and
reliable motion planning and optimal control difficult; and (2) sharp discontinuities due to
contact collision with the environment can lead to stiff ODEs and drastic changes in dynamics
from one timestep to the next, presenting a challenge for finite-horizon optimal controllers.
In this section, we present a novel simplified point mass tensegrity dynamics representation
originally published and presented at the International Conference on Intelligent Robots and
Systems (IROS) Conference 2019 [20] which addresses these shortcomings and can be easily
formulated for any Class-1 tensegrity structure.

For this point mass formulation, rather than representing true rigid body dynamics, we
assume that the entirety of each rod’s mass can be distributed between two point masses
located at the ends of the rod, hereafter also refered to as nodes. Admittedly, this assump-
tion’s validity is largely dependent on the actual hardware design of the tensegrity robot;
as an example, consider the tensegrity SUPERball [93] designed by the Intelligent Robotics
Group at NASA Ames, which bears the majority of each rod’s mass closer to the ends of the
rod where heavier motor assemblies and electronics are housed. This point mass assumption
can often be relatively accurate and greatly simplifies the formulation of tensegrity dynamic
equations of motion, enabling rapid design and prototyping of new innovative topologies in
simulation.

With these simplifying assumptions, we now consider only the positions, velocities, and
accelerations of all point masses. Comparatively, this state vector has 36 states, as opposed
the minimal q-coordinate frame with 30 states introduced in the previous section. We define
vectors p and ṗ ∈ R3N containing the individual XY Z positions and velocities of the N
nodes as:

p = [X1, Y1, Z1, X2, Y2, Z2, ..., XN , YN , ZN ]T (3.15)

ṗ = [Ẋ1, Ẏ1, Ż1, Ẋ2, Ẏ2, Ż2, ..., ẊN , ẎN , ŻN ]T (3.16)

Importantly, this dynamics representation assumes that forces are imparted on each
node purely through idealized two-force members (i.e., the rods and cables in pure com-
pression/tension) or from the external environment (e.g., contact forces with the ground).
This simplifying assumption enables this representation to be versatile enough to quickly
represent a broad range of tensegrity topologies.

3.6.1 Series-Elastic Cable Forces

Forces which act on the nodes due to the spring-cables are calculated in a similar manner as
in Section 3.5.1, again with special consideration that no compressive forces can be applied
through the cables:

Fcables,j = max { 0 , kj(sj − `j) } (3.17)
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Figure 3.3: Hookean linear-elastic model between two point masses.

Here kj is the stiffness of the series-elastic cable j, sj is the separation distance between the
two end nodes attached to cable j, and `j is the spring-cable assembly rest length (see Fig.
3.3).

Given a cable connectivity matrix C ∈ RJ×N such as Eq. 4.35, with rows Cj that encode
cable interconnections between pairs of nodes, we represent the vector of Cartesian forces
due to tension in cable j, γj ∈ R3N , as:

γj =
√

2kj · softP lus
(
αj, β

) zj
‖zj‖2

∀j ∈ {1, ..., J} (3.18)

where variables zj and αj are defined as follows:

zj =−
[
CT
j Cj ⊗ I3

]
p

αj = (sj − `j) =

√
zTj zj

2
− `j

zj ∈ RJ is a structured sparse vector that contains the directional vector lying along the
direction of the cable j. The softPlus function above is a smooth approximation to the non-
differentiable rectifier function (used in Eq. 3.17), approximating max{0,αi} with tunable
smoothness parameter β (see Fig. 3.4 for a comparison):

softP lus(α, β) :=

√
α2 + β2 + α

2
≥ 0 (3.19)

In practice, this Lipschitz smooth approximation demonstrates better numerical stabil-
ity in simulation and its continuously differentiable property is well-suited for the locally-
linearized dynamic models used in the receding horizon control methods discussed in later
chapters.

3.6.2 Numerically Robust Constraint Forces

The other set of essential forces in tensegrity structures are the rigid body constraints, which
constrain the rod-defined nodal positions relative to each other and the environment.

Rather than model the rods using a linear-elastic model as with cable forces in the prior
section, we instead adopt a constrained dynamics approach. The motivation behind this is
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Figure 3.4: Comparison of the linear rectifier and the smooth softplus approximation.

that penalty or energy barrier methods [108][50], which rely on restorative forces to maintain
rigid connections, necessitate large stiffness parameters and lead to stiff differential equations.
That is, numerical methods may be unstable for solving the ODEs unless step sizes are chosen
to be extremely small. Instead, the constraint forces we describe here analytically cancel out
the components of the applied forces that violate rigid constraints at each timestep, creating
accurate and numerically tractable dynamic simulations.

In our work [21], we adopt a similar approach to [106] and define constraint vectors, G(p)
and Ġ(p) ∈ Rm, to represent the implicit constraint functions and their time derivatives
which must be satisfied at all times, where m is the number of active dynamic constraints.
Each scalar-valued function Gi(p) is a single implicit constraint function that is satisfied
when equal to zero. If we assume that initial positions and velocities of the system satisfy
dynamic constraints (i.e., G(p) = 0 and Ġ(p) = 0), then any forces which maintain legal
accelerations (i.e., G̈(p) = 0) will be valid forces satisfying all dynamic constraints.

We decompose the vector of legal forces Flegal which are ultimately applied to the particle
masses into two components: 1) Ftotal, the total forces originally applied to the particle, and
2) F̂, which are resultant constraint forces that strictly cancel out any illegal accelerations.
From the principle of virtual work (i.e., that the virtual constraint force never add or remove
energy from the system), it is required that:

F̂ · ṗ = 0, ∀ ṗ | Ġ =

(
∂G

∂p

)
ṗ = 0 (3.20)
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All force vectors which satisfy this constraint can thus be written in the form:

F̂ =

(
∂G

∂p

)T
λ (3.21)

where λ ∈ Rm can be seen as a vector of Lagrange multipliers. Specifically, the virtual
constraint force F̂ must lie in the null space complement of ∂G

∂p
. The rows of this matrix

are the gradients of each scalar constraint function with respect to particle positions and
thus are a collection of normal vectors to the permissible constraint hypersurfaces where the
particles are permitted to move without violating any explicit constraints. By restricting the
virtual constraint forces to the linear combination of normal constraint gradients, we ensure
that any dot products of the virtual force with legal particle displacements will be strictly
zero, satisfying the conditions of the principle of virtual work.

We also introduce the inverse-mass matrix W =̇ M−1, which has the reciprocal of each
particle’s mass as elements along the diagonal. By applying the chain rule and substituting
for p̈, the legal acceleration condition can be written as:

G̈(p) =

[
∂Ġ(p)

∂p

]
ṗ +

[
∂G(p)

∂p

]
p̈ (3.22)

=

[
∂Ġ(p)

∂p

]
ṗ +

[
∂G(p)

∂p

]
W(F + F̂) = 0 (3.23)

Simplifying notation of ∂G(p)
∂p

and ∂Ġ(p)
∂p

as matrices J(p) and J̇(p), respectively, and
dropping the matrices’ explicit dependencies on p, we manipulate and rewrite Eq. 3.23 as:

JWF̂ = −J̇ṗ− JWF (3.24)

JW(JTλ) = −J̇ṗ− JWF (3.25)

where Eq. 3.25 is a result of applying the principle of virtual work and substituting in Eq.
3.21. The vector λ of Lagrange multipliers determines how much of each constraint is applied.
Each value represents the magnitude of the reaction force applied due to the corresponding
constraint. To counteract the accumulation of numerical drift from floating point errors,
corrective stiffness and damping terms are appended to (Eq. 3.25) as proportional and
derivative error correction factors:

JW(JTλ) = −J̇ṗ− JWF− ksG− kdĠ (3.26)

As a concrete example, let us consider the constraint forces imposed by the rigid body
connection between two endpoint nodes of a rod. Given nodal positions and velocities,
rod length `rod,q, and a rod connectivity matrix R ∈ RQ×N with rows Rq that encode rod
interconnections, we write an implicit rod constraint function constraining relative distance
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between nodal positions pA and pB, the constraint function’s respective time derivative, and
their associated Jacobian matrices as:

Gi(p) = ‖pB − pA‖22 − `2
rod,q (3.27)

=
1

2
pT(
[
RT

q Rq

]
⊗I3)2 p− `2

rod,q (3.28)

Ġi(p, ṗ) = pT(
[
RT

q Rq

]
⊗I3)2 ṗ (3.29)

Ji(p) = pT(
[
RT

q Rq

]
⊗I3)2 (3.30)

J̇i(p, ṗ) = ṗT(
[
RT

q Rq

]
⊗I3)2 (3.31)

Given these implicit constraint functions which are obtained for each rod, we combine these
results with the formulas in Section 3.6.1 to guarantee that nodal accelerations are accurately
simulated, with no pair-relative acceleration components lying along the longitudinal axis of
the rigid rods.

3.6.3 Ground Contact and External Forces

Ground contact forces are calculated in a similar manner to the approach introduced in
Section 3.5.3, with a few additions to help improve numerical stability during simulation:
(1) viscous damping is added in the upward direction to prevent excessive clipping (i.e., the
robot geometry entering into the ground due to high downward velocities), and (2) horizontal
viscous forces were added to provide realistic traction for rolling mobility.

The vertical ground contact forces are applied to each node in the Z-direction and uses
the smooth approximation to the linear rectifier (Eq. 3.19) as well as its derivative, which
acts a smooth approximation (one of many possible choices) to the unit step function:

softStep(α, β)
.
=

∂

∂α
softP lus(α, β) =

1

2

(
α√

α2 + β2
+ 1

)
(3.32)

The upwards vertical force as a result of nodal ground contact is therefore a function of
floor penetration in the Z-direction, downward Z-velocity, and whether or not the node is in
contact with the ground in the first place:

Fz,i = softP lus(Zfloor − Zi, β)− c · softStep(Zfloor − Zi, β)Żi (3.33)

where c is a damping coefficient and β is a smoothness parameter (in most of the simulations
in this work, c and β are 3× 102 and 1× 10−3 respectively).

Finally, viscous floor friction is applied in a similar manner to all nodes which are in
contact with the ground:

Fx,i = −cvf · softStep(Zfloor − Zi, β)Ẋi (3.34)

Fy,i = −cvf · softStep(Zfloor − Zi, β)Ẏi (3.35)
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3.6.4 Complete Tensegrity Point Mass Accelerations

Using a first principles approach to obtain the particle accelerations, we form p̈ as follows:

p̈ = W · Flegal (3.36)

= W ·
(
Ftotal + F̂

)
(3.37)

= W ·
(
Ftotal + JTλ

)
(3.38)

= W ·
(
Ftotal + JT(JWJT)−1[−J̇ṗ− JWFtotal − ksG− kdĠ]

)
(3.39)

= W ·
(
− JT(JWJT)−1(J̇ṗ− ksG− kdĠ) +

(I3N − JT(JWJT)−1JW)(
∑
j

γj + Fext)
) (3.40)

Eq. 3.39 is a direct result of substituting in Eq. 3.26, and the last line (Eq. 5.16) is obtained
by combining the results of Sections 3.6.1 to 3.6.3. Note, Fext is the vector of the total
forces applied to the tensegrity robot which are external to the system (e.g., ground contact
reaction forces) and are calculated using damped linear-elastic collisions previously presented
above in Section 3.6.3.

The structured dynamics that result for the overall system are highly-coupled, nonlinear
equations of motion. From these equations, one may deduce that it can quickly become diffi-
cult to intuitively reason about how local changes in an individual cable’s tension may affect
the overall geometry of the global system. Nevertheless, recent work such as [23] utilized
hand-engineered open-loop actuation policies with two cables at a time that demonstrated
good results for fast uphill climbing. This becomes increasingly difficult, however, as more
cables are considered, with complete actuation of all 24 cables presenting a daunting com-
binatorial problem. For this reason, later chapters present iterative locally optimal control
techniques and model predictive control approaches which can take advantage of the easily
obtained mathematical models of the system to generate optimal actuation policies.

3.7 Linearization and Discretization

The continuous dynamics of the robot (specifically the nonlinear accelerations) can be lin-
earized about the robot’s current state and discretized using a first-order Euler approxima-
tion: 

pk+1

ṗk+1

`cable,k+1

`rod,k+1

 ≈


pk
ṗk

`cable,k
`rod,k

+ ∆t


ṗk

p̈0 + ∂p̈
∂x

x̃k

˙̀
cable,k+1

˙̀
rod,k+1

 (3.41)
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or, for greater accuracy at the cost of more computation, a trapezoidal approximation:
pk+1

ṗk+1

`cable,k+1

`rod,k+1

 =


pk
ṗk

`cable,k
`rod,k

+
∆t

2

(
ṗk + ṗk+1

2p̈0 + ∂p̈
∂x

x̃
k

+ ∂p̈
∂x

x̃
k+1

˙̀
cable,k + ˙̀

cable,k+1

˙̀
rod,k + ˙̀

rod,k+1


)

(3.42)

where ∆t is the simulation timestep, the state x ∈ R102 is a concatenated vector of ca-
ble lengths, rod lengths, and nodal position/velocity states, x̃k is the deviation about the
linearization point x0, and p̈0 is the vector of exact nodal accelerations calculated at the
linearization point x0. Depending on the hardware sensors, actuators, and exact controller
implementation, the inputs to the system may be desired cable velocities, cable accelerations,
and/or rod velocities and accelerations. Traditionally, hardware robots that we work with in
the B.E.S.T. lab are controlled through position control of cable rest lengths, although cable
velocities and acceleration inputs may be controlled for smoother control input trajectories.
Approaches which modify the dynamics to incorporate an augmented input of cable/rod
length velocities and/or accelerations are discussed in later chapters.

3.8 Custom Tensegrity MATLAB Simulation

Framework

A custom-designed simulation environment was developed in MATLAB for simulation of
the tensegrity robot and easy interfacing with existing optimization toolboxes (see example
graphic in Fig. 3.5). Using the dynamics described in the previous section, a framework
for simulation of the robot was created. With ease-of-use and usability in mind, the intent
of the simulation environment is to be a general-purpose tool for simulation and motion
planning of any Class-1 tensegrity system. Due to the structured nature of the tensegrity
dynamics, as discussed in section previous sections, construction of idealized models for
Class-1 topologies is relatively straightforward. However, during development, several key
insights were made evident, and additional features in the simulation were incrementally
added as needs progressed. What began as a simple simulation of a free-floating tensegrity
in the absence of gravity has evolved into a relatively comprehensive simulation environment
for tensegrities in contact-rich dynamics. The work-in-progress Github repository can be
found at: github.com/brianmcera/Tensegrity-Dynamics-and-Optimal-Control.

3.8.1 Modular Object-oriented Approach

The primary motivation for creating this simulation environment is to enable rapid proto-
typing of different controllers, estimators, and motion planning techniques without the need
to operate on experimental hardware. Additionally, this simulation environment allows for
iterative testing of different hardware designs and tensegrity topologies, such as adjusting
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Figure 3.5: Top: MATLAB simulation of six-bar spherical tensegrity rolling using 24-cable
actuation, at rest (left), initial tipping instability (middle), and impact on the next base
(right). Bottom: Corresponding linear velocities [m/s] and angular velocities [rad/s] of all
rods (30-dimensional velocity vector).

motor capabilities, sensor placement, component specifications, etc. Tensegrity hardware,
with their many actuators and complex mechanical designs, are currently a challenging plat-
form to work with. To improve research and development with tensegrity hardware in the
loop, many advances must be achieved in terms of reliability and ease-of-use. In the mean-
time, this simulation framework has proven to be an invaluable software tool for evaluating
novel approaches and exploring different research topics in tensegrity robotics.

To facilitate the evaluation of different interconnected components, careful consideration
was given to ensure that a modular design paradigm was consistent throughout the simula-
tion framework. It became evident early on that having a monolithic coding design which
combined all aspects of the robot’s dynamics, controls, and state estimation would not en-
able quick evaluation of different design trade-offs (e.g., using a specific controller approach
such as MPC for a specific tensegrity design would require completely separate code than a
tensegrity spine robot using differential dynamic programming). Instead, we adopt a object-
oriented approach which isolates individual components of the simulation loop outlined in
Figure 3.6. A high-level API guarantees that these components can interact with one an-
other in a universal manner, meaning that different controllers can be easily combined with
different observers to control any variety of tensegrity dynamics models.
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Figure 3.6: Overview of custom MATLAB simulation framework.

3.8.2 Automatic Generation of Dynamics Equations

The primary powerhouse of this simulation environment is the automated symbolic dynam-
ics generator (represented in navy blue in Figure 3.6) which enables quick calculation of
the dynamic equations of motion for any Class-1 tensegrity system. In contrast to previous
work in the lab, which required hand-calculation or numerical approximation of linearized
dynamics for model-based approaches, this framework produces differentially smooth dynam-
ics equations (see Figure 3.7 and Figure 3.8) and analytically-obtained symbolic Jacobian
matrices. Due to the continuously differentiable equations of motion and simple-to-obtain
analytical Jacobian matrices, this dynamics formulation enables us to quickly prototype
different controllers and state estimators which rely on smooth assumptions and linearized
approximations.

