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Abstract

Cancer genome characterization efforts now provide an initial view of the somatic alterations in 

primary tumors. However, most point mutations occur at low frequency. and the function of these 

alleles remain undefined. We have developed a scalable systematic approach to interrogate the 

function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 

tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 

transforming alleles including two in genes (PIK3CB, POT1) that have not been shown to be 

tumorigenic. One rare KRAS allele, D33E, displayed tumorigenicity and constitutive activation of 

known RAS effector pathways. By comparing gