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Single nucleus RNA-sequencing integrated into risk variant
colocalization discovers 17 cell-type-specific abdominal
obesity genes for metabolic dysfunction-associated steatotic
liver disease
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Summary
Background Abdominal obesity increases the risk for non-alcoholic fatty liver disease (NAFLD), now known as
metabolic dysfunction-associated steatotic liver disease (MASLD).

Methods To elucidate the directional cell-type level biological mechanisms underlying the association between
abdominal obesity and MASLD, we integrated adipose and liver single nucleus RNA-sequencing and bulk
cis-expression quantitative trait locus (eQTL) data with the UK Biobank genome-wide association study (GWAS)
data using colocalization. Then we used colocalized cis-eQTL variants as instrumental variables in Mendelian
randomization (MR) analyses, followed by functional validation experiments on the target genes of the cis-eQTL
variants.

Findings We identified 17 colocalized abdominal obesity GWAS variants, regulating 17 adipose cell-type marker
genes. Incorporating these 17 variants into MR discovers a putative tissue-of-origin, cell-type-aware causal effect of
abdominal obesity on MASLD consistently with multiple MR methods without significant evidence for pleiotropy
or heterogeneity. Single cell data confirm the adipocyte-enriched mean expression of the 17 genes. Our cellular
experiments across human adipogenesis identify risk variant -specific epigenetic and transcriptional mechanisms.
Knocking down two of the 17 genes, PPP2R5A and SH3PXD2B, shows a marked decrease in adipocyte lipidation
and significantly alters adipocyte function and adipogenesis regulator genes, including DGAT2, LPL, ADIPOQ,
PPARG, and SREBF1. Furthermore, the 17 genes capture a characteristic MASLD expression signature in
subcutaneous adipose tissue.
*Corresponding author. Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
E-mail address: ppajukanta@mednet.ucla.edu (P. Pajukanta).
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Interpretation Overall, we discover a significant cell-type level effect of abdominal obesity on MASLD and trace its
biological effect to adipogenesis.
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RNA-sequencing (snRNA-seq); Colocalization; Expression quantitative trait loci (eQTL); Genome-wide association
study (GWAS); Waist-hip ratio adjusted for body mass index (WHRadjBMI)
Research in context

Evidence before this study
Previous genome-wide association studies (GWASs) have
identified abdominal obesity loci that harbor genes
predominantly expressed in the adipose tissue, suggesting
that adipose tissue is a central tissue of action for obesity risk
variants. Obesity induced dysfunction of adipose tissue is
hypothesised to lead to metabolic dysfunction-associated
steatotic liver disease (MASLD). However, adipose cell-type
level biological mechanisms underlying the effects of
abdominal obesity on MASLD remain elusive. To assess the
existing understanding of this topic, we searched PubMed
until May 15, 2024 with the following terms: (NAFLD) OR
(MASLD) AND (abdominal obesity) OR (WHRadjBMI) AND
(colocalization) OR (Mendelian randomization). This search
returned 4 articles. Of these 4 studies, none utilised snRNA-
seq data and colocalization and Mendelian randomization
methods to discover adipose cell-type level effect of
abdominal obesity on MASLD.

Added value of this study
We conducted a multi-omics analysis integrating
subcutaneous adipose single nucleus RNA-sequencing and
cis-expression quantitative trait locus (eQTL) data colocalized
with waist-hip ratio adjusted for body mass index

(WHRadjBMI) GWAS data, which identified 17 adipose
cell-type-specific abdominal obesity genes. Using the
colocalized regional variants of the 17 genes as instrumental
variables, we demonstrate a putative causal effect of
abdominal obesity on MASLD through Mendelian
randomization analyses. We further show that the abdominal
obesity genes that are highly expressed in preadipocytes and
adipocytes are differentially expressed longitudinally during
human preadipocyte differentiation (i.e. adipogenesis), critical
for healthy adipose tissue. Finally, we found that knockdown
of two of these genes, PPP2R5A and SH3PXD2B, in human
preadipocytes impairs adipogenesis. Our findings discover 17
genes, many with links to human adipogenesis, that underly
the significant adipose cell-type level effect of abdominal
obesity on MASLD.

Implications of all the available evidence
This study discovers 17 cell-type-specific abdominal obesity
genes with an adipose-origin MASLD expression signature.
These genes may serve as potential therapeutic targets for
future treatment of abdominal obesity, which in turn can
prevent obesity-driven MASLD. Additional functional studies
with these genes will further elucidate their underlying
molecular mechanisms with cross tissue effects.
Introduction
Obesity is a fast-increasing global health problem1 that
predisposes to multiple common diseases, including
non-alcoholic fatty liver disease (NAFLD), now known as
metabolic dysfunction-associated steatotic liver disease
(MASLD).2 Abdominal obesity, in particular, has been
linked to these cardiometabolic co-morbidities. Waist-to-
hip ratio adjusted for body mass index (WHRadjBMI) is
a well-established surrogate for abdominal obesity3 and
has a heritability estimate of 40–80%.4 Previous exten-
sive genome-wide association studies (GWASs) have
identified numerous WHRadjBMI-associated loci4 and
showed that the genes at the WHRadjBMI GWAS loci
are predominantly expressed in the adipose tissue,5,6
www.thelancet.com Vol 106 August, 2024
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whereas the body mass index (BMI) GWAS loci harbor
genes with expression preference in brain.5 This sug-
gests that adipose tissue pathways contribute to the
cardiometabolically relevant abdominal obesity
(WHRadjBMI) as opposed to the traditionally used
obesity proxy, BMI. However, the causal cell-type level
biological mechanisms at many of the obesity GWAS
loci remain elusive.

A large number of GWAS variants reside in non-
coding regions of the genome and are thus likely gene
regulatory.7 Recently, genetic colocalization analysis,
which statistically assesses overlap between GWAS and
cis-expression quantitative trait loci (eQTL), has been
widely used to elucidate biological mechanisms at
GWAS loci. Colocalization analysis tests for the
hypothesis that two traits, i.e. the GWAS and gene
expression traits, share the same underlying variants.
We hypothesised that colocalization of the WHRadjBMI
GWAS variants and adipose cis-eQTL data can improve
the identification of regional genes regulated by the
GWAS variants, especially if adjusting the adipose gene
expression data for the confounding cell-type pro-
portions prior to the identification of cis-eQTLs. This
rationale is supported by the fact that cellular hetero-
geneity in tissues, such as adipose tissue, confounds the
cis-eQTL results,8 and thus hampers the discovery of
biological mechanisms underlying abdominal obesity.

MASLD, the key abdominal obesity comorbidity, has
a staggering global prevalence of 25% and spectrum of
severity, ranging from simple steatosis to metabolic
dysfunction-associated steatohepatitis (MASH).9,10 The
known MASLD variants have provided insight into the
aetiology of MASLD11; however, they explain only
∼10–20% of the overall heritability,12 warranting addi-
tional genetic discoveries. Using all WHRadjBMI
GWAS variants as instrumental variables (IVs) in a
Mendelian randomization (MR) analysis, past studies
have shown a causal relationship between abdominal
obesity and MASLD.13,14 However, there is a biological
lack of knowledge about the tissue- and cell-type-of-
origin effects underlying the impact of abdominal
obesity on MASLD. Furthermore, the genetic signals of
obesity exhibit only small effect sizes and are associated
with many other confounders, making the conducted
MR analysis prone to horizontal pleiotropy,15 thus
hampering the establishment of causal inference.
Overall, it is difficult to elucidate the underlying
heterogeneous biological mechanisms of causal effects
using all significant GWAS single nucleotide poly-
morphisms (SNPs) as IVs in MR analysis. We hypoth-
esised that incorporation of single-cell expression data
into a genetic risk variant colocalization and MR analysis
will help determine adipose tissue- and cell-type level
factors of abdominal obesity related to MASLD by
selecting functionally important cell-type-aware
WHRadjBMI GWAS eQTL IV SNPs that statistically
contribute to the MR signal the same amount as regular
www.thelancet.com Vol 106 August, 2024
GWAS SNPs, while also gaining functional insight into
MASLD over non-cell-type oriented MR. To this end, we
integrated adipose and liver single nucleus and bulk
RNA-sequencing data with the UK Biobank data using
colocalization and multiple MR methods, followed
by functional validation experiments, which discovers
17 adipose cell-type-specific abdominal obesity genes
contributing to MASLD.
Methods
Study cohorts
Kuopio Obesity Surgery Study (KOBS) cohort used for bulk
and single nucleus RNA-sequencing
Finnish individuals with obesity undergoing bariatric
surgery (n = 509) were recruited at the University of
Eastern Finland and Kuopio University Hospital,
Kuopio, Finland for the longitudinal Kuopio Obesity
Surgery Study (KOBS) that included a 1-year follow-up,
as previously described.16–18 The study was approved by
the Ethics Committee of the Northern Savo Hospital
District, in accordance with the Helsinki Declaration,
and all participants provided written informed consent.
Inclusion criteria of the study were a pre-surgery BMI of
≥40 kg/m2 or 35 kg/m2 with a significant comorbidity.
In this study, we analysed existing subcutaneous
adipose bulk RNA-seq data (n = 262)18 and liver bulk
RNA seq data (n = 267)17 from the KOBS participants. In
addition, subcutaneous adipose tissue biopsies from 8
KOBS participants were used for single nucleus
RNA-sequencing (snRNA-seq).

The Finnish Twin and CRYO studies used for subcutaneous
adipose snRNA-seq
Finnish monozygotic twins were recruited for the
Finnish Twin study, a population-based longitudinal
study in Finland, as previously described.19 For the
CRYO study, a case–control dietary intervention study,
individuals were recruited for a 12-month weight loss
trial, as previously described.18,19 Existing subcutaneous
adipose snRNA-seq data19 from 13 participants in the
Finnish Twin study and 8 participants in the CRYO
study were analysed in this study. The Finnish Twin
and CRYO studies were approved by the local ethics
committee, and all participants provided written
informed consent.

Liver snRNA-seq cohort used for liver cell-type marker gene
identification
Three female patients undergoing surgical resection for
hepatocellular carcinoma (HCC) treatment at the
Dumont-UCLA Liver Cancer Center were identified as
MASLD-related HCC cases.20 All 3 patients were women
with a mean BMI of 25.3 ± 2.9 kg/m2 with components
of the metabolic syndrome including hypertension,
dyslipidaemia, and insulin resistance. Features of
nonalcoholic steatohepatitis (NASH) were observed on
3
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liver histopathology, and none had cirrhosis based on
the METAVIR fibrosis score.21 Liver tissues were
collected from tumour and adjacent non-tumour and
were characterised by a pathologist. Existing liver
snRNA-seq20 from the non-tumour tissues were used in
our study. The study was approved by the UCLA IRB,
and all participants provided written informed consent.

METabolic Syndrome In Men (METSIM) cohort used for
linkage disequilibrium (LD) reference
Finnish males (n = 10,197) were originally recruited to
the METabolic Syndrome In Men (METSIM) study at
the University of Eastern Finland and Kuopio University
Hospital, Kuopio, Finland, as previously described.22

The study was approved by the local ethics committee
and all participants provided written informed consent.
We used existing genotype data generated using an
Illumina HumanOmniExpress BeadChip from 6686
unrelated METSIM participants in this study.22

UK Biobank cohort
The UK Biobank (UKB) consists of data from 502,617
individuals, collected from 22 different centres.23 As
described previously, genotypes were obtained using
either the Affymetrix or Applied Biosystems UK
Biobank Axiom technology and imputed with the
Haplotype Reference Consortium and the merged
UK10K and 1000 Genomes phase 3 reference panel.23

Imaging data, including abdominal magnetic reso-
nance imaging (MRI), was later collected for a subset of
the cohort in follow-up assessments.24 In this study,
analyses were limited to the unrelated individuals of
European ancestry with phenotype data available. Data
from UKB were accessed under application 33934.

Genotype quality control and imputation
We extracted DNA for genotyping from blood samples
from the 8 individuals with adipose snRNA-seq data in
the KOBS cohort. The DNAs from the 8 individuals
were genotyped on Illumina OmniExpressExome-8
array. The DNAs of the other KOBS participants were
genotyped on an Illumina HumanOmniExpress Bead-
Chip, as previously described.19

For all KOBS and METSIM genotype data, we filtered
out unmapped and strand ambiguous SNPs, mono-
morphic SNPs, and variants with missingness >5%,
Hardy–Weinberg Equilibrium (HWE) p-value <10−6,
and minor allele frequency (MAF) < 0.5%. We inferred
biological sex using the ‘–sex-check’ function in PLINK
1.925 and cross-checked with sex identification from the
phenotype data. No individuals with mismatching
inferred and reported sex were observed. High-quality
genotypes were then uploaded to the Michigan Impu-
tation Server26 for imputation using HRC reference
panel version r1.1 2016.27 Variants that did not match
with the reference panel were removed and array build
in GRCh38 was liftover to GRCh37. Haplotype phasing
was done using Eagle v2.428 and imputation was per-
formed using Minimac426 in the Michigan Imputation
Server.26 We filtered imputed genotypes by R2 > 0.3 and
MAF>0.5% and subset for 6686 unrelated individuals in
METSIM. All quality control steps were performed
using PLINK 1.9.25

Bulk RNA-sequencing of human subcutaneous
adipose and liver tissues
The bulk RNA-seq on subcutaneous adipose and liver
biopsies from the KOBS cohort was performed as
described previously.17,18 Briefly, total RNA was isolated
and sequencing libraries were constructed using TruSeq
library prep kit for adipose RNA and Ribo-Zero library
prep kit for liver RNA. Sequencing was done using
Illumina HiSeq 4000 and HiSeq 2500 platforms for
adipose and liver RNA, respectively.17,18 We examined
the RNA-seq quality using FastQC and obtained RNA-
seq metrics using the function CollectRNAseqMetrics
of Picard Tools v2.25.6.

Nuclei isolation and snRNA-seq of human
subcutaneous adipose tissue
We performed snRNA-seq experiments on 8 individuals
from the KOBS cohort, as previously described with
minor modifications.19 Briefly, we first pooled approxi-
mately 0.1 g frozen subcutaneous adipose biopsies
obtained from 8 participants in the KOBS. We isolated
nuclei from the pooled biopsy as described earlier19 with
minor modifications. We measured nuclei concentra-
tion and determined the overall quality using Countess
II by staining the nuclei with trypan blue and DAPI. We
used the 10X Chromium platform with the Single Cell
3’ v3.1 protocol for library construction and sequenced
the libraries on an Illumina NovaSeq SP at a sequencing
depth of 600M.

Data from two additional snRNA-seq experiments on
a total of 21 participants of the Finnish Twin study and
CRYO study19 were also analysed. In the first snRNA-seq
experiment, we isolated nuclei from frozen subcutaneous
adipose biopsies (n = 6) obtained from six participants in
the Finnish Twin study, constructed sequence libraries,
and performed sequencing as previously described.19 In
the second snRNA-seq experiment, we isolated nuclei
from frozen subcutaneous adipose biopsies (n = 15)
obtained from fifteen participants in the Finnish Twin
(7 individuals) and CRYO (8 individuals) studies, con-
structed sequence libraries, and performed sequencing
as previously described.19

Nuclei isolation and snRNA-seq of human liver
tissue
Nuclei from frozen liver biopsies (n = 3) were isolated as
previously described.20 Briefly, the tissues were lysed
and dounce homogenised then filtered to remove
debris. Nuclei were centrifuged and washed for a second
filter step, isolated nuclei were assessed for quantity and
www.thelancet.com Vol 106 August, 2024
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overall quality under BZ-X710 fluorescent microscope
after staining them with Hoechst stain. We used the
10X Chromium platform with the Single Cell 3’ v2
protocol for library construction and sequenced the
libraries on an Illumina NovaSeq S2 at a sequencing
depth of 300–400 million reads per sample.20

Processing of human subcutaneous adipose and
liver tissue snRNA-seq data
We processed the snRNA-seq data of frozen human
subcutaneous adipose biopsies obtained from 8 in-
dividuals in the KOBS cohort as previously described
with minor modifications.19 Briefly, the sequence reads
were aligned to the GRCh37 human genome reference
using STARSolo in STAR v2.7.5a29 and GENCODE v19
annotation.30 We used the ‘–soloFeatures GeneFull’
option in STAR to account for full pre-mRNA tran-
scripts. We removed droplets contaminated with back-
ground RNA using DIEM31 then further filtered droplets
using Seurat v4.3.0.32 As nuclei from the 8 samples were
pooled before sequencing, we demultiplexed clean
droplets for each individual using demuxlet from
popscle software tool.33 Demuxlet overlaps individual
level genotype data with the RNA-seq data, and then
evaluates the likelihood of overlaps from each droplet to
determine originating individual of each droplet. We
excluded doublet and ambiguous assigned droplets and
used the best matching individual based on the
maximum likelihood to identify originating individuals
of each singlet droplet. The count data of the remaining
droplets were log-normalised using the default scaling
factor of 10,000 and top 2000 variable genes were
calculated using the FindVariableFeatures. Normalised
read counts were scaled to mean 0 and variance 1, and
the first 30 PCs were calculated for clustering with
standard Louvain clustering. We used clustering reso-
lution of 0.8. To annotate each droplet with a cell type,
we used SingleR v1.2.434 with the same reference data-
sets used in the previous study.19 Marker genes for each
cell type and cluster were identified by Wilcoxon rank-
sum test using the function FindAllMarkers in
Seurat32 with default parameters and only.pos = TRUE.
We used the Bonferroni corrected p-values <0.05 to
correct for multiple testing. The subcutaneous adipose
snRNA-seq data from the CRYO and Twins cohorts
(n = 21) and liver snRNA-seq data (n = 3) were processed
as previously described.19,20

Cell-type proportion estimation of bulk tissues
We estimated the cellular composition of subcutaneous
adipose and liver bulk tissues using the reference-free,
marker-based decomposition mode of the method
Bisque.35 Briefly, the marker-based decomposition
approach uses expression of top cell-type marker genes
to perform a principal component analysis (PCA) to
capture variation in cell-types across individuals. We
aligned subcutaneous adipose (n = 262) and liver
www.thelancet.com Vol 106 August, 2024
(n = 267) RNA-seq data from the KOBS cohort to the
GRCh37 human genome reference using the 2-pass
STAR v2.7.5a29 and GENCODE v19 annotation.30 Tran-
scripts were quantified using featureCounts,36 and were
Trimmed Mean of M-values (TMM) normalised and
converted to counts per million (CPM) using edgeR
v3.36.0.37 We then log2 transformed CPMs after adding
a prior count of 1 and regressed out technical factors,
including the percentage of intronic bases, median 3’
bias, and RNA integrity number (RIN) to get the final
normalised expression data. Bisque was run with default
parameters on the final normalised expression data and
cell-type markers identified from the snRNA-seq of
subcutaneous adipose and liver tissues. We decomposed
cell-type proportions for 5 and 7 main cell-types in
subcutaneous adipose and liver bulk tissues,
respectively.

Cis-eQTL analysis of human subcutaneous adipose
and liver bulk RNA-seq data
To detect cis-eQTLs in subcutaneous adipose (n = 262)
and liver tissues (n = 267), we obtained FPKMs of each
gene and filtered for genes expressed (FPKM>0) in at
least 90% of the samples. To exclude hidden con-
founders, we employed probabilistic estimation of
expression residuals (PEER)38 analysis with inverse
normal transformed FPKMs. We optimised for PEER
factors on chromosome 20 by maximizing power to
detect cis-eQTL variants while removing hidden
confounders. The subcutaneous adipose and liver
expression data were adjusted for 37 and 10 PEER
factors, respectively. We inverse normal transformed
PEER factor adjusted FPKMs and performed cis-eQTL
analysis with the imputed genotype data (MAF>5%)
using Matrix eQTL39 while adjusting for technical
factors, including percentage of intronic reads, median
3’ bias, and RIN. We defined cis regions as ±1 Mb from
the ends of genes and significant cis-eQTL with an FDR
<0.05.

Since previous studies have shown that incorpo-
rating cell population distributions of each sample into
the cis-eQTL analysis increases the power to detect
eQTLs,8 we repeated the cis-eQTL analysis by including
the estimated cell-type proportions as covariates. The
inverse normal transformed expression data of subcu-
taneous adipose and liver tissues were adjusted for
41 and 10 PEER factors, and the above listed technical
factors and the estimated proportions of 5 (adipocytes,
adipose stem and progenitor cells (ASPCs), endothelial
cells, macrophages, and T cells) and 7 (cholangiocytes,
hepatic sinusoidal endothelial cells (HSECs), hepato-
cytes, lymphoid, myeloid, neural, and stellate cells)
subcutaneous adipose and liver main cell-types were
included as covariates in the cis-eQTL analyses.

To evaluate whether the quality of the adipose eQTL
results improves after incorporating the estimated cell-
type proportions as covariates, we performed Wilcoxon
5
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rank sum test on the effect sizes of the 2,231,645
common cis-eQTL SNP-gene pairs obtained with and
without adjusting for cell-type proportions. As cis-eQTL
SNPs in tight LD may drive the significant increase in
the observed effect sizes, we conducted the Wilcoxon
rank sum test (alternative = “greater”) by only including
the lead cis-eQTL SNP for each of the 15,957 eGenes
observed both before and after adjusting for cell-type
proportions. We considered the effect sizes to be
significantly different using p-value <0.05. The Wilcoxon
rank sum test was done in R v4.1.0.

Functional enrichment of adipocyte and ASPC
marker and expressed genes
We used Webgestalt40 to test for enrichment of the Gene
Ontology41 biological processes for the adipocyte and
ASPC marker genes and compared them with the en-
richments of the same number of randomly selected
genes expressed in the respective cell-types. All
expressed genes in the corresponding cell-type were
used as the reference gene set in Webgestalt. We
considered a gene to be expressed if it has at least three
counts in at least three cells of a same cell-type in the
KOBS adipose snRNA-seq data.42 We determined an
enrichment to be significant using FDR <0.05.

Colocalization of WHRadjBMI GWAS and adipose
cell-type marker gene cis-eQTL variants
To assess the relationship between adipose cell-type
marker genes and WHRadjBMI GWAS variants, we
focused on the KOBS subcutaneous adipose tissue
cis-eQTL SNPs regulating adipose cell-type marker
genes that we identified in the KOBS adipose snRNA-
seq data, while using the cell-type adjusted cis-eQTL
results. WHRadjBMI GWAS variants (p-value
< 5 × 10−8) from GIANT and UKB meta-analysis4 that
associated with gene expression levels of adipose cell
type marker genes in cis (FDR < 0.05) were tested for
colocalization using coloc.abf function of the Bayesian
method COLOC43 v5.1.0. For each adipose cell-type
marker genes regulated by the WHRadjBMI GWAS
cis-eQTL SNPs, we applied COLOC using all variants
within ±1 Mb from the ends of the genes and are pre-
sent in both the WHRadjBMI GWAS and KOBS adipose
cis-eQTL datasets. Traditional colocalization analysis is
done under the assumption of a single causal variant
between the two traits.43 This limits the analysis to only
the strongest signals (i.e. lead variants) that are colo-
calized, which is often an unrealistic assumption and
results in missed true signals.43 To overcome this limi-
tation, we fine-mapped genetic signals for the presence
of multiple causal signals and tested for colocalization
using coloc.susie function of COLOC.43 The imputed
genotype data from METSIM and UKB were employed
as the linkage disequilibrium (LD) reference for the
KOBS adipose cis-eQTL and WHRadjBMI GWAS vari-
ants, respectively. We restricted the UKB genotype data
to a subset of randomly selected 6686 unrelated Euro-
peans to match the number of unrelated individuals
included in the METSIM genotype data. We used
default prior probabilities of 1 × 10−4 for priors that a
variant is associated with either GWAS or eQTL indi-
vidually. For prior probability that the two traits share
causal variants, we set the prior probability to 5 × 10−6,
as recommended.44 We evaluated sensitivity to prior
probability of shared causal variants using ‘sensitivity’
function of COLOC. Variants were defined to be colo-
calized when the posterior probability H4 was >0.8
based on its wide use in previous studies45–47 as well as
the original COLOC paper.44 We defined colocalized
variants as adipose cell-type-aware WHRadjBMI GWAS
cis-eQTL SNPs.

Colocalization of MASLD GWAS and liver cell-type
marker gene cis-eQTL variants
We assessed the relationship between liver cell-type
marker genes and MASLD GWAS variants using KOBS
liver cis-eQTL variants regulating liver cell-type marker
genes that we identified in the liver snRNA-seq data.
MASLD GWAS variants (p < 5 × 10−8) from Miao et al.48

that associated with gene expression level of liver cell type
marker genes (FDR < 0.05) were tested for colocalization
using COLOC43 v5.1.0, as described above.

Tissue and cell-type-aware Mendelian
randomization analysis
To assess putative causal relationships between
WHRadjBMI and MASLD, we conducted a two-sample
Mendelian randomization (MR) analyses using the adi-
pose cell-type-aware WHRadjBMI GWAS cis-eQTL vari-
ants as IVs. In these MR analyses, we used WHRadjBMI4

as the exposure variable and the MASLD score (i.e. the
previous NAFLD score) developed in Miao et al.48 as the
outcome variable. We used independent (R2 = 0.001)
adipose cell-type-aware WHRadjBMI GWAS cis-eQTL
SNPs as IVs. To comply with assumptions of MR, we
removed SNPs that are also MASLD48 GWAS variants
(p-value < 5 × 10−8). Palindromic variants that are
ambiguously aligned were also removed. We imple-
mented cML-MA-BIC,49 inverse variance weighting
(IVW),50 MR-PRESSO,51 and weighted median52 to
investigate if there is a potential causal effect of
WHRadjBMI on MASLD. To assess heterogeneity
between estimates of individual genetic variants and
horizontal pleiotropic outliers, we performed the
Cochran’s Q test53 and the global heterogeneity test of
MR-PRESSO.51 Default parameters were used in
MR-PRESSO for the global heterogeneity test.

To further investigate the MR results using addi-
tional phenotypes, we used WHR4 as the exposure, and
three additional outcome phenotypes, i.e. the fatty liver
index (FLI),54 the meta-analysis of the International
Classification of Disease, 10th revision (ICD-10) based
MASLD status55 and liver magnetic resonance imaging
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(MRI) proton density fat fraction (PDFF) in UKB. These
additional MR analyses were performed employing
MR-PRESSO51 using the adipose cell-type-aware
WHRadjBMI GWAS cis-eQTL variants as IVs.

For the GWAS of these additional MR analyses, we
used publicly available GWAS summary statistics55 from
the ICD-10 based MASLD case–control scans from the
deCODE genetics, FinnGen, and Intermountain cohorts
to first perform a fixed-effect MASLD case–control
GWAS meta-analysis using METAL.56 Studies were
weighted by the standard errors of the effect sizes, and
remaining default parameters were used, as described
previously.55 We also conducted GWASs for binarized
fatty liver index (FLI) (n = 275,467) and continuous liver
MRI PDFF (n = 26,407) in UKB. We quantile normal-
ised the PDFF outcome, and defined FLI cases
(n = 143,323) as FLI ≥60, and controls (n = 132,144) as
FLI <30.54 We used BOLT-LMM v2.3.657 for the GWASs,
where we included the top 20 genetic PCs, testing
centre, genotyping array, sex for both outcomes, as well
as age at baseline and age2 at baseline for FLI, and age at
imaging, and age2 at imaging for PDFF.

To evaluate the performance of our new MR design
that used the cell-type-aware WHRadjBMI GWAS
cis-eQTL variants, we also conducted a two-sample
MR analyses using all LD clumped (R2 = 0.001)
WHRadjBMI GWAS variants (p-value <5 × 10−8)4 as IVs
after removing palindromic variants and the SNPs that
are also MASLD GWAS variants (p-value <5 × 10−8).48

Same MR, heterogeneity, and horizontal pleiotropy
tests were implemented as described above.

We tested for reverse causality by using the MASLD
score48 as the exposure variable and WHRadjBMI as the
outcome variable. We used the liver cell-type-aware
MASLD GWAS cis-eQTL SNP as an IV. We also
further tested for reverse causality using all LD clumped
(R2 = 0.001) MASLD GWAS variants (p-value
<5 × 10−8)48 while removing palindromic variants and
SNPs that are also WHRadjBMI GWAS variants (p-value
<5 × 10−8).4 Same MR, heterogeneity, and horizontal
pleiotropy tests were implemented as described above,
except for the MR analysis using a single liver cell-type-
aware MASLD GWAS cis-eQTL SNP as an IV where
only IVW50 was performed. All MR analyses were done
using the MendelianRandomization v0.5.1,58 TwoSam-
pleMR v0.5.7,59 MR-PRESSO v1.0,51 MRcM v0.0.0.9000,49

and cause v1.2.060 packages in R v4.1.0.

Integration and clustering of the three
subcutaneous adipose tissue snRNA-seq datasets
To analyse subcutaneous adipose snRNA-seq data from
all three experiments (Finnish Twin Study, CRYO, and
KOBS) (total n = 29), we performed data integration
while controlling for experiment-specific effects. To
integrate snRNA-seq data from a total of 29 individuals
across the three cohorts, we first log-normalised counts
within each experiment and then integrated the
www.thelancet.com Vol 106 August, 2024
log-normalised counts using CCA.32 Integration was
done using the FindIntegrationAnchors and Integra-
teData functions in Seurat v4.3.032 with the top 2000
features that are repeatedly variable across all 3 adipose
snRNA-seq datasets. The integrated counts were scaled
to mean 0 and variance 1, and the first 30 PCs were
calculated for clustering. To identify the adipose
cell-type clusters, we performed standard Louvain clus-
tering with a resolution of 0.8 by the FindClusters
function.

Scoring of the average cell-type level expression of
the 17 WHRadjBMI GWAS genes
To assess average preferential cell-type level expression
of the 17 adipose cell-type-aware WHRadjBMI GWAS
cis-eQTL target genes, used as IVs in our MR, we
assigned module scores in both the KOBS (n = 8) and in
the integrated (n = 29) subcutaneous adipose snRNA-
seq data using the AddModuleScore function in Seurat
v4.3.0.32 Module scores were calculated for each cell by
subtracting the average expression level of the
gene set by the aggregated expression of control
features that are randomly selected from each bin. We
calculated the module scores of 17 adipose cell-type-
aware WHRadjBMI GWAS cis-eQTL target genes us-
ing log-normalised counts for both KOBS and integrated
snRNA-seq data. To evaluate the difference in
module scores between the adipocyte and non-adipocyte
nuclei, we conducted the Wilcoxon rank sum test in
R v4.1.0.

Human primary preadipocyte (PAd) culture and
differentiation
Cryopreserved human subcutaneous primary white PAd
(Zen-Bio catalog # SP-F-2, lot L120116E) were seeded
into PromoCell PAd growth medium (PromoCell
C-27410) with 1% Gibco Penicillin-Streptomycin
(ThermoFisher 15140122) and cultured according to
PromoCell PAd culturing protocols. Cells were main-
tained in a monolayer culture at 37 ◦C and 5% CO2.
Cells were propagated for the full experiment and not
cultured beyond 5 passages.

The plating and differentiation of cells was staggered
so that time points 1-day, 2-day and 4-day were collected
at the same time, and time points 7-day, 14-day were
collected at the same time. The 0-day (PAd) time point
was collected separately. To induce adipogenesis, cells
were plated at confluency into 12-well plates for both
ATAC-seq and RNA-seq (4 technical replicates per time
point and assay) and the following day, adipogenesis
was initiated using PAd differentiation medium
(PromoCell C-27436). The 1-day and 2-day time points
were collected before any further media changes. For all
other differentiation time points, 72 h after the PAd
differentiation medium was added, it was replaced with
adipocyte nutrition medium (PromoCell C-27438),
following PromoCell PAd differentiation protocols.
7
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Processing of bulk expression data from the human
primary preadipocyte differentiation experiment
We performed bulk RNA-seq on the 4 technical repli-
cates of primary human preadipocytes, in which we
induced a 14-day differentiation, and collected samples
at the baseline (0-day), 1-day, 2-day, 4-day, 7-day, and
14-day time points. For the RNA collection, cells were
washed with PBS once and then lysed with TriZOL
(Invitrogen 15596026), and RNA was purified using
Direct-Zol RNA Mini-Prep (Zymo Research R2061).
Libraries were prepared using the Illumina TruSeq
Stranded mRNA kit and sequenced on one lane of an
Illumina NovaSeq S1 flowcell to produce an average of
42M (SD = 5M) reads per sample. We aligned reads to
the GRCh38 human genome reference with GENCODE
v3930 annotations using STAR v2.7.10a29 with the two-
pass method and default options. We examined the
RNA-seq quality using FastQC and obtained RNA-seq
metrics using the function CollectRNAseqMetrics of
Picard Tools v2.25. Non-uniquely mapped reads and
reads mapped to the mitochondrial genome were
removed. We then quantified fragments at the gene
level with featureCounts v2.0.3.36

Differential expression and clustering analyses of
the adipocyte and ASPC marker genes during
adipogenesis
To evaluate differences in the expression of the 10 adipocyte
and ASPC marker genes that are adipose cell-type-aware
WHRadjBMI GWAS cis-eQTL eGenes, during adipo-
genesis, we used the limma v3.50.361 R package and the
voom62 normalization method to first test for differential
expression (DE) between the baseline and 7-day time points.
No additional covariates were used since we used cell-line
data, which are unlikely to have strong confounding
effects from technical factors. P-values were corrected for
multiple testing of 10 genes using Bonferroni.

We next tested the 10 genes for DE across all 6 time
points over the 14 days. To perform the DE testing, we used
the ImpulseDE263 R package, which fits impulse models for
each gene and then performs a log-likelihood ratio test on
each impulse model against a constant model. ImpulseDE2
was run in case–control mode, and the original sample ID
was included as a batch effect. We corrected P-values for
multiple testing using FDR (FDR < 0.05).

To group the 10 genes based their temporal adipo-
genesis expression pattern across the 6 adipogenesis
time points, we used DPGP64 with the default parame-
ters in addition to the following parameters: –check_
convergence –check_burnin_convergence –true_times
–cluster_uncertainty_estimate.

Processing of bulk assay for transposase accessible
chromatin (ATAC)-seq data from the human
primary preadipocyte differentiation experiment
We followed the Omni-ATAC protocol to generate the
ATAC-seq data,65 as described previously.66 Libraries
were sequenced on one lane of an Illumina NovaSeq S4
flowcell to produce an average of 126M (SD = 48M)
reads per sample. Sequencing reads were processed
according to the ENCODE ATAC-seq Data Standards
and Processing Pipeline and as described previously.66

The quality control (QC) metrics are summarized in
Supplemental Table S1. To get a list of consensus peaks,
we first called peaks at each time point separately using
MACS267 v2.2.7.1 and peaks with a q-value < 0.01 were
retained. Peaks in blacklisted regions and those with
fewer than one peak (bin) count per million mapped
reads (BPM) in more than 20% of samples were filtered
out. The peak coverage filtering reduced the peak
numbers per time point from an average of 160,250
(SD = 22,943) peaks to 109,959 (SD = 2408) peaks. The
filtered peaks per time point were then merged using
BEDTools68 to create the final consensus peak set of
135,190 peaks.

For the differential accessibility (DA) analysis across
adipogenesis, we used the R package ImpulseDE2,63

using default case-only parameters except the ‘bool-
IdentifyTransients’ parameter was set to TRUE. We
tested 21 of the consensus peaks containing our adipose
cell-type-aware WHRadjBMI GWAS cis-eQTL variants
targeting adipocyte and ASPC marker genes for DA
across adipogenesis or variants in tight LD (R2 > 0.95)
with them.

Simpson-Golabi-Behmel Syndrome (SGBS) cell
culture and differentiation
We repeated the preadipocyte differentiation experi-
ment using the human preadipocyte cell strain
Simpson-Golabi-Behmel Syndrome (SGBS; RRID:
CVCL_GS28). SGBS cells have been frequently studied
due to its high capacity for adipogenic differentiation.69

The cells were cultured in DMEM/F-12 Nut media
(Lonza # BE12-719F) supplemented with 17 μM Panto-
thenate (Sigma, #P-5155), 33 μM Biotin (Sigma #B-4639),
10% fetal bovine serum (FBS), 1% penicillin-
streptomycin until they are confluent. The cells were
then induced to differentiate from day 0 by adding serum
free 3FC differentiation medium (DMEM/F-12 supple-
mented with 17 μM Pantothenate, 33 μM Biotin, 1%
penicillin-streptomycin, 0.1 μM cortisol (Sigma #H0888),
0.01 mg/mL transferrin (Sigma #T8158), 0.2 nmol triio-
dotyronin (Sigma #T6397), and 20 nM human insulin
(Sigma #I9278)) with 2 μM rosiglitazone (Cayman
Chemical # CAT 71740), 25 nM dexamethasone (Sigma #
D-4902), 0.5 μM methylisobuthylxantine (Sigma #I5879)
for 7 days. During post differentiation the cells were
supplemented with 3FC medium which was replenished
twice every week.

Processing of the bulk expression data from the
SGBS differentiation experiments
We first extracted the total RNA from the SGBS cells
throughout the differentiation at the baseline (0-day),
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2-day, and 7-day time points (3 technical replicates per
time point) using miRNeasy micro kit (Qiagen). Then
we prepared library samples using QuantSeq 3′ mRNA-
seq library prep kit FWD (Lexogen) according to the
manufacturer’s instructions, amplified for 18 cycles, and
sequenced with Illumina NextSeq 500 for 75 cycles. The
raw QuantSeq RNA-seq reads from the adipogenesis
experiment were first trimmed with cutadapt v3.5 using
a polyA sequence concatenated to the standard Illumina
adapter as the trimming target as recommended by the
company of the QunatSeq 3′ mRNA-seq library prep kit
FWD. Then we aligned the trimmed reads to the
GRCh37 human genome reference using the 2-pass
STAR v2.7.5a29 and GENCODE v19 annotation.30 We
examined the RNA-seq quality using FastQC and
obtained RNA-seq metrics using the function CollectR-
NAseqMetrics of Picard Tools v2.25.6.

Replication of the adipocyte and ASPC marker gene
differential expression and clustering during
adipogenesis in the SGBS cells
The DE analysis for the adipocyte and ASPC marker
genes between the baseline and 7-day time points as
well as across all 3 time points during the 7-day SGBS
cell adipogenesis were performed as described above
for the human primary preadipocyte differentiation
experiment. For the replication analysis in the SGBS
cells, we tested for 8 out of the 10 adipocyte and ASPC
marker genes that are adipose cell-type-aware
WHRadjBMI GWAS cis-eQTL eGenes because two
genes were not detected. We then grouped the 8 genes
based their temporal adipogenesis expression pattern
across the 3 time points using DPGP,64 as described
above for the human primary preadipocyte differentia-
tion experiment.

Small interfering RNA (siRNA) knockdown of
PPP2R5A and SH3PXD2B in the SGBS cells
The SGBS cells were seeded in a 6-well plate
(1.6 × 106 cells per well) and when they were 50–60%
confluent, the cells were transfected with siRNA
using lipofectamine RNAiMAX (Invitrogen) according to
the manufacturer’s instructions. The siRNA transfection
mixtures were independently prepared and applied for
each well. We used predesigned siRNAs from Thermo
Fisher Scientific (scrambled (control) siRNA (60 nM &
150 nM), PPP2R5A (60 nM), and SH3PXD2B (150 nM)).

It has been observed that during differentiation the
cells stop dividing due to the lack of serum in the dif-
ferentiation media. It was observed that this phenome-
non allows the cells to retain the siRNA transfection mix
for up to 14 days, as previously shown.70 Baseline (0-day)
time point samples were collected 48 h post incubation
with transfection mix. We treated the rest of the samples
with differentiation media (as described above) and
collected the cells at 2-day (2D) and 7-day (7D) time
points.
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Oil Red O (ORO) staining of the SGBS control and
siRNA knockdown cells
The SGBS cells were seeded in a 12-well plate
(8 × 104 cells per well) with 3 technical replicates per
condition and time point. At the indicated time points,
we washed the cells with 1xDPBS twice and fixed with
4% paraformaldehyde for 30 min at room temperature
(RT). Next, we removed the fixation solution and washed
the cells twice with milliQH2O and once with 60%
isopropanol for 5 min at RT. We then stained the cells
with ORO (0.5 g/100 mL isopropanol) for 20 min at RT
and washed them until no excess stain was visible.
Finally, we counter stained the cells with hematoxylin
for 1 min and washed off excess stain. We visualized the
cells using EVOS Core XL microscope and quantified
the ORO stain in preadipocytes and adipocytes by
extracting the stain from the cells using 100% iso-
propanol. The ORO intensity from the wells were
measured using a plate reader at 492 nm and the
resulting values were then normalised with the cell
number. The above process was repeated 2–4 times for
each condition at each time point (i.e. 2-4 biological
replicates with 3 technical replicates per condition and
time point).

Processing of the bulk expression data from the
SGBS cell siRNA knockdown experiments
We first extracted the total RNA from the SGBS cells
using miRNeasy micro kit (Qiagen). Then we prepared
library samples using QuantSeq 3′ mRNA-seq library
prep kit FWD (Lexogen) according to the manufac-
turer’s instructions, amplified for 18 cycles, and
sequenced with Illumina NextSeq 500 for 75 cycles. The
RNA extraction, library construction, sequencing, and
data processing of the SGBS cells from the scrambled
(control) siRNA (60 nM and 150 nM), PPP2R5A siRNA
knockdown, and SH3PXD2B siRNA knockdown condi-
tions across the three differentiation time points, with
3–4 replicates per condition, were performed together
with the non-transfected control SGBS cells as described
above, for a total of 51 samples. One sample was
removed due to the low number of sequence reads.

Differential expression (DE) analysis of the SGBS
cell siRNA knockdown expression data
We conducted a DE analysis between the PPP2R5A and
SH3PXD2B knockdown samples to their respective
scrambled controls for each of the three time points
(baseline, 2D, and 7D). We quantified transcripts from
uniquely mapped reads using featureCounts36 and
removed lowly expressed genes with a minimum count
of 10 or less summed across the samples within one
group. Next, we TMM normalised the expression values
and used the limma v3.50.361 R package and the voom62

normalization method without correcting for technical
covariates since the samples are from in vitro cell-line
experiment with biological replicates. We used
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QuantSeq 3’ tag-based sequencing, and restricted the
tested genes to adipocyte and ASPC cell-type marker
genes and adipogenesis pathway genes from WikiPath-
ways71 WP236. We considered a gene to be significantly
DE using FDR<0.05.

Quantification of secreted adiponectin protein in
the PPP2R5A and SH3PXD2B knockdown cells
The concentration of adiponectin in the cell culture
supernatant of SGBS cells was measured using human
total adiponectin (DRP300) Quantikine ELISA kits
(R&D systems). The cells were treated with siRNA as
described above (scrambled (control) siRNA (150 nM),
PPP2R5A (60 nM), and SH3PXD2B (150 nM)) and the
supernatants were collected at the baseline (0D), 2-day
(2D), and 7-day (7D) time points (3 technical replicates
per condition and time point), which was then subjected
to centrifugation to remove cell debris. The assay was
performed following the guidelines provided by the
manufacturer. The optical density was measured at
450 nm, and a wavelength correction was performed at
540 nm using CLARIOstar microplate reader. The
concentration of the adiponectin in the cell culture
supernatant was determined by interpolating it against a
standard curve and then normalised based on the total
protein content. Protein was extracted using radio-
immunoprecipitation assay (RIPA) buffer and quanti-
fied using BCA protein assays (Thermo Fisher
Scientific). The above process was repeated 3 times for
each condition at each time point (i.e. 3 biological
replicates with 3 technical replicates per condition and
time point).

Principal component analysis (PCA) of 17
abdominal obesity genes and differential
expression of DGAT2 by MASLD status
To search for a gene expression signature of the 17
abdominal obesity genes, we performed PCA on the
expression data of the 17 genes using the subcutaneous
adipose bulk RNA-seq data from the 262 individuals
with obesity in the KOBS cohort. The expression values
were first TMM normalised and then converted to CPM
using edgeR v3.36.0.37 Next, we log2 transformed the
normalised CPMs after adding a prior count of 1 and
regressed out technical factors, including the percentage
of intronic bases, median 3’ bias, and RIN as well as the
adipose cell-type proportion estimates. The final nor-
malised expression data for the 17 genes were then used
to perform PCA. The difference in the gene signature of
the 17 genes in the adipose tissue was evaluated by
performing Wilcoxon rank sum test on the first prin-
cipal component (PC1) between the individuals with
healthy liver and MASLD.

We used the subcutaneous adipose and liver bulk
RNA-seq data from the 262 individuals with obesity in
the KOBS cohorts to compare the expression of DGAT2
in each tissue between individuals with histology-based
diagnosis of steatosis (n = 154), fibrosis (n = 115), or
NASH (n = 81) vs the controls (n = 86 for all tests) using
the Wilcoxon rank sum test. The adipose and liver bulk
RNA-seq data were normalised and corrected for
technical factors as described above.

Ethics
All participants provided written informed consent to
participate in this research. The KOBS (IRB approval
study numbers 54/2005, 104/2008, and 27/2010) and
METSIM (IRB approval study number 171/2004)
studies were approved by the Ethics Committee of the
Northern Savo Hospital District. The Finnish Twin
study (IRB approval study number 270/13/03/01/2008)
and CRYO study (IRB approval study number 255/13/
03/01/2009) were approved by the Ethics Committee of
the Hospital District of Helsinki and Uusimaa. The liver
snRNA-seq study was approved by the UCLA (IRB
approval study number 20–001319). The UK Biobank
has approval from the North West Multi-centre
Research Ethics Committee (MREC) as a Research
Tissue Bank (RTB) approval (REC reference number 21/
NW/0157). All research was performed in alignment
with the principles of the Helsinki Declaration.

Statistics
All statistical tests used, justification for their use, and
multiple testing correction methods are described
above. We performed p-value corrections for multiple
testing using the Bonferroni procedure when the
number of tested hypotheses was small (i.e., in tens)
and otherwise using FDR since FDR is considered to be
more liberal than the Bonferroni correction method and
its power increases when the number of tests increases.
In contrast, the Bonferroni procedure can be too con-
servative when a large number of not fully independent
tests are performed (e.g. cis-eQTL analysis), potentially
hiding true significant signals. Thus, we selected the
Bonferroni and FDR multiple testing correction
methods mainly based on the number of tests per-
formed in each analysis while also considering how
independent the particular measurements are.

Role of funders
The funders did not have any role in the study design,
data collection, data analyses, interpretation, or writing
of this article.
Results
Study overview
To first search for biologically important, regulatory
WHRadjBMI GWAS variants and their underlying
regional adipose cell-type marker genes, we conducted
the following steps using the Kuopio Obese Surgery
Study (KOBS) bulk and single nucleus adipose expres-
sion data and previously published extensive
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WHRadjBMI GWAS data4 (Supplementary Figs. S1,
S2): (1) gene expression profiling (bulk RNA-seq) of
abdominal subcutaneous adipose biopsies from in-
dividuals with obesity, (2) analysis of adipose single
nucleus RNA-seq (snRNA-seq) data to identify adipose
cell-types and their marker genes, (3) integration of
the snRNA and bulk RNA-seq data to decompose
cell-type proportion estimates in the adipose bulk
RNA-seq data, (4) adipose cis-eQTL analysis adjusting
for cell-type composition, and (5) colocalization of
WHRadjBMI GWAS variants with adipose cis-eQTL
variants focusing on the SNPs regulating the expression
of adipose cell-type marker genes as their target genes
(i.e. eGenes). Then, we used these adipose cell-type-
aware WHRadjBMI GWAS cis-eQTL SNPs as IVs to
test for a putative causal effect of WHRadjBMI on
MASLD by multiple MR methods and compared the
results to the use of regular WHRadjBMI GWAS
SNPs as IVs. Next, we examined the identified IV
SNPs and their target cell-type marker genes during
differentiation of human preadipocytes to adipocytes
(i.e. adipogenesis) to elucidate their biological mech-
anisms. Two key eGenes were also knocked down
during adipogenesis to test their effects on adipocyte
lipidation, known adipogenesis regulators, and secre-
tion of an adipokine, adiponectin (ADIPOQ). Finally,
we tested the identified eGenes for an adipose gene
signature in MASLD.

Identification of WHRadjBMI GWAS SNPs that
regulate expression of adipose cell-type marker
genes
We first performed a cis-eQTL analysis in 262 in-
dividuals with obesity from the KOBS cohort (see
Methods) using their imputed genotype data (MAF
> 5%) and subcutaneous adipose bulk RNA-seq data
(Supplementary Table S2). Without LD pruning, we
found 2.30 × 106 SNP-gene pairs from 16,330 eGenes
with an FDR < 0.05. To account for cell-type heteroge-
neity in the cis-eQTL analysis, we performed snRNA-seq
on subcutaneous adipose biopsies (n = 8) to identify cell-
type marker genes and determine cell-type proportions
using the cell-type marker-based reference-free model of
Bisque35 (Fig. 1a and Supplementary Table S3). As the
accuracy of the marker-based decomposition mode of
Bisque relies on cell-type specificity and co-expression of
the top marker genes in each cell-type, we focused on
estimating cell-type proportions of the 5 main adipose
cell-types that include adipocytes, adipose stem and
progenitor cells (ASPCs), endothelial cells, macro-
phages, and T cells (Fig. 1b and Supplementary Fig. S3).
Including the cell-type proportions of the 5 main
cell-types into the eQTL model replicated 97% of the
identified significant SNP-gene pairs from the general
eQTL model, likely because adjusting for PEER factors
already captures a large part of the cell-type differences
as hidden confounders. Nevertheless, 38,364 new
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adipose cis-eQTL SNPs and 326 new eGenes were
discovered, and 368 genes were no longer regulated by
significant cis-SNPs when compared to the cis-eQTL
model not adjusted for the cell-type proportions. When
comparing the results of the two cis-eQTL approaches
(with and without correcting for cell-type proportions),
we also observed that the effect sizes of the cis-eQTL
SNP-gene pairs that were shared between the ap-
proaches significantly increased after adjusting for
cell-type proportions (p-value < 2.23 × 10−308), thus
demonstrating the improved quality of the eQTL results.
Overall, we found 2,315,256 significant gene-SNP pairs
in 16,372 eGenes when adjusting cell-type proportions.
For the subsequent analyses, we used these data and
prioritized the 105 eGenes that are marker genes of the
5 main adipose cell-types and have at least one SNP
that is also a WHRadjBMI GWAS variant4 (p-value
< 5 × 10−8).

We prioritized the eGenes that are cell-type marker
genes as they are, by definition, uniquely expressed
only in one adipose cell-type and may have important
functions in the cell-types they are enriched in. To
further demonstrate this, we conducted a functional
enrichment analysis using Webgestalt40 with the
marker genes of two of the key adipose tissue cell-
types, adipocytes and ASPCs, and compared the
number of significantly enriched biological processes
(FDR < 0.05) obtained using these adipocyte and ASPC
marker genes versus the same number of randomly
selected expressed genes in the adipocyte and ASPC
data. We observed 116 and 49 significant functional
enrichments, centred around the key adipocyte and
adipose tissue functions, with the adipocyte and ASPC
marker genes whereas no significant functional en-
richments were observed with the same numbers of
random adipocyte and ASPC expressed genes, further
confirming that the marker genes are more functional
than random genes expressed in these cell-types
(Supplementary Fig. S4).

Identification of WHRadjBMI GWAS SNPs that
colocalize with adipose cell-type marker gene
cis-eQTL SNPs
We next performed colocalization between WHRadjBMI
GWAS variants and adipose cell-type marker gene cis-
eQTL variants using the Bayesian method COLOC.43

Among the 105 adipose cell-type marker gene cis-eQTL
variants that are also the WHRadjBMI GWAS variants,
18 pairs of variants were colocalized with the posterior
probability H4 > 0.8 (Table 1, Fig. 1c and d, and
Supplementary Figs. S5–S7). We then tested for the
possibility of multiple causal variants using COLOC-
SuSiE,43 which uses Sum of Single Effects (SuSiE)
regression framework to fine-map genetic signals and
evaluate colocalization of multiple causal variants simul-
taneously. We identified 7 additional loci with evidence of
colocalization (H4 > 0.8) with COLOC-SuSiE (Table 1 and
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Fig. 1: Single-nucleus RNA-sequencing (snRNA-seq) and colocalization analyses identify adipose cell-type marker genes underlying
abdominal obesity. a, UMAP illustration of 11 cell-type clusters in snRNA-seq data of subcutaneous adipose tissue from 8 individuals
with obesity in the KOBS cohort. ASPC indicates adipose stem and progenitor cells; HPC, hematopoietic stem cell; LymphEndo, lymphatic
endothelial cells; and UMAP, Uniform Manifold Approximation and Projection. b, Main adipose cell-type proportions estimated in the 262
bulk RNA-seq data using Bisque.35 The box shows the 25th and 75th percentiles, the centre line shows the medians, and the whiskers
extend to the 5th and 95th percentiles. c, Cis-eQTL effect for PPP2R5A in the subcutaneous adipose tissue. Boxplots show association
between the genotypes of rs10779574 and the normalised expression of PPP2R5A from the adipose bulk RNA-seq data of the 262 in-
dividuals in the KOBS cohort. The box shows the 25th and 75th percentiles, the centre line shows the medians, and the whiskers extend to
the 5th and 95th percentiles. d, Comparison of WHRadjBMI GWAS and adipose cis-eQTL SNPs (left panel) and regional overview of
WHRadjBMI GWAS (top right panel) and adipose cis-eQTL loci (bottom right panel) demonstrates a significant colocalization of the
WHRadjBMI GWAS and adipose cis-eQTL SNP rs10779574, targeting the gene PPP2R5A. The axes show the −log10 of p-values from the
GIANT and UK Biobank WHRadjBMI GWAS meta-analysis4 and −log10 of p-values from the subcutaneous adipose cis-eQTL analysis in the
KOBS cohort (n = 262). The colocalized cis-eQTL SNP, rs10779574, is represented by a purple diamond. Colors represent LD (r2) with
colocalized cis-eQTL SNP. Chr indicates chromosome; eQTL, expression quantitative trait locus; GWAS, genome-wide association study; LD,
linkage disequilibrium; Mb, mega base; P, p-value; SNP, single nucleotide polymorphism; and UMAP, Uniform Manifold Approximation and
Projection.
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eGenea Adipose cell-typeb WHRadjBMI GWAS4 Subcutaneous adipose cis-eQTL COLOC43

(PP.H4)
d

COLOC-SuSiE43

(PP.H4)
e

Variant EAf EAF BETA P eSNPc EA EAF BETA FDR

BCKDHB Adipocyte rs3812126 T 0.43 −0.01 4.81E-12 rs3805877* A 0.52 −0.39 2.81E-09 0.94

LHCGR Adipocyte rs17326656 T 0.23 0.02 5.77E-13 rs4519576 C 0.40 −0.73 3.28E-12 0.94 0.89

LONRF1 Adipocyte rs4474021 T 0.31 0.01 2.44E-10 rs4474021** T 0.39 −0.69 7.33E-18 1.00

MYEOV Adipocyte rs6606672 A 0.65 −0.01 2.26E-13 rs7481709 C 0.51 −1.46 1.09E-39 0.98

PDE8B Adipocyte rs4704389 G 0.59 −0.01 1.74E-12 rs6864250 C 0.63 −0.57 1.26E-12 0.99 0.99

PPP2R5A Adipocyte rs4951583 T 0.59 −0.01 2.15E-13 rs10779574 G 0.61 0.42 4.94E-08 0.93

TMEM132C Adipocyte rs7973997 T 0.36 0.01 2.20E-08 rs7973997 T 0.33 −0.42 3.50E-06 0.98 0.98

AHNAK ASPC rs2509963 C 0.74 0.02 9.36E-17 rs2509963 C 0.77 0.25 2.57E-06 1.00

EDEM2 ASPC rs11696967 C 0.21 −0.01 6.78E-13 rs6120849 T 0.23 −0.43 2.96E-07 0.97

NF1 ASPC rs3087591 G 0.32 −0.01 1.00E-09 rs7216033 G 0.35 0.16 6.41E-04 0.83 0.84

SH3PXD2B ASPC rs6859752 T 0.33 0.01 3.67E-10 rs6866204 A 0.28 0.62 3.71E-13 0.99 0.99

TSC22D1 ASPC rs10507524 C 0.10 0.02 2.68E-09 rs9525915 G 0.61 −0.35 3.56E-04 0.90

ATP2B4 Endothelial rs2821231 C 0.54 −0.01 4.90E-10 rs2821231 C 0.53 0.41 1.65E-16 1.00 1.00

GPCPD1 Macrophage rs805770 T 0.40 0.02 1.33E-33 rs805770 T 0.40 0.46 2.74E-09 1.00 1.00

PDCD6IP Macrophage rs10212473 G 0.24 0.01 5.70E-09 rs4678620 G 0.23 −0.29 1.04E-07 0.92 0.92

PDGFC Macrophage rs1425486 T 0.35 −0.01 2.91E-11 rs17228328* A 0.14 0.46 3.91E-05 0.92 0.89

SLC18B1 Macrophage rs12190623 C 0.06 0.02 3.76E-07 rs12190623* C 0.12 −0.56 7.32E-06 0.93

SNX10 Macrophage rs1534696 A 0.57 −0.02 3.15E-44 rs1534696 A 0.55 1.10 1.85E-53 1.00

ZZEF1 Macrophage rs7225453 C 0.18 0.01 2.66E-10 rs8082227 T 0.20 0.31 8.50E-08 0.89

LITAF T rs7102 C 0.35 0.01 1.38E-10 rs3784924 G 0.33 −1.32 4.87E-50 0.89 0.92

PCNX T rs2810073 C 0.69 0.01 1.91E-09 rs989501 A 0.69 0.49 5.68E-24 0.93 0.93

aHuman subcutaneous adipose cell-type marker genes that are target genes of adipose cis-eQTL SNPs (eGene). bCell-types of the eGenes in human subcutaneous adipose tissue obtained using single-
nucleus RNA-sequencing. cCis-eQTL eSNPs were used as instrumental variables in the MR analysis. All palindromic SNPs (marked with *) and SNPs associated with MASLD (marked with **) were removed
from the MR analysis. dPosterior probability (PP) of WHRadjBMI GWAS SNP and adipose cis-eQTL SNP colocalization (H4) measured using the coloc.abf function in COLOC.43 Only the PP.H4 > 0.8 are
reported. ePosterior probability (PP) of WHRadjBMI GWAS SNP and adipose cis-eQTL SNP colocalization (H4) measured using the coloc.susie function in COLOC.43 Only the PP.H4 > 0.8 are reported. fEA
indicates effect allele; EAF, effect allele frequency; eQTL, expression quantitative trait loci; FDR, false discovery rate; GWAS, genome-wide association study; P, p-value; PP, posterior probability; SNP, single
nucleotide polymorphism; and WHRadjBMI, waist-to-hip ratio adjusted for body mass index.