3.8.3 State Initialization with Kinetic Energy Damping

The need for proper initialization of the robot state was apparent early on in the development
of the simulation environment. In the earliest naive approaches, the 6-bar tensegrity was
initialized using a regular icosahedron assumption (i.e., rods and nodal positions were defined
assuming the outer surface of the spherical tensegrity had equilateral triangles for each of its
20 faces). In practice, this initialization did not work for two reasons - early implementations
of the code either: 1) did not take initial desired pretension into account (so that the robot
would immediately collapse) or 2) didn’t account for drastic transient effects that occurred
once the robot was initialized and released from the initial state. Specifically, if cable rest
lengths were immediately set by a desired pretension rather than incrementally updated,
excessively large accelerations caused the simulation to be unstable, regardless of timestep
size. Additionally, these large accelerations made it difficult for the model-based controllers
to initially find optimal input sequences, as the early dynamics of the robots were dominated
by the erroneous effects described above.
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(a) The canonical 6-bar spherical tensegrity. (b) A spherical tensegrity with central-
payload suspended by an additional 24 in-
ternal cables.

Figure 3.7: Two different types of Class-1 spherical tensegrities. Rods are depicted in ma-
genta; cables are shown in black and numbered in blue. Despite the difference in number of
cables and connection locations, we can generate contact-rich dynamic equations of motions
for both on the fly.

To address this, simulations now begin by first finding nominal states, using the regular-
icosahedron assumption described above, and then forward simulating the dynamics until
equilibrium (depicted by the purple block in Figure 3.6). Nominal nodal separation distances
are first calculated, then a desired pretension determines the appropriate cable rest length set
points relative to these initial distances. In contrast to the naive approach above, cables are
gradually controlled to these rest lengths rather than immediately set, to mitigate excessively
large forces and accelerations. To speed up this initialization, energy of the system is observed
at each time step and kinetic energy damping is employed (i.e., nodal velocities are set to zero
each time kinetic energy of the system peaks). This artificial damping is not representative of
the true dynamics of the system but offers a drastic reduction in the number of computation
iterations necessary during initialization to reach equilibrium.

3.8.4 Example Applications for Design Analyses

The simulation framework above allows us to rapidly prototype various experimental tenseg-
rity designs and topologies, through faster brainstorming and ideation workflows than is
possible with empirical hardware tests. While the primary focus of the simulations is to
enable the comprehensive evaluation of different software controllers and observers, the sim-
ulation environment is also suitable for simple, rudimentary dynamic tests which can provide
valuable information for quick mechanical design and trade-off analysis.
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Figure 3.8: Example of a single symbolic equation of motion representing the acceleration
of a single node in the positive X-direction. Note the complex dependencies on other states
in the system, namely other nodal positions (variables prefixed by ‘p-’), nodal velocities
(variables prefixed by ‘pDOT-’), and cable rest lengths (variables prefixed by ‘RL-’).

Asymmetric Drop Testing

One example application which leverages the symbolic dynamics generator is the evaluation
of dynamic effects of asymmetric tensegrity weighting. Namely, through a research grant
supported by the US Army, Squishy Robotics would like to investigate the efficacy of using
an asymmetric weight distribution on the rod ends to have the tensegrity robot reliably land
in a specific orientation and/or location (see Figure 3.9).

Running through different modifications of the tensegrity models would typically require
an additional recompilation step if using the C++ NASA NTRT simulation toolkit [14] or
extensive computation times with long workflow cycles if using high-fidelity FEA software
such as ANSYS. Instead, this low-fidelity framework provides preliminary results to help
analyze broad, general trends - taking only a few minutes per trial experiment - which can
help motivate design decisions and narrow down an overabundance of design variables to
a select few which may warrant further examination using more complex and precise FEA
simulation tools.
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Figure 3.9: Visualization depicting Monte Carlo simulations of robot center-of-mass tra-
jectory during bouncing, starting from the same position but different initial robot pose
rotations. All trajectories start with robot center-of-mass roughly at (0,0,1) with an applied
horizontal velocity. Results obtained using the simulation framework described in this chap-
ter demonstrate the dynamics’ stochastic nature and dependence on robot orientation upon
impact.

Center Payload Acceleration Mitigation

Tensegrity structures boast the unique ability to mitigate impact forces using such a lightweight,
compact compliant design. As such, many applications of interest are concerned with the
tensegrity structure’s ability to dissipate forces quickly thoroughout the entire structure, in
order to protect a shock-sensitive payload. High-end FEA tools can provide detailed anal-
ysis of the stresses and strains propagated throughout the structure during impact, but a
high-fidelity simulation make take dozens hours to complete. Instead, designers may be in-
terested in investigating broad trends for a simple trade-off analysis, comparing competing
mechanical design considerations with application goals and design criteria. This simulation
framework enables rapid prototyping in simulation to evaluate different tensegrity topolo-
gies with various mechanical properties in order to quickly motivate design decisions moving
forward and to identify potential modes of failure to analyze in greater detail.
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Chapter 4

Motion Planning for Multi-cable
Ground Mobility with Tensegrities

4.1 Introduction

The primary goal of tensegrity mobility research is to understand how to optimally control
individual actuators of tensegrity robots in order to collectively and synchronously achieve
a desired dynamic behavior. Tensegrity motion planning and trajectory optimization is
challenging due to the high-dimensional, highly-coupled, nonlinear dynamics inherent to
tensegrity robots. Specifically, generating optimal state-action trajectories (i.e., the control
and time evolution of actuated cable rest lengths and the resulting dynamic states) for the
six-bar topology can be a difficult task when considering the entirety of the 96-dimensional
state-space and up to 24-dimensional action-space. Fortunately, we are able to leverage
the well-structured dynamics of Class-1 tensegrities by importing the dynamic equations of
motion derived in the previous chapter as optimization constraints for model-based receding
horizon control.

In the case of the six-bar spherical tensegrity topology, we are primarily concerned with
generating a performant rolling locomotion policy with respect to speed and energy effi-
ciency. In the recent past, successful results have demonstrated good rolling performance
with spherical tensegrities through a variety of sample-based methods, but due to the curse
of dimensionality, these sample-based approaches scale poorly as more complex tensegrity
topologies are considered. In later chapters, we discuss a few data-driven implementations
for tensegrity mobility such as imitation and reinforcement learning. As an alternative,
this chapter investigates model-based approaches that leverage the structured dynamics
presented in the previous chapter to generate optimal actuation policies and state-action
reference trajectories.
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4.2 Motion Planning Background

Robotics motion planning and trajectory optimization has a rich history, with many existing
algorithms and approaches for handling the important task of determining optimal sequences
of actions a robot should take. In the context of tensegrity robotics, the primary challenge
lies in identifying those approaches which are able to adequately handle high-dimensional
nonlinear dynamics in a scalable manner and obtain good performance under complex dif-
ferential dynamic constraints.

Sampling-based motion planning approaches such as A* [35], RRT/RRT* [53, 64], or
Probablistic Roadmap Methods [32] consider the problem of constructing a motion plan that
transfers the robot from some initial state to some terminal goal state. When represented
in configuration space [60], the motion planning problem transforms from understanding
how to manipulate a robot in a complex 3D environment, subject to dynamic/kinematic
constraints, into that of understanding how to generate a collision-free path for a point in the
free configuration space. As an example, a 7-DOF robot manipulator can be represented in a
7-D configuration space where each dimension represents the joint angle of a specific degree
of freedom. Obstacles can thus be transformed from Euclidean space to the configuration
space by identifying combinations of joint angles which result in collision. Mobile robots,
however, often present an even more difficult challenge of nonholonomic motion planning, as
each degree of freedom is not necessarily independent of others. For example, a car’s position
is dependent and constrained upon the steering angle and forward velocity, and care must
be taken to ensure that generated trajectories are dynamically feasible.

While powerful, sampling-based techniques scale exponentially with both the time hori-
zon and the dimension of the search-space. Additionally, identifying a desired terminal state
and determining whether or not it is feasible can be a nontrivial challenge. For tensegrity
robots specifically, where we may be interested in finding robot poses which induce an in-
stability that allows punctuated rolling motion, the form-finding problem [98, 62] (i.e., that
of determining a tensegrity structure’s geometric configuration at equilibrium) is an open
challenge with various proposed kinematical and statical methods. A good review of various
form-finding approaches for tensegrities can be found in [69]. In short, statical methods de-
termine equilibrium states of the tensegrity structure with a given topology, i.e., the number
of nodes, rigid bodies, and cable interconnections between them, while kinematical methods
determine the geometry of a tensegrity at equilibrium by maximizing rigid body lengths
while keeping cable lengths constant or vice versa. As an example, kinematical dynamic
relaxation was employed in [48] for a rod-actuated tensegrity robot, utilizing an evolution-
ary Monte Carlo approach to find quasi-static poses of the tensegrity that promote rolling.
Nevertheless, the challenges of identifying dynamically feasible terminal states for tensegrity
robots and poor scalability with state-dimensions discourages sampling-based approaches for
more complex tensegrity structures.

Optimization-based approaches instead formulate motion planning as a trajectory op-
timization problem which seeks to minimize/maximize a cost/reward function subject to
optimization constraints such as dynamics constraints and state/input safe sets. In particu-
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lar, trajectory optimization is concerned with finding the optimal set of actions and resulting
states over time and is thus well-suited for highly dynamic tasks such as rolling locomotion.
In [10], Betts et al. surveys both indirect and direct collation numerical methods for trajec-
tory optimization and presents several approaches for constrained nonlinear programming
and related optimal control problems. Variational methods based on the calculus of varia-
tions [11] can be used to identify functional extrema of a non-convex constrained two-point
boundary value problem according to Pontryagin’s maximum principle [3, 95] or to obtain
a value function according to the Hamilton-Jacobi-Bellman equation [70, 71, 7]. The tech-
niques in this chapter rely primarily on these optimization-based approaches and seek to
leverage the dynamics formulations presented in the previous chapter.

4.3 Prior Work

Although tensegrity robotics is a relatively new field, successful past examples of tensegrity
motion planning and control inspire new and exciting advances. In 2002, Kanchanasaratool
et al. demonstrate LQR trajectory tracking on a robotic tensegrity platform in [47, 46].
Although concerned primarily with trajectory tracking of an already given reference trajec-
tory, this work demonstrates some of the earliest attempts at low-level tensegrity control
for dynamic motion. In practice, however, a significant challenge of tensegrity mobility lies
not in the fine motor input controls, but in identifying how the topology and cable tension
distribution should evolve over time in order to achieve a desired overall behavior.

One of the earliest works focusing on spherical tensegrity rolling, [82] demonstrates rolling
locomotion of a deformable tensegrity structure and first highlights the ability for tensegrities
to utilize body deformation in order to augment gravitational and tensile potential energy
towards achieving mobility. Interestingly, the authors uniquely discretize the rolling gait
using the crystallography Miller Index to label the twenty faces of the six-bar spherical
tensegrity’s outer icosahedron structure. In these early results, they utilize a quasi-static
approach to identify robot poses which promote discrete unstable transitions from one face
to the next, where ‘face’ here refers to one of the 20 triangular shaped polygons which form
the outer shell of the spherical tensegrity structure. They later extend this work towards a
pneumatically-actuated tensegrity in [52]. Hirai et al. similarly utilize a quasi-static approach
for a robot with pneumatic actuators replacing cables rather than rods in [36], controlling a
fully-actuated robot with 24 pneumatic linear actuators. These works exemplify a common
motif in spherical tensegrity mobility research that emphasizes the discretization of rolling
gaits into finite states, such as face-to-face transitions which arise naturally due to the stable-
unstable transitions inherent to the robot geometry.

In [49], Kim et al. utilize a similar finite state approach by identifying cable inputs
which induce face-to-face transitions and combining them into long sequences for directional
punctuated rolling. In this work, single-cable actuation (i.e., only one of the 24 cables is ac-
tuated at any given time) is utilized to great extent, demonstrating that complex punctuated
rolling behavior is possible with only a subset of cables active at any given time. A similar
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approach is used in [24] to control a cable-driven rod-centered tensegrity design which houses
actuators and electronics at the center of each rigid body. These works are later extended
in [23], where uphill climbing on 24-degree inclines by an underactuated 6-cable spherical
tensegrity is demonstrated using simultaneous actuation of only two cables at a time. Kim
later demonstrates a Monte Carlo sampling-based approach using dynamic relaxation in [48]
to find quasi-static poses of a rod-actuated tensegrity robot that promote face-to-face rolling.

Friesen et al. utilize a hand-engineered policy in combination with a force density method
for inverse kinematics in [28] in order to achieve an inchworm-like motion for a tensegrity
robot designed to traverse complex duct systems. Specifically, given a desired pose of the
tensegrity robot which they design to achieve periodic crawling mobility, their approach
solves for the required cable lengths by minimizing elastic potential energy in the tensegrity
system.

Early examples of advanced higher level motion planning for tensegrities are primarily
centered around evolutionary controllers and periodic gaits produced through central pattern
generators. In [69, 68], the authors propose an approach for automatic design of controllers
for locomotion of tensegrity prisms of three and four struts using genetic evolutionary al-
gorithms. Here, Paul et al. forego precise trajectory tracking in favor of rhythmic periodic
gaits which produce nonzero movement of the robot’s center of mass.

In a similar manner, researchers at NASA applied a multi-agent evolutionary approach
towards finding periodic gaits for six-bar spherical tensegrities [38]. Leveraging the unique
distributed nature of tensegrities, [37] presents a robust, distributed, and directional rolling
algorithm using coevolution approaches. Notably, the work utilizes the natural symmetry of
tensegrity structures and is one of the first papers to demonstrate tensegrity rolling mobility
on difficult terrain such as hills and inclines. Related work from the same lab, [100] uses a
similar evolution strategy for distributed impedence controllers coupled with central pattern
generators in order to control a spine-like tensegrity robot with rigid tetrahedron-shaped
segments and actuated cable strings.

Lastly, deep reinforcement learning techniques have been used to great success for tenseg-
rity motion planning in recent years. In [109], Zhang et. al utilize model-based reinforcement
learning using Mirror Descent Guided Policy Search (MDGPS). Specifically, their approach
learns local time-varying linear-Gaussian dynamics and neural network policies using sam-
pled trajectories. This MDGPS approach trains a high-level global policy using supervised
learning on local controllers and introduces some necessary techniques to promote stable pe-
riodic locomotion gaits, such as training local policies from many different initial conditions
to combat compounding modelling errors due to contact-rich dynamics. Related work [61]
builds on these results and demonstrates the reinforcement learning-based approach’s ability
to handle partial observability and limited sensory information.
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4.4 Contributions of this Chapter

The results presented here highlight different optimization-based approaches which are ca-
pable of handling motion planning and trajectory optimization with complex nonlinear dy-
namics that are inherent to tensegrity robots. In particular, Model Predictive Control and
iterative local quadratic methods are introduced in the context of rolling ground mobility
with tensegrity robots. In contrast to sample-based methods presented in works such as
[109][61], these model-based techniques circumvent the curse of dimensionality by forego-
ing sampling in high-dimensional subspaces and instead leverage the structured dynamics
presented in the previous chapter to obtain sample-efficient locomotion policies.

In addition, the experimental results shown here help validate and evaluate spherical
tensegrity robots as a viable mobility platform. Benchmark results compare how tenseg-
rity locomotion performance may be impacted as varying mechanical parameters are modi-
fied (such as cable stiffness, pretension, mass distribution, etc.). Furthermore, this chapter
demonstrates the efficacy of using these optimization-based approaches as an effective tool
for designing radically different hardware topologies with varying hardware and degrees of
control authority. Later sections present novel cable-driven actuation schema uniquely iden-
tified through the use of the numerical methods presented in this chapter.

4.5 Tensegrity Actuation and Hardware

To frame the discussion of control policies and motion planning approaches introduced in
this chapter, we first outline the basic design principles of tensegrity hardware. Traditionally,
tensegrity robots are cable-driven flexible robots with independent actuators such as brushed
DC motors driving each individual elastic cable. Each compliant cable is a series-elastic
element typically constructed using a high-strength stiff cable connected in series with a
compliant extension or compression spring (see yellow cables in Figure 4.1).

For most hardware implementations, position control of the motor is carefully maintained
to adjust the cable rest length and overall cable tension throughout the robot. Positional
encoders are used in most of the designs constructed in the B.E.S.T. lab, and some tenseg-
rity designs also feature motor current and tension sensing for individual cables, providing
additional sensing for more precise control. Other hardware implementations feature a con-
tinuously compliant material such as Bungee cord or elastic tubing rather than a spring-cable
assembly, providing the added benefit of greater system compliance at the cost of increased
complexity due to nonlinear effects between the elastic cable and wrapping contact around
the motor spindle. In all of the designs from the B.E.S.T. Lab and Squishy Robotics, the
spring-cable assembly is used for modularity, ease of rapid prototyping, and quick identifi-
cation of compromised spring parts.
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Figure 4.1: Example of six-bar spherical tensegrity robot from Squishy Robotics. Individual
cables (in yellow) are controlled by adjusting their length using motors housed inside the
carbon fiber rods.

