
UC Davis
UC Davis Previously Published Works

Title
Helping Faculty Teach Software Performance Engineering

Permalink
https://escholarship.org/uc/item/2fj7x89s

Authors
Owens, John D
Hoppe, Bruce

Publication Date
2024-05-27

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2fj7x89s
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Helping Faculty Teach
Software Performance Engineering

John D. Owens
Dept. of Electrical & Computer Engr.

University of California, Davis
Davis, California, USA
jowens@ece.ucdavis.edu

Bruce Hoppe
Connective Associates

Arlington, Massachusetts, USA
behoppe333@gmail.com

Abstract—Over the academic year 2022–23, we discussed the
teaching of software performance engineering with more than a
dozen faculty across North America and beyond. Our outreach
was centered on research-focused faculty with an existing interest
in this course material. These discussions revealed an enthusiasm
for making software performance engineering a more prominent
part of a curriculum for computer scientists and engineers. Here,
we discuss how MIT’s longstanding efforts in this area may serve
as a launching point for community development of a software
performance engineering curriculum, challenges in and solutions
for providing the necessary infrastructure to universities, and
future directions.

Index Terms—Performance; distributed, parallel, and cluster
computing; data structures and algorithms; software perfor-
mance engineering.

I. INTRODUCTION

Over the past year, we conducted focused interviews with
more than a dozen faculty worldwide about software per-
formance engineering (SPE): making software run fast or
otherwise consume few resources such as time, storage, and
energy. Since the demise of Moore’s Law, SPE has grown
increasingly important as one of the most promising ways
to continue providing gains in application performance. We
were fortunate to work as part of the Fastcode Team with
the support of Charles Leiserson. He co-developed SPE as a
course at MIT, and we shared the resources from this course
as part of our outreach. We offered the resources as a seed
for an open-source repository of SPE teaching materials and
as a springboard to discussing how others would teach SPE
and what obstacles (if any) prevent them from doing so. This
paper summarizes what we learned, focusing on the following
questions:

• What is SPE? What are the barriers to teaching it?

The second author works as an external consultant for MIT and leads user
engagement for the Fastcode OSE. This research was supported in part by
NSF Grant 2229704 and in part by the United States Air Force Research
Laboratory under Cooperative Agreement Number FA8750-19-2-1000. The
views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed
or implied, of the United States Air Force or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

• If the barriers were overcome, how could a collaborative
and/or open-source ecosystem help you teach SPE? What
topics would you put in your class? What teaching
materials, broadly construed, would be most useful?

• How would you manage the computing resources re-
quired for teaching SPE?

• What are the directions we should take SPE? How would
you hope to contribute?

II. SOFTWARE PERFORMANCE ENGINEERING

Although software performance engineering has been
around since the early days of computing, it has gained atten-
tion recently due to the end of Moore’s Law [1]. For decades,
Moore’s Law allowed programmers to improve application
performance simply by waiting for faster hardware, but no
more. Not only that, the capabilities of modern multicore
chips are much harder to exploit than their predecessors. We
believe that SPE techniques and tools are among the most
promising for providing applications with continued gains
in performance, and so in 2022 we joined the SPE efforts
of the multi-institution Fastcode Team. Charles Leiserson,
who created the SPE curriculum with Saman Amarasinghe
at MIT in 2009, leads the team and helps us to leverage
all the resources developed over more than fifteen years of
teaching SPE at MIT. Also in 2022, the Fastcode Team won
Phase I support from a brand-new NSF program, Pathways to
Enable Open-Source Ecosystems (POSE), which positioned us
as the “managing organization” responsible for scoping (and
eventually building) the Fastcode Open-Source Ecosystem
(OSE). The core open-source content of the Fastcode OSE
is OpenCilk [2], [3], an integrated platform for task-parallel
programming. To kick off our ecosystem for using this content,
we launched the OpenCilk.org website with a featured page
of resources for teaching SPE, including downloadable lecture
slides from MIT and UC Davis [4]. The work reported here
is intended to complement OpenCilk and expand beyond
it by exploring how we can make it easier for faculty to
teach SPE—with or without OpenCilk. In short, the Fastcode
OSE aims to catalyze an integrated community of software
developers, researchers, and educators, who are equipped with
software, learning materials, research foundations, and skill-

building environments to advance SPE as a rigorous and
principled scientific field.