Table 1: Colocalization analysis of WHRadjBMI GWAS SNPs and adipose cell-type marker gene cis-eQTL SNPs identifies 17 colocalized variants to be used as instrumental variables
in the MR analyses (i.e. abdominal obesity → MASLD).
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Supplementary Figs. S5–S7). Then we checked for the
independence among the 25 adipose cell-type marker
gene cis-eQTL SNPs and removed four redundant SNPs
in LD (R2 > 0.001) with the remaining SNPs, resulting in
a final set of 21 adipose cell-type-aware GWAS cis-eQTL
SNPs (Table 1, Fig. 1c and d, and Supplementary
Figs. S5–S7).

The primary cis-eQTL SNPs or SNPs in tight LD
(R2 > 0.8) for 12 genes (ATP2B4, LHCGR, LITAF, NF1,
PCNX, PDCD6IP, PDE8B, PPP2R5A, SH3PXD2B,
TMEM132C, TSC22D1, and ZZEF1) colocalized with
the lead GWAS SNPs or SNPs in tight LD (R2 > 0.8)
with the lead GWAS SNPs (Table 1, Fig. 1c and d, and
Supplementary Figs. S5–S7). For AHNAK, EDEM2,
GPCPD1, MYEOV, and SNX10, we observed colocali-
zation after fine-mapping regional GWAS SNPs using
the SuSiE method implemented in COLOC-SuSiE
(Table 1 and Supplementary Figs. S5–S7).

As colocalization results can be sensitive to the
selected prior probability, we also conducted a sensitivity
analysis to evaluate robustness of our colocalization
analysis results. The sensitivity analysis shows that our
www.thelancet.com Vol 106 August, 2024
colocalized variants (posterior probability H4 > 0.8) are
not sensitive to changes to prior probability that we used
in the analysis (Supplementary Fig. S8).

Tissue and cell-type-aware MR establishes a
directional effect of abdominal obesity on MASLD
To search for possible causal relationships between
abdominal obesity and MASLD, we performed a mul-
tilocus two-sample bi-directional MR analysis using
WHRadjBMI as the surrogate for abdominal obesity and
the MASLD score (i.e. the previous NAFLD score) that
we developed in Miao et al.48 as the proxy for the
MASLD risk in the UK Biobank. Our MASLD scoring
resulted in 28,396 MASLD cases and 108,652 healthy
individuals in the UK Biobank at a >90% confidence
level.48 After removing one SNP directly associated with
MASLD and three palindromic SNPs, we used the
remaining 17 adipose cell-type-aware GWAS cis-eQTL
SNPs from the colocalization analysis as the IVs in MR
(F-statistic = 53.2). Using these adipose cell-type-aware
WHRadjBMI GWAS cis-eQTL SNPs, we identified a
significant putative causal effect of abdominal obesity on
13
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MASLD consistently using multiple MR methods that
include cML-MA-BIC49 (theta = 0.087, p.adj = 5.56 × 10−6),
inverse variance weighting (IVW)50 (beta = 0.084,
p.adj = 5.86 × 10−4), MR-PRESSO51 (beta = 0.084,
p.adj = 6.33 × 10−3), and weighted median52 (beta = 0.086,
p.adj = 3.81 × 10−3) after correcting for multiple testing of
4 using Bonferroni (Fig. 2). Notably, no invalid IVs were
detected among the 17 IVs when using the cML-MA-BIC
method. In addition, we found no significant evidence of
horizontal pleiotropy (p-value > 0.05) and no outlier IVs
were detected in our data by MR-PRESSO. We further
employed Cochran’s Q test53 and observed no evidence
for significant heterogeneity (Q = 26.079, p-value > 0.05).
Taken together these results should not be confounded
by horizontal pleiotropy or heterogeneity.

To further investigate the MR results using additional
phenotypes, we employed waist-to-hip ratio (WHR) as
another surrogate measurement for abdominal obesity,
and the fatty liver index (FLI),54 meta-analysis of the In-
ternational Classification of Disease, 10th revision (ICD-
10) based MASLD status,55 and liver magnetic resonance
imaging (MRI) PDFF as additional outcomes using the
same 17 SNPs as IVs (F-statistic = 38.1 for WHR and F-
statistic = 53.2 for WHRadjBMI). Employing first the
WHR and MASLD score, we observed a significant pu-
tative causal effect in consistent direction of effect with
MR-PRESSO (beta = 0.104, p = 6.25 × 10−4)
(Supplementary Fig. S9). Next, we performed the MR
analysis employing WHR and WHRadjBMI separately as
the exposure trait and FLI as the outcome trait. We
observed a significant putative causal effect with
WHRadjBMI (beta = 0.187, p = 2.28 × 10−3)
(Supplementary Fig. S9), and a similar putative causal
effect with WHR (beta = 0.275, p = 3.86 × 10−5) after
removing one SNP (rs7481709), detected as an outlier in
Fig. 2: Mendelian randomization (MR) demonstrates a putative caus
Significant putative causal effects of WHRadjBMI on MASLD are dem
WHRadjBMI GWAS cis-eQTL variants as instrumental variables (IVs). Fo
confidence intervals and p-values computed using cML-MA-BIC,49 inverse v
SNPs were detected by the MR-PRESSO outlier test in the MR analysis, an
observed by the MR-PRESSO global test. CI indicates confidence interva
associated steatotic liver disease; Padj, p-value adjusted for multiple tes
for body mass index.
this latter analysis by MR-PRESSO (Supplementary
Fig. S9). We further conducted the MR analysis with
WHR and WHRadjBMI separately as the exposure trait
and the meta-analysis of the ICD-10-based MASLD sta-
tus55 as the outcome trait, which had a smaller number
(33.4%) of MASLD cases (n = 9491) when compared to
the imputed MASLD score phenotype (n = 28,396
cases).48 We observed a trend in causal effect of WHR
(beta = 1.417, p = 0.073) and significant causal effect of
WHRadjBMI (beta = 1.323, p = 0.046) on the ICD-10
based MASLD status in the consistent direction of ef-
fect, both after removing one SNP (rs805770), detected as
an outlier (Supplementary Fig. S9).

Lastly, we used WHR and WHRadjBMI separately as
the exposure and liver PDFF as the outcome and
observed a trend in causal effect of WHR (beta = 0.289,
p = 0.0684) and WHRadjBMI (beta = 0.260, p = 0.0502)
in consistent direction of effect on liver PDFF without
any outliers by MR-PRESSO (Supplementary Fig. S9).
Given that the number of individuals included in the
liver PDFF GWAS (n = 33,011) is only 24% of the
individuals included in the MASLD score GWAS
(n = 137,048), thus decreasing the power for both the
GWAS and subsequent MR analyses, these results with
considerably smaller sample sizes further support the
putative causal effect of abdominal obesity on MASLD.

To still further evaluate our MR results with
WHRadjBMI and the MASLD score, we repeated the
MR analysis using all LD clumped (R2 = 0.001),
genome-wide significant WHRadjBMI GWAS variants
(p-value<5 × 10−8) as IVs (n = 442, F-statistic = 63.4) after
removing palindromic variants and SNPs that are also
associated with MASLD (p-value<5 × 10−8). In line with
our MR finding with the 17 IVs, we observed a signifi-
cant (Bonferroni adjusted p-value < 0.05 corrected for
al effect of WHRadjBMI on MASLD using multiple MR methods.
onstrated by multiple MR methods using adipose cell-type-aware
rest plot of MR analyses shows causal estimates (betas) with 95%
ariance weighting,50 MR-PRESSO51 and weighted median.52 No outlier
d no significant evidence (p-value>0.05) for horizontal pleiotropy was
l; IVW, inverse variance weighting; MASLD, metabolic dysfunction-
ting using Bonferroni; and WHRadjBMI, waist-to-hip ratio adjusted
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multiple testing of 5) positive effect of abdominal
obesity on MASLD using IVW (beta = 0.112,
p.adj = 7.54 × 10−174), weighted median (beta = 0.109,
p.adj = 7.86 × 10−95), MR-PRESSO after outlier correc-
tion (beta = 0.113, p.adj = 2.77 × 10−102), and cML-MA-
BIC-DP (theta = 0.116, p.adj = 7.36 × 10−184) where
data perturbation (DP) estimate model was used after
rejecting the null hypothesis by the goodness-of-fit tests,
as recommended49 (Supplementary Fig. S10); however,
both MR-PRESSO global test and the Cochran’s Q test
revealed evidence of overall horizontal pleiotropy
(p-value < 1 × 10−4) and heterogeneity (Q = 729.852,
p-value = 1.34 × 10−16) after outlier correction, indicating
that the MR modeling assumptions or IV assumptions
have been violated.

We next tested for reverse causality using the
MASLD score as the exposure trait and WHRadjBMI as
the outcome trait. Adopting our tissue-of-origin, cell-
type-aware IV selection MR approach, we identified liver
cell-type-aware MASLD GWAS cis-eQTL SNPs to be
used as IVs (Supplementary Fig. S11). We performed
snRNA-seq on liver biopsies from 3 individuals20 to
identify liver cell-types and their marker genes
(Supplementary Fig. S11a and Supplementary
Table S4), and utilised the marker gene-based decom-
position mode of Bisque35 to estimate cell-type pro-
portions of the 7 liver cell-types (Supplementary
Fig. S11b). The liver cis-eQTL analysis was then per-
formed adjusting for the 7 cell-type proportions
(see Methods). After integrating liver snRNA-seq data
with liver cis-eQTL results, we found that expression of
19 liver cell-type marker genes is regulated by at least
one variant (FDR < 0.05) that is also a MASLD GWAS
variant (p-value < 5 × 10−8). We also tested for colocali-
zation between the MASLD GWAS and liver cell-type
marker gene cis-eQTL variants in these 19 genes and
observed significant colocalization in RP11-152K4.2
with the posterior probability H4 > 0.8 (Supplementary
Fig. S11c and d). Using liver cell-type-aware GWAS
cis-eQTL SNP of RP11-152K4.2 as an IV in IVW50 MR
analysis (F-statistic = 63.2), we did not observe a
significant directional effect of MASLD on WHRadjBMI
(p-value = 0.250) (Supplementary Fig. 12a). Thus, no
evidence for reverse causality was observed.

As only one liver cell-type-aware GWAS cis-eQTL
SNP was identified for the reverse MR analysis, we
further tested for the directional effect of MASLD on
WHRadjBMI by using all LD clumped (R2 = 0.001)
MASLD GWAS risk variants (p-value<5 × 10−8)48 as IVs.
Even though we observed a possible causal effect of
MASLD on WHRadjBMI using MR-PRESSO
(beta = 0.239, p-value = 0.011) after removing three
identified outliers (n = 16, F-statistic = 78.6), we also
observed evidence for both significant horizontal plei-
otropy and heterogeneity by the global test of
MR-PRESSO (p-value < 1 × 10−4) and Cochran’s Q test
(Q = 33.53, p-value = 0.004) (Supplementary Fig. S12b),
www.thelancet.com Vol 106 August, 2024
respectively, indicating that the MR modeling assump-
tions or IV assumptions have been violated.

The identified WHRadjBMI genes show preferential
expression in adipocytes
To better understand the biological mechanisms underly-
ing abdominal obesity by the 17 WHRadjBMI-associated
variants used as IVs in our MASLD MR analysis, we
further examined their cis-regulated adipose cell-type
marker eGenes. Of the 17 genes, 5 are adipocyte marker
genes (LHCGR, MYEOV, PDE8B, PPP2R5A,
TMEM132C) while among the remaining 12 genes, there
are 5 ASPC (AHNAK, EDEM2, NF1, SH3PXD2B,
TSC22D1), 4 macrophage (GPCPD1, PDCD6IP, SNX10,
ZZEF1), 2 T cell (LITAF, PCNX), and 1 endothelial cell
(ATP2B4) marker genes, respectively (Table 1 and
Supplementary Fig. S7). To assess the average cell-type
level expression of these 17 WHRadjBMI GWAS
cis-eQTL target genes in the subcutaneous adipose tissue
snRNA-seq data from 8 individuals with obesity in the
KOBS cohort, we used the module score analysis for each
cell (see Methods) (Fig. 3a and b). We found that the
expression module (i.e. average expression) of these genes
is significantly higher (p-value = 9.6 × 10−153) in the
adipocyte vs non-adipocyte nuclei using the Wilcoxon rank
sum test (Fig. 3a and b). Integrating adipose snRNA-seq
data from 21 additional individuals from the Finnish
Twin19 and CRYO18,19 studies into our module score anal-
ysis further confirmed that the average expression of these
17 target genes is enriched (p-value<2.2 × 10−308) in
adipocyte vs non-adipocyte nuclei. In contrast, the average
expression of these 17 target genes is not enriched in any
liver cell-types using the liver snRNA-seq data
(Supplementary Fig. S11e and f). Taken together, our
results indicate that the average expression of the target
genes of the 17 WHRadjBMI GWAS cis-eQTL SNPs show
significant preference for adipocytes, and thus they may
induce changes in important adipocyte functions,
ultimately impacting abdominal obesity.