4.5.1 Problem Formulation

The receding horizon control problem that we aim to solve at each timestep t is defined
generally as the following minimization problem:

min
u0→N−1

N−1∑
k=0

`(xk|t,uk|t) + `N(xN |t) (4.1a)

s.t. xk+1|t = f(xk|t,uk|t) (4.1b)

x0|t = xinit (4.1c)

xk|t ∈ X , uk|t ∈ U , ∀k ∈ NN−1 (4.1d)

where xk|t and uk|t are the state and input variables at time t + k, respectively, f are the
problem-specific dynamics constraints, and X and U represent the feasible sets that satisfy
state and input constraints.

The overall goal of trajectory optimization for mobile tensegrity robots is typically to
maximize velocity while minimizing expended energy. The cost function for rolling loco-
motion typically rewards rigid body velocity or momentum that is aligned with a specified
desired direction, with penalties for excessive robot deformation or motor speed. Depending
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on the techniques described below, the cost function we minimize may be a convex quadratic
function, a quadratic approximation of a non-convex nonlinear problem, or it may be the
true non-convex objective function itself.

The state of the system xk|t is typically comprised of the positions/orientations of the
rods and the cable rest lengths. The inputs to the system uk|t are typically the rate of change
of each cable’s rest length.

4.6 Approach 1: Model Predictive Control

Model Predictive Control (MPC) is a control approach which iteratively solves a constrained
optimization problem and implements only the first control input at the each timestep. This
section provides an overview of MPC applied in the context of tensegrity rolling mobility,
but for more in-depth surveys we refer the reader to [31, 74]. Some examples of MPC being
applied successfully in robotics and autonomous systems can be found in [12, 26, 8, 85, 54].
In short, the primary benefit of this control scheme is the ability to leverage dynamic models
to optimize future behavior over finite time-horizons while simultaneously complying with
state and input constraints, such as those defined by realistic safety and actuator limitations.
Additionally, because MPC is an iterative algorithm, the approach is inherently robust to
unforeseen disturbances as they occur.

Model-based approaches such as MPC can be used to automatically design and evaluate
tensegrity locomotion actuation policies (i.e., how to optimally actuate cable rest lengths).
To form a tractable optimization problem, the continuous dynamics of the robot are first
linearized about the robot’s current state and discretized using a trapezoidal approximation:[

pk+1

ṗk+1

]
=

[
pk

ṗk

]
+

∆t

2

[
ṗk + ṗk+1

2p̈0 + ∂p̈
∂x

x̃k + ∂p̈
∂x

x̃k+1

]
(4.2)

where ∆t is the simulation timestep, x ∈ R96 is a concatenated vector of cable lengths and
nodal position/velocity states, x̃k is the deviation about the linearization point x0, N is the
number of nodal end points, and p̈0 ∈ R3N is the current state acceleration at x = x0, where
p̈ is calculated as follows:

p̈ = W
(
− JT (JWJT )−1(J̇ṗ− ksG− kdĠ) +

(I− JT (JWJT )−1JW)(
J∑
i

γi + Fext)
) (4.3)

Equation 5.16 is obtained by combining the results of Sections 3.6.1 and 3.6.2 from the pre-
vious chapter. Here, the vector Fext contains the total forces applied to the tensegrity robot
which are external to the system (e.g., ground contact reaction forces) and are calculated
using the damped linear-elastic collisions described in Section 3.6.3.
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Using the derived linearized and discretized dynamics as optimization constraints, we
minimize the following cost function subject to the dynamics constraints above:

min
u0→N−1

J(x0,u0:N−1) =
N∑
k=1

ψk−1

{
−θ1

N∑
i=1

ṗTi Ddes + θ2‖L̂k‖1 + θ3‖L̃k‖1

}
(4.4a)

s.t. xk+1|t = f(xk|t,uk|t) (4.4b)

x0|t = xinit (4.4c)

xk|t ∈ X , uk|t ∈ U , ∀k ∈ NN−1 (4.4d)

xN |t ∈ XN , uN |t ∈ UN (4.4e)

Here Ddes ∈ R3 is the desired direction of travel, T is the MPC finite-time horizon, and ψ<1
is a discount factor placing less weight on later states to account for linearization errors. The
optimization time horizon can range anywhere between 0.5 to 0.01 seconds, depending on
desired accuracy and computation time, with longer time horizons being more susceptible to
inaccuracies due to linearization approximations. Finally, θ1, θ2, θ3 are weighting parameters,
and L̂k and L̃k ∈ RJ contain deviations of the kth-step cable rest lengths about the neutral
pretensioned lengths and initial lengths used for linearization, respectively. The cost function
rewards rolling velocity in a desired direction while simultaneously penalizing cable rest
length deviations from both initial pretensioned lengths and current rest lengths (i.e., k=0).
Combined, the additional penalty terms prevent the robot from excessive deformations and
generate sparse motor actuation due to the Lasso-regularization.

The convex cost function above and linear equality and inequality constraints from the
dynamics, state/actuator limits, and initial conditions thus form a linear program which is
easily minimized using any convex optimization solver. For this work, Gurobi Optimizer and
YALMIP [59] were used in MATLAB to solve the optimization problem at each timestep
iteration.

4.6.1 Example MPC Results

Using the simulation parameters defined in Table 4.2, MPC was used to generate 150+
rollouts over the span of a few hours, utilizing full 24-cable actuation for dynamic rolling
in varying directions sampled from a uniform distribution. For each trial, the robot was
initialized with perturbed initial conditions of different robot orientations so that a wider
variety of states were explored.

From the results, it is clear that the geometry and orientation of the topology plays a
significant role in the trajectory tracking capabilities of the robot while rolling. Observe that
the triangular faces of the icosahedron-shaped design require the robot to move in a zig-zag
pattern (as described in [48]) even when moving in a straight line (see Fig. 4.2). However,
whereas the path is well-defined in the case of single-cable actuation - where the robot
must always return to its neutral pretensioned state before taking its next step - multi-cable
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parameter value physical parameters value
timesteps 10000 rod length 1.0 m

dt 0.01 rod mass (nominal) 1.1 kg
N 10 cable stiffness 515 N/m
γ 0.95 pretension 22 N
α 1.0 max motor velocity 0.02 m/s
β 3000 gravity 9.81 m/s2

Table 4.1: Simulation parameters for MPC trial runs.

Figure 4.2: Overhead view of robot CoM during rolling trajectories generated using MPC. All
trajectories begin at the origin and move radially outwards in uniformly random directions.
Note the characteristic ‘zig-zag’ pattern for straight-line reference trajectories. Axis units
are in meters.

actuation need not return to the neutral pose, allowing for increased speed and continuous
rolling but making the robot’s traversed path more complex and stochastic.

Interestingly, as the penalty weight for cable restlength deviation (θ2 in Equation 4.4a)
is relaxed – meaning the robot is rewarded less for keeping a spherical shape – the robot
will locomote in a manner closer to amoeboid movement rather than pure rolling, with lower
center of gravity and larger significant deformations, and tracking errors are reduced at the
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(a) Distribution of average speeds for all MPC trial
runs. Dotted red line represents average speed
using single-cable actuation, obtained from prior
hardware experiments.

(b) Distribution of average total tension in the sys-
tem for all MPC trials. Dotted red line represents
average total tension for single-cable policies, ob-
tained through simulation.

Figure 4.3: Performance histograms compared to baseline single-cable actuation.

Figure 4.4: Zoomed-in comparison of trajectories with different cable restlength deviation
penalty weights, β, in the worst-case direction due to robot geometry. Axis units are in
meters.

cost of slower dynamic rolling speeds (see Fig. 4.4). This penalty term weight is thus one
of many important hyperparameters for reward shaping and highlights the ability for this
reward function to easily adjust the performance trade-offs of higher tracking accuracy versus
faster speeds.

Although demonstrating improved speed, multi-cable actuation generated through MPC
in this example is slightly outperformed by single-cable actuation (i.e., where only one cable
can have a non-neutral rest length at a time) in terms of energy-efficiency. From Fig. 4.3,
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we can see that cable tensions (which are proportional to current-draw of the motors) are,
on average, slightly higher when actuating all 24 cables. Nevertheless, for a 10% increase in
average total tension, this multi-cable actuation policy provides approximately 400% increase
in average speed. As well, the user may augment the MPC cost function to incorporate a
reward for energy-efficiency, or any other prioritized metric, if desired.

4.7 Approach 2: Iterative Linear Quadratic Regulator

In the previous section, Model Predictive Control was introduced as a powerful approach
which leveraged the structured dynamics of tensegrities for constrained model-based optimal
control. In formulating the previous receding horizon control problem, we presented the
optimization problem as a linear program (LP) using the approximated local linear dynamics.
This approximation results in a tractable convex problem easily solved using off-the-shelf LP
solvers.

The primary advantage of using the simplified linearized dynamics and linear cost is that
the problem is computationally cost-effective and faster to solve compared to the true non-
convex nonlinear minimization problem. The trade-off, however, is that the greedy approach
over short horizons solves only for locally-optimal solutions in the linearized approximation,
with longer time horizons giving increasingly inaccurate estimates of future states and stage
costs. Notably, using open-loop state estimates to inform the next iteration’s linearized
dynamics was initially investigated but did not improve results in practice, partly due to
inaccuracies resulting from the highly nonlinear discontinuous contact dynamics which are
present while rolling. In this section, we present an approach which instead uses the true
nonlinear dynamics to find a control input that achieves a local minimum cost using the
well-known Iterative Linear Quadratic Regulator (iLQR) algorithm and then present some
successful applications in tensegrity motion planning.

4.7.1 Differential Dynamic Programming and iLQR

From a high level, the approach of iterative linear quadratic regulation, originally introduced
in [58], obtains locally-optimal solutions to the problem introduced in Section 4.5.1 by finding
a sequence of proposal trajectories which incrementally improve the solution over several
iterations. A simplified variant of Differential Dynamic Programming (DDP) [63], iLQR
uses locally-linear dynamics in place of the quadratic local models found in DDP and applies
a quasi-Newton method to quadratically converge to an optimal solution. In this form, the
problem simplifies to a form identical to the Linear Quadratic Regulator problem, hence
its familiar name. For completeness, this section outlines the DDP formulation originally
presented in [63] before highlighting the key innovation of iLQR and its advantages.

Given a system with state x subject to the general nonlinear dynamics:

xk+1 = f(xk,uk)
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DDP is a trajectory optimization algorithm that aims to find the optimal action sequence
{u0, ...,uN−1} that minimizes a total cost J(x0,u0→N−1):

J∗(x0,u0→N−1) = min
u0→N−1

N−1∑
k=0

`(xk,uk) + `N(xN)

where ` and `N are the running and terminal cost, respectively. If we define the cost-to-go
Ji as the partial sum of costs from timesteps i to N :

Ji(x0,ui→N−1) = min
ui→N−1

N−1∑
k=i

`(xk,uk) + `N(xN)

then we can define the value function which represents the optimal cost-to-go given the
minimizing control sequence:

V (x, i) = J∗i (x0,ui→N−1) = min
ui→N−1

Ji(x0,ui→N−1) (4.5)

Using the principle of dynamic programming and Bellman Optimality, we can reduce the
problem of solving for the entire control sequence to obtaining the optimal input for just one
timestep i:

V (x, i) = min
u

(
`(x,u) + V (f(x,u), i+ 1)

)
(4.6)

We define the function Q with dependent variables δx, δu to represent the variation of the
value about some nominal x, u and form its second-order local approximation:

Q(δx, δu) ≡ [`(x + δx,u + δu)− `(x,u)] + (4.7a)

[V (f(x + δx,u + δu), i+ 1)− V (f(x,u), i+ 1)]

= [`(x + δx,u + δu)− `(x,u)] + (4.7b)

[V ′(f(x + δx,u + δu))− V ′(f(x,u))]

≈ 1

2

δxδu
1

> Qxx Qxu Qx

Qux Quu Qu

Q>x Q>u 0

δxδu
1

 (4.7c)

where the subscripts in the last line represent partial derivatives with respect to the
state/input variables, as in [65], and are calculated as follows:

Qx = `x + f>x V
′
x (4.8a)

Qu = `u + f>x V
′
x (4.8b)

Qxx = `xx + f>x V
′
xxfx + V ′xfxx (4.8c)

Quu = `uu + f>u V
′
xxfu + V ′xfuu (4.8d)

Qux = `ux + f>u V
′
xxfx + V ′xfux (4.8e)
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f[ · ] represents the gradient and Jacobian partial derivatives of the dynamics taken with
respect to the state/input. Similarly, Vx and Vxx represent the Jacobian and Hessian of
the value function, respectively. With the assumption that the second-order approximation
Q(δx, δu) is positive definite and convex, the unique optimal input perturbation δu∗ which
minimizes the local cost is obtained by setting the gradient equal to zero:

∇∂uQ(∂x, ∂u) = Qux∂x + Quu∂u + Qu (4.9)

⇒ δu∗ = argmin
δu

Q(δx, δu) = −Q−1
uu (Quxδx + Qu) = −K∂x + k (4.10)

Substituting the optimal input back to the original quadratic approximation, the recursive
quadratic model of value functions at each time step can be computed:

∆V (i) = −1

2
Q>uQ−1

uuQu (4.11)

Vx(i) = Qx −QxuQ
−1
uuQu (4.12)

Vxx(i) = Qxx −QxuQ
−1
uuQux (4.13)

Completing a backwards pass, we calculate the affine offset and feedback gains at each
timestep, ki and Ki, to iteratively compute new trajectories until convergence (i.e., negligible
improvements in value function):

x̂0 = x0

ûi = ui + ki + Ki(x̂i − xi)

x̂i+1 = f(x̂i, ûi)

Note that this backwards propagation procedure and resulting feedback policy is similar to
concepts for the Linear Quadratic Regulator and is in fact exactly identical when second-
order effects of the dynamics are neglected:

Qxx = `xx + f>x V
′
xxfx + V ′xfxx ⇒ Qxx ≈ `xx + f>x V

′
xxfx (4.14)

Quu = `uu + f>u V
′
uufu + V ′ufuu ⇒ Quu ≈ `uu + f>u V

′
uufu (4.15)

Qux = `ux + f>u V
′
uxfx + V ′xfux ⇒ Qux ≈ `ux + f>u V

′
uxfx (4.16)

The critical insight that utilizing only linear dynamics information leads to faster convergence
(wall-clock time) without needing to calculate the expensive Hessian of the dynamics is the
key innovation of iLQR [58]. For receding horizon control methods where optimization is
repeatedly solved at each time step, speed is often more important than fine improvements
in precision. In this simplified formulation, the local quadratic approximation and linearized
dynamics are used to iteratively apply the LQR algorithm and is guaranteed to converge to
a local optima of the true non-convex nonlinear cost function subject to nonlinear dynamic
constraints.
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4.7.2 Tensegrity Problem Formulation with iLQR

The receding horizon control problem that iLQR solves at each timestep t is defined as

min
u0→N−1

N−1∑
k=0

`(xk|t,uk|t) + `N(xN |t) (4.17a)

s.t. xk+1|t = f(xk|t,uk|t) (4.17b)

x0|t = xinit (4.17c)

xk|t ∈ X , uk|t ∈ U , ∀k ∈ NN−1 (4.17d)

xN |t ∈ XN , uN |t ∈ UN (4.17e)

where xk|t and uk|t are the state and input variables at time t + k, respectively, and X and
U represent the feasible sets that satisfy state and input constraints.

The cost function we aim to optimize for the spherical tensegrity is a quadratic function
which maximizes linear velocity of the system in the desired direction and minimizes large
control inputs (which correlates with motor torque) and dynamic state deviations from the
neutral pose (i.e., equal rest length for all cables) to prevent excessively large pose deforma-
tions which could be detrimental to the long-term continuous rolling gait of the robot:

J(xaug,0,u0:T ) =
T∑
k=0

xTaug,kQaugxaug,k + uTkRuk (4.18)

xaug,k ≡

(xk − xref )

1

 =



pk − pref

ṗk − ṗref

`cables,k − `cables,ref
`rods,k − `rods,ref

1


(4.19)

uk ≡
[

˙̀
cables,k

˙̀
rods,k

]
(4.20)

Qaug =

 Q −ddes

−ddes
T 0

 Q =


0

. . .

w1Inc

w2Inr

 R =

w3Inc 0

0 w4Inr





CHAPTER 4. MOTION PLANNING FOR MULTI-CABLE GROUND MOBILITY
WITH TENSEGRITIES 46

where ddes ∈ R36 is a vector representing the desired rolling direction in the nodal position
p state-frame, nr and nc are the number of rods and cables, and w1, w2, w3 and w4 are weight
parameters that trade off penalties for cable/rod length deviations from the neutral position
and cable/rod velocity magnitudes, respectively. To find the optimal perturbations of the
input according to iLQR, we define the necessary matrices about the nominal trajectory
using the linearized and discretized dynamics:

fx,k =

(I + ∆tĀ(xk,uk)) 0

0 1

 fu,k =

∆tB̄(xk,uk)

0



Ā(xk,uk) =


0 I 0 0

∂p̈(x)
∂p

∂p̈(x)
∂ṗ

∂p̈(x)
∂`cables

∂p̈(x)
∂`rods

0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣
x=xk

B̄(xk,uk) =


0 0
0 0

Inc 0
0 Inr

 (4.21)

where p̈(x) is calculated using the dynamics equations described in Section 3.6.4 and Ā(xk,uk)
and B̄(xk,uk) are matrices with a block structure that coincide with the block structure of
xaug.

