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Abstract

Background: Differentially expressed genes are typically identified by analyzing the variation between replicate
measurements. These procedures implicitly assume that there are no systematic errors in the data even though
several sources of systematic error are known.

Methods: OpWise estimates the amount of systematic error in bacterial microarray data by assuming that genes
in the same operon have matching expression patterns. OpWise then performs a Bayesian analysis of a linear
model to estimate significance.

Results: In simulations, OpWise corrects for systematic error and is robust to deviations from its assumptions.
In several bacterial data sets, significant amounts of systematic error are present, and replicate-based approaches
overstate the confidence of the changers dramatically, while OpWise does not. Finally, OpWise can identify
additional changers by assigning genes higher confidence if they are consistent with other genes in the same
operon.

Conclusions: Although microarray data can contain large amounts of systematic error, operons provide an external
standard and allow for reasonable estimates of significance. OpWise is available at http://microbesonline.org/
OpWise.

Introduction

Microarray measurements of gene expression have
become a popular tool for studying bacterial phys-
iology, and hundreds of such studies are being con-
ducted each year. Generally, these studies compare
a treatment, either environmental or genetic, to a
control condition. After obtaining raw hybridization
intensities by scanning the slides or chips, the next
steps are to normalize the data to remove experi-

mental artifacts and then to identify differentially
expressed genes.

To assess the reliability of the microarray mea-
surements and to distinguish significant changers
from other genes, statisticians have analyzed the
variation between replicate experiments [1–8]. Im-
plicitly, assessing significance by testing replication
error assumes that replication captures all of the er-
ror in the data, and that there are no systematic bi-
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ases. However, systematic errors have been observed
due to many factors, including cross-hybridization,
non-specific hybridization, dye incorporation bias,
intensity-dependent effects, and spatial artifacts [1,
9–11]. Although normalization methods correct for
some of these, systematic bias will likely remain;
for example, most normalization methods cannot
account for cross-hybridization or non-specific hy-
bridization. To determine if systematic errors do
remain after normalization, additional information
besides the replicates is required.

For bacterial microarray experiments, we use
operons to assess the amount of systematic error in
the data. Bacterial genes are often co-transcribed in
multi-gene operons, and genes in the same operon
should, in principle, have the same expression pat-
tern. Although genes in the same operon are of-
ten expressed at different levels due to the vary-
ing stability of different segments of the mRNA,
in steady-state situations, this will not affect the
ratio in expression levels between conditions. Be-
cause most mRNA half-lives are short (under 10
minutes [12, 13]), mRNA levels will be near steady
state both in sustained growth (e.g., log phase) or
within 20-30 minutes of a stress (e.g., heat) being ap-
plied. Thus, the steady state approximation should
generally hold, and expression ratios should be con-
sistent across an operon. Another reason why ex-
pression patterns can vary within an operon is that
some operons have internal promoters or differential
regulation of mRNA stability that can lead to differ-
ences in expression patterns [14]. In practice, how-
ever, genes known to be in the same operon usually
have very similar expression patterns, and expres-
sion patterns can be used to predict operons [15].

We assume that genes in the same operon have
identical expression patterns, and infer that differ-
ences between the expression patterns of genes in
the same operon are due to errors, which may be
systematic or not. This assumption is somewhat
conservative, because any true differences in expres-
sion patterns between genes in the same operon will
be mistaken for errors, leading to overestimation of
the amount of systematic error and conservative as-
sessments of significance. In practice, however, this
effect appears to be slight. Because the operon struc-
ture of most genes has not been experimentally de-
termined, we rely on operon predictions that are
available for all prokaryotes [16], along with esti-
mates of their reliability [17,18].

Given this assumption about operons, we wish to

estimate the amount of systematic bias in the data.
One simple test is to ask how often two genes that
are in the same operon have the same direction of
change. However, even if one of the genes is a con-
fident changer, and even if the operon prediction is
highly confident, the measurement for the other gene
in the operon may be noisy. In this case, the second
gene will often report a change in the opposite direc-
tion from the first gene because of variation between
the replicate measurements, and not because of sys-
tematic bias. Thus, interpreting the external infor-
mation from operons requires us to have a model of
the replication error.

We extend linear models for microarray data
with replicates [3, 5, 8] to include systematic errors,
and present an empirical Bayes analysis of the over-
all amount of systematic error and of the significance
of each gene. Because we have observed that even
low-confidence changers show a significant amount
of agreement with operons, we do not assume that
a minority of genes are changers and that the rest
of the genes do not change [5, 8]. Instead, we will
assume that all genes are changing, even if, for most
of them, the magnitude of change is small and the
direction of change cannot be determined with con-
fidence. Consequently, rather than trying to distin-
guish the changers from the rest of the genes, we
estimate for each gene the posterior distribution for
the gene’s fold-change given the data and the model.
This can be summarized as a confidence interval, as
the posterior probability that the gene’s expression
level went up (or down) in response to the treat-
ment, or as the probability that the gene changed
by 1.5-fold or more.

To test our method, we conducted simulations
and also analyzed several experimental data sets.
In simulations, the method correctly estimates the
amount of systematic bias in the data and gives rea-
sonable p-values even when some of the assumptions
of the method are violated. On real data, we tested
the agreement with operons of genes having varying
levels of significance. For both two-color cDNA data
and Affymetrix oligonucleotide data, our method
finds significant amounts of systematic error and re-
ports plausible p-values that show a gradual reduc-
tion in agreement with operons as significance de-
creases. In contrast, approaches based on replication
error, including non-parametric approaches [4, 6, 7],
often show low agreement with operons for confident
changers (genes with> 99% probability of being true
changers). Thus, methods that ignore systematic
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bias may be overstating significance dramatically.

We can also take advantage of operon structure
to identify more changers. Intuitively, if two or three
genes in the same operon all change in the same di-
rection then they are unlikely to be false positives,
but a changer that disagrees with the other genes
in the same operon is suspect. Such reasoning is of-
ten used by biologists when examining microarray
data. We derive a statistically sound “operon-wise”
p-value, and show that these operon-wise p-values al-
low the identification of more changers at any speci-
fied level of significance than do single-gene p-values.