We believe that a foundational part of our effort to create a
community around SPE is teaching students. We hope that
we can train students ready to meet the significant need
of the computing community by developing a high-quality
curriculum in SPE, and ensuring that curriculum can be
easily adopted by faculty at both research- and teaching-
focused schools. To that end, we held focused one-on-one
conversations with faculty, largely about obstacles they face
in teaching SPE and how our nascent ecosystem might help.
The majority of our outreach was to North American faculty
at research-focused universities, but we were also able to
talk to faculty outside of North America and to faculty at
teaching-focused institutions. Because we talked to faculty
who had already expressed interest in the topic, and/or had
been recommended as having an interest by other faculty, we
had a reliably positive reception. Here’s what we learned:

• Faculty desire an integrated cross-stack approach.
Our vision of SPE incorporates material in many areas,
including architecture, compilers, programming systems,
algorithmic engineering, and algorithms. Faculty appre-
ciated such a cross-stack approach to teaching SPE,
complementing most courses in computer science and
engineering that focus on only one level of the stack.

• Faculty are highly time-constrained. Preparing a new
course is a lot of work; preparing it from scratch is
considerably more; so to enable faculty to teach this
material, we must prioritize their time.

• Faculty need and appreciate high-quality teaching
materials. Lecture slides and videos teaching them were
most commonly requested, but also homework assign-
ments, tutorials, and projects. Several faculty, but not all,
requested a textbook, while others did not expect to use
or want one.

• Faculty require help to configure teaching machines
for performance engineering. For reliable performance
measurement, instructional computers are not suitable
off-the-shelf without significant configuration. The typi-
cal professor has little experience with such configuration
and will benefit from the experience of the Fastcode
Team and the infrastructure we have developed within
our ecosystem.

• Insufficient instructional staff background. Faculty
typically have little experience using a variety of parallel-
programming platforms (such as OpenCilk), and their
TAs even less; providing high-quality, time-efficient train-
ing material that brings a teaching staff up to speed with
the relevant platforms for their class is critical.

III. CURRICULUM AND TEACHING MATERIALS

In the first part of our interview protocol, we asked faculty
about obstacles preventing them from teaching SPE, despite
our shared sense of its importance to modern computer science
education. In the next part of the protocol, we asked faculty
(i.e., recognized experts) how they would teach SPE if those

obstacles were removed. We summarize their responses here,
hoping to contribute to a collective conversation about what
belongs in SPE. To give context to our interviewees and allow
more pointed discussion about their preferences, we began
the discussion with the 2018 MIT SPE curriculum [4]. This
included lecture material on:

• Introduction & Matrix Multiplication
• Bentley Rules for Optimizing Work
• Bit Hacks
• Assembly Language and Computer Architecture
• C to Assembly
• Multicore Programming
• Races and Parallelism
• Analysis of Multithreaded Algorithms
• What Compilers Can and Cannot Do
• Measurement and Timing
• Storage Allocation
• Parallel Storage Allocation
• The Cilk Runtime System
• Caching and Cache-Efficient Algorithms
• Cache-Oblivious Algorithms
• Nondeterministic Parallel Programming
• Synchronization Without Locks
• Domain Specific Languages and Autotuning
• Speculative Parallelism
• Tuning a TSP Algorithm
• Graph Optimization
• High Performance in Dynamic Languages

In general, faculty agreed that the syllabus for the MIT course
was broad and appropriate. Faculty appreciated the cross-
cutting nature of the MIT course and contrasted it with the
typical single-layer approach of the majority of their curricula.
(Faculty feel that both single-layer and multi-layer courses in
the curriculum are relevant and appropriate, but multi-layer
courses are less common.)