Due to the quadratic objective and linear approximation of the dynamic constraints, we
easily can solve the approximate sub-problems using LQR techniques. Importantly, we obtain
locally-optimal feedback policies rather than open-loop inputs, which may be useful if the
specific application requires optimal input over multiple timesteps (e.g., if computation time
is too slow or expensive to re-solve) and is thus more robust to external disturbances. With
the necessary items defined, iterative Linear Quadratic Regulation is applied to optimize
actions over a predefined time horizon typically ranging between 0.5 to 0.01 seconds using
the steps outlined in Algorithm 1.
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Algorithm 1: Iterative Linear Quadratic Regulator

Input: General penalty function `t(x̂t, ût)
Dynamics function f(xt,ut)
Trajectory horizon T
Initial state xinit
Initial control sequence Û = {û0, ..., ûT−1}

Output: Control sequence U = {u0, ...,uT−1}
Feedback terms K0, ...,KT−1

Obtain X̂ = {x̂1, ..., x̂T} by evolving according to nonlinear dynamics:
x̂t+1 = f(x̂t, ût) with initial condition: x̂0 = xinit

while Not Converged do
δxt = xt − x̂t, δut = ut − ût
At = ∂f

∂x
f(x̂t, ût), Bt = ∂f

∂u
f(x̂t, ût)

Qt = ∂2f
∂x2 `t(x̂t, ût), Rt = ∂2f

∂u2 `t(x̂t, ût)
qt = Qx̂t, rt = Rût
Solve for K0, ...,KT−1, k0, ...,kT−1 according to LQR(Q,R,q, r,A,B)
while cost is not improving do

/* backtracking line search */

Obtain sequence U by propagating u = ût + Ktδxt + αkt, according to
x̂t+1 = f(x̂t, ût) and calculating δxt along the way

Set Û = U
Calculate new cost function using X̂, Û
α← α/2

end

end

4.7.3 Input Change Penalization

In practice, large changes in motor current are undesirable due to inductive loads to the
motor. To ensure that cable velocity set points are relatively smooth over time and thus
minimize large changes in motor current, a modified version of the original problem statement
above is used instead, where the rate of change of the input is controlled rather than the
input itself (i.e., the cable accelerations rather than cable rest length velocities). With this
minor modification, the input to the system is included in the overall state of the problem
and cable acceleration is the new input of interest, which we are now able to easily penalize.
The complete modified Linear Quadratic Regulator problem for tensegrity rolling mobility
used in practice is thus described using the following equations:

J(xaug,0,∆u0:T ) =
T∑
k=0

zTkQ′kzk + (∆uk)
TR′k(∆uk) (4.22)



CHAPTER 4. MOTION PLANNING FOR MULTI-CABLE GROUND MOBILITY
WITH TENSEGRITIES 48

zk ≡


(xk − xref )

1

uk

 =



pk − pref

ṗk − ṗref

`cables,k − `cables,ref
`rods,k − `rods,ref

1

˙̀
cables,k

˙̀
rods,k


∆uk ≡

∆˙̀
cables,k

∆˙̀
rods,k

 (4.23)

Q′ =

Qaug 0

0 R

 R′ =

w1Inc 0

0 w2Inr

 (4.24)

where w1 and w2 are new weighting constants which penalize change in cable inputs and
change in rod inputs, respectively. The modified linearized dynamics with change of inputs
are represented with the following augmented matrices:

fx,k =


(I + ∆tĀ(xk,uk)) 0 ∆tB̄(xk,uk)

0 1 0

0 0 Inc+nr

 fu,k =


∆tB̄(xk,uk)

0

Inc+nr


where, as before, the linearized particle dynamics are obtained according to the equations
presented in Section 3.6:

Ā(xk,uk) =


0 I 0 0

∂p̈(x)
∂p

∂p̈(x)
∂ṗ

∂p̈(x)
∂`cables

∂p̈(x)
∂`rods

0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣
x=xk

B̄(xk,uk) =


0 0
0 0

Inc 0
0 Inr

 (4.25)

4.7.4 Handling State and Input Box Constraints

One advantage of using MPC, as outlined in approach 1, is that not only are dynamic con-
straints observed but also state and input constraints are locally satisfied as well. Addition-
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(a) Optimal cable actuation over a 10-step
horizon with unconstrained inputs.

(b) Optimal cable actuation over a 10-step
horizon with constrained inputs bounded be-
tween -10 and 10 cm/s.

Figure 4.5: Comparison of iLQR solutions for optimal cable actuation without (left) and with
(right) input box constraints, given identical robot state. Independent cables are indicated
by a different color; 24 cables total.

ally, if the terminal set and cost function are properly defined, we can guarantee persistent
feasibility and stability throughout the process [18][40]. In contrast, LQR and iLQR, in gen-
eral, cannot handle arbitrary nonlinear state or input constraints. Fortunately, the relevant
state/input box constraints we are typically concerned with for tensegrity systems (that of
maximum/minimum cable rest lengths and cable velocities) are easily accounted for in the
above formulation.

In practice, we adopt a similar approach as in [101], where we identify active constraints
by observing where optimal perturbations push inputs outside of the constraint boundaries.
In the cases where the time-varying affine term k(k) from Equation 4.10 forces control inputs
outside of the designated safe set, the gain matrix K(k) is modified such that the rows of
the feedback matrix corresponding to the inputs which have reached their limits are set to
zero.

As the cable dynamics are simply represented by an integrator, we can extend this method
to apply to cables which have also reached their state limits, by identifying which cables
have reached their maximal extension or retraction rest length. In such cases, the state box
constraints are also handled by clipping any cable velocity inputs which may violate the
active set of constraints.
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parameter value physical parameters value
timesteps 5000 rod length 60 cm

dt 0.005 rod mass (nominal) 600 g
N 10 cable stiffness 800 N/m

pretension 30 N
max motor velocity 0.10 m/s

gravity 9.81 m/s2

Table 4.2: Simulation parameters for iLQR trial runs.

4.7.5 Cable and Rod Constraint Remapping Matrices

Another set of constraints that are useful to define are any restrictions or couplings between
individual cable length (or rod length) actuators. Examples of this may be observed in cases
where a single actuator can be used to control multiple cables in the structure and may be
motivated by a desire to reduce complexity and/or redundancy in the tensegrity robot in
order to save on cost and weight.

One way to achieve this for iLQR with linearly-related input couplings is to use a reduced-
order input to the model that is linearly transformed through a cable remapping matrix. This
simple modification results in a dynamic model with reduced degrees of freedom in the input
which is then extrapolated to all 24 cables of the spherical tensegrity system. Without
making major changes to the equations presented in earlier chapters, we are able to control
the same dynamical system with 24 cables using only 6 or 12 input variables and reduced
control authority. For further details, refer to Section 4.9.3 where remapping was used to
great effect in implementing a novel paired-cable actuation schema.

4.8 Nonlinear Trajectory-Tracking with LQR

Feedback control of these systems can be achieved using traditional Linear Quadratic Regula-
tor (LQR) control for trajectory tracking of the nonlinear system, linearized at each timestep
about the current state. The reference trajectory T = {x0,u0, ...xN−1,uN−1,xN} we would
like to track can be obtained using one of the approaches described above. Alternatively,
a greedy approach which uses the linearized dynamics of the initial state and maximizes
local behavior over a short time-horizon can be used but often performs poorly due to the
discontinuous nonlinear dynamics. Despite this, for simple tasks this approach will some-
times lead to useful albeit sub-optimal policies that are easy and quick to calculate online
for real-time feedback control. In a similar manner as previously presented in Sec. 3.7, we
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can approximate the nonlinear dynamics using a first-order linear approximation:

xk+1 =


pk+1

ṗk+1

`cables,k+1

`rods,k+1

 ≈


pk
ṗk

`cables,k
`rods,k

+ ∆t


ṗk
p̈k

˙̀
cables,k

˙̀
rods,k

 (4.26)

≈


pk
ṗk

`cables,k
`rods,k

+ ∆t

(
ṗk
p̈k

˙̀
cables,k

˙̀
rods,k

+


0 I 0 0

∂p̈(x)
∂p

∂p̈(x)
∂ṗ

∂p̈(x)
∂`cables

∂p̈(x)
∂`rods

0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣
x=xk


p̃
˜̇p

˜̀
cables

˜̀
rods

 (4.27)

+


0 0
0 0
I 0
0 I


[
˜̇̀
cables

˜̇̀
rods

])

=
(
I + ∆tĀ(xk,uk)

)
xk + ∆t B̄(xk,uk)uk (4.28)

+ ∆t

(
ṗk
p̈k

˙̀
cables,k

˙̀
rods,k

− Ā(xk,uk)xk − B̄(xk,uk)uk

)

In the equations above, Ā ∈ Rn×n and B̄ ∈ Rn×m are the Jacobians of the nonlinear
dynamics with respect to the state and input, respectively, linearized about the current state
x0. While the example matrices above are independent of the current input, the dynamics
may generally depend on either, both, or neither of the current state and/or input. The
state and input variables, x ∈ Rn and u ∈ Rm, contain the nodal positions and velocities
and cable/rod length and rate of change (the latter, as input to the system). In terms of the
described input and an augmented state variable, the general quadratic penalty to promote
dynamic rolling motion is defined as follows:

J(xaug,0,u0:T ) = p(xN) +
N−1∑
k=0

q(xk,uk) (4.29)

=
N∑
k=0

xTaug,kQaugxaug,k + uTkRuk + 2xTaug,kNuk (4.30)

xaug,k =


pk
ṗk

`cables,k
`rods,k

1

 uk =

[
˙̀
cables,k

˙̀
rods,k

]
(4.31)
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where N is the time horizon and xk+1 is obtained by applying the system model forward
dynamics.

In practice, cross-terms between state and inputs are neglected, and the reference state
is incorporated to be able to penalize deviations from the desired nominal state trajectory
of the robot, x. The overall optimal cost and associated terms are thus written as:

min
u0:T

J∗0→N(xaug,0,u0:T ) =
N∑
k=0

xTaug,kQaugxaug,k + uTkRuk (4.32)

(4.33)

where:

xaug,k+1 ≡

(xk+1 − xk+1)

1

 =

[
I + ∆tĀ(xk,uk) zk

0 1

]
xaug,k +

[
∆tB̄(xk,uk)

0

]
uk

= A′xaug,k + B′uk (4.34)

zk := ∆t

(
ṗk
p̈k

˙̀
cables,k

˙̀
rods,k

− B̄(xk,uk)uk

)
−
(
xk+1 − xk

)

Qaug and R are positive-definite matrices which penalize state (minus the uncontrolled aug-
mented constant) and input deviations from the nominal trajectory, respectively.

4.9 Novel Tensegrity Actuation Schema

The model-based approaches outlined in this chapter enable rapid prototyping of different
experimental controllers and actuation schema in simulation. In particular, varying degrees
of control authority, number of actuators, and different types of actuation expand the ca-
pabilities of tensegrities beyond what traditional six-bar spherical tensegrities have done in
existing hardware.

In the next sections, we present some interesting novel prototypes which were explored
and evaluated in simulation through the use of the numerical approaches previously de-
scribed. Driven by practical needs such as reducing the number of actuators, minimizing
robot weight, or experimenting with rod-driven actuation rather than cable-driven actuation
for ease of assembly, these experimental actuation schema explore different approaches we
may pursue to push the current boundaries of tensegrity robotics.

4.9.1 Rod-Actuated Tensegrity Robots

One of the primary challenges of working with tensegrity robot hardware is the complexity
and redundancy introduced through the numerous cable actuators. Cable-driven robotics,
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in general, is challenging due to issues regarding meticulous assembly, intricate mechanisms,
cable tangling, cable slackness, etc. that are inherent to their design. In the fully-actuated
nominal six-bar spherical tensegrity design specifically, individual motor actuators are needed
to control all 24 cables, a complex mechanical assembly that can quickly get out of hand.
Due to this, we wanted to explore using rod-actuated spherical tensegrities, reducing the
number of required actuators from 24 down to 6, with passive elastic cables and controllable
rod lengths. Motivated from previous works which used actuated rigid bodies such as [52,
48], the focus of this work is to identify if continuous dynamic rolling locomotion is attainable
using solely rod actuation.

To do so, the same dynamics equations and motion planning approaches introduced in
the previous sections are used, with minor modifications relaxing constraint boundaries on
the rods to allow them to extend/retract and restricting the cables to be passive (i.e., no
possibility for cable rest length change). Prior research work for six-bar tensegrity rolling
mobility has often highlighted a finite state approach with discrete steps or state transitions;
while dynamic locomotion with a continuous rolling gait for cable-driven tensegrities has
been an open question, dynamic rod-actuated ground rolling has been explored even less.

Simulation results demonstrate the feasibility of using a rod actuation policy to produce
fast rolling mobility with a maximum 10 cm/s linear rate of change for individual rod lengths.
The rod travel distance was bounded between 0.75 m to 1.15 cm for a spherical tensegrity
with nominal 1 m rod length at neutral position. It should be noted that while this approach
is interesting and inspires future actuation schema, current existing off-the-shelf hardware
such as solenoids or linear actuators capable of achieving both the necessary speeds and travel
distances for fast dynamic rolling tend to be heavy and bulky, limiting practical application
due to current hardware constraints.

4.9.2 Center-Payload Spherical Tensegrity

One exciting approach to simplify the six-bar spherical tensegrity design is to use a single
centralized mechatronic payload of electronics which includes all of the actuation, sensors,
and on-board compute in one compact package. As opposed to the current paradigm of
using six distributed rods with independent microcontrollers which work in tandem through
wireless communication, this center-payload spherical tensegrity topology seeks to reduce
redundancy, weight, and costs while still having the capability to roll in any direction.

The center-payload variant of the six-bar spherical tensegrity (see Figure 4.6) houses all
active components of the robot in a spherical payload which is suspended in the interior
space of the robot using 12 inner-cables. In a similar manner of operation, this variant
manipulates the controllable tensions of the 12 inner-cables in order to move the payload
within the interior space of the outer shell, changing the robot’s center of mass to cause an
unstable transition from one face to another. The simplified design of this center-payload
topology reduces redundancy in the system, minimizing the number of necessary actuators
from 24 down to 12 or even 6 motors, and the robot prototype shown in the figure has an
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Figure 4.6: Proof-of-concept prototype of a center-payload spherical tensegrity robot, image
courtesy of Squishy Robotics. While the external cables are passive and unactuated, the 12
inner cables are controllable, allowing the center payload, which houses all of the electronics
and motors, to move freely within the internal volume of the robot’s external convex hull.

approximately 70% reduced weight of 1.5 kg compared to the current six-bar robot’s weight
of 5.2 kg.

While seemingly intuitive, early work [1] had presented numerous challenges for the idea
of a centrally-actuated tensegrity due to an inability to move the payload sufficiently far as
to reliably induce a rolling motion and the need for accurate sensing for reactive control.
From simulation results with realistic hardware components, we determined that in order
achieve ground mobility, an expanded internal volume was necessary in order for there to
be enough travel for the center payload to cause a rolling motion. To achieve this, the
traditionally straight rigid bodies common to most six-bar designs were replaced with bent
rods which can range between 127 to 140 degrees in order to provide the payload with a
greater workspace. With this update geometry, motion planning simulations demonstrated
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successful results using all 12 inner-cables with cable rest lengths constrained between 1 cm
to 15 cm for a robot of 60 cm diameter.

4.9.3 Energy Efficient Paired-Cable Actuation

In this section we use introduce in greater detail a new actuation schema initially presented at
IROS 2019 [20] – paired-cable actuation – and use MPC as a tool to evaluate the performance
of the the different hardware topologies. Similar to the 24-motor actuation scheme we
introduced in previous sections, the 12-motor paired-cable actuation scheme also controls all
24 cables in a spherical tensegrity; however, for the 12-motor scheme, two cables are coupled
by a single motor. For this actuation scheme, a pair of cables meet at a single node – the
retraction of one cable means the extension of the other cable in that pair. Thus, while all
24 cables are actuated, only 12 degrees of freedom exist in the system:

u =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0




ureduced,1
ureduced,2

...
ureduced,12



In practice, this cable coupling has been achieved in hardware through the use of clever
mechanisms and/or pulleys, the design of which is outside of the scope of this work. Interest-
ingly, this new paired-cable schema has some practical advantages over its 24-motor schema
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Figure 4.7: Paired-cable actuation enables control of 24 cables using only 12 motors (repre-
sented in gray), at the cost of dynamic coupling and reduced control authority. Extensions
(retractions) of one cable’s rest length mean that the complement cable’s rest length must
retract (extend).

counterpart. The most notable advantages are that fewer parts are necessary, and conse-
quently, that the tensegrity robot weighs significantly less and is less prone to mechanical
failures.

Comparisons of Rolling Locomotion Strategies

In this section, we discuss tensegrity rolling locomotion in detail and compare three cable-
actuation schemes, each with varying degrees of control authority: 6-motor (underactuated),
12-motor (paired-actuation), and 24-motor (full-actuation) schema. In particular, these actu-
ation schema vary the number of cables that are driven by motor actuators and consequently
which cables remain as passive tensile elements. As a result, we demonstrate that greater
control authority can provide improved performance at the cost of additional hardware and
controller complexity.