OpWise

We present “OpWise,” an empirical Bayes method
for estimating the significance of the changes re-
ported for each gene. The key elements of OpWise
are (i) a linear error model that includes systematic
errors, (ii) an approach for estimating the parame-
ters of the error model (the hyperparameters), and,
in particular, for inferring the amount of system-
atic error from the agreement within operons, (iii) a
mathematical solution for the posterior distribution
of a gene’s change in expression given the data for
the gene and the parametrized error model, and (iv)
an extension to the method to take other genes in
the same operon into account when estimating the
significance of each gene.

To describe the expression of each gene, we use
normalized expression ratios, as these should be con-
sistent within each operon. In practice, we use log-
ratios (base 2) rather than raw ratios. Also, instead
of assuming that only a small fraction of genes are
changing, we assume that every gene is changing
(but only a small fraction of them might be measured
with high confidence). Furthermore, we assume that
there is some unknown amount of systematic error
in the measurement for each gene, so that errors will
remain no matter the number of replicates. Then,
given the data for a gene i, we estimate the posterior
distribution for the true log-ratio µi. This distribu-
tion can be summarized with a confidence interval
or with the probability P (µi > 0) that a gene’s ex-
pression level went up in the treatment condition.
This probability will be near zero for highly confi-
dent down-changers, near one for highly confident
up-changers, and near 0.5 for low-confidence mea-
surements.

A Linear Model with Systematic Errors

First consider a simple experimental design with di-
rect comparisons, where the samples from the con-
ditions being compared are hybridized to the same
chip. Each gene i has an unknown true response µi,
systematic error εi, and variance between replicates
σ2
i . The measurements ~xi for gene i are assumed to

be normally distributed around µi + εi, and can be
summarized by the observed mean mi =

∑

j xij/ni,
where ni is the number of measurements for gene i,
and the total squared deviance s2i =

∑

j(xij −mi)
2,

so that the likelihood of the data for each gene i is
given by

f(~xi) =

ni
∏

j=1

f(xij |µi, σi, εi)

∝ σ−ni
i exp(−

∑

j(xij − µi − εi)
2

2σ2
i

)

= σ−ni
i exp(−

ni(µi + εi −mi)
2 + s2i

2σ2
i

) (1)

Another popular experimental design is to com-
pare two types of samples separately to an external
standard, such as genomic DNA or pooled mRNA
samples. In these types of experiments, there are two
sets of measured log levels for each gene, and the dif-
ference between them gives the log ratio. We refer to
these log levels as ~x1i and ~x2i, and summarize them
with counts n1i and n2i, sample means m1i and m2i,
and total squared deviances s21i and s

2
2i. We assume

that the true variance in measurements ~x1i and ~x2i

is identical, and that the unknown systematic bias
εi affects the difference. We wish to estimate the
distribution of µi ≡ µ1i − µ2i. Using the summary
statistics ni ≡ n1i + n2i − 1, Ni ≡ (n−1

1i + n−1
2i )

−1,
mi ≡ m1i−m2i, and s

2
i ≡ s21i+ s22i, the likelihood is

f(mi, s
2
i |µi, σi, εi) ∝ σ−ni

i exp(−
Ni(µi + εi −mi)

2 + s2i
2σ2

i

)

(2)
which is the same form as the direct comparison case
except that Ni has replaced ni in the exponential.

In either case, we use the conjugate prior to make
the problem analytically tractable (as in [5, 8]). We
first assume that the distribution of θi ≡ 1/σ2

i fol-
lows a chi-squared distribution (Eq. 3). Given σ2

i

for a gene, we then assume that the true mean µi
is normally distributed with variance proportionate
to σ2

i . This assumption fits our data better than
the alternative assumption of a fixed variance of µi
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across all genes (see Results), and previous work also
used this proportionality [8]. We use the same pro-
portionality for the systematic error εi. Hence, our
prior is:

θi ≡ 1/σ2
i

θi/α ∼ χ2(ν)

f(θi) =
θ
ν−1
2

i e−
αθi
2 (α2 )

ν+1
2

Γ( ν+1
2 )

µi ∼ N(0,
1

θiβ
)

εi ∼ N(0,
1

θiγ
) (3)

with hyperparameters α, ν, β, and γ. α is the scale
of the chi-squared, ν is its degrees of freedom, 1/β
determines the amount of true changes in expression,
and 1/γ determines the amount of systematic error.

We assume that the true means for the genes are
independent, except that genes in the same operon
have the same θi and µi (but independent bias εi).
Genes in the same operon are co-regulated, so µi
should be similar. The assumption that θi is identi-
cal is required because in our model µi depends on
θi; the effectiveness of this assumption will be tested
in the Results. Because operon predictions are only
80-90% accurate, we use a method that estimates
the probability P (Operonij) that two adjacent genes
are co-transcribed [16], and treat the actual state of
each potential operon pair as an unknown random
variable. For example, the prediction method might
estimate that two genes have a 90% probability of
being in the same operon; in our model, we use this
estimate as the true probability. We use only the
likely operon pairs (those with P (Operonij) ≥ 0.5).

Solving A Simplified Model

We first describe how to solve a simplified model
with systematic errors removed, so that γ =∞ and
thus all εi = 0. We need to estimate the hyper-
parameters from the data, so that we have a fully
specified prior distribution, and then we need to in-
fer the posterior distribution of the log-fold-change
µi for each gene.

Estimating the hyperparameters.