In general faculty felt this course was best suited as
an upper-division undergraduate course, although mezzanine
(mixed advanced-undergrad and beginning-grad) and grad
courses also received interest. One faculty member noted that
the largest body of degree-holders that enter industry are BS
degrees and thus we should focus on that cohort of students.
Other faculty noted the growth of their (online) MS programs
and that this material would be useful there. Some departments
also offer industry-focused courses, and faculty saw that this
material potentially fits that need.

Faculty had numerous suggestions for extending the existing
repository of course material. The primary topics mentioned
were distributed computing (multi-socket and multi-node,
including frameworks like Spark), GPUs, and performance
engineering of networks and I/O. Faculty also mentioned
vectorization, managed languages, performance counters and
how to effectively use them, how security intersects with SPE,
and virtual-machine aspects of SPE, among many others.

The MIT curriculum focuses on using performance tools
(e.g., profilers) to measure performance, identify bottlenecks,
and address them. Such tools (broadly) don’t modify source
code but instead measure, and MIT teaches students how to
control the effects of compile- and run-time optimizations
before they take measurements. One of our faculty contacts

instead described his philosophy of instrumenting code to see
“what’s actually happening”, rather than profiling it (e.g., as
taught at MIT). Both approaches are valuable, and the Fastcode
Team has since had discussions about the need to also teach
instrumentation. This is certainly an interesting topic for an
additional lecture.

In the opinion of the first author, who has no MIT connec-
tion, the MIT course (naturally) has a strong MIT flavor, in
particular with respect to its focus on OpenCilk. Surveyed fac-
ulty generally agree: OpenCilk is beautiful, both theoretically
and in practice, and is a joy to teach; however, the MIT course
lacks a broader context for studying other multicore parallel
programming environments. It would be useful to develop a
taxonomy of classes of parallel computing problems and teach
parallel computing through that lens, focusing on how and why
different parallel computing environments are better or more
poorly suited for particular classes of problems and why. This
is especially important for students who may (soon!) work
in companies where OpenCilk is not available, and who may
need to choose other environments. We spoke with one team
of faculty who are actively maintaining such a taxonomy as a
foundational part of their online textbooks, PDC for Beginners
and Intermediate PDC [5], [6]; related resources on patterns of
parallel programming are listed in the bibliography [7]–[10].

Independent of the topics covered, we asked faculty about
the importance of lecture slides, homeworks, projects, and
other teaching materials. What would be most helpful as
part of our open-source ecosystem? Faculty agreed that the
combination of lecture slides and videos of those lectures
being delivered are the single most important item that we
can provide, and we are fortunate to have permission to share
all of MIT’s (superb!) lecture slides and videos, which have
been developed over many years. A library of existing projects
that are interesting and educational for students is also highly
desirable. Faculty acknowledge the challenge in developing
workable, properly targeted projects, especially those that may
use a programming environment where the teacher may have
little or no expertise. MIT’s philosophy in writing projects is to
give students working code that fulfills the project description
but is slow (e.g., unoptimized or unparallelized). Students are
then responsible to improve project performance. We agree
with this philosophy, but it does require identifying projects
where the performance gap between initial code and final code
is both large and pedagogically interesting.

Faculty expressed the desire for a modular SPE curriculum
where different pieces of material could be easily integrated
into an existing course. We return to this in Section V, along
with our desire to provide a roadmap that helps faculty to
approach SPE from different perspectives.

IV. COMPUTING INFRASTRUCTURE

Teaching SPE requires accurately measuring performance.
The MIT course stresses reproducible, consistent measure-
ments on quiesced servers. We believe quiesced servers are
critical for teaching SPE, but this means that a perfor-
mance engineering class can almost certainly not use generic

department-supplied computing environments without custom
effort. (For example, the typical department computing re-
source is a pool of Unix workstations that allow local and
remote logins; it is very difficult to get reliable performance
measurements when many students can be running jobs on the
same machine.)