In the results that follow, we utilize MPC with the dynamic constraints introduced ear-
lier to generate optimal state-action trajectories for evaluation. Notably, the simulation
model parameters used in these experiments are based on actual hardware parameters of the
tensegrity robot shown in Fig. 4.1 (see Table 4.3).

For the remaining subsections, we discuss various characteristic properties of tensegrity
locomotion. First, we use the 24-motor fully-actuated scheme to illustrate hardware and
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Physical Parameters Value
Rod Length 60 cm
Rod Mass 500 g

Cable Stiffness 400 N/m
Pretension 50 N

Max. Cable Linear Velocity 20 cm/s

Table 4.3: Model parameters used to compare different actuation schema, based on existing
Mobile Robot hardware.

controller design considerations that are unique to compliant tensegrity rolling locomotion;
namely, we assert that tensegrity stiffness and initial pretension are important hardware
and controller design hyperparameters. We conclude this section by evaluating the nominal
performance of the three common actuation schema introduced above with respect to relevant
performance metrics such as speed, directional trajectory-tracking, and energy efficiency.

Effective Tensegrity Stiffness and Pretension

The inherent compliance of tensegrity structures serves as a benefit with regards to mechan-
ical robustness, particularly in the structure’s impact-resilience, natural force distribution,
and lack of mechanical stress concentrators. On the other hand, the resulting oscillatory dy-
namic behavior complicates optimal control policy design. In this section, we present results
obtained when adjusting overall tensegrity stiffness and pretension (i.e., the stiffness and ini-
tial pretension of all individual series-elastic tension elements) and assess its broader effects
on rolling locomotion. For this evaluation, we examine the relative dynamic behavior of the
robot as we adjust the overall stiffness and pretension of the fully-actuated robot between
the range of 50% and 200% of the nominal values of 400 N/m and 50 N. The simulation
parameters we use for MPC are as follows:

As we can see from the results in Fig. 4.8, greater overall stiffness in the robot leads
to better rolling performance with the receding horizon controller. Similarly, performance
improves as initial pretension of the robot increases, before dropping off. Intuitively, these
results match expectations, as greater stiffness creates less oscillatory dynamics which the
controller is unable to account for, due to the low controller timestep of 0.01 seconds. Greater
stiffness and pretension ensures that the robot is less likely to drastically deform in a detri-
mental manner by giving immediate and precise control over the state of the robot with less
actuation input. That said, the results illustrate that excessively large pretensions can also
negatively affect tensegrity locomotion. One possible explanation for this observed behavior
is that excessively large pretensions during the initial state require more actuation before
the robot can sufficiently change its shape and enter a stable dynamic rolling gait.

Effectively, these results support that tensegrity robots become easier to control using in-
expensive and computationally-limited microcontrollers as the tensegrity dynamics approach
rigid-like behavior; lower update frequencies are less of an issue as state uncertainty due to
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Figure 4.8: A comparison of average rolling speeds vs. overall stiffness and initial cable
pretension, with 24-motor scheme. Near-linear fitting curves highlight the overall trends.

compliance in the robot decreases. Unfortunately, greater stiffness in the overall robot also
leads to prohibitively high torque and power requirements on the motor actuators, an issue
we discuss in greater detail later in Section 4.9.3.

Speed and Directional Control

Next, we compare the performance of the three actuation schema presented earlier (i.e., 6-
motor underactuated, 24-motor fully-actuated, and 12-motor paired-actuated) with respect
to average rolling speed and directional trajectory control. In this section, we discuss the
advantages that are provided through the use of additional cable actuators.

As an illustrative example, we examine the average rolling speed of the robot under each
of the three actuation policies, maximizing rolling velocity in a specified direction. To get
a more representative average speed, the total number of timesteps we simulate is doubled
from the previous section.

From the trials shown in Fig. 4.10, it is clear that the greater control authority, afforded
by more actuated cables for 24-cable policies, enables the robot to accomplish locomotion
tasks that the 6-motor variant simply cannot complete. In this simple illustrative example,
we see that, given the limited degrees of freedom, the 6-motor actuation scheme is simply
unable to roll in the desired direction and becomes stuck as it attempts to do so. That
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Figure 4.9: Visual depiction of difference in rolling speed for identical tensegrity topology but
varying overall tensegrity stiffness. Starting at the same initial pose for all three cases, the
stiffer spherical robot rolls farther, faster in the same amount of time. Reduced compliance
and oscillatory behavior enables stiffer tensegrity robots (800 N/m stiffness, top) outperform
more compliant tensegrities (400 N/m stiffness, middle; 200 N/m stiffness, bottom) at the
cost of increased cable tensions and energy costs.

said, both the fully-actuated and paired-actuated 24-cable policies were able to perform
reasonably well. Naturally, however, the greater controllability of the fully-actuated system
allows for greater directional trajectory-tracking accuracy along the +X-axis. In Fig. 4.11,
this improved directional controllability is highlighted as we evaluate the robot’s performance
in any-direction rolling. In this figure, average rolling speeds are normalized by the fastest
experimental trial, so that all arrows lie within the unit circle. In particular, it is shown that
while both the 24-motor and 12-motor schemes can achieve reasonable top speeds, the lesser
degree of freedom provided by the paired-cable schema (i.e., 12 motor actuators rather than
24), precludes good performance in all directions.

To conclude, we summarize the relative performance of each actuation policy, stating the
average speeds of each scheme followed by a normalized value – average speed divided by the
product of the rod length of the spherical tensegrity design and the maximum linear velocity
of the motors. Importantly, we believe that this normalization will simplify comparisons of
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Figure 4.10: Footprint trails of the robot starting at the origin and rolling in the +X-direction
for 10 seconds using 24-motor fully-actuated (red), 12-motor paired-actuated (green), and
6-motor actuation policies (blue). Solid lines indicate the robot’s center of mass and dotted
lines indicate supporting polygons in contact with the ground.

Schema 6-motor 12-motor 24-motor
Avg. Speed 18.1 cm/s 37.9 cm/s 38.2 cm/s

Norm. Speed 1.51e-02 3.16e-02 3.18e-02

Table 4.4: Comparison of rolling speeds with different tensegrity actuation schema.

performance across different hardware configurations and tensegrity topologies.

Energy Efficiency

Next, we briefly discuss the energy efficiency of both the 12-motor paired-cable and 24-motor
actuation schema. As shown in the previous section, comparable performance for maximum
rolling speeds is achieved for both 12-motor and 24-motor actuation schemes. However,
as demonstrated, 12-motor actuation does sacrifice some degree of maneuverability due to
the lesser control authority granted. Nevertheless, in this section, we provide compelling
motivation for the 12-motor variant on the basis of energy efficiency.

We consider a simplified model of energy-costs which relates tension in the robot to power
consumed by the motors. Specifically, cable tensions (see Fig. 4.13) are directly related to
load torques on the motor and correlates to current draw and power consumption. If we
assume 65% efficient motors, the average Cost of Transport (i.e., energy divided by mass
times distance traveled) over 100 trials are 159.9 J

m·kg and 30.7 J
m·kg for 24-motor and 12-motor

actuation schema, respectively. Notably, the exceptional Cost of Transport is on par with the
locomotive efficiency of many animals found in nature [29] (see Figure 4.12), an aspiration
for many mobile robotic systems. Specifically, the unique paired-cable mechanism is able
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Figure 4.11: Plot showing normalized average speeds in various directions, starting from an
identical initial state (base polygon outlined in dashed black lines). Red represents results
for fully-actuated 24-motor scheme, and blue represents 12-motor paired-cable actuation
scheme.

to leverage complementary tensions of each cable-pair such that the motor does minimal
work under normal operating conditions. Thus, while some degree of maneuverability is
lost, the energy efficiency gains makes a 12-motor paired-cable actuation schema an enticing
candidate tensegrity robot design.
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Figure 4.12: Scatter plot of biological systems’ energy efficiency versus overall mass, with
representative robot examples. Green circle signifies estimated energy efficiency of rolling
tensegrity robots. Original plot from [29].

Figure 4.13: Cable tensions for 6 of 24 cables (left) and summed total tension of all 24
cables (right) for 24-motor rolling locomotion. Note, in attaining maximum rolling speed,
total tension in the robot remains below the initial pretensioned state after some time (2
seconds).
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Chapter 5

Tensegrity State Estimation and
Control

5.1 Introduction

Ground contact-rich rolling interactions combined with the many degrees of freedom intrin-
sic to tensegrity robots can lead to excessive errors between state estimates and reality. To
address these challenges of tensegrity locomotion, we evaluate several Bayesian state esti-
mators for sensor fusion which intelligently combine multiple sensor measurements while
accounting for sensor and actuator uncertainty (e.g., Unscented/Extended Kalman Filters
and Particle Filters.). While the optimal controllers and motion planning trajectories intro-
duced in the last chapter assume perfect state estimation, practical robotics must deal with
the dual problem of understanding the robot’s current state and pose from imperfect models
and noisy sensor measurements. In particular, tensegrity robots have the added challenges
of compliance and highly coupled dynamics in contact-rich ground rolling. In this chapter,
we explore the effects of different sensor schema and their practical application to tensegrity
ground mobility.

5.2 Prior Work

State estimation is an established field with areas of active ongoing research built on foun-
dational classical theory; autonomous robotics, especially, has benefited extensively from
advances in state estimation due to the natural affinity of robotics applications towards
highly dynamic and uncertain scenarios. In particular, uncertainty naturally arises out of
imperfect world models and noisy sensor measurements. Nevertheless, robotic systems and
intelligent agents must grapple with understanding their own state relative to their (po-
tentially unknown) environment before there can be any chance for a notion of optimal
behavior.
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The relatively recent movement towards a probabilistic framework in the last few decades
has enabled great progress by providing a common language – that of representing informa-
tion and uncertainty probabilistically and enabling us to reason about conditional dependen-
cies using Bayesian approaches [97]. However, Bayesian Tracking with true belief probability
distributions is generally intractable for real-world problems with continuous state-spaces or
discrete but infinitely many states.

Given certain assumptions, however, such as linearity in the dynamics and measurement
models along with independent Gaussian noise, tractable formulations can be computed
which leverage the assumed structure of the posterior distribution (i.e., affine and linear
combinations of jointly Gaussian random variables are also Gaussian). Seminal works writ-
ten by Swerling [94] and Kalman [45] make use of the linear-Gaussian assumption to present
the Kalman Filter as the optimal state estimator from the perspectives of least-squares
and posterior belief distributions, respectively. Nonlinear extensions such as the Extended
Kalman Filter [45, 44] and the Unscented Kalman Filter [42] enable optimal state estima-
tion for more complex nonlinear systems often found in the real world. For a concise and
elucidating comparison between the Extended and Unscented variants, please refer to [103].

Nonparametric filters, which do not rely on a predetermined form of the posterior distri-
bution, instead capture Bayesian statistical information from sampled points or decompose
the state space into partitions where calculating the posterior distribution is tractable. The
advantages of such approaches entail no parametric assumptions on the representation of
posterior densities and the ability to easily handle multimodal beliefs, a weakness of the
aforementioned Gaussian filters. The widely popular Particle Filter variants [90, 102] use
sampled and re-sampled points which are weighted depending on real-time sensor measure-
ments in order to approximate meaningful measures of the posterior distribution. Histogram
Filters [81, 97] in contrast, decompose the continuous state space into finitely many regions
in order to represent the true cumulative posterior.

With regards to tensegrity robots, very little work has explored optimal state estimation
in highly dynamic contexts. Previous work that featured control and sensing for dynamic
tensegrities such as [79, 80] highlight possible hardware combinations of sensors and ac-
tuators which are typically found on tensegrity robots. In particular, common motifs for
cable-driven robotics such as DC motors with pulley mechanisms, cable tension sensing, ori-
entation measurements, etc. are ingrained throughout existing literature. More recent work
such as [17, 15] have directly explored the challenges of state estimation for spherical tenseg-
rities using an Unscented Kalman Filter approach to combine on-board IMU data, actuator
state information, and ranging measurements for robot pose estimation and localization. In
this case, however, a relatively simplistic actuation policy was used only to induce a single
step. The primary focus of the work presented in this chapter is to explore state estimation
of tensegrity robotics in the context of optimization-based control for continuous dynamic
rolling mobility.
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5.3 Contributions of this Chapter

In this chapter, we tackle the dual problem of optimal control – state estimation given uncer-
tain sensor measurements and imperfect dynamics models – applied to tensegrity robotics.
In particular, we propose a common set of tensegrity sensor measurements which enable state
estimation using traditional nonlinear Kalman Filter approaches. Through comparing and
evaluating the Extended Kalman Filter and Unscented Kalman Filter variants, we discuss
discrepancies in estimator performance and highlight some key considerations which suggest
new challenges that arise in the interaction between tensegrity motion planning and state
estimation. To the best of my knowledge, no such work investigating state estimation in the
context of highly dynamic tensegrity motion currently exists.

5.4 Tensegrity Sensors and Hardware

As in the previous chapter, we begin by first understanding sensor capabilities in conven-
tional tensegrity hardware designs. Tensegrity sensor hardware often varies across differ-
ent designs, but over the years, a commonality of necessary sensors has precipitated from
practical tensegrity rolling mobility applications. Tensegrity sensor suites primarily focus on
sensing capabilities necessary for low-level control of manipulable inputs such as cable length
and/or rod length, but recent works have explored sensor combinations which facilitate state
estimation and sensor fusion, which is the focus of this chapter. Despite the endeavor to
develop spherical tensegrities as a mobile robotics platform, however, little to no work has
explored other critical components which are integral to autonomous systems such as per-
ception, localization, and mapping, which we leave to future work. As such, the sensors
discussed in this chapter are evaluated under the lens of control and motion planning.

In common designs found in the B.E.S.T Lab, tensegrity robots have a 9-axis inertial mea-
surement unit (IMUs) in each rod which obtains fused information from individual sensors
such as three-axis accelerometers, gyroscopes, and magnetometers in order to measure the
rods’ accelerations, angular velocities, and orientation with respect to some inertial frame.
Additionally, sensor information from a motor’s angular position can be used to measure
the cable rest length for each associated cable, and approximate tension sensing is possible
through sensing the current draw from each DC motor. Prior work such as [17] also explored
using wideband time-of-flight range sensors for position measurements. Using the Bayesian
sensor fusion techniques and state observers presented in this chapter, these disparate sensor
measurements of orientation, cable length, nodal velocity, etc. are combined for more ac-
curate state and pose estimation than can be achieved solely through independent, isolated
sensor measurements.
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Figure 5.1: Current Mobile Robot hardware PCB featuring an embedded microcontroller,
IMU, motor drivers, encoder integrated circuits, wireless radio communication, and battery
management system.

5.5 State Estimation

All of the controls techniques and motion planning approaches presented in the last chapter
assume exact knowledge of the nominal state of the robot. In reality, the problem we aim to
solve is a Partially Observable Markov Decision Process (POMDP), as perfect information is
never accessible either due to a limited number of sensors, inability to sense specific aspects
of the state (partial observability), and/or due to measurement noise from the sensors. The
next few sections present and evaluate how nonlinear Kalman Filter approaches and Particle
Filters perform for various possible tensegrity sensor schema and furthermore quantify the
extent to which sensor quality and the coupled, interconnected dynamics of tensegrity robots
improves or degrades the accuracy of traditional state estimation techniques.

5.5.1 Background: Bayesian State Estimation

In practice, we measure and keep track of a probablistic belief of the robot’s state at any
given time through the use of a probability distribution of possible states, conditioned on
previous state estimates and measurement data from the robot. The overall system we
measure is thus a coupled dynamic system where the robot manipulates itself and the en-
vironment through control actions and simultaneously perceives its environment through
sensors. The coupled dynamics of the robot and environment are represented by two impor-
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Figure 5.2: Electronics found on the older TT5 hardware constructed in the B.E.S.T. Lab.
Pictured are the battery voltage sensor, IMU, Teensy microcontroller, custom PCB, and four
small brushed DC motors with magnetic encoders.

tant probablistic equations: the stochastic state transition distributions and measurement
distributions which predict 1) how the robot state dynamically evolves over time, and 2)
how the measurements relate to the given state of the robot, respectively.

The belief of the robot’s state is represented by the conditional probability distribution
f(x(k)|z(1 : k)), where x(k) is the state of the robot at time k and z(1 : k) is the sequence
of previous sensor measurements from the first timestep up to time k. In short, this proba-
bility distribution quantifies the likelihood of a specific state of the robot, given information
collected from the sensors, by leveraging the known dynamics and measurement models of
the system.

In practice, Bayesian Tracking and similar approaches are implemented in a recursive
fashion to speed up computation and to prevent requiring the entire history of measurements
to be stored for future calculations. The well-known recursive approach presented next is split
into two distinct stages: the prior update and the measurement update which incorporate
the known dynamics model and the known measurement model, respectively.

Prior Update

The prior update simply increments the state estimate forward given the dynamics and
a known input to the system:
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f(x(k)| z(1 : k -1)) =

∫
x(k−1)∈X

f(x(k)| x(k -1), z(1 : k -1)) f(x(k -1)| z(1 : k -1)) dx(k -1) (5.1)

=

∫
x(k−1)∈X

f(x(k)| x(k -1)) f(x(k -1)| z(1 : k -1)) dx(k -1) (5.2)

In obtaining this equation, we used the total probability theorem in the first line and utilized
the assumption that the state x(k) is conditionally independent from past measurements,
given the previous state x(k -1). The conditional probability f(x(k)| x(k -1)) is obtained
using the known dynamics of the system and the known control input to the system (if
any). Notice here that we rely on the probability distribution f(x(k -1)| z(1 : k -1)) which is
calculated using the measurement update step (presented next) from the previous timestep.