In this simplified model, we need to estimate the
prior distribution for θi (or σ

2
i ), which is determined

by the scale α and degrees of freedom ν, and then
the scale of variation for the true log-ratio µi given
the variance σ2

i , which is given by 1/β. Although we
assume that µi is normally distributed for all genes,
instead of being allowed to vary for a minority of
genes, the variation between replicates in our model
is the same as in [8]. As discussed by [8], log s2i
(the log of the squared deviances) is approximately
normally distributed, and its mean and variance can
be written analytically. By fitting the hyperparam-
eters α and ν to the observed mean and variance of
log s2i , [8] derived the following estimator:

ei ≡ log s2i − ψ(
ni − 1

2
) + log(

ni − 1

2
)

ψ′(
ν + 1

2
) = mean{(ei−ē)

2·
Ngenes

Ngenes − 1
−ψ′(

ni − 1

2
)}

α

ν + 1
= exp{ē+ ψ(

ν + 1

2
)− log(

ν + 1

2
)} (4)

where ψ() is the digamma function, ψ′() is the
trigamma function, and ē is the mean of the ei. ν
can be obtained by inverting the trigamma function,
which can be preformed numerically by Newton iter-
ation [8]. This leads to an estimate for α as well, and
specifies the prior distribution of the true variances
σ2
i for each gene (Eq. 3).

We then find the maximum likelihood estimate
of β, which describes the prior distribution of the
true means µ2

i for each gene (Eq. 3). The likelihood
of the data is

f(~m, ~s2) =
∏

i

f(mi, s
2
i )

=
∏

i

∫ ∞

0

dθif(θi)

∫ ∞

−∞

dµif(µi|θi)f(mi, s
2
i |µi, θi)

∝
∏

i

√

β

β +Ni
·

(

α+ s2i +m2
i ·

Ni · β

β +Ni

)−
ν+ni+1

2

(5)
where for direct comparison experiments, Ni ≡ ni.
This equation can be viewed as a product of t-
distributions for the posterior probabilities of each
gene’s measurements. We choose β to maximize
the (logarithm of) this likelihood, using a Newton
iteration method (nlm in the R statistics package:
http://www.r-project.org/).
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Significance of individual genes.

Given estimates for the hyperparameters and the ob-
served mean mi and total squared deviance s2i for a
gene i, the posterior probability distribution for µi
is given by

f(µi|mi, s
2
i ) ∝

∫ ∞

0

f(θi)f(µi|θi)f(mi, s
2
i |θi, µi)dθi

∝
(

α+ βµ2
i +Ni(µi −mi)

2 + s2i
)−

ν+ni
2

−1
(6)

which is a t distribution with

mean =
mi ·Ni

β +Ni

variance =
α+ s2i +m2

i ·Ni ·
β

β+Ni

(β +Ni) · (ν + ni + 1)

d.f. = ν + ni + 1 (7)

Intuitively, this distribution represents “shrunk” es-
timates of the mean and variance. m2

i appears in
the estimate of the variance σ2

i because m2
i contains

information about the variance (in our model the ex-
pectation of µ2

i is σ2
i /β). The degrees of freedom for

this t distribution includes both the observations ni
and the prior knowledge about the variance ν.

Given this posterior distribution, we can use the
standard t test to answer questions about the confi-
dence of measurement for gene i, e.g., to give a 95%
confidence interval for the log-change µi or the pos-
terior probability that the gene went up (P (µi > 0)).

Accounting for Systematic Errors

The key advantage of our approach is to use biolog-
ical knowledge (i.e., operon predictions) to take sys-
tematic errors into account. By definition, these sys-
tematic errors will not be eliminated by increasing
the number of replicate measurements, but their size
can be estimated from the variation between genes
in the same operon. In this section, we add sys-
tematic errors to the above model (γ < ∞, εi 6= 0)
and describe how to account for such bias. Specifi-
cally, we show how to estimate the amount of bias
and how take the bias into account when assessing
significance.

Estimating the parameters.

If we ignore the distinction between systematic error
εi and true variation µi, then we can replace µi with

µ′
i ≡ µi + εi. The distribution of µ′

i is given by

µ′
i ∼ N

(

0,
1

θiβ

)

+N

(

0,
1

θiγ

)

= N

(

0,
1

θi
· (

1

β
+

1

γ
)

)

= N

(

0,
1

θiβ′

)

(8)

where 1/β′ ≡ 1/β+1/γ, so that the form of the dis-
tribution of mi for a model with systematic errors
is the same as that for a model without systematic
errors, except that we replace β with β′. The dis-
tribution of s2i is not affected by systematic errors.
Thus, we can estimate α, ν and β′ using the method
for the simplified model.

We then find the maximum likelihood estimate of
γ, which controls the amount of bias, by using our
assumption that genes in the same operon will have
the same values of µi and of θi = 1/σ2

i . The total
likelihood of the data can be decomposed into terms
for individual genes and pairwise terms for operon
pairs:

f( ~x1... ~xN ) =
∏

i

f(~xi)
∏

ij

f(~xi, ~xj)

f(~xi) · f( ~xj)
(9)

We have already taken into account the effect of γ
on the single-gene likelihoods f(~xi) by introducing
β′, which is now being held constant, so these terms
do not need to be considered. To derive an equa-
tion for the pairwise likelihood ratios, we first note
the possibility that the operon prediction is incor-
rect, in which case the genes are independent and
the likelihood ratio is 1:

f(~xi, ~xj)

f(~xi) · f( ~xj)
= 1− P (Operonij)

+P (Operonij) ·
f(~xi, ~xj |Operonij)

f(~xi) · f( ~xj)
(10)

The pairwise likelihood ratio for the operon case can
be derived from

f(~xi, ~xj |Operonij) =

∫ ∞

0

dθijf(θij)

∫ ∞

−∞

dµijf(µij)

·f(mi, s
2
i |µij , θij) · f(mj , s

2
j |µij , θij) (11)

f(~xi) =

∫ ∞

0

dθif(θi)

∫ ∞

−∞

dµif(µi) · f(mi, s
2
i |µi, θi)

(12)

f(mi, s
2
i |µi, θi) =

∫ ∞

−∞

dεif(εi) · f(mi, s
2
i |µi, θi, εi)

(13)
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to give

f(~xi, ~xj |Operonij)

f(~xi) · f( ~xj)
=
(α

2

)− ν+1
2

·
γ

√

(Ni + γ) · (Nj + γ)

·

√

β

β +N ′
i +N ′

j

·

√

(β′ +Ni)(β′ +Nj)

β′

·
Γ(

ν+ni+nj+1
2 )Γ( ν+1

2 )

Γ( ν+ni+1
2 )Γ(

ν+nj+1
2 )

·
(Xij/2)

−
ν+ni+nj+1

2

(Xi/2)−
ν+ni+1

2 · (Xj/2)−
ν+nj+1

2

(14)
where

Xi = α+ s2i +m2
i ·Ni ·

β′

β′ +Ni
(15)

and similarly for j, and

Xij = α+s2i+s
2
j+N

′
i ·m

2
i+N

′
j ·m

2
j−

(mi ·N
′
i +mj ·N

′
j)

2

β +N ′
i +N ′

j

(16)
and

N ′
i ≡ (N−1

i + γ−1)−1 (17)

and similarly for j. Although much of Eq. 14 has
no simple intuitive explanation, and unfortunately
the constant terms are required (e.g. see Eq. 10),
the (X/2)−df/2 terms can be viewed as t distribution
forms for the joint probability f(~xi, ~xj |Operonij) di-
vided by similar forms for the independent probabil-
ities f(~xi) and f( ~xj).

Given this solution for the likelihood of the data,
we can use a Newton iteration method to find the
value of γ that maximizes the product of the pair-
wise likelihood ratios given by Eq. 10.

Significance of individual genes.

If we ignore the information from other genes, then
the posterior distribution of µi is given by a t distri-
bution with

mean =
mi ·N

′
i

β +N′
i

variance =
α+ s2i +m2

i ·N
′
i · β/(N

′
i + β)

(β +N′
i) · (ν + ni + 1)

d.f. = ν + ni + 1 (18)

This is the same as case without systematic bias ex-
cept that Ni, which describes the amount of data
and hence the reduction in uncertainty due to repli-
cation, has been replaced by the smaller term N ′

i .

Significance taking Operons into Account

Although the method as described so far uses operon
predictions to estimate the hyperparameters, it uses
only the information for each gene when computing
p-values. We will refer to these as “single-gene” p-
values. In this section, we describe ‘operon-wise”
p-values that use information from other genes in
the same operon to improve our estimates of the sig-
nificance of each gene. As we will show in the Re-
sults, using this additional information often allows
increased confidence in the measurements.

First, assume that we have two genes i and j
that are known to be in the same operon, with the
same (unknown) µij and θij but with differing biases
εi, εj . Given measurements for the two genes, the
posterior distribution for µij is a t distribution with

mean =
N′

i ·mi +N′
j ·mj

β +N′
i +N′

j

variance =
α+ s2i + s2j +N′

i ·m
2
i +N′

j ·m
2
j −

(Ni·mi+Nj·mj)
2

β+N′
i
+N′

j

(ν + ni + nj + 1) · (β +N′
i +N′

j)

d.f. = ν + ni + nj + 1 (19)

It is straightforward to extend this formula to three
or more genes.

In practice, operon predictions are uncertain, and
we need to take this uncertainty into account in es-
timating confidence. We use only the adjacent pairs
that are predicted to be in the same operon (those
with P (Operonij) ≥ 0.5), as non-adjacent pairs are
less reliable. In the most complicated situation, we
have genes i and k on either side of our target gene j
and four possible cases: singleton transcript j, two-
gene operon ij, two-gene operon jk, or three-gene
operon ijk. The posterior distribution of µj is then
a mixture of the corresponding four posterior distri-
butions, and a specific probability such as P (µj > 0)
is determined from a linear combination of the prob-
abilities from four t tests.

To determine the weight of the terms in the
mixture, we do not use the input probabilities
P (Operonij) and P (Operonjk). Instead, we use
the posterior operon probabilities given the data.
That is, we use the microarray data to help es-
timate the likelihood that a pair of genes are co-
transcribed. Using the posterior operon probabili-
ties gives the rigorously correct posterior distribu-
tion for µj (derivation not shown). Using the pos-
terior operon probabilities also prevents the method
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from asserting that a gene went down when it in fact
went up but other genes in the operon went down,
because in this situation the posterior probability of
the operon will be low.

Using Bayes’ law, these posterior probabilities
P (Operonij |~xi, ~xj) can be obtained from

P (Operonij |~xi, ~xj)

P (¬Operonij |~xi, ~xj)
=

P (Operonij)

P (¬Operonij)
·
f(~xi, ~xj |Operonij)

f(~xi) · f( ~xj)
(20)

where P (Operonij) is the prior probability and the
formula for the ratio on the right was given in Eq.
14. Given the individual pair probabilities and the
mixture of four cases discussed above, the weight for
each case is just its probability. For example, the
weight for the three-gene operon case is

P (Operonijk|~xi, ~xj , ~xk)

= P (Operonij |~xi, ~xj) · P (Operonjk| ~xj , ~xk) (21)

Data Sets
We tested OpWise on four data sets collected with a
variety of measurement platforms (both glass sides
and Affymetrix chips) that used different methods of
controlling systematic bias (multiple probes per gene
or dye swap) and from several different bacteria:

• dvSalt30 – Desulfovibrio vulgaris salt shock
at 30 minutes (Z. He and J. Zhou, personal
communication). This data was collected us-
ing two-color glass slides with 70-mer probes.
The experiment was an indirect comparison
through a genomic control. There were three
biological replications for each condition, mea-
sured with one slide each, and two spots per
gene per slide, for a total of six replicate mea-
surements for each gene and condition.

• ecox – A comparison of aerobic and anaero-
bic log-phase growth in Escherichia coli (GEO
accession GDS680, [19]). This data was from
Affymetrix oligonucleotide chips with three or
four replicate hybridizations for each of the two
conditions.

• shCold5 – Shewanella oneidensis cold shock
at 5 minutes (Z. He and J. Zhou, submitted).
This data was a direct comparison of two-color
glass slides using cDNA probes. There were
five biological replicates with one slide each

and two spots per gene per slide (10 measure-
ments per gene total), but no dye swap (the
same dyes were used for the control and treat-
ment samples throughout).