Over the course of our outreach, we discussed two tentative
paths toward providing faculty with quiesced servers for
teaching SPE: using a cloud provider and configuring local
machines. The Fastcode Team hopes to build an ecosystem
for helping potential SPE instructors as they consider these
options, and we welcome inquiries from interested faculty.
(See also Section V for other ways we hope to help.) Briefly,
here’s what we discussed so far.

The benefit of a cloud provider is that it “only” costs money
but does not require internal department resources. (At UC
Davis, the cost was $155 per enrolled student over a 10-
week academic quarter.) Setup involves billing as well as
configuring a cloud computer to provide reliable performance
measurements. This option is perhaps best for departments that
have a little more cash than time or computing resources. It is
also probably more straightforward for departments that want
to offer an experimental (one-time) course before committing
to adding it to their curriculum. Both MIT and UC Davis have
used AWS.

Configuring a local machine is perhaps best for departments
that have a server or servers that can be dedicated to the course
for the entire academic term. UC Davis chose this option
in its most recent course offering, with managed access to
a dedicated server in the college’s compute cluster. The server
was only available to students in the course, was configured for
reliable performance measurements at the start of the quarter,
was accessed through the Slurm job submission system, and
appeared to provide enough compute to satisfy 30 students in
the course, even at peak times.

In addition to the above two options, one of our faculty
contacts noted his success with the NSF ACCESS program
for student assignments. We have not yet investigated the
suitability of ACCESS for quiesced servers or for a typical
student computing load in course on SPE, but we believe it is
a promising approach.

V. FUTURE DIRECTIONS

Our outreach was successful in determining several next
steps that would help advance our curricular goals.

A. Collaborating with Related Projects

Currently, the Fastcode Team sees SPE research as scattered
across traditional areas of computer science, and we seek to
catalyze a more integrated SPE community for researchers and
educators. This includes integrating our own work with other
projects. During our outreach we talked with leaders of three
projects that we think are especially promising allies in our
work to advance SPE education.

The CSinParallel project has been devoted since 2010 to
providing freely available educational materials in the form

of teaching modules and hands-on book chapters that enable
professors to introduce parallel and distributed computing
(PDC) at all levels of the undergraduate CS curriculum using
small units that they can fit into existing courses with minimal
disruption [11], [12]. The participants and contributors to this
effort come largely from more teaching-focused institutions,
and complement our research-focused outreach to date.

The CS-Materials website aims to help instructors navigate
the process of integrating PDC into their courses [13]. The
system allows faculty to view and curate teaching materials
and course descriptions through the lens of NSF/IEEE-TCPP
PDC curriculum guidelines. The research behind this system
reflects a comprehensive landscape of efforts to organize and
implement the topics of PDC education [14].

The Rogues Gallery project was initiated by Georgia Tech’s
Center for Research into Novel Computing Hierarchies [15].
They approach SPE education by focusing on next-generation
hardware and uncommon technologies, which complements
our focus on “commodity” CPUs.

B. More Modular Materials

In addition to helping faculty teach courses on SPE, we also
want to help them integrate SPE topics into the crowded cur-
ricula of existing classes. To that end, our goals are similar to
those of CSinParallel and CS-Materials for teaching PDC. Our
ideal SPE curriculum would have a broader set of materials
that can be presented at multiple levels of detail: for example,
20 minutes of lecture, one full lecture, or three lectures. We
also hope to identify topics that are well suited for self-study
or TA-led recitations. Finally, we would like to help faculty
mix and match modules with confidence, regardless of where
they’re starting from (e.g., approaching SPE from a theory
perspective or from a parallel-programming perspective). We
therefore hope to provide a roadmap of dependencies describ-
ing what must be covered before presenting any particular
module in our SPE ecosystem.