Measurement Update

The measurement update improves upon the prior estimate by incorporating sensor infor-
mation from the system. Using Bayes Theorem, we can rewrite the posterior belief (i.e., the
state estimate conditioned on all measurements up to and including the current timestep)
in terms of other key related quantities which are more readily obtained:

f(x(k)| z(1 :k)) = f(x(k)| z(k), z(1 :k -1)) (5.3)

=
f(z(k)|x(k), z(1 :k -1)) f(x(k)| z(1 :k -1))

f(z(k)| z(1 :k -1))
(5.4)

=
f(z(k)|x(k), z(1 :k -1)) f(x(k)| z(1 :k -1))∫

x̄(k)∈X f(z(k)| x̄(k)) f(x̄(k)| z(1 :k -1)) dx̄(k)
(5.5)

=
f(z(k)|x(k)) f(x(k)| z(1 :k -1))∫

x̄(k)∈X f(z(k)| x̄(k)) f(x̄(k)| z(1 :k -1)) dx̄(k)
(5.6)

where f(x(k)| z(1 :k -1)) is the prior belief of the state obtained from the previous prior
update, f(z(k)|x(k)) is calculated using the known observation model (i.e., how likely are
the sensor measurements given a specific state), and f(z(k)| z(1 :k -1)) is the probability of a
measurement z(k) given past measurements – a normalization constant that is independent of
the robot state. Equation 5.4 is a direct result of applying Bayes Theorem, and Equation 5.5
uses the Total Probability Theorem. The last line is obtained by simplifying the numerator
through assuming that measurements z(k) and z(1 : k -1) are conditionally independent,
given the current state x(k).
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5.5.2 Background: Kalman Filter

In general, analytically solving the general Bayesian formulation described in the previous
section is intractable when the state space X is continuous. When the states are discrete and
finite, the problem can be solved using Bayesian Tracking, as the integral is instead replaced
with a sum over a finite number of states. However, one case involving continuous state and
action spaces in which the true posterior distribution is obtainable is in the specific scenario
when we are dealing with linear dynamic systems with Gaussian initial state distributions
and independent, uncorrelated Gaussian noise. Consider the case when we have a linear
time-varying system:

x(k) = A(k -1)x(k -1) + u(k -1) + v(k -1) (5.7)

z(k) = H(k)x(k) + w(k) (5.8)

where A(k) and H(k) are the linear mappings from the state x(k) to the next state and to the
current measurement, respectively. The input to the system is u(k), where the traditional
linear matrix B(k) is implicit in this formulation. Finally, the additive process noise and
measurement noise at time k are represented with the vectors v(k) ∼ N (µv,Q) and w(k) ∼
N (µw,R).

If the initial state x(0), v(k), and w(k) are Gaussian, independent, and mutually dis-
tributed, then the prior and measurement update stages described above are summarized
below, where x̂p and x̂m are the state estimates (i.e., the means of the Gaussian distributions)
after the prior update and measurement update, and Pp(k) and Pm(k) are the respective
variances:

Kalman Filter: Prior Update

x̂p(k) = A(k -1)x̂m(k -1) + u(k -1) (5.9)

Pp(k) = A(k -1)TPm(k − 1)A(k -1) + Q(k − 1) (5.10)

Kalman Filter: Measurement Update

K(k) = Pp(k)HT (k)
(
H(k)Pp(k)H(k) + R(k)

)−1
(5.11)

x̂m(k) = x̂p + K(k)
(
z(k)−H(k)x̂p(k)

)
(5.12)

Pm(k) =
(
I−K(k)H(k))Pp(k) (5.13)

=
(
I−K(k)H(k)

)
Pp(k)

(
I−K(k)H(k)

)T
+ K(k)R(k)K(k)T (5.14)

The prior update advances the state and error covariance variables forward according
to the process dynamics. The measurement update calculates the Kalman Filter Gain and
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updates the error covariance and state estimate by incorporating the most recent measure-
ments. Q(k) and R(k) above are the time-dependent covariance matrices of the Gaussian-
distributed process and sensor noise, as described previously. The equations are initialized
with x̂m(0) and Pm(0) set to the belief distribution corresponding to the assumed known
initial state of the system. The Kalman Filter Gain, K(k), scales the corrective linear term
in Equation 5.50 of the measurement update in an optimal manner according to statistical
measures of variance/uncertainty due to both the stochastic process noise as well as mea-
surement noise. Note, while the equations above solve the Bayesian state estimation problem
outlined in Equation 5.2 exactly (given linear Gaussian assumptions), the Kalman Filter is
also guaranteed to be the best observer of all linear estimators which minimizes the variance
of the estimation error for any system [86, 105].

5.5.3 Kalman Filter for Nonlinear Tensegrity Systems

As is evident from earlier chapters, tensegrity equations of motion model a complex dynamic
system, with nonlinear dynamics and measurement models. For tensegrity robots, the orig-
inal Kalman Filter updates don’t translate directly, as the linear Gaussian assumptions are
violated. Instead, in this section, we summarize two variants of the Kalman Filter which
can be used to handle nonlinear dynamic systems with varying degrees of accuracy and
computational complexity.

The nonlinear tensegrity dynamics were previously outlined in Chapter 3; in this sec-
tion, we present the remaining nonlinear equations governing the measurement models. As
described at the beginning of this chapter, common tensegrity sensors include inertial mea-
surement units (IMU’s) which measure acceleration, angular velocity, and orientation, as
well as positional encoders which provide information on the cable rest lengths.

Tensegrity Sensor Measurements

Tensegrity robots must deal with many uncertainties that arise due to their compliant,
contact-rich high-dimensional dynamics; as such, these robots must leverage multi-modal
sensor fusion in order to improve optimal state estimation. As mentioned in previous sec-
tions, positional encoders are key sensors which provide information on each of the cable’s
rest lengths, that – in conjunction with external forces that arise from interactions with
the ground and surrounding environment – play a major role in understanding the tension
distribution of the elastic cable network of the tensegrity structure. IMUs provide critical
measurement data on individual rod orientations to help localize nodal positions of the ends
of each rod relative to one another. Finally, gyroscopic angular velocity measurements can
also be transformed into nodal velocities, given orientation information and rod geometries.

As a reminder, the state vector of the robot which we wish to estimate concisely aggre-
gates information about rod ends’ nodal positions and velocities as well as cable and rod
lengths, where input to the system are the rate of change of rod/cable lengths:
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xk =


pk
ṗk

`cables,k
`rods,k

 uk =

[
˙̀
cables,k

˙̀
rods,k

]
(5.15)

and the interesting nonlinear dynamics effects are captured in the following equation for
nodal accelerations (see Chapter 3 for more details):

p̈ = W ·
(
− JT(JWJT)−1(J̇ṗ− ksG− kdĠ) +

(I3N − JT(JWJT)−1JW)(
∑
j

γj + Fexternal)
) (5.16)

where W is the inverse mass matrix, J and J̇ are the Jacobians of the constraint functions
and their time derivatives with respect to the nodal positions, respectively, and G and Ġ
are the vector-valued constraint functions and respective time derivatives.

In order to leverage the state estimation and sensor fusion techniques described in this
chapter, we define the nonlinear measurement models mapping current robot state to the
sensor measurements from the IMUs, encoders, etc. First, rod orientation information is
mapped according to the following equations:

ui = −(Ri ⊗ I3) · pk zorient,i =
ui
‖ui‖

+ wi (5.17)

zorient =


zorient,1
zorient,2
zorient,3
zorient,4
zorient,5
zorient,6

 ∈ R18 (5.18)

In short, the noisy measurement vector zorient stacks the X,Y,Z coordinates of directional
unit vectors which lie along the longitudinal axis of each rod, where Ri is the ith row of the
rod connectivity matrix defined as follows:

R =


1 −1 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 1 −1

 ∈ R6×12 (5.19)
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Positional encoders directly attached to the motor actuators give us direct measurements
of the cable rest lengths. We assume a linear relationship between revolutions and rest length
according to the following simple equation:

zcable,i = ηi · `cable,i + wi zcable =


zcable,1
zcable,2

...
zcable,24

 ∈ R24 (5.20)

where ηi is a constant ratio relating the number of motor i’s revolutions to cable i’s rest
length, often found empirically as a function of motor pulley diameter and cable thickness.

Finally, nodal velocities, zvelocity are also sensed using noisy gyrosopic data using fused
sensor information from the IMUs. The final overall sensor measurement vector combining
accelerometer, gyroscope, and encoder sensor information is thus:

z =

 zorient
zcable

zvelocity

 ∈ R78 (5.21)

The represented set of sensors described above is only one of many possible sensor schema
for tensegrity autonomy. In the simulation experiments that follow, the results demonstrate
that the above sensors constitute a sufficient but not necessary set of measurements, with
lesser or alternative sensor information leading to acceptable but less accurate state esti-
mates. Other considerations for sensor measurement data such as rod accelerations, contact
forces, and cable tensions can all be utilized for improved sensor fusion and have been pro-
posed for future tensegrity designs. In practice, the combination of sensors described in
this work provide a good foundation for understanding important insights for tensegrity
state estimation; we leave exciting investigations into different tensegrity sensor hardware
configurations for future work.

Extended Kalman Filter

The first nonlinear extension to the vanilla Kalman Filter which we discuss is the Extended
Kalman Filter (EKF), which linearizes the nonlinear dynamics about the latest state esti-
mate. For the EKF update, the nonlinear process and measurement equations are linearized
about the current state estimates, and the standard Kalman Filter update equations (Equa-
tions 5.9 - 5.33) are straightforwardly applied to calculate the Process and Measurement
Updates using the linearized equations.
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Consider the nonlinear discrete-time system:

x(k) = qk−1(x(k -1),u(k -1),v(k -1)) (5.22)

z(k) = hk(x(k),w(k)) (5.23)

where qk−1 and hk are the nonlinear process and measurement functions, respectively,
and vk and wk are Gaussian, mutually independent noise vectors. Statistical measures of
all relevant random variables are as follows:

E[x(0)] = xinit, V ar[x(0)] = Pinit (5.24)

E[v(k -1)] = 0, V ar[v(k -1)] = Q(k -1) (5.25)

E[w(k)] = 0, V ar[w(k)] = R(k) (5.26)

If we assume that we have access to the previous state estimate mean and variance, xm(k−
1) and Pm(k − 1), then the modified Process and Measurement Updates are summarized
below:

Extended Kalman Filter: Prior Update

x̂p(k) = qk−1(x̂m(k -1),u(k -1), 0) (5.27)

Pp(k) = A(k -1)>Pm(k -1)A(k -1) + L(k -1)>Q(k -1)L(k -1) (5.28)

where we define the linearized A(k -1) and L(k) matrices as:

A(k -1) :=
qk−1(x̂m(k -1),u(k -1), 0)

∂x
L(k -1) :=

qk−1(x̂m(k -1),u(k -1), 0)

∂v
(5.29)

Extended Kalman Filter: Measurement Update

x̂m(k) = x̂p + K(k)
(
z(k)− hk(x̂p(k), 0)

)
(5.30)

K(k) = Pp(k)H>(k)
(
H(k)Pp(k)H(k) + M(k)>R(k)M(k)

)−1
(5.31)

Pm(k) =
(
I−K(k)H(k))Pp(k) (5.32)

=
(
I−K(k)H(k)

)
Pp(k)

(
I−K(k)H(k)

)>
+ K(k)R(k)K(k)> (5.33)

where the linearized matrices are defined as:

H(k) :=
hk(x̂p(k), 0)

∂x
M(k) :=

hk(x̂p(k), 0)

∂w
(5.34)
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The main intuition for the EKF process update is to propagate the state forward using the
true nonlinear dynamics and to modify the variance according to the linearized dynamics.
Similarly, the state estimation is improved during the EKF measurement step by taking
into account the actual measurement and the predicted measurement as expected by the
nonlinear measurement model. As opposed to the original Kalman Filter, the EKF cannot
be computed offline as linearization matrices must be calculated at current state estimates.
Additionally, it is important to keep in mind that the EKF only approximates the true mean
and variance of the random variables, with highly nonlinear discontinuous dynamics leading
to poor approximations. In the context of tensegrity ground mobility, the assumptions of
mild nonlinearities and unimodal distributions are violated, which leads to excessively large
estimation errors, as will see in later sections.

Unscented Kalman Filter

In contrast to the EKF, which approximates the nonlinear dynamics and measurement mod-
els, the Unscented Kalman Filter (UKF) seeks to directly approximate the probability dis-
tribution that arises as a result of the nonlinear equations instead. This alternative approach
utilizes a set of specifically selected points called sigma-points which are transformed through
the full nonlinear functions and uses the sampled points to obtain the relevant statistics of
the random variables. The intuition behind the UKF is that it can be a simpler task to
approximate a probability distribution than to approximate a nonlinear function. In this
subsection, we summarize the simpler nonlinear UKF for additive noise which is applicable
for tensegrity systems where independent Gaussian noise affects the process dynamics and
measurements affinely, with no coupling or co-dependent effects. We thus assume normally
distributed noise which is often valid for sensor noise that may arise due to many indepen-
dent random effects (i.e., manufacturing tolerances, environmental conditions, temperature,
humidity, etc.), according the the central limit theorem [78]. For details in the derivation of
UKF and extensions for nonlinear noise, we refer the reader to [41, 43, 86].

We now consider systems of the following form, with additive noise:

x(k) = qk−1(x(k -1),u(k -1)) + v(k -1) (5.35)

z(k) = hk(x(k)) + w(k) (5.36)

where qk−1 and hk are the nonlinear process and measurement functions, respectively,
and vk and wk are Gaussian, mutually independent noise vectors. As before, statistical
measures of all relevant random variables are:

E[x(0)] = xinit, V ar[x(0)] = Pinit (5.37)

E[v(k -1)] = 0, V ar[v(k -1)] = Q(k -1) (5.38)

E[w(k)] = 0, V ar[w(k)] = R(k) (5.39)
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Unscented Kalman Filter: Prior Update

We first generate the 2n sigma-points, where n is the dimension of the state vector.
Afterwards, the prior sigma-points are evolved through the nonlinear dynamics assuming
zero process noise:

sxm(k−1),i = x̂m(k -1) +
(√

nPm(k -1)
)
i

(5.40)

sxm(k−1),n+i = x̂m(k -1)−
(√

nPm(k -1)
)
i

(5.41)

sxp(k),i = qk−1

(
sxm(k−1),i

)
∀ i ∈ {0, 1, ..., 2n− 1} (5.42)

where the subscript i refers to the ith column of the scaled matrix square root (calculated for
example using the Cholesky decomposition) of the measurement covariance matrix. Using
these sampled sigma-points, the prior statistics are straightforwardly calculated:

x̂p(k) =
2n−1∑
i=0

1

2n
sxp(k),i (5.43)

Pp(k) =
2n−1∑
i=0

1

2n

(
sxp(k),i − x̂p(k)

)(
sxp(k),i − x̂p(k)

)>
+ Q(k -1) (5.44)

Unscented Kalman Filter: Measurement Update

The sigma-points calculated in the Prior Update step are passed through the nonlinear
measurement model and the measurement covariance matrix Pzz(k) and cross covariance
matrix Pxz(k) are calculated:

sz(k),i = hk

(
sxp(k),i

)
∀ i ∈ {0, 1, ..., 2n− 1} (5.45)

ẑ(k) =
2n−1∑
i=0

1

2n
sz(k),i (5.46)

Pzz(k) =
2n−1∑
i=0

1

2n

(
sz(k),i − ẑ(k)

)(
sz(k),i − ẑ(k)

)>
+ R(k) (5.47)

Pxz(k) =
2n−1∑
i=0

1

2n

(
sxp(k),i − x̂p(k)

)(
sz(k),i − ẑ(k)

)>
(5.48)



CHAPTER 5. TENSEGRITY STATE ESTIMATION AND CONTROL 76

Using these values, the Kalman Filter gain and linear corrective terms are subsequently
obtained and are used to calculate the posterior estimate:

K(k) = Pxz(k)Pzz(k)−1 (5.49)

x̂m(k) = x̂p + K(k)
(
z(k)− ẑ(k)

)
(5.50)

Pm(k) = Pp(k)−K(k)Pzz(k)K(k)> (5.51)

In summary, the UKF is appealing because it does not require calculating time-derivatives
throughout the system dynamics and measurement model. This is useful when Jacobians
may be difficult to obtain from complex hybrid dynamics. As well, the unscented transform
utilized in the UKF approximates the mean correctly up to second-order, as compared to the
EKF which is correct only up to first order, and partially incorporates some approximation of
higher order terms [41]. Of course, this increased accuracy comes at the cost of computation
time, as multiple dynamic simulations must now be completed at ever iteration.