Adipocyte and ASPC marker gene expression
dynamically changes during human adipogenesis
Based on our module score results that demonstrate
the significant preferential average expression of the
WHRadjBMI GWAS cis-eQTL target genes in adipocytes
(Fig. 3a and b), we further investigated the expression
changes of the genes during human adipocyte differ-
entiation (i.e. adipogenesis). In this experiment, we
differentiated human primary preadipocytes (n = 4
technical replicates), and measured expression of the 5
adipocyte (LHCGR, MYEOV, PDE8B, PPP2R5A,
TMEM132C) and 5 ASPC (AHNAK, EDEM2, NF1,
SH3PXD2B, TSC22D1) marker genes underlying the
regional WHRadjBMI GWAS signals at 6 time points
(Fig. 3c). We found that all 10 genes are significantly
differentially expressed (DE) between preadipocytes at
the baseline and 7 days after initiating the differentiation,
15
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Fig. 3: Nuclei expression of the 17 adipose cell-type-aware abdominal obesity genes shows preferential average expression in adipocytes,
and longitudinal expression of the 10 adipocyte and ASPC marker genes changes significantly across human adipogenesis. a,b, The
module scores of the 17 adipose cell-type-aware GWAS cis-eQTL target genes in the subcutaneous adipose snRNA-seq data (n = 8) show
preferential average expression of the genes in the adipocyte cell-type. Module scores are calculated using the AddModuleScore function in
Seurat22 as an average expression level of the 17 adipose cell-type-aware GWAS eQTL target genes while subtracting the aggregate expression
level of the control feature sets for each nucleus. a, UMAP illustration of the adipose cell-type clusters where each dot represents a nucleus
coloured by the module score of the 17 abdominal obesity genes. The p-value was computed using the Wilcoxon rank sum test to evaluate the
difference in module scores of adipocyte vs non-adipocyte nuclei. b, Dot plot shows a higher average module score in the adipocytes. The size of
each dot represents the percent of cells with a module score >0 in each cell-type and the colors represent an average module score for each
cell-type. c, Human adipogenesis experiment shows longitudinal expression changes of the 10 adipocyte and ASPC marker genes during
differentiation of human primary preadipocytes to adipocytes. Human primary preadipocytes were differentiated for 14 days and RNAs were
collected at 6 time points for bulk RNA-sequencing. The genes were grouped into 4 distinct clusters based on the high probability of cluster
assignment in their longitudinal expression trajectories during adipogenesis, detected using DPGP.64 Colors represent expression of the
10 adipocyte and ASPC marker genes from the 17 abdominal obesity genes quantified by bulk RNA-sequencing, and counts were normalised
and scaled using ImpulseDE2.63 Gene-wise expression trajectory fits were obtained by implementing the impulse model, and the longitudinal
differential expressions were evaluated using ImpulseDE2.63 ASPC indicates adipose stem and progenitor cells; HPC, hematopoietic stem cell;
LymphEndo, lymphatic endothelial cells; and UMAP, Uniform Manifold Approximation and Projection.
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and that they are also DE longitudinally across all 6 adi-
pogenesis time points, using ImpulseDE2,63 and correct-
ing for multiple testing of 10 genes using the Bonferroni
adjusted p-value < 0.05 (Supplementary Table S5). We
then used the DPGP tool64 to group the 10 genes into
4 distinct clusters based on their cluster assignment
probability, similar longitudinal expression trajectories
during adipogenesis (Fig. 3c and Supplementary
Table S6), suggesting possible temporal co-expression or
co-regulation of these genes.

We conducted an independent adipogenesis experi-
ment for 7 days using the human preadipocyte cell
strain derived from an infant with the Simpson-Golabi-
Behmel Syndrome (SGBS)69 and observed an 88%
replication rate with the DE between preadipocytes at
the baseline and 7 days after initiating the differentia-
tion and a 75% replication with the longitudinal DE
genes detected in both experiments. We also observed a
67% replication rate with the temporal clustering genes
among the replicated longitudinal DE genes in the
human SGBS preadipocytes (Supplementary Tables S7
and S8). We consider these replication results prom-
ising given that one of the adipogenesis experiments
was conducted using the human SGBS preadipocytes
and the other one using human primary preadipocytes,
and the fact that a slightly different RNA sequencing
approach was applied in each experiment (see Methods).
We limited the differentiation to just 7 days in the
second adipogenesis experiment as we observed that the
expression of key lipid droplet genes, PLIN1 and PLIN4,
are already induced during Day 7 of adipogenesis
(Supplementary Table S9) consistently in our two
independent adipogenesis experiments. These new
replication results provide robust insight into how
the longitudinal expression patterns and temporal
clustering of these genes change during our two inde-
pendent experiments of adipogenesis.

Changes in adipocyte and ASPC marker gene
expression during human adipogenesis reflect
regional chromatin accessibility
We assessed the regulatory potential of the WHRadjBMI
GWAS cis-eQTL SNPs targeting the 10 adipocyte and
ASPCmarker genes by examining chromatin accessibility
of the IV SNP regions during adipogenesis. We per-
formed ATAC-seq on differentiating human primary
preadipocytes collected at the same 6 time points when
the gene expression was measured. Focusing on ATAC-
seq peak regions overlapping the IV SNPs, we identified
3 longitudinally differentially accessible (DA) chromatin
regions that overlap rs2509963 cis-regulating AHNAK,
rs7481709 cis-regulating MYEOV, and rs6866204 cis-
regulating SH3PXD2B, throughout adipogenesis after
correcting for multiple testing using the Bonferroni
adjusted p < 0.05 (Fig. 4). Including SNPs in tight LD
(R2 > 0.95) with the IV SNPs further revealed 15 addi-
tional DA chromatin regions overlapping one SNP in LD
www.thelancet.com Vol 106 August, 2024
with AHNAK cis-eQTL SNP, 3 SNPs in LD with EDEM2
cis-eQTL SNP, 9 SNPs in LD with NF1 cis-eQTL SNP, one
SNP in LD with MYEOV cis-eQTL SNP, and one SNP in
LD with PDE8B cis-eQTL SNP.

We observed that the change in expression of the
target eGenes of WHRadjBMI GWAS cis-eQTL SNPs
during adipogenesis closely reflect the regional chro-
matin accessibility of the DA peaks that overlap the
WHRadjBMI GWAS cis-eQTL SNPs (Fig. 4). For
example, the expression of AHNAK and the chromatin
accessibility of the region at the SNP rs2509963 site are
both high in preadipocytes but they decrease once adi-
pogenesis initiates (Fig. 4a–c), suggesting a potential
enhancer role at the SNP site. Conversely, the expres-
sion of SH3PXD2B decreases in differentiating pre-
adipocytes 2-days after initiating differentiation whereas
the chromatin accessibility of the region at the SNP
rs6866204 site continues to increase (Fig. 4d–f), sug-
gesting a potential repressive role at the SNP site. Taken
together, our results suggest that the target genes of the
WHRadjBMI GWAS cis-eQTL SNPs are specific to adi-
pose cell-types and their variant-specific functional
changes may directly or indirectly impact key adipose
tissue functions, such as adipogenesis.

Knockdown of PPP2R5A and SH3PXD2B in human
preadipocytes impairs adipogenesis
As the preadipocyte differentiation experiment suggests
potential functional role for the 10 adipocyte and ASPC
cell-type marker genes during adipogenesis, we further
tested for their impact on adipogenesis by separately
knocking down the genes PPP2R5A (PPP2R5A-KD)
and SH3PXD2B (SH3PXD2B-KD) in human SGBS
preadipocytes during differentiation time course. These
genes were selected based on previous human adipo-
genesis and mouse knockout experiments that showed
evidence for their potential importance in adipo-
genesis.72,73 The knockdown was done via small inter-
fering RNA (siRNA), and RNAs were collected at three
time points for bulk RNA-seq (see Methods). To
quantify preadipocyte differentiation to adipocytes in
each of the knockdown and control experiment, we
used Oil Red O (ORO) for staining of neutral tri-
glycerides and lipids (Fig. 5 and Supplementary
Fig. S13). When compared to the respective scram-
bled control group, we observed a significant decrease
in the relative ORO stain intensity both in the
PPP2R5A-KD (p-value = 0.0021) and SH3PXD2B-KD (p-
value = 0.0028) groups at the 7D time point (Fig. 5b),
indicating impaired lipidation of the developing adi-
pocytes in the knockdown cells, hence less differentia-
tion from preadipocytes to adipocytes. No significant
difference in the relative ORO stain intensity was
observed between the scrambled and non-scrambled
controls, verifying that the observed differences in
preadipocyte differentiation are not due to the technical
effects from the siRNA transfection.
17
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Fig. 4: Changes in adipose marker gene expression during human adipogenesis are reflected in regional chromatin accessibility at the cis-
eQTL SNP sites. a,d, Comparison of WHRadjBMI GWAS and adipose cis-eQTL SNPs demonstrates a significant colocalization of the WHRadjBMI
GWAS and adipose cis-eQTL SNP rs2509963 targeting the gene AHNAK (a) and rs6866204 targeting the gene SH3PXD2B (d). The axes show
the −log10 of p-values from the GIANT and UK Biobank WHRadjBMI GWAS meta-analysis4 and −log10 of p-values from the subcutaneous
adipose cis-eQTL analysis in the KOBS cohort (n = 262). The colocalized cis-eQTL SNPs are represented by a purple diamond. Colours represent
LD (r2) with colocalized cis-eQTL SNP. b,e, Bulk RNA-seq data of differentiating preadipocytes collected at 6 time points show significant
differential expression (adj. p-value<0.05) of the adipose cell-type marker genes AHNAK (b) and SH3PXD2B (e) longitudinally during
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To examine the effect of PPP2R5A and SH3PXD2B
knockdowns on adipogenesis, we performed DE anal-
ysis between each knockdown and their respective
scrambled control at all three time points, limiting the
tested genes to the adipocyte and ASPC marker genes
and the adipogenesis pathway genes from WikiPath-
ways (n = 1273 genes). First, we confirmed that both the
PPP2R5A and SH3PXD2B genes are significantly
downregulated in their respective knockdown condi-
tions compared to their respective scrambled controls at
all three time points (Fig. 6 and Supplementary
Tables S10 and S11). Next, we found that the greatest
number of DE genes are observed at the 7D time point
for both knockdowns, which is in line with the largest
difference observed in the ORO stain intensities at the
7D time point.

We observed 150 DE genes in the PPP2R5A-KD
against the scrambled control at the 7D time point, of
which 19 are adipogenesis genes from WikiPathways.
The top 30 DE genes impacted by the knockdown of
PPP2R5A are shown in Fig. 6a and all 150 significant
DE genes for the PPP2R5A-KD (passing multiple testing
correcting) in the Supplementary Table S10. These 150
DE genes include significantly decreased expression of
PLIN2 (log fold-change in knockdown vs scrambled
control (logFC) = −0.925, FDR = 5.03 × 10−4) that en-
codes a protein involved in lipid droplet formation and
SCD (logFC = −0.657, FDR = 8.47 × 10−3) that encodes
an enzyme required for the biosynthesis of fatty acids
(Fig. 6a and b and Supplementary Table S10). Our
results suggest that PPP2R5A may be important for the
regulation of fat modulation and energy homeostasis.

In the SH3PXD2B-KD at the 7D time point, we
observed 330 DE genes when compared to the scrambled
control, of which 35 are adipogenesis genes from Wiki-
Pathways including significantly decreased expression of
ADIPOQ (logFC = −1.262, FDR = 1.26 × 10−7) that
encodes an adipokine important for lipid metabolism,
and PPARG (logFC = −0.686, FDR = 2.77 × 10−5), a
master regulator of adipogenesis and lipid storage. The
top 30 DE genes impacted by the knockdown of
SH3PXD2B are shown in Fig. 6c and all 330 significant
DE genes for the SH3PXD2B knockdown (passing
multiple testing correcting) in the Supplementary
Table S11. Among the 330 DE genes are 19 transcrip-
tion factors (TFs), which includes significantly decreased
expression of a fatty acid master TF SREBF1
(logFC = −0.998, FDR = 5.93 × 10−6) and TBX15
adipogenesis. c,f, Longitudinal bulk ATAC-seq data of differentiating pre
accessible (adj. p-value < 0.05) chromatin regions that include the colocali
marker genes AHNAK (c) and SH3PXD2B (f). Gene-wise expression and chro
impulse model, and the longitudinal differential expressions were evalua
expressions and differential chromatin accessibility were measured using
corrected p-value < 0.05. Adj. p indicates adjusted p-value; chr, chromoso
association study; LD, linkage disequilibrium; Mb, mega base; P, p-value;

www.thelancet.com Vol 106 August, 2024
(logFC = −0.477, FDR = 0.041) (Supplementary
Table S11). In addition, we found that the expression of
2 (AHNAK and PPP2R5A) out of 10 adipocyte and ASPC
marker genes that are target genes of our IV SNPs for the
MASLD MR analysis are also DE at the 7D with the
knockdown of SH3PXD2B, which suggests that these
genes may be co-regulated or share common molecular
pathways (Supplementary Fig. S14).

As serum adiponectin levels are well known to be
negatively correlated with multiple cardiometabolic risk
traits,74 and we observed significantly decreased
expression of ADIPOQ in the knockdown of
SH3PXD2B at the 7D time point (Fig. 6d) and trend
towards a decreased expression of ADIPOQ in the
knockdown of PPP2R5A (p-value = 0.073), we per-
formed an enzyme-linked immunosorbent assay
(ELISA) experiment to quantify the secretion of the
adiponectin protein by the PPP2R5A- and SH3PXD2B-
KD SGBS cells during the differentiation at Days 0, 2,
and 7. We observed a significant decrease in the
secreted adiponectin levels for both the PPP2R5A-KD
and SH3PXD2B-KD cells when compared to the control
cells (p.adj = 7.33 × 10−5 and p.adj = 6.87 × 10−3,
respectively) at Day 7 after correcting for multiple
testing using Bonferroni (Supplementary Fig. S15).