• shHeat5 – Shewanella oneidensis heat shock
at 5 minutes [20]. This data was also a direct
comparison of two-color cDNA probes. There
were three biological replicates, with two repli-
cate slides each and two spots per gene per
slide (12 total measurements per gene), and
with dye swap (Cy3 dye was used for the treat-
ment in half of the slides and for the control in
the other half of the slides).

For the two-color direct comparison data sets
(shCold5 and shHeat5), we performed intensity-
dependent and then spatial normalization on each
slide. Specifically, we first used a locally smooth
estimator to remove intensity-dependent effects and
then subtracted the median from each sector, simi-
lar to the recommendations of [6]. For the indirect
comparison data set (dvSalt30), we treated the ra-
tio of intensities between the channels correspond-
ing to cDNA and to genomic DNA as a raw expres-
sion level. We first performed a global normalization
for each slide so that the total expression level was
the same for each slide, and then computed the av-
erage of the log-expression levels across slides from
the two conditions. We then applied the intensity-
dependent and spatial normalization approaches to
these log-levels. For all three of these data sets, we
considered the different spots for each gene as in-
dependent sets of replicates. There was little dif-
ference between within-slide and between-slide vari-
ance (data not shown). For the Affymetrix data set
(ecox), the data we downloaded had already been
normalized with dChip [21], so we used the normal-
ized expression levels provided; to prevent small val-
ues of expression level from giving extreme outliers
for log ratios, we added a small constant (5) to the
expression levels before taking a logarithm.

For each data set, we also performed 50 simula-
tions using the parameters estimated for that data
set by OpWise. Each simulation had the same pro-
portion of missing data as the corresponding data
set. For operons, we randomly assigned adjacent
genes on the same strand to be in the same operon
or not with the probabilities given by the predic-
tion method, but only if the probability was 0.5
or greater. With these simulations of the OpWise
model, we were able to test our assumptions about

7



the distribution of means and variances. To emulate
the heavy tails in ecox (see below), we performed 50
simulations where 10% of the genes had much higher
variation in the mean (a much lower β) than the
other genes. Finally, to test our assumptions that
(i) the true mean and true variance are correlated
and (ii) the true variance is correlated within each
operon, for each data set we performed 50 “uncou-
pled” simulations where the mean was independent
of variance (the mean was normal with a fixed width)
and genes in the same operon had independent vari-
ances.

Results and Discussion

We first used simulations to test whether OpWise
fit the data and whether OpWise was robust to de-
viations from its assumptions. We then tested for
systematic bias in the real data and examined sig-
nificance estimates from OpWise and other meth-
ods. Finally, we tested whether operon-wise tests
were more powerful than single-gene tests.

Fit of Model to Data

To see how well the model fit the data, we inferred
the hyperparameters for each data set, used these
parameters to create simulated data, and compared
the simulated data to the original data sets. The
model’s inverse chi-square distribution gave an ex-
cellent fit to the observed distribution of squared
deviance s2i (Supplementary Figure 1). The sim-
ulated distribution of observed means had heavier
tails than a normal distribution, due to the wide
spread of deviances. The distribution of means fit
the data fairly well for three of the data sets, but
for the ecox data set, the true distribution had even
heavier tails (Supplementary Figure 1).

To test our assumption that the variation in
the true means depends on the true variances, we
compared the correlations of observed means and
squared deviances in the real data to simulations
using the OpWise model and also using an uncou-
pled model in which the means and variances were
independent. The observed mean and squared de-
viance were much more correlated than in the un-
coupled model, except in the shCold5 data set (Sup-
plementary Table 1). Similarly, within each operon
the squared deviances were significantly correlated
(Supplementary Table 1). However, the correlations

were generally weaker than in the simulations, indi-
cating deviations from the assumptions.

Robustness of OpWise in Simulations

To test OpWise, we created simulated data sets
based on our statistical model. We wanted to verify
that the estimated hyperparameters were accurate
enough to give reasonable p-values. Because OpWise
uses operons to estimate the overall reliability of the
measurements, we also hypothesized that OpWise
would be robust to the modest deviations from its as-
sumptions. In particular, OpWise assumes that the
variance in the true change of each gene depends on
the variance of measurement for that gene. Because
we found a weaker-than-expected relationship be-
tween observed deviances and means, we performed
“uncoupled” simulations where the true means and
variances were uncorrelated. Our statistical model
also uses normal distributions. Although different
genes can have widely varying variances of measure-
ments, which allows the observed means to have
somewhat heavy tails, even heavier tails were ob-
served for the ecox data set. So, we also conducted
heavy-tailed simulations (see Methods).

We examined the single-gene estimates of P (µi >
0) for the simulated data (µi is the true log-change
for gene i). For the simulations using the OpWise
model, we compared these p-values computed with
estimated hyperparameters to “ideal” p-values com-
puted with the true hyperparameters. For the “un-
coupled” simulations with µi independent of σi, and
for the heavy-tailed simulations, we compared the
p-values to the actual sign of µi for each gene.

When comparing the log odds of the estimated
p-values to the log odds of the ideal p-values, we con-
sistently observed a strongly linear relationship, with
correlation coefficients above 0.9999 (see Figure 1A;
logodds(p) ≡ log p

1−p ). In other words, the ordering
and shape of the significance values was not affected,
but the overall scale of significance could be. To
summarize this linear relationship between the two
sets of significance estimates, we used the slope of
the ideal log odds as a function of the estimated log
odds. As shown in Figure 1B, most simulations had
slopes very close to the ideal value of 1.0. In a total
of 200 simulations across 4 data sets, the most ex-
treme aggressive slope was 1.12 (for shHeat5). This
corresponds to reporting P (µ > 0) = 0.964 when the
true P = 0.95.