5.5.4 Simulation Results and Discussion

In this section, we discuss simulation results which compare state estimation performance
and accuracy for both the nonlinear Extended Kalman Filter and Unscented Kalman Filter
for the canonical six-bar spherical tensegrity. In short, the UKF outperforms the EKF
in terms of accuracy, as expected, at the expense of greater computational cost. For this
experiment, we simulate the six-bar spherical tensegrity at rest, with no cable actuation. A
noisy, perturbed state estimate is initially provided, and recursive filter updates using both
nonlinear filters are performed over 500 time steps of 5e -3 seconds. Given the physical model
parameters and noise characteristics specified in Table 5.1 and Table 5.2, we find that on
average, the UKF performed 32% better than the EKF counterpart, with respect to nodal
position absolute estimation error. As alluded to in [17], the EKF does not perform well
on highly nonlinear systems such as tensegrities, where first-order approximations do not
accurately represent the true propagation of uncertainties.

In particular, the EKF tends to perform poorly with regards to nodal position and ve-
locity error along the Z-axis (see Figure 5.6 and Figure 5.8). One probable reason for the
discrepancy in estimation accuracy for the Z-direction is the complexity of contact interac-
tions between the ground surface and contact nodes which constitute the supporting base
polygon of the robot. Namely, the discontinuous dynamics which are modeled are difficult to
capture through first-order approximations. Qualitatively, we observe that a ‘popcorn’ be-
havior arises, where the base nodes continuously alternate between touching the ground and
‘popping’ back up just slightly above the surface level on the next recursive state estimate.
This is likely due to high floor stiffness and atypical collision interference that is an artifact
of inaccurate state estimates rather than reality. Notably, this inaccuracy in ground con-
tact interactions is pivotal in understanding the challenges of coupled interdependent state
estimation and controls for tensegrity robots; intricate static friction and viscous friction
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Figure 5.3: Side view of the six-bar tensegrity model and UKF state estimate. Estimated
rod positions and orientations are depicted in magenta, offset from the closest ground truth
values whose rods are shown in red/green/blue cylinders. Predicted standard deviations of
nodal positions are depicted as uncertainty ellipsoids centered at each node estimate.

interactions play a dominant role in determining how the robot will deform and thus how
the center of mass evolves over time in order to achieve a rolling motion. A summary of
state estimation errors for this experiment are presented in Table 5.3 and Table 5.7 for the
EKF and UKF, respectively.
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Figure 5.4: Isometric view of the simulated robot and UKF estimate of the rod positions and
cable lengths. Estimated rod positions and orientations are depicted in magenta, offset from
the closest ground truth values whose rods are shown in red/green/blue cylinders. Predicted
standard deviations of nodal positions are depicted as uncertainty ellipsoids centered at each
node estimate. Note here that rods are estimated to be slightly lower than ground truth
values, likely due to a combination of ground contact inaccuracies and overestimation of
cable lengths which result in a less stiff robot than in reality. Nodal positions which are
higher (greater Z-value) tend to have larger deviations in the Z-direction, as errors in rod
orientations and cable tensions aggregate when moving farther away from the ground-truth
surface, having no direct sensor measurements of node height.
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Figure 5.5: Top-down view of the simulated robot and UKF estimate of the rod positions and
cable lengths. Estimated rod positions and orientations are depicted in magenta, offset from
the closest ground truth values whose rods are shown in red/green/blue cylinders. Predicted
standard deviations of nodal positions are depicted as uncertainty ellipsoids centered at each
node estimate. State estimates in the XY-plane tend to be fairly accurate, as rod orientation
sensors are combined for sensor fusion. Coupling between rods through imperfect cable
estimates mean that sensor measurements must corroborate neighboring rods.

Physical Parameters Value
Rod Length 60 cm
Rod Mass 300 g

Cable Stiffness 800 N/m
Pretension 30 N

Max. Cable Linear Velocity 10 cm/s

Table 5.1: Model parameters used to simulate and compare different state estimation ap-
proaches, based on existing Mobile Robot hardware.
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Sensor Measurement Standard Deviation
Rod Orientation ± 5 degrees

Cable Rest Length ± 5 cm
Nodal Velocity ± 1 m/s

Table 5.2: Sensor noise characteristics used to simulate and compare EKF and UKF state
estimation approaches.

EKF Error Quantiles
State

.025 .25 .50 .75 .975
Node X-Position [m] 0.0259 -0.0090 -0.0001 0.0088 0.0268
Node Y-Position [m] -0.0270 -0.0088 -0.0002 0.0091 0.0275
Node Z-Position [m] -0.0399 -0.0114 -0.0023 0.0099 0.0337

Node X-Velocity [m/s] -2.1107 -0.6596 0.0669 0.8314 2.2275
Node Y-Velocity [m/s] -2.1757 -0.7662 0.0021 0.8187 2.2903
Node Z-Velocity [m/s] 0.5444 2.5021 3.3084 4.0654 5.4781

Cable Length [m] -0.0123 -0.0042 0.0009 0.0065 0.0252

Table 5.3: Simulation quantile statistics for state estimation error obtained using the Ex-
tended Kalman Filter.

UKF Error Quantiles
State

.025 .25 .50 .75 .975
Node X-Position [m] -0.0180 -0.0059 0.0000 0.0061 0.0172
Node Y-Position [m] -0.0178 -0.0062 -0.0002 0.0062 0.0182
Node Z-Position [m] -0.0344 -0.0172 -0.0078 -0.0010 0.0100

Node X-Velocity [m/s] -0.0933 -0.0302 -0.0003 0.0316 0.0943
Node Y-Velocity [m/s] -0.0900 -0.0307 0.0007 0.0326 0.0940
Node Z-Velocity [m/s] -0.0927 -0.0315 0.0030 0.0345 0.0962

Cable Length [m] -0.0285 -0.0104 -0.0009 0.008 0.0255

Table 5.4: Simulation quantile statistics for state estimation error obtained using the Un-
scented Kalman Filter.
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Figure 5.6: XYZ Nodal position estimation errors obtained when using the Extended
Kalman Filter. Boxes indicate range of 25% and 75% quantiles, median depicted as notched
centerline. Whiskers represent 1.5 times the interquantile range beyond the 25% and 75%
quantiles. Outliers are represented by red triangles.

Figure 5.7: XYZ Nodal position estimation errors obtained when using the Unscented
Kalman Filter. Boxes indicate range of 25% and 75% quantiles, median depicted as
notched centerline. Whiskers represent 1.5 times the interquantile range beyond the 25%
and 75% quantiles. Outliers are represented by red triangles. Note that Z-values tend to be
consistently underestimated.
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Figure 5.8: XYZ Nodal velocity estimation errors obtained when using the Extended
Kalman Filter. Boxes indicate range of 25% and 75% quantiles, median depicted as notched
centerline. Whiskers represent 1.5 times the interquantile range beyond the 25% and 75%
quantiles. Outliers are represented by red triangles. Observe the extreme errors in the pos-
itive Z-direction, likely caused due to erroneous contact interactions and collisions between
inaccurate state estimates and the surface plane.

Figure 5.9: XYZ Nodal velocity estimation errors obtained when using the Unscented
Kalman Filter. Boxes indicate range of 25% and 75% quantiles, median depicted as notched
centerline. Whiskers represent 1.5 times the interquantile range beyond the 25% and 75%
quantiles. Outliers are represented by red triangles. Note here the difference in scale for
estimation error, as compared to results obtained using EKF.
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Figure 5.10: Cable length estimation errors obtained when using the Extended Kalman
Filter. Boxes indicate range of 25% and 75% quantiles, median depicted as notched center-
line. Outliers are represented by red triangles. Cable length estimates from EKF tend to be
overestimated rather than underestimated.

Figure 5.11: Cable length estimation errors obtained when using the Unscented Kalman
Filter. Boxes indicate range of 25% and 75% quantiles, median depicted as notched cen-
terline. Outliers are represented by red triangles. Interestingly, UKF provides no significant
advantage here over EKF. One reason for this could be due to the direct (linear) correspon-
dence between sensor measurement (from motor encoders) and cable length.
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Chapter 6

Tensegrity Motion Planning
Extensions - Imitation Learning and
Robust Control

6.1 Introduction

In the previous chapters, we introduced several model-based approaches that leverage known
dynamics of tensegrity systems for motion planning and control. These methods utilize the
well-structured equations of motion for tensegrity dynamics to find optimal action inputs in a
numerically rigorous way that contrasts with conventional heuristic approaches for tensegrity
control. In many practical cases, however, the dynamics of the system may not be entirely
known and only partial information - such as the measured performance of the control policy
or specific examples of successful input sequences - are provided. Similarly, autonomous
control often requires real-time feedback control in order to immediately handle unforeseen
disturbances as they occur. In these interesting scenarios where tensegrity systems are
tasked to behave optimally under uncertainty and with limited information, we explore
some extensions to the approaches presented in prior chapters which may help to handle
critical computation speed requirements and/or uncertainty in the system.

6.2 Contributions of this Chapter

In this chapter, we explore how imitation learning may be utilized in combination with
optimal control to obtain control policies for tensegrities which can produce optimal actions
in real-time. Afterwards, a new minimax robust control formulation is introduced which we
can use to guide the robot towards optimal actions in the face of adversarial disturbances. In
these scenarios, these approaches must contend with partial or imperfect information about
the robot and its interactions with the environment. While the focus of these results is
primarily in their application towards intelligent control of tensegrity robotics, this research
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touches more broadly on important research endeavors involving optimal control of complex
dynamical systems with high-dimensional state, observation, and action spaces in the context
of partial information and real-world uncertainty.

6.3 Imitation Learning with Optimal Control Experts

Solving the necessary constrained optimization problems, even with the convex formulations
described in Chapter 4, requires significant computation time of up to one-hundredth of
a second for every control update. More efficient software implementations could further
improve computation time, but still would likely not allow for MPC to be run on a less
powerful embedded microcontroller in real-time with readily available hardware. Thus, the
compliance of these tensegrities is both a benefit and a burden – as can be seen from the
results in previous chapters, the robust physical attributes of these unique systems come
hand-in-hand with controller complexity.

6.3.1 Input Remapping and Online Control using Deep Learning

Our approach to addressing the intractability of real-time MPC with tensegrities is to utilize
MPC and iLQR methods not as an online control policy but as an offline ‘expert’ reference
for supervised imitation learning. In short, imitation learning is a machine learning approach
that leverages expert-labeled data of optimal input-action pairs in order to train a policy to
mimic expert behavior. Using an imitation learning approach, rather than solve a constrained
optimization problem for MPC in real-time, we use a feedforward neural network trained on
optimal state-action trajectories to allow for real-time implementation of feedback control.
Furthermore, we leverage input remapping to allow us to generate a reduced-order mapping
by providing full-state information during optimal trajectory generation while only using a
subset of the states (e.g., observation information readily available through hardware sensors)
for the learning process [56]. Utilizing this approach, these results demonstrate real-time
directed spherical tensegrity rolling with multi-cable actuation – i.e., using simultaneous
actuation of all 24 cables to achieve rolling locomotion in any arbitrary user-defined direction.

For this work, 150+ trajectories are generated using the MPC approach described in
Chapter 4 and are used as demonstration trajectories to train a contextual neural network
policy which accepts state estimates and a user-defined desired rolling direction. To ensure
that the expert trajectories generate a wide support for all user-defined directions, not only
is the overall desired direction of the straight-line path randomized (as in Figure 4.2), but
intermediate corrective directions – provided whenever the robot deviated from the straight-
line path – are also recorded for each timestep, greatly increasing the variation of observed
commanded directions. Additionally, some data pre-processing was also utilized to add
Gaussian noise to the input and to exploit rotational symmetry for the contextual policy.

To help improve the robustness of the policy to model perturbations, we also ensure
that the state-action trajectories that are generated have rod masses which are randomly
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Figure 6.1: Feedforward neural network used for reduced-order contextual policy. The policy
takes partial state information as input and outputs an action for each cable; has nearly 11
million individual weight parameters.

Figure 6.2: Controlled cable rest lengths using Model Predictive Control.

drawn from a uniform distribution with nominal mean of 1.1 kg and spread of +/- 10%.
Based on recent results in [73] for robust policies through learning, this parameter variation
approach helps the policy better generalize and reduces the effects of discrepancies between
the simulation source domain and hardware target domain.

A contextual deep neural network policy (Fig. 6.1) with two hidden layers of 100 nodes
each and hyperbolic tangent sigmoid activation function is trained to map a reduced-order
input vector, X ∈ R44, to a discrete action vector, U ∈ R24.

Specifically, the input is a concatenation of: 1) rod orientations (represented through
functions of spherical coordinates), 2) cable restlength deviations from the neutral pose,
and 3) a contextual input of x, y coordinates corresponding to a desired rolling direction.
Each action Ui ∈ {−1, 0, 1} corresponds to a max velocity retraction, hold and maintain
restlength, or max velocity release command, respectively, to one of the 24 actuated cables.
In practice, this discretization of the continuous action space helped speed up learning time
and improve sample-efficiency. To ensure that cable restlengths remained in a reasonable
range, hard limits for minimum and maximum allowable lengths were set, helping prevent
the robot from unreasonably de-tensioning and collapsing or tensioning to dangerous levels.
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Figure 6.3: Controlled cable rest lengths from a contextual neural network policy trained
using imitation learning. Note the smoother transitions for cable actuation as compared to
that of trajectories generated using MPC.

From the results, we find that the neural network policy trained using simple supervised
learning successfully captures the general patterns of optimal MPC state-action trajectories
to allow the robot to locomote when starting from arbitrary poses, even with only partial
observability. Although cable rest length commands often reached the upper and lower
permissible limits (likely due to the discrete action space with maximum velocity extension
or retraction), the simulated robot was able to perform dynamic rolling motions in directions
that could be updated in real-time, starting from different initial conditions.

As a simple example, desired directions were given to command the robot to roll in a
square trajectory from different initial conditions (see Fig. 6.4). Though optimality guaran-
tees are no longer provided, using a deep neural network trained with supervised machine
learning on simulated ‘expert’ MPC trajectories is a relatively simple, sample-efficient ap-
proach for effective real-time feedback control of complex, compliant tensegrity systems.

6.4 Robust Nonlinear Trajectories with Minimax

Iterative Dynamic Games

The optimization-based techniques described in the previous chapter enable us to quickly
generate optimal actuation policies for any desired tensegrity behavior which we can define
a representative reward/cost function for. One weakness of the model-based approaches
presented previously, however, is their dependency on accurate dynamics models in gener-
ating optimal motion planning trajectories. Any disparity, uncertainty, or model mismatch
leads to inaccuracies when using an incorrect nominal model to predict behavior over longer
time horizons. This brittleness limits their application in practical use cases where nominal
models may be difficult to obtain or subject to uncertainty. In the context of flexible mo-
bile robotics such as tensegrities, this uncertainty is further compounded with discontinuous
nonlinearities that are present in contact-rich rolling locomotion.



CHAPTER 6. TENSEGRITY MOTION PLANNING EXTENSIONS - IMITATION
LEARNING AND ROBUST CONTROL 88

Figure 6.4: Rolling locomotion in a square trajectory controlled using a contextual policy
trained through supervised learning. Green stars are waypoint destinations. Red points
are the CoM over time. Blue outlines are the supporting base polygons of the robot and
black squares signify nodal contact with the ground. For a video, please visit youtu.be/

lXWUPFmPY04
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To address this, techniques such as Robust Model Predictive Control [9, 19, 55, 5], H∞

[16] Control, and other parametric approaches using Linear Fractional Transformations for
bounded disturbances such as [67, 13] have been utilized in application to linear systems,
leading to important results in the field of robust control. In contrast, existing approaches
for nonlinear systems are less common, with works such as [104] relying on heuristic or
sampling-based Monte Carlo approaches.

Prior work such as [65, 66] frames the robust optimization problem as a minimax dynamic
game, commonly found in robust control literature, which here aims to find the (locally) best
input control to the system, subject to an adversarial disturbance. In this work, we use a
minimax approach to extend the techniques described in the previous section and expand
upon prior work by investigating this framework in the context of receding horizon control.

Formally, two-player minimax trajectory optimization seeks to solve an optimization
problem with respect to both an optimal input and adversarial disturbance. We define the
cost-to-go Ji as the partial sum of costs from timesteps i to N :

Ji(x0, π, ψ) = min
ui→N−1

N−1∑
k=i

`(xk,uk,wk) + `N(xN) (6.1)

where the nominal agent chooses its action uk under a policy {π = π0, ...πT}, and the
uncertainty’s actions wk are governed by a policy {ψ = ψ0, ...ψT}. As before, the stage cost
is a function of the states, inputs, and disturbance, and `N represents the terminal cost of
the final state.