C. Real-World Case Studies

We believe the SPE community would benefit greatly from
acquiring a set of case studies. Each case would feature
existing code from a real-world application that is slow, for
some reason, where students must profile and/or instrument
this code to find where it is inefficient and fix it. One benefit
of case studies is to equip students for success after school. We
spoke to numerous companies during our outreach, and they
all told us how hungry they are for people who have learned
how to optimize existing code written by others. Another
benefit of case studies, compared to traditional student projects
that are often wholly constructed by the instructor, is to help
faculty identify the key principles and connections that bind
and differentiate SPE with other areas of computer science.
We believe SPE will be much stronger as a field if faculty
can construct student projects from real-world problems or
applications that are bottlenecked by performance, and the
Fastcode Team hopes for an SPE ecosystem that helps to

identify those real-world problems and develop them into case
studies.

D. Distributed Content Development

In our outreach, we found that that faculty acknowledge
that at the outset they would expect to mostly be consumers
of course material, but they are also enthusiastic about con-
tributing their material back to a common repository, and
perhaps taking a leadership role on particular topics they
know best. We look forward to cultivating distributed content
development.

VI. CONCLUSION

We are grateful for the time of, and valuable discussion with,
the faculty from our year of outreach. The most interesting
points above were nearly all developed as a direct result of
these discussions. We strongly believe that SPE is a signif-
icant opportunity for the computer science and engineering
community and hope that our efforts will help students bring
its lessons and techniques into industry, government, and
academia.

REFERENCES

[1] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul,
B. W. Lampson, D. Sanchez, and T. B. Schardl, “There’s plenty of
room at the Top: What will drive computer performance after Moore’s
law?” Science, vol. 368, no. 6495, Jun. 2020. [Online]. Available:
https://doi.org/10.1126/science.aam9744

[2] T. B. Schardl and I.-T. A. Lee, “OpenCilk: A modular and extensible
software infrastructure for fast task-parallel code,” in Proceedings of
the 28th ACM SIGPLAN Annual Symposium on Principles and Practice
of Parallel Programming, ser. PPoPP ’23. ACM, Feb. 2023, pp.
189–203. [Online]. Available: https://doi.org/10.1145/3572848.3577509

[3] The OpenCilk organization, “OpenCilk,” Available at https://github.com/
OpenCilk, 2023.

[4] ——, “Teach Performance,” Available at https://www.opencilk.org/
community/teach-performance/, 2023.

[5] J. C. Adams, R. Brown, S. J. Matthews, and E. Shoop, “PDC for
Beginners,” Available at https://dx.doi.org/10.55682/VXWY1300, 2023.

[6] E. Shoop, “Intermediate PDC,” Available at https://www.learnpdc.org/
IntermediatePDC/, 2023.

[7] T. G. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel
Programming, 1st ed. Addison-Wesley Professional, Sep. 2004.

[8] “Our Pattern Language,” Available at https://patterns.eecs.berkeley.edu/,
2024.

[9] M. McCool, J. Reinders, and A. Robison, Structured Parallel Program-
ming: Patterns for Efficient Computation, 1st ed. Amsterdam: Morgan
Kaufmann, Jul. 2012.

[10] P. Balaji, Programming Models for Parallel Computing. MIT Press,
Nov. 2015, google-Books-ID: L6kCCwAAQBAJ.

[11] “CSinParallel,” Available at https://csinparallel.org/, 2024.
[12] “Learn PDC,” Available at https://learnpdc.org/, 2024.
[13] E. Saule, K. Subramanian, and J. Payton, “CS Materials,” Available at

http://cs-materials.herokuapp.com/, 2020.
[14] A. Goncharow, M. Mcquaigue, E. Saule, K. Subramanian, P. Goolkasian,

and J. Payton, “CS-Materials: A system for classifying and analyzing
pedagogical materials to improve adoption of parallel and distributed
computing topics in early CS courses,” Journal of Parallel and
Distributed Computing, vol. 157, pp. 316–330, Nov. 2021. [Online].
Available: https://doi.org/10.1016/j.jpdc.2021.05.014

[15] Georgia Tech Center for Research into Novel Computing Hierarchies,
“The rogues gallery,” Available at https://crnch-rg.cc.gatech.edu/, 2024.