For the uncoupled and heavy-tailed simulations,
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which violated the assumptions of our model, we
did not have ideal p-values to compare to, so we
instead used logistic regression (glm in R, http://r-
project.org) to estimate the slope. Logistic regres-
sion identifies the multiplier for the estimated log
odds that best fits the observed pattern of whether
µ > 0 or not – see Figure 1C. As shown in Figure
1D, the accuracy of OpWise was not dramatically
affected by uncoupling the mean from the variance.
However, the heavy-tailed simulations for the ecox
data set produced slopes around 1.2, with a maxi-
mum of 1.35. (There was also one simulation with
a very low slope, but this was due to a few extreme
and biologically implausible values of µi that are not
present in our genuine data sets.) A slope of 1.35,
which corresponds to reporting P = 0.982 when the
true P = 0.95, is not ideal, but as we will show,
methods that do not account for systematic bias, in-
cluding non-parametric methods, can perform dra-
matically worse.

For all simulations, we also compared the operon-
wise p-values to either the ideal or true significance.
These gave similar slopes as the single-gene p-values,
but with consistently smaller deviations from 1.0
(data not shown). Overall, OpWise was largely in-
sensitive to deviations from its assumptions.

Presence of Bias

OpWise identified large amounts of systematic bias,
similar in magnitude to the true changes in gene lev-
els and the replication error, in all four data sets (Ta-
ble 1). Furthermore, the bias was statistically highly
significant in all four data sets, as determined by a
maximum likelihood ratio test (see Table 1).

One source of apparent bias might be correlation
between the replicates. That is, if the replicate mea-
surements are not truly independent and some of the
replicates are correlated, then the noise in the aver-
age of the replicate measurements will be larger than
expected. For example, the shHeat5 data set had a
total of 12 measurements per gene (3 biological sam-
ples times two slides per sample with dyes reversed
times two spots per gene on each slide). In this data
set, the replicate measurements with the same dye
assignment were more correlated than those with re-
versed dyes. To test the pattern of bias with fully
independent replicates, we created two subsets of the
data. First, we used only the first spot for each gene
on the slides and a single biological replicate, leaving
two replicates with different dye assignments. Sec-

ond, we used only a single dye assignment and only
the first spot per slide, leaving three replicates from
different samples. In both cases, we still observed
large amounts of bias (data not shown). We also ver-
ified that OpWise was not sensitive to correlations
between replicates. We created an exact duplicate
of each replicate, and this “doubled” data set gave
significance values very similar to the original data
set (results not shown).

We also considered the possibility that mRNA
levels in shCold5 and shHeat5, which were measured
only 5 minutes after the stress was applied, were
far from steady-state and that some operons would
have poor agreement because of differential mRNA
decay. However, later time points from these same
experiments showed similar amounts of bias (data
not shown). Overall, these analyses confirmed that
systematic bias is a major problem in real data sets.
Next, we show that ignoring this bias can lead to
overestimating the significance of individual genes.

OpWise Estimates Significance Correctly

To test the quality of the significance estimates on
real data, we compared the confidence assigned by
OpWise to the extent of agreement with operons.
Although our p-values are single-tailed – they test
only the hypothesis that µi > 0 – we wanted a
two-tailed notion of confidence, because this is more
comparable to other methods. We defined the two-
tailed confidence as C = 2 · |p− 1/2|. For each data
set, we sorted genes by confidence into eight groups.
For each gene, we then identified other genes pre-
dicted to be in the same operon, and asked whether
the two genes changed in the same direction. (We
used only adjacent genes, as operon predictions for
non-adjacent genes are less confident.) Intuitively, if
a group of genes are 99% confident changers, then
99% of the time, the measurement for that gene
is correct, and it will always have the same sign
as other genes in the operon; the other 1% of the
time, there is no information about the gene, and
the genes will have the same sign, by chance, 50%
of the time. That is, P (Agree) = C + (1 − C)/2,
or 2 · P (Agree) − 1 = C. We also needed to
correct for the possibility that the operon predic-
tion is incorrect, which gives 2 · P (Agree) − 1 =
C · P (Operon). Thus, we defined an adjusted mea-
sure of agreement, whose expectation ranges from
0 for data that is all noise to 1 for perfect data, as
Adjusted = (2 ·Agree−1)/P (Operon), where Agree
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is 1 if true and 0 if false. This measure corrects for
variations in the confidence of operon predictions be-
tween groups of genes – in some data sets, the most
confident changers were, on average, in more confi-
dently predicted operons (data not shown). Finally,
even if the measurement for the first gene in the
operon is highly confident and correct, the measure-
ment for the other gene in the operon may be noisy,
and the two genes may not agree. As there is no sim-
ple way to correct for this, we used the simulations
described above, and compared the relationship be-
tween confidence and agreement in the real data to
that in the simulations. The relationship between
confidence and adjusted agreement with operons was
approximately linear in all data sets (Figure 2) and
was largely consistent with simulations (Figure 2 &
Supplementary Figure 2).

Furthermore, for most groups of genes, includ-
ing those with modest confidence values, the ad-
justed agreement with operons was much larger than
zero. This suggests that the expression levels of all
genes in these experiments were in fact changing,
even if many individual genes could not be mea-
sured with confidence. In all four data sets, the top
six of eight confidence groups had significantly more
operon pairs that agreed with microarray data than
not (all p < 0.05, binomial test). This confirmed our
assumption that all genes are changers.

Bias-Free Significance Estimates Are Unreason-

able

Figure 2 also shows the relationship between confi-
dence and operons for our model without consider-
ing bias (using γ = ∞). Naturally, the confidence
estimates from the model without bias were higher.
In the shHeat5 and shCold5 data sets, the bias-free
estimates of confidence were much too high: the
highest and second-highest confidence groups both
had confidence levels very near one, but the second-
highest group had a much lower level of agreement
with operons than the highest group. This also rules
out one alternative explanation for why we detected
significant bias in these data sets, which is that mi-
croarray data lacks bias but the operon predictions
were flawed or systematically overconfident. In the
latter case, the agreement with operons should have
been lower for changers at every level of confidence,
including the most confident changers. For dvSalt30,
the bias-free confidence estimates appear to be more
modestly over-confident, while for ecox, the differ-

ence between models with and without bias was
small.