The goal of minimax optimization is to find a pair of saddle point equilibrium policies
(π∗, ψ∗) that satisfy:

J0(x0, π
∗, ψ) ≤ J0(x0, π

∗, ψ∗) ≤ J0(x0, π, ψ
∗) ∀ π ∈ Π, ψ ∈ Ψ,x0 ∈ X

More generally, to find a policy at timestep t, the optimal control sequence pair {u∗t ,w∗t }
are the argmin and argmax sequences, respectively, of the following optimization problem:

J∗t (xt) = min
π∈Π

max
ψ∈Ψ

Jt(xt, π, ψ) (6.2)

= min
π∈Π

max
ψ∈Ψ

[
`t(xt,ut,wt) + J∗t+1(xt+1)

]
(6.3)

= min
π∈Π

max
ψ∈Ψ

[
`t(xt,ut,wt) + J∗t+1(ft(xt,ut,wt))

]
(6.4)

The input policy is made robust by modifying the nominal stage cost `t with a norm on
the adversarial input:

¯̀(xk,uk,wk) = `(xk,uk,wk)− γgt(wt) (6.5)
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Figure 6.5: Example inputs for the control policy (left) and adversarial disturbance (right).

where gt(·) is a non-negative penalty norm on the adversarial disturbance, decreasing the
cost as disturbance magnitude increases. As gamma decreases, the adversary is able to
take larger actions with less penalty. Thus, gamma is a hyperparameter we can tune to
modify the robustness of a given policy, with lower gamma values corresponding to more
robust policies that are able to handle larger magnitude perturbations. As gamma goes to
infinity, the optimal action for the adversarial disturbance is to do nothing; alternatively,
the lowest γ-value for which we can achieve acceptable performance can serve as a measure
of robustness.

The adversary thus faces the complement optimization problem of maximizing the mod-
ified cost function, and balances maximizing the cost function with the minimal magnitude
disturbance:

max
ψ∈Ψ

N∑
k=0

`(xk,uk,wk)− γgt(wt) = max
ψ∈Ψ

N∑
k=0

¯̀(xk,uk,wk) (6.6)

To obtain the optimal pair of policies (π∗, ψ∗), we leverage an approach similar to that
of Section 4.7 and apply iLQR to converge to a saddle point equilibrium. In contrast to
Equation 4.6, we define the minimax value function over both control and the additional
disturbance inputs:

V (x, i) = min
u

max
w

(
`(x,u,w) + V (f(x,u,w), i+ 1)

)
(6.7)

We similarly define a function Q to represent variations about the nominal sequence
{xt,ut,wt} and find its second-order expansion, dropping second-order dynamics Hessians
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if using iLQR rather than DDP. Note, in the equations that follow, time dependence is not
explicitly notated for conciseness in notation:

Q(δx, δu, δw) ≡ [`(x + δx,u + δu,w + δw)− `(x,u,w)] + (6.8)

[V (f(x + δx,u + δu,w + δw), i+ 1)− V (f(x,u,w), i+ 1)]

≈ 1

2


δx
δu
δw
1


> 

Qxx Qxu Qxw Qx

Qux Quu Quw Qu

Qwx Qwu Qww Qw

Q>x Q>u Q>w 0



δx
δu
δw
1

 (6.9)

where the first- and second-order coefficient matrices are defined as follows:

Qx = `x + f>x V
′
x Qxx = `xx + f>x V

′
xxfx + V ′xfxx

Qu = `u + f>u V
′
x Quu = `uu + f>u V

′
xxfu + V ′xfuu

Qw = `w + f>w V
′
x Qww = `ww + f>w V

′
xxfw + V ′xfww

Quw = `uw + f>u V
′
xxfw + V ′xfuw Qxu = `xu + f>x V

′
xxfu + V ′xfxu

Qxw = `xw + f>x V
′
xxfw + V ′xfxw

A second-order local model of the value function used in the equations above is ob-
tained through iterative updates. The terminal value function is first initialized by setting
V (x, N) = `N(xN). The value function V and its first- and second-order derivatives Vx
and Vxx are then calculated iteratively at each update using the following update formulas
derived in [65]:

V (k) = V (k + 1)−Qu(k)Q−1
uu (k)Qu(k)−Qw(k)Q−1

ww(k)Qw(k) (6.10)

Vx(k) = Qx(k)−Qu(k)Q−1
uu (k)Qux(k)−Qw(k)Q−1

ww(k)Qwx(k) (6.11)

Vxx(i) = Qxx(k)−Qxu(k)Q−1
uuQux(k)−Qxw(k)Q−1

ww(k)Qwx(k) (6.12)

By setting the gradients to zero with respect to the input and disturbance deviations, respec-
tively, we obtain the optimal trajectory perturbations at each iteration in order to minimize
and maximize the second-order expansion:

δu∗ = argmin
δu

Q(δx, δu, δw) = −Q−1
uu (Quxδx + Quwδw + Qu) (6.13)

δw∗ = argmax
δw

Q(δx, δu, δw) = −Q−1
ww(Qwxδx + Qwuδu + Qw) (6.14)

In this minimax iterative dynamic game (iDG) formulation, it is clear from the above
equations that the optimal input of the policy agent is dependent on the adversarial distur-
bance, and vice-versa. Substituting and solving the system of equations above, we derive
the final control/disturbance perturbations as a function of the state perturbations δx:



CHAPTER 6. TENSEGRITY MOTION PLANNING EXTENSIONS - IMITATION
LEARNING AND ROBUST CONTROL 92

δu∗ = −Q−1
uu (Quxδx + Quwδw + Qu) (6.15)

= (I−Q−1
uuQuwQ−1

wwQwu)
−1 · (6.16)[

−Q−1
uu (Qu −QuwQ−1

wwQw)−Q−1
uu (Qux −QuwQ−1

wwQwx)δx

]

δw∗ = −Q−1
ww(Qwxδx + Qwuδu + Qw) (6.17)

= (I−Q−1
wwQwuQ

−1
uuQuw)−1 · (6.18)[

−Q−1
ww(Qw −QwuQ

−1
uuQu)−Q−1

ww(Qwx −QwuQ
−1
uuQux)δx

]
If we define the following coefficient terms for convenience:

Ku = (I−Q−1
uuQuwQ−1

wwQwu)
−1Q−1

uu (6.19)

Kw = (I−Q−1
wwQwuQ

−1
uuQuw)−1Q−1

ww (6.20)

gu = Ku(QuwQ−1
wwQw −Qu) (6.21)

gw = Kw(QwuQ
−1
uuQu −Qw) (6.22)

Gu = Ku(QuwQ−1
wwQwx −Qux) (6.23)

Gw = Kw(QwuQ
−1
uuQux −Qwx) (6.24)

then we may compactly write the optimal input and disturbance perturbations as a con-
stant affine term plus linear feedback (reintroducing the time dependency explicitly here for
clarity):

δu∗(k) = Gu(k)δx(k) + gu(k) (6.25)

δw∗(k) = Gw(k)δx(k) + gw(k) (6.26)

Importantly, the formulas above (namely Equation 6.19 and Equation 6.20) include crit-
ical corrections to account for original errata in [66] and combine techniques from [66],[65]
towards application in a receding horizon control fashion.

In summary, we follow a similar iterative approach as described in Section 4.7:

• We begin by first selecting a nominal initial guess for the input/disturbance sequences
{ûk} and {ŵk} and forward propagate through the dynamics to obtain a nominal
sequence of dynamic states {x̂k}.

• Afterwards, local linear/quadratic models are obtained about the nominal trajectory
for the nonlinear dynamics/cost function respectively, which we utilize in a backwards
pass to update the local second-order model of the cost function.
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• Optimal perturbations about the current iterations nominal input/disturbance se-
quences are obtained using Equations 6.25 and 6.26.

• Lastly, a backtracking linesearch scales the affine term in the resulting optimal devia-
tions, as larger deviations may violate local linear model assumptions.

This iterative cycle of selecting a modified nominal input/disturbance trajectory is re-
peated, with incremental improvements obtained from the equations above, until the value
function converges to a local saddle point and negligible cost improvements are made (see
Algorithm 2).

Algorithm 2: Minimax Iterative Dynamic Games

Input: General penalty function `k(x(k),u(k),w(k))
Dynamics function f(x(k),u(k),w(k))
Trajectory horizon N
Initial state xinit
Initial control sequence Û = {û(0), ..., û(N − 1)}
Initial disturbance sequence Ŵ = {ŵ(0), ..., ŵ(N − 1)}

Output: Control sequence U = {u(0), ...,u(N − 1)}
Control sequence W = {w(0), ...,w(N − 1)}
Input Feedback gains Gu(0), ...,Gu(N − 1)
Disturbance Feedback gains Gw(0), ...,Gw(N − 1)

Initialize Value function and derivatives V(k),Vx(k),Vxx(k), with V(N) = `N
Obtain X̂ = {x̂(1), ..., x̂(N)} by evolving according to nonlinear dynamics:
x̂(k + 1) = f(x̂(k), û(k), ŵ(k)) with initial condition: x̂(0) = xinit

while Not Converged do

Fx(k) = ∂f
∂x
f(x̂, û, ŵ), Fu(k) = ∂f

∂u
f(x̂, û, ŵ), Fw(k) = ∂f

∂w
f(x̂, û, ŵ)

Calculate derivatives of quadratic approximation Q(x̂, û, ŵ) using Equation 6.9
Solve for Gu(0), ...,Gu(N − 1), gu(0), ...,gu(N − 1) according to Equation 6.23
Solve for Gw(0), ...,Gw(N − 1), gw(0), ...,gw(N − 1) according to Equation 6.24
Update Value Function and derivatives according to Equations 6.10, 6.11, 6.12
while cost is not improving do

/* backtracking line search */

Obtain sequence U by propagating u(k) = û(k) + Gu(k)δx(k) + αgu(k)
Obtain sequence W by propagating w(k) = ŵ(k) + Gw(k)δx(k) + αgw(k)
Find X̂ = {x̂(1), ..., x̂(N)} by executing x̂(k + 1) = f(x̂(k), û(k), ŵ(k))
Set Û = U
Set Ŵ = W
Calculate new cost function using X̂, Û,Ŵ
α← α/2

end

end
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Figure 6.6: Trajectory tracking in the positive X-direction with a nominal controller and
imperfect state estimates. Notice that while the general overall movement is in the correct
direction, the robot missteps along the way.

6.4.1 Robust Minimax Control Combined with State Estimation

As alluded to in past sections, tensegrity robotics face an especially difficult challenge for
motion planning and trajectory optimization due to the uncertainties which naturally arise
as a result of compliance throughout the system in addition to noisy sensor measurements
and imperfect models. Physical characteristics and material properties of the robot may
vary significantly from model parameters solely due to manufacturing and assembly toler-
ances. Additionally, sensor fusion and optimal estimation approaches address sensor noise to
a degree, but pragmatic applications of these control policies must be able to handle imper-
fect state estimates. In this section, we assess the performance of the previously described
minimax controller in combination with state estimation in order to better understand per-
formance capabilities of the robot in a more challenging context with imperfect information.

To this end, we simulated experiments applying the aforementioned robust minimax iDG
method that expands upon the original motion planning approaches described in Chapter



CHAPTER 6. TENSEGRITY MOTION PLANNING EXTENSIONS - IMITATION
LEARNING AND ROBUST CONTROL 95

4 and have demonstrated successful results. The results show that this robust control for-
mulation enables successful rolling locomotion with adversarial disturbances/noise of up to
10% of the maximum control input magnitude (i.e., 1 cm/s control authority for the ad-
versarial agent). More importantly, this ability to handle adversarial perturbations directly
leads to being capable of continuous dynamic rolling even when given noisy imperfect state
estimates. Using the same physical model parameters and sensor noise characteristics as
outlined in Table 5.1 and Table 5.2, the robust minimax iDG approach was applied to a
simulated robot with state estimation implemented using UKF. From the results shown in
Figure 6.7, we illustrate that the the robust controller is significantly better at handling
noisy state estimates, nearly matching the nominal performance of the iLQR controller with
perfect full-state information, albeit at a slower conservative speed. In contrast, the nominal
controller struggles to contend with noisy measurements (shown in green) and occasionally
suffers from unexpected transitions in an undesired direction. One potential reason for this
type of failure is the unique method of moving the tensegrity robot center of mass to force
an unstable transition from one face to another. Inaccuracies in the shape of the supporting
base polygon, the robot contact interactions with the ground, the pose of the robot, or any
other multitude of factors may lead the robot into taking an action which it falsely believes
is beneficial. In reality, inaccuracies cause the robot behavior to evolve in an unanticipated
manner, and once the robot is placed in a precarious unstable state, the punctuated rolling
motion continues through, with no means of control authority to stop (see Figure 6.6). Thus,
while the minimax formulation is suboptimal in terms of purely rolling speed, this approach
may be one way to address real-world uncertainty with rolling tensegrity robots.
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Figure 6.7: Comparison of rolling performance with/without state estimation and robust
minimax motion planning. The three cases depicted are: perfect full state information
with nominal iLQR controller (blue); noisy state estimates with UKF and nominal iLQR
controller (green); noisy state estimates with UKF and robust minimax iDG controller (red).
Note that the minimax controller does a better job at tracking the desired trajectory in the
positive X direction, as compared to the nominal controller.
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Figure 6.8: Accuracy of the state estimates for the robot pose can vary widely over time
during dynamic rolling. In particular, during the moments immediately after a rolling motion
impact (shown here), the rod position estimates (magenta) deviate significantly from the
ground-truth, momentarily causing the robot to take control actions it falsely assumes to be
optimal.
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Figure 6.9: Example of cable rest length evolution over time, for a robot using nominal iLQR
as a control policy and state estimation through UKF.

Figure 6.10: Example of cable rest length evolution over time, for a robot using robust
minimax iDG as a control policy and state estimation through UKF. Note the less vertical
slopes (unsaturated control inputs) and rounded transitions in comparison to the nominal
controller inputs depicted in Figure 6.9.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

Tensegrity robots are a novel and emergent type of soft-robotics that have uniquely ad-
vantageous mechanical properties of being lightweight and passively compliant, giving them
great potential for applications in uncertain environments or co-robotic applications where
there may be unexpected contact with their surroundings. Before they can be considered
as robust hardware platforms, however, their autonomous capabilities must be further de-
veloped for fast and reliable mobility. Unfortunately, the same system-level compliance that
gives tensegrities such great mechanical properties also introduces many complexities when
dealing with optimal feedback control of these systems. This work strives to elucidate and
address many of the practical challenges surrounding optimal control and motion planning
for dynamic mobile tensegrity robots.

This dissertation presented minimal and point mass dynamics model representations
that allow for consideration of tensegrities in an idealized manner and for reasoning about
approaches that may accurately simulate dynamic tensegrities under contact-rich rolling lo-
comotion. Building on these dynamics, this work introduced an open-source modular simu-
lation framework created specifically for investigating and evaluating novel tensegrity control
and state estimation. Furthermore, this paper outlined two optimization-based approaches
that are able to generate optimal state-action trajectories for complex nonlinear tensegrities.
The given techniques leverage the well-structured dynamics of Class-1 tensegrities and may
be extended to new topologies beyond the six-bar spherical tensegrity highlighted in this
paper. Several novel tensegrity topologies with varying hardware configurations and degrees
of control authority are described, and preliminary analyses demonstrate their potential for
future hardware iterations. Moreover, this paper explored the complementary problem of
state estimation. Given a commonality of proposed tensegrity sensors, nonlinear Kalman
Filter methods are evaluated in the context of tensegrity dynamic rolling mobility. Finally,
this work introduced how deep learning can be utilized with optimal MPC trajectories to
create highly-expressive end-to-end contextual policies for real-time directed rolling, even
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for partially observable systems. A minimax robust control approach is also outlined, with
simulation results that provide some insights into how uncertainty in tensegrity systems may
be addressed. Combined, the motion planning and state estimation strategies introduced in
this research help advance the progression of this novel technology towards becoming fully
viable mobile robotic platforms.

7.2 Future Work

7.2.1 Hardware Testing

Squishy Robotics plans to implement the techniques described in this report with their latest
MR3 mobile robot hardware iteration. The current hardware prototype allows for real-time
control and state estimation using the actuators and sensors described in this paper, with
new electronics for improved reliability during hardware experiments. Furthermore, the
hardware was designed with paired-cable actuation (described in Section 4.9.3) in mind, so
we look forward to evaluating energy-efficient tensegrity locomotion and state estimation in
hardware.

7.2.2 Transfer Learning to New Environments

With the framework for tensegrity trajectory optimization set in place, it is now possible
to generate locally optimal state-action trajectories for spherical tensegrities with varying
physical parameters using optimization-based approaches. An interesting next step would
be to use policy-gradient and reinforcement learning methods (e.g., natural policy gradients,
trust region policy optimization, and proximal policy optimization) for transfer learning to
new environments (e.g., rough or inclined terrain rather than flat ground). This would allow
for policies to be first generated offline with the approaches in this paper using nominal
hardware parameters in simulation. Afterwards, learning approaches can enable the neural
network policy to later learn from new online hardware sensor observation data through
reinforcement learning methods, correcting for model mismatch and other disturbances to
improve in real-time.

7.2.3 Tensegrity Perception, Localization, and Mapping

The topics presented in this work touch on a key area of autonomous systems, that of mo-
tion planning and control. Beyond this, however, autonomous tensegrity robots must also be
able to tackle critical challenges in perception, localization, and mapping. Currently, some
tensegrity hardware designs from Squishy Robotics feature sensor payloads with camera vi-
sion capabilities, which we may leverage in future work for visual-inertial odometry. Notably,
new techniques and methods for tensegrity perception must be able to handle the intrinsic
compliance and oscillatory behavior of the system and 360-degree requirements for rolling
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ground mobility. Such advances could also be beneficial in improving the state estimation
techniques for tensegrities described in this work. Beyond this, simultaneous localization
and mapping offers a compelling value proposition for the rapidly-deployable air-dropped
tensegrity sensor robots that are currently being developed.
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