Notably, the SH3PXD2B knockdown significantly
decreased expression of DGAT2 (logFC = −1.227,
p.adj = 5.85 × 10−8) (Fig. 6c and d), which encodes an
enzyme that catalyzes the synthesis of triglycerides.
Since DGAT2 is currently tested as a new therapeutic
target for treating MASLD/MASH,75,76 we further
examined the expression of DGAT2 in our group of 262
individuals with obesity from the KOBS cohort with
bulk RNA-seq data from both their adipose and liver
tissues and liver histology-based assessment of their
clinical MASLD status. We first observed that DGAT2 is
highly expressed in the adipose tissue when compared
to the liver (Fig. 7a–c), with significantly higher adipose
expression (p-value = 4.23 × 10−4 by the Wilcoxon rank
sum test) in the females (n = 182) than males (n = 80)
with obesity. Randomly down sampling the number of
females to 80 still showed a significant difference
(p-value = 1.14 × 10−3) in the adipose tissue. Next, we
compared the expression of DGAT2 between in-
dividuals diagnosed with steatosis (n = 154), fibrosis
(n = 115), or NASH (n = 81) vs the controls (n = 86 for all
tests). We found significantly higher DGAT2 expression
in the adipose RNA-seq for all three liver phenotypes
adipocytes collected at 6 time points show significant differentially
zed WHRadjBMI GWAS cis-eQTL SNPs targeting the adipose cell-type
matin accessibility trajectory fits were obtained by implementing the
ted using ImpulseDE2.63 Significance of the longitudinal differential
ImpulseDE263 and corrected for multiple testing using Bonferroni
me; eQTL, expression quantitative trait locus; GWAS, genome-wide
and SNP, single nucleotide polymorphism.
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when compared to the controls (p-value = 0.0039,
0.0051, 0.013 for steatosis, fibrosis, and MASH,
respectively) (Fig. 7a–c). No such differences were
observed in their liver RNA-seq data (p-value > 0.05).

Transcriptome profiles of the 17 abdominal obesity
genes in the adipose tissue provide a gene
signature for MASLD
We next examined whether the transcriptome profiles of
the 17 abdominal obesity genes show a difference based
on the histology-based liver disease status (healthy vs
MASLD) of individuals with obesity given that these
genes are regulated by the adipose cell-type-aware
WHRadjBMI GWAS cis-eQTL SNPs used as IVs in
our MASLD MR analysis and that we observed func-
tional evidence for their impact on adipose tissue
function via adipogenesis. We performed a principal
component analysis (PCA) (see Methods) on the adipose
bulk RNA-seq data of the 17 eGenes in KOBS (n = 262)
and found that the first PC of these genes is significantly
lower (p-value = 0.0031 by the Wilcoxon rank sum test)
in the individuals with hepatic steatosis (MASLD) than
controls with healthy livers (Fig. 7d). We further
checked the 17 genes individually for DE in the adipose
tissue by the liver status and found that TMEM132C was
downregulated (p.adj = 8.09 × 10−5) in the individuals
with histology based hepatic steatosis compared to the
controls with healthy livers after correcting for multiple
testing of 17 using Bonferroni. None of the other genes
showed significant DE (p.adj ≥ 0.05).

In summary, we elucidate the biological basis of the
statistical putative causal effect of abdominal obesity on
MASLD, by integrating adipose snRNA-seq data with
WHRadjBMI GWAS, adipose cis-eQTL, and colocalization
data to select well-defined adipose tissue-of-origin, cell-
type-aware GWAS cis-eQTL IVs for MR. Overall, we
identified 17 abdominal obesity genes underlying the
WHRadjBMI GWAS loci, and using their adipose
cell-type-aware GWAS cis-eQTL SNPs, we further show a
putative directional effect of abdominal obesity on MASLD
with an adipose tissue and cell-type level biological origin.
Fig. 5: Oil Red O (ORO) lipid staining reveals altered lipid accumulation
preadipocytes during adipogenesis. siRNA-mediated knockdown (KD)
differentiating human SGBS preadipocytes shows disruption in lipid accum
time points, and the intensity of the ORO staining was quantified by meas
the cell number. a, Cell images of differentiating SGBS preadipocytes sta
using the EVOS Core XL microscope at 20x zoom. Rows indicate experime
control for PPP2R5A (60 nM), scrambled siRNA control for SH3PXD2B (1
(150 nM). Columns indicate the number of days from initiating the differ
(7D). b, Relative ORO intensity in each knockdown condition at each time
ORO stain intensity from 2 to 4 biological replicates each with 3 technica
±standard deviation (error bars) was compared (fold change) to the a
respective time points. Significant differences in ORO intensities between
< 0.05) by the t-test.
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Discussion
Studying directional relationships, tissues and cell-types
of origin, and biological mechanisms underlying asso-
ciations between abdominal obesity and an increased
risk of MASLD has been challenging due to the small
effect sizes of obesity-associated GWAS variants, lack of
large MASLD GWAS cohorts, and large pleiotropic
overlap between the genetic loci of obesogenic metabolic
traits.77,78 These factors hamper selection of well-defined
IVs in MR by increasing horizontal pleiotropy and het-
erogeneity,79,80 which may cause a severe bias in MR.79,80

Significant heterogeneity in MR also points to pleiotropy
and other possible violations of the necessary IV as-
sumptions.79,80 Thus, the selection of genetic variants as
IVs is very important in designing an MR analysis. For a
polygenic analysis, two strategies have been suggested
for selecting variants: (1) a biologically driven approach,
in which genetic variants biologically linked to the
exposure trait of interest are selected, and (2) a statisti-
cally driven approach, in which all genetic variants that
are associated with the exposure trait of interest (e.g.
GWAS variants) are selected.81 Selecting all exposure
associated variants without a prior knowledge on their
functions may lead to IVs that are pleiotropic,81 whereas
a careful selection of well-defined IVs for an MR anal-
ysis can increase the effect sizes of the SNPs while
decreasing the chance of potential horizontal pleiotropy
and heterogeneity.79,82 Thus in this study, we used the
biologically driven approach and prioritized colocalized
WHRadjBMI-associated functional variants that regu-
late adipose gene expression at a cell-type level as IVs in
our MR analysis, conducted using multiple MR
methods, to establish a putative directional effect of
WHRadjBMI on MASLD, and to define potential adi-
pose tissue origin expression signatures for MASLD.
Our biologically focused MR approach and functional
experiments in human primary preadipocytes suggest
that the 17 identified adipose cell-type marker genes
underlying regional WHRadjBMI risk loci drive the
adipose-origin development of MASLD, likely via
obesity-induced adipose tissue dysfunction centred on
with the knockdown of PPP2R5A and SH3PXD2B in human SGBS
of two abdominal obesity genes PPP2R5A and SH3PXD2B in the
ulation. The cells were stained with ORO for each condition at three
uring the absorbance of 492 nm wavelength light and normalizing to
ined with ORO (red color) taken at 3 time points for each condition
ntal conditions as follows: non-transfected controls, scrambled siRNA
50 nM), PPP2R5A knockdown (60 nM), and SH3PXD2B knockdown
entiation of preadipocytes: 0-day (baseline), 2-days (2D), and 7-days
point compared to their respective scrambled controls. The average

l replicates for each condition (colors) at each time point (dots) with
verage ORO stain intensity of the non-transfected controls at the
the knockdown and scrambled control samples are shown (*, p-value

21

http://www.thelancet.com


Fig. 6: Knockdown of PPP2R5A and SH3PXD2B in human SGBS preadipocytes identify altered expression of key adipogenesis genes. a,c,
Results of the differential expression (DE) analysis using the bulk RNA-sequencing data (see Methods) from the siRNA-mediated PPP2R5A (a)
and SH3PXD2B (c) knockdown samples compared to the scrambled control samples. The top 30 significantly upregulated (blue) and
30 significantly downregulated (orange) genes by log fold-change in knockdowns compared to the respective scrambled controls (logFC) at the
7-day (7D) time point and the respective knockdown genes (gold) are shown for each time point sorted by the logFC at the 7D time point. All
significant DE genes for each KD (passing multiple testing correction using FDR <0.05) are shown in the Supplementary Tables S10 and S11. b,d,
Average expression, in counts per million (CPM), of the knockdown genes and selected key adipogenesis, fat storage regulator, and adipose
tissue function genes are shown for each knockdown condition and scrambled controls at each time point. Dots represent average CPMs from
2 to 4 technical replicates with error bars indicating ± standard deviation. Time point is represented by the x-axis and the average expression
(CPM) by the y-axis. The colours represent average expression in the knockdown vs respective scrambled controls. Significant differences in the
average expression of each gene between the knockdown and scrambled controls samples at each time point are shown (*, p-value<0.05; **,
p-value<0.01; ***, p-value < 0.001) by the t-test. FDR indicates false discovery rate; and NS, non-significant (FDR ≥ 0.05).
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Fig. 7: Expression profiles of the 17 abdominal obesity genes and DGAT2 in the adipose tissue demonstrate differences based on the liver
phenotype status. a,b,c, DGAT2 expression quantified in the adipose tissue and liver from the bulk RNA-sequencing data of 262 individuals
with obesity in the KOBS cohort shows higher expression in the adipose tissue when compared to the liver. Within the adipose tissue, DGAT2
expression is significantly higher in the individuals with obesity and diagnosed with steatosis (n = 154) (a), fibrosis (n = 115) (b), or metabolic
associated steatohepatitis (MASH) (n = 81) (c) using the liver histology-based assessment when compared to the controls with obesity and
healthy livers (n = 86 for all comparisons). In contrast, the liver bulk RNA-sequencing data show no significant difference in the liver DGAT2
expression based on the liver metabolic dysfunction-associated steatotic liver disease (MASLD) diagnosis groups. The x-axis represents the tissue
where DGAT2 is expressed and the y-axis represents DGAT2 expression measured in Trimmed Mean of M-values (TMM) normalised counts per
million (CPM). The colours represent the liver conditions (0 for the controls and 1 for steatosis, fibrosis, and MASH). Significant differences in
the DGAT2 expression between individuals with a liver disease vs controls were evaluated in each tissue by the Wilcoxon rank sum test using
TMM normalised, log-transformed CPMs adjusted for technical factors and cell-type proportion estimates of their respective tissues
(see Methods). d, The first principal component of the subcutaneous adipose expression of the 17 abdominal obesity genes is lower in the
individuals with obesity and liver steatosis (n = 154) when compared to the controls with obesity and healthy livers (n = 86). The x-axis
represents the hepatic liver diagnosis status (0 = controls and 1 = cases) and the y-axis represents the first principal component (PC1) of the
principal component analysis (PCA) performed using the TMM normalised, log-transformed CPMs of the 17 abdominal obesity genes after
adjusted for technical factors and adipose cell-type proportion estimates (see Methods). The box shows the 25th and 75th percentiles, the
centre line shows the medians, and the whiskers extend to the 5th and 95th percentiles. The significance of the difference in PC1 of the adipose
expression of the 17 abdominal obesity genes between the 2 groups was evaluated using the Wilcoxon rank sum test. a-d, The box shows the
25th and 75th percentiles, the centre line shows the medians, and the whiskers extend to the 5th and 95th percentiles, and the significant
differences between the two groups are annotated (*, p-value < 0.05; **, p-value<0.01; ***, p-value < 0.001). NS indicates non-significant
(p-value ≥ 0.05).
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adipogenesis, which ultimately promotes ectopic fat
distribution into the liver.

In our search for WHRadjBMI-associated functional
variants that regulate gene expression at a cell-type level,
we colocalized WHRadjBMI GWAS SNPs with adipose
cis-eQTL SNPs while prioritizing cis-eQTL SNPs, the
target genes of which are adipose cell-type marker
genes. These genes, by definition, are significantly
enriched in one cell-type and they may have important
functions at a cell-type level, which is supported by our
significant functional enrichment results with the
adipocyte and ASPC marker genes while no enrich-
ments were obtained with the same numbers of random
adipocyte and ASPC expressed genes (Supplementary
Fig. S4). This design helped us detect cell-type level
regulatory mechanisms underlying abdominal obesity.
Although colocalization analyses between WHRadjBMI
GWAS signals and subcutaneous adipose cis-eQTL sig-
nals have previously been conducted,83,84 these previous
studies did not consider cellular heterogeneity of adi-
pose tissue, which can confound the results and
possibly mask cell-type-aware signals.8 We found that
adjusting for cell-type composition in the cis-eQTL
analysis increased the power to detect 38,364 new adi-
pose cis-eQTL variants and 326 new eGenes, suggesting
that some cis-eQTL and subsequent WHRadjBMI colo-
calized signals may have been missed in previous
studies. We further show that adjusting for cell-type
composition also significantly improved the effect
sizes of the cis-eQTL variants, in line with previous
studies showing improved quality of eQTL results after
adjusting for cell-type proportions.8

We identified 17 WHRadjBMI-associated functional
variants that are not directly associated with MASLD and
used these variants as IVs to establish a causal effect of
WHRadjBMI on MASLD with no evidence for signifi-
cant horizontal pleiotropy or heterogeneity. When con-
ducting the MASLD MR analysis, we used the MASLD
score (MASLDS) that we recently developed as a non-
invasive way to assess the MASLD phenotype in the
UK Biobank (UKB).48 The MASLD scoring resulted in
28,396 MASLD cases and 108,652 healthy individuals at
a >90% confidence level for our large MASLD GWAS in
the UK Biobank, which identified 90 novel MASLD loci
while also detecting the known MASLD loci.48 These
large MASLD score GWAS data were used here for the
abdominal obesity ↔ MASLD MR analysis.

The 17 colocalized WHRadjBMI GWAS cis-eQTL
SNPs used as IVs in the MASLD MR analysis regulate
17 adipose cell-type marker genes underlying the
regional WHRadjBMI GWAS loci, 5 of which are
adipocyte marker genes (LHCGR, MYEOV, PDE8B,
PPP2R5A, TMEM132C) and 5 are ASPC marker genes
(AHNAK, EDEM2, NF1, SH3PXD2B, TSC22D1).
Adipocytes are critically important for many adipose
tissue key functions, including lipogenesis (i.e. storing
fat) and lipolysis (i.e. burning fat).85 They also have
major endocrine functions, which are critical for meta-
bolic homeostasis.85 Dysfunction in adipogenesis, i.e. in
differentiation of preadipocytes, which are included
in ASPCs, to mature adipocytes can result in ectopic fat
deposition to other tissues, such as the liver and around
the heart, ultimately leading to the development of car-
diometabolic diseases, including MASLD.86 We found
that all 10 adipocyte and ASPC marker genes are DE
between human preadipocytes measured at the baseline
and differentiating adipocytes at the 7D time point, as
well as longitudinally measured at 6 time points
throughout adipogenesis, suggesting that these 10
genes may be directly or indirectly involved in adipo-
genesis or adipocyte functions. In addition, we found
that the WHRadjBMI GWAS cis-eQTL SNPs, rs2509963
and rs6866204, regulating the expression of ASPC
marker genes, AHNAK and SH3PXD2B, are located in
the chromatin regions that are differentially accessible
longitudinally throughout adipogenesis, suggesting that
the expression of these genes reflects chromatin acces-
sibility of their nearby cis-eQTL SNP regions.