We also compared the confidence estimates from
our model to those from a popular non-parametric
method, SAM version 1.21 [4]. For each gene, SAM
tests the null hypothesis that the gene’s expression
level is identical in the two conditions. SAM uses
a modified t statistic with a pseudovariance term
in the denominator, but rather than using a t test,
SAM estimates the null distribution for the modified
t statistic by performing random permutations of the
data. SAM then uses the proportion of genes with
high p-values to estimate the proportion of genes
that are non-changers, and hence the proportion of
genes that are true changers (similar to [7]). Fi-
nally, it corrects for multiple testing and estimates
the false discovery rate (FDR). (For each gene, the
FDR is an estimate of the proportion of false posi-
tives among genes that are at that gene’s significance
level or more significant.) To compare significance
values from SAM to the confidence levels from Op-
Wise in Figure 2, we needed the proportion of false
positives within each group, also known as the local
false discovery rate – the confidence is 1 minus the
local FDR. For the most significant group, the lo-
cal FDR is simply the FDR for the least significant
member of the group. For the less significant groups,
the number of false positives can be estimated from
the FDR by subtracting the false positives expected
for the more significant groups (similar to [22]).

As shown in Figure 2, for the shHeat5 and
shCold5 data sets, SAM is far too confident, and
is similar to the parametric model without bias. For
the shHeat5 data set, SAM estimated an FDR of
under 10−4 for 2,284 genes, representing three quar-
ters of all genes! In contrast, OpWise estimated
that this group of genes was only 80% confident,
implying a false discovery rate of 20%. The modest
agreement with operons of these genes suggests that
OpWise’s estimate is reasonable (Figure 2). Indeed,
the subset of the SAM significant changers that were
not considered significant by the single-gene OpWise
method (those with confidence < 0.95) showed much
lower agreement with operons than those that were
considered confident (83% vs. 97% of operon pairs
changed in the same direction, p < 10−13, Fisher ex-
act test). Reporting a FDR of 10−4 when the true
value is around 0.2 is far worse an overstatement of
p-values than we ever observed in the OpWise simu-
lations, even in those that violated our distributional
assumptions (it would correspond to a slope of 6.6
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in Figure 1D).
For the dvSalt30 data set, which has a moder-

ate amount of bias, SAM was also more confident
than our model, at least for the more significant
changers (the three right-most groups containing the
top 1,300 genes). The SAM curve was also notice-
ably below the simulation curve, suggesting that it
was (moderately) over-confident. Finally, for ecox,
which has little bias and a heavy-tailed distribution,
SAM performed well (see top right of curve), while
OpWise was perhaps slightly over-confident. Over-
all, we concluded that the bias OpWise inferred in
these data sets was genuine, and that ignoring this
bias (i.e., assuming that errors will average out over
replicates) leads to unreasonable p-values.

Operon-wise Tests Have Greater Power

We hypothesized that when genes in operons have
consistent measurements, higher confidence can be
assigned to those measurements. We calculated
“operon-wise” p-values that, for each gene, take into
account the data for other genes in the same operon
(if such genes exist; otherwise the operon-wise and
single-gene p-values are identical). To test whether
operon-wise p-values were more powerful than single-
gene p-values, we compared the distributions of the
operon-wise significance values to that of the single-
gene significance values. Significance was defined as
1 − C. As shown in Figure 3, the operon-wise sig-
nificance estimates are much more confident in each
of the data sets, and at a significance cutoff of 0.01,
2-10 times more genes can be identified.

To summarize the performance of the various
methods considered here – SAM, single-gene Op-
Wise p-values, operon-wise p-values, and single-gene
OpWise with bias ignored – we report the num-
ber of putative changers identified at a confidence
threshold of 0.05 and the agreement with operons
of those changers (Table 2). If bias is ignored,
then single-gene OpWise generates similar results as
SAM, but with bias accounted for, OpWise changers
have much higher agreement with operons. This is
probably because OpWise correctly identifies fewer
genes as statistically reliable changers. The excep-
tion is the ecox data set, which has less bias (see
Table 1), and hence all three methods give similar re-
sults. Compared to single-gene OpWise, the operon-
wise method identifies more genes, which also show
excellent agreement with operons, as this is part of
how they are selected.

Conclusions

We have described how operons can be used to de-
tect systematic errors in measurements of prokary-
otic gene expression patterns, to account for the
bias when estimating significance, and to increase
the confidence of measurements that are consistent
within an operon. OpWise relies on the assumption
that genes in the same operon have matching ex-
pression profiles. Although this assumption is only
approximately correct, it is effective in practice, and
is strongly preferable to ignoring the presence of sys-
tematic errors in the data. This assumption could be
made more accurate by excluding from consideration
those operon pairs that span an internal promoter or
a partial terminator. Unfortunately, predicting al-
ternative transcripts remains a challenging problem
even in E. coli [23].

OpWise also relies on assumptions about the dis-
tributions of the true means and variances of the
data. These assumptions are not entirely accurate,
but without such assumptions, it would not be possi-
ble to distinguish low agreement within operons due
to replication noise from that due to systematic bias.
In simulations, OpWise was robust to the observed
deviations from the assumptions.

In four data sets, OpWise identified significant
and sometimes large amounts of systematic error.
If this bias is not taken into account, as is generally
the case with current approaches, then the statistical
analysis can be far too aggressive. This bias is not
an artefact arising from errors in operon predictions
or from our distributional assumptions.

Likely sources for this bias include cross-
hybridization or non-specific hybridization of some
probes [10, 21]. Indeed the data set without
large amounts of bias (ecox) was collected using
Affymetrix gene chips that use 15 probe sets per
gene, and was normalized with a method that at-
tempts to identify “bad” probes and remove them
from the data [21].

Irrespective of bias and for all four data sets, the
operon-wise method identified many more genes at
any desired level of significance than the single-gene
method. Although we only tested the operon-wise
approach with one method for assessing significance,
in principle, operon-wise p-values can be computed
using single-gene p-values from any method. How-
ever, operon-wise p-values should not be used to

11



rank genes, because consistent operons with mod-
est changes can be ranked highly, and these could
be indirect effects that are of low biological interest.
Instead, we recommend setting a confidence thresh-
old and then ranking all genes (or operons) above
that confidence level by their fold-change. In any
case, the main benefit of the present work is not for
ranking or other broad exploratory analyses but in
the ability to obtain reasonable p-values for specific
hypotheses of the form “was gene X or operon Y up-
regulated in this experiment?” We also note that the
benefit of OpWise is in assessing the reliability of the
measurement, and not in estimating the amount of
change for any gene.

As microarray technology becomes less expen-
sive, experiment designs with high amounts of repli-
cation are becoming common. We observed that the
systematic error can be comparable to or even larger
than the variation between replicates. If systematic
error is large relative to replication error, then per-
forming many replicate measurements may not be
cost-effective, and using several different probes for
each gene might be preferable.

Finally, although the method we describe here re-
quires operons and is only applicable to prokaryotic
data, a similar approach might be useful for eukary-
otes if there is prior knowledge of pairs of genes that
have matching expression patterns. For example,
stable complexes in yeast are often co-expressed [24],
and the worm C. elegans has operons (but their
co-expression may be weak [25]). In any case, our
finding that statistical confidence levels from single
probes can be misleading because of systematic bias
probably applies to eukaryotic data.
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Figures
Figure 1 - Accuracy of p-values in simulations

(A) A typical simulation matching the OpWise model. The solid line shows the estimated log odds for each

gene (log P (µi>0)
1−P (µi>0) ) as a function of the “ideal” log odds based on the true values of the hyperparameters.

The slope is from linear regression with the intercept fixed at zero. (B) Slopes from 50 simulations for each
data set’s hyperparameters. The boxes show the first and third quartiles and the medians, the whiskers show
the most extreme point within 1.5 times the inter-quartile range of the box, and the points indicate outliers.
(C) A typical “uncoupled” simulation where means and variances were independent. We sorted the genes
by their estimated log odds into 10 bins of equal size. For each bin, a point shows the true log odds (from
the number of genes with µi > 0 and µi < 0) and the average of the estimated log odds. Logistic regression
gave a slope of 0.97 (solid line). (D) Slopes from 50 uncoupled simulations for each data set and from 50
heavy-tailed simulations for the ecox data set. The dashed lines in (A) and (C) show x = y.
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Figure 2 - Single-gene significance and agreement with operons.

For each data set and for three methods of assessing significance (OpWise, OpWise without bias, and
significance analysis of microarrays), we divided the changers into eight groups of genes with different levels
of confidence. The x axis shows the average confidence within each group of genes. For each group, the y
axis shows the adjusted agreement with operon pairs (the adjusted proportion of pairs which have the same
sign of log-ratio), which ranges from 0 for random data to 1 for perfect measurements. We also show average
results from simulations for each data set (simulated and analyzed with the OpWise model). The error bars
give the 95% confidence interval (from a t test) for the mean agreement for each group from the OpWise
significance values. The odd left side of the ecox SAM curve is due to noise in the local FDR.
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Figure 3 - Sensitivity of single-gene and operon-wise methods.

For each data set, we show the cumulative number of changers identified at varying levels of significance.
Note the log scales. The horizontal line is at 0.01. Genes that are not in operons are included in the
operon-wise results.
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Tables
Table 1: Systematic bias in four biological data sets

The typical size of the bias in the apparent log2-ratio is the square root of its variance, or
√

E(1/(θi · γ)),

where E(1/θi) = α/(ν − 1). The bias over the signal is the square root of the ratio of variances (
√

β/γ).

The bias over the replicate error is also the square root of the ratio of variances (
√

1/γ), and considers a
single measurement (is not divided by the number of replicates). We also report the typical bias divided
by the standard deviation of the observed log-changes mi. To show that the bias is statistically significant,
we compared the likelihood ratio of the best-fitting model given systematic error to that without (with
γ = ∞), using Eq. 10. Because we are testing whether γ lies at a boundary, in the absence of bias the
distribution of 2 · log(ratio) approximates a 50:50 mixture of two chi-squared distributions with 0 and 1
degrees of freedom [26].

dvSalt30 ecox shHeat5 shCold5
Typical bias 0.25 0.12 0.37 0.88
Bias / signal (%) 70.4% 19.6% 49.9% 86.9%
Bias / replication error (%) 72.7% 35.8% 143.1% 199.1%
Bias / total (%) 52.4% 15.8% 47.2% 74.6%
Significance of bias
Likelihood ratio 1.74e+02 9.38e+00 1.48e+03 1.81e+03
p-value < 10−77 < 10−5 < 10−646 < 10−786
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Table 2: Genes with significant changes in expression as identified by OpWise methods and by SAM.

For OpWise, genes were selected if the two-tailed confidence was 95% or higher (P (µi > 0) < 0.025 or
P (µi < 0) > 0.975). For SAM, genes were selected if the false discovery rate was 5% or lower. For each
method and for each data set, we report how many genes were selected as significant changers and what
percentage of the operon pairs that contain those genes changed in the same direction. This “agreement”
should be 100% for perfect microarray data and perfect operon predictions and 50% for random data.

dvSalt30 ecox shHeat5 shCold5

Method #Genes %Agree #Genes %Agree #Genes %Agree #Genes %Agree

1-gene (OpWise) 220 100% 1062 98% 1002 97% 187 100%

operon-wise 401 99% 1318 100% 1284 99% 374 100%

no-bias 1090 90% 1269 98% 3020 87% 3063 70%

SAM 852 94% 957 99% 3348 83% 3258 68%

Additional Files
Supplementary Table 1 - Relationship between means and variances in the data and in simulations

Supplementary Figure 1 - Distributions, in actual and simulated data, for observed means and squared

total deviances

Supplementary Figure 2 - Single-gene significance and agreement with operons for additional simulations
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