In our knockdown experiment of SH3PXD2B, we
observed 330 DE genes at the 7D time point of human
adipogenesis. Notably, previous knockout experiments
in mouse have shown decreased abdominal adipose
tissue amount, decreased subcutaneous adipose tissue
amount, abnormal adipose tissue development, and
lipodystrophy with a knockout of Sh3pxd2b,72,73 and
decreased total body fat amount and decreased suscep-
tibility to diet-induced obesity with a knockout of
Ahnak.87 The Ahnak gene directly interacts with Smad1
on the Pparγ2 promoter, increasing the expression of
Pparγ2, an adipose tissue-specific isoform of Pparγ.88

Pparγ is a major regulator of adipogenesis promoting
genes.89 Thus, Ahnak is an important upstream regu-
lator of adipogenesis and is required to initiate differ-
entiation of mouse preadipocytes.89 Similarly, Sh3pxd2b
has been shown to play a role in the early stage of mouse
adipogenesis.88 In a previous study on adipocyte differ-
entiation of mouse mesenchymal stromal cells (MSCs),
impaired expression of Pparγ2 was observed by an
immunoblot analysis for MSCs using the Sh3pxd2b
encoded scaffold protein tyrosine kinase substrate with
4 SH3 domains (Tks4)knock-out mouse strain (Tks4−/
−).73 Thus, both AHNAK and SH3PXD2B seem to
impact adipogenesis via PPARG2 in mouse although
the exact role of SH3PXD2B and its underlying mech-
anism in human adipogenesis are not well known. In
line with the mouse knockout of Sh3pxd2b, we first
observed a disruption in differentiation of preadipocytes
to adipocytes in the knockdown of SH3PXD2B in hu-
man primary preadipocytes, with a marked decrease in
lipidation between the knockdown and control cells at
D7 of adipogenesis. Importantly, we also show that
knocking down SH3PXD2B significantly downregulates
AHNAK already at the 2D time point. Furthermore,
among the 19 TFs that were DE with the knockdown of
www.thelancet.com Vol 106 August, 2024
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SH3PXD2B, we observed downregulation of not only
PPARG,90 but also of a fatty acid master TF, SREBF191

and the TF TBX15, which we previously identified as a
master trans regulator of abdominal obesity genes.19 In
addition, the knockdown of SH3PXD2B downregulated
expression of central genes involved in biosynthesis and
regulation of fatty acids, such as ADIPOQ,92 DGAT2,93

FASN,94 GPAM,95 and LPL.96 The downregulation of
the ADIPOQ expression is further supported by the
significant decrease in the secretion of the adiponectin
protein we observed. Adiponectin is an adipokine
secreted by adipocytes, and it is well-known to have a
role in attenuating metabolic diseases.74 Recent studies
have suggested that adiponectin and its receptors in the
liver may mediate ameliorative effects in obesity-
induced MASLD, thus playing an important role in
the crosstalk between the adipose tissue and liver.97 We
found that the secretion of the adiponectin protein is
decreased in the SH3PXD2B knockdown cells, which
may just reflect the lower number of differentiating
adipocytes. Nevertheless, this initial observation war-
rants additional functional studies to further elucidate
the actual mechanism underlying this interesting link.

Interestingly, we observed a significant decrease in
the expression of DGAT2 when knocking down
SH3PXD2B during adipogenesis. DGAT2, which was
previously shown to be highly expressed in the adipose
tissue and liver,76 encodes an enzyme that catalyzes the
final step in triglyceride synthesis and has a regulatory
role in very-low-density lipoprotein (VLDL) production.98

A systemic DGAT2 inhibitor, together with a liver-
targeted ACC inhibitor, is now under clinical trials for
the treatment MASLD/MASH, which works by
reducing hepatic lipogenesis.75,76 However, in the 262
individuals with obesity from the KOBS cohort, we
observed a 166-fold higher expression of DGAT2 in
their adipose tissue than in their liver. We also observed
significantly higher adipose expression among the in-
dividuals with obesity diagnosed with steatosis, fibrosis,
or MASH by liver histology when compared to the
controls with obesity and healthy livers. The function of
DGAT2 in triglyceride synthesis and VLDL production
suggests that the observed increase in the adipose
expression of DGAT2 by the MASLD status might be
important either through responsive or causal mecha-
nisms for the accumulation of ectopic fat into the liver.
Given that the DGAT2 inhibitors under clinical trials
target DGAT2 systemwide,76 further studies evaluating
the impact and consequence of inhibiting DGAT2 in the
obese and non-obese adipose tissue are warranted. Our
study shows that the knockdown of another functionally
relevant adipocyte marker gene, PPP2R5A, in human
primary preadipocyte disrupts adipogenesis and de-
creases lipidation of differentiating adipocytes at D7.
The knockdown experiment also resulted in signifi-
cantly decreased expression of genes involved in
biosynthesis and regulation of fatty acids, such as
www.thelancet.com Vol 106 August, 2024
FASN,94 GPAM,95 and LPL,96 as well as in the expression
of the body weight regulator, LEPR.99 Previous studies
have shown PPP2R5A to be up-regulated during adi-
pogenesis in human mesenchymal stem cells100 and
associated with waist-adjusted BMI based on the Epi-
Xcan analysis that utilised genotype, transcriptomics,
and epigenetic data.101 The PPP2R5A gene encodes
phosphatase 2A (PP2A) regulatory subunit B56α protein
that binds to the LxxI/VxE motif of GSK3β and de-
phosphorylates the protein at Ser9, thereby increasing
its activity.102 During adipogenesis, GSK3β activity me-
diates phosphorylation of β-catenin, which in turn
blocks the Wnt activity and thereby drives adipocyte
differentiation.102

Among the remaining 7 of the 17 identified
WHRadjBMI genes, the cis regulatory variants of which
were included as IVs in our WHRadjBMI → MASLD
MR analyses, 4 are marker genes of macrophages
(GPCPD1, PDCD6IP, SNX10, ZZEF1), 2 are marker
genes of T cells (LITAF, PCNX), and 1 is a marker gene
of endothelial cells (ATP2B4). Notably, the T cell marker
gene LITAF encodes the lipopolysaccharide-induced
TNF-alpha factor that binds to the promoter region of
the TNF-alpha and mediates its expression.103 TNF-alpha
is an adipokine known to negatively regulate adipo-
genesis and induce insulin resistance,104 which suggest
that LITAF is an important upstream mediator of
adipogenesis. Overall, previous mouse studies found ev-
idence of obesity traits for 8 of the 17 genes that include
AHNAK,87 LHCGR,105 NF1,106 PDC6IP,107 PPP2R5A,102

SH3PXD2B,72,73 SNX10,108 and TSC22D1.109 Additionally,
PDE8B has previously been associated with monogenic
syndromic obesity in humans.110 Taken together, our
knockdown experiments in human primary pre-
adipocytes and the previous mouse studies suggest that
the WHRadjBMI GWAS genes we identified are func-
tionally important in human adipose tissue particularly
through adipogenesis and may determine body fat
composition in animal models. Thus, our data support
the conclusion that variant- and adipose cell-type-specific
functional changes of these WHRadjBMI GWAS genes
contribute to abdominal obesity.

Our study discovers an adipose gene signature of the
17 abdominal obesity genes for MASLD. This tran-
scriptomic signature of the 17 genes in adipose tissue,
captured by the first principal component from the
expression PCA, was significantly lower in individuals
with obesity and hepatic steatosis (MASLD) than
controls with obesity and healthy livers. We compared
the first PC of the adipose expression of the 17 genes
between the two groups as we expected to observe a
small difference or no difference between the two
groups at an individual gene level given that the
17 genes were identified as the abdominal obesity genes
in the adipose tissue with an indirect subsequent link to
MASLD via impaired adipose tissue function. Together
with our MASLD MR and gene knockdown analyses,
25
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this result suggests that this adipose gene signature
marks the component in abdominal obesity that ulti-
mately leads to hepatic fat accumulation via adipose
tissue dysfunction.

In line with the previous studies that observed a
putative causal effect of abdominal obesity, as measured
by WHRadjBMI, on MASLD13,78 by using all significant
(p-value<5 × 10−8) and independent WHRadjBMI
GWAS variants from the GIANT or GIANT-UKB meta-
analyses4 as IVs, we also repeated this possible causal
path from abdominal obesity to MASLD; however, we
observed significant heterogeneity by the Cochran’s Q
test in this overall MR analysis using all significant and
independent WHRadjBMI GWAS variants from the
GIANT-UKB meta-analysis4 as IVs. Our MR analysis
using only the 17 colocalized SNPs, that regulate the
abdominal obesity genes in adipocytes, was also able to
generate the same MR signal between abdominal
obesity and MASLD but without significant heteroge-
neity, thus showing a putatively more targeted direc-
tional effect of abdominal obesity on MASLD with an
adipose tissue and cell-type level biological origin.

We initially tested for reverse causal effect between
WHRadjBMI and MASLD using liver cell-type-aware
MASLD GWAS cis-eQTL SNPs as IVs and found no
significant directional effect of MASLD on
WHRadjBMI. However, as only one colocalized MASLD
GWAS signal and liver cell-type marker gene cis-eQTL
signal was found, we further tested for the reverse
causal effect using all MASLD GWAS variants48 as IVs.
Although we found a significant possible causal effect of
MASLD on WHRadjBMI, there was also significant
evidence for horizontal pleiotropy and heterogeneity in
this MR. A previous study,13 with only 1122 MASLD
cases, used a small set of MASLD GWAS SNPs (7 var-
iants in their study versus 19 in our study) as IVs and
found a causal effect of MASLD on WHRadjBMI
without evidence for horizontal pleiotropy and hetero-
geneity. However, based on their MR analyses and
transgenic mice models, expressing human PNPLA3
isoforms, that developed severe hepatosteatosis with an
increase in abdominal obesity and decreased in overall
body weight, Liu et al. proposed a phenotypic distinction
between the genetically driven NAFLD (“lipodystrophic
NAFLD”) that may be more likely to progress to “lean
NAFLD” vs metabolically driven NAFLD (“metabolic
NAFLD”) that is characterized by “obese NAFLD”.13 This
distinction supports the recent international efforts, re-
flected by the change of nomenclature from NAFLD to
metabolic-associated fatty liver disease (MAFLD)111 and
even further to MASLD,2 to emphasize the importance
of subphenotyping heterogenous groups of individuals
with fatty liver and metabolic dysfunction. It is recog-
nized that MASLD has complex causes that include in-
teractions of genetic predisposition with environmental
factors and metabolic dysfunction.111 This current study
and our previous MASLD GWAS study48 support the
importance of MASLD subphenotype grouping to better
elucidate the genetic MASLD risk and its relationship to
abdominal obesity and tissue and cell-type of origin at
the individual level. Our study also clearly indicates that
it would be important to focus on treating abdominal
obesity to prevent obesity-related MASLD, which com-
prises ∼60–80% of MASLD cases, depending on the
population.112

Our study has some limitations. We recognize that
visceral adipose tissue expression and fat mass may also
reflect the development of MASLD induced by abdom-
inal obesity. However, prior studies (reviewed in 113)
suggest that even though visceral adipose tissue is more
prone to insulin resistance with unrestrained lipolysis
and a pro-inflammatory profile than subcutaneous adi-
pose tissue, the high expandability capacity of subcu-
taneous adipose tissue can provide a critical adaptive
buffering mechanism against lipotoxicity, and thus
MASLD. An additional practical benefit of using sub-
cutaneous adipose tissue is that its biopsies are much
less invasive than the visceral ones, which require a
medically indicated surgical procedure. Thus, we used
the subcutaneous adipose tissue as a fat depot proxy for
abdominal obesity to search for a putative causal
relationship between abdominal obesity and MASLD.
Our results suggest that subcutaneous adipose tissue
provides a readily available, adequate fat depot proxy for
investigations of abdominal obesity by revealing an
adipose-origin biological origin of MASLD without
pleiotropy or heterogeneity.

The liver snRNA-seq cohort used in this study for the
identification of liver cell-type marker genes comprised
adjacent non-tumour liver biopsies from three females
with MASLD-related hepatocellular carcinoma (HCC)20.
All known main liver cell-types and their unique marker
genes114 were observed in these data. However, we
recognize that future larger studies generating human
liver snRNA-seq data from both sexes and MASLD may
provide additional liver cell-type marker genes that
might have been missed in this study.

We also recognize the possible limiting factor that
full differentiation of the SGBS cells takes 12–14
days.69,115 Our rationale to conduct the KD differentiation
experiments using the SGBS cells for only 7 days was
that we saw little to no change in gene expression of our
two KD genes, AHNAK and SH3PXD2B, between Day 7
and Day 14 (Fig. 4b–e) in the human primary adipocytes
that we did differentiate for 14 days. It also seemed that
most expression changes with the 10 adipocyte and
ASPC marker genes occurred during early adipogenesis
in this same 14-day differentiation experiment.
Furthermore, we observed disruption in lipidation of
the developing adipocytes in the SH3PXD2B- and
PPP2R5A-knockdown SGBS preadipocytes continuously
through the 7 days of differentiation. Overall, our results
from the 7-day differentiation experiment using SGBS
cells suggest that the knockdown of the two genes
www.thelancet.com Vol 106 August, 2024
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already impairs the initiation and early stages of
adipogenesis.

In summary, our study demonstrates that priori-
tizing adipose cell-type marker genes in colocalization
analysis identifies regulatory abdominal obesity risk
variants and their target genes with a cell-type-aware
functional role. We also show that using these cell-
type level regulatory eQTL WHRadjBMI GWAS vari-
ants as IVs in our MR analysis establishes a putative
tissue- and cell-type-of-origin causal effect of abdominal
obesity on MASLD, consistently by multiple MR
methods. Overall, our approach gains functional insight
into the adipose-origin MASLD, and the identified 17
cell-type-specific abdominal obesity genes provide
potential therapeutic targets for treating abdominal
obesity, thereby preventing obesity-driven MASLD.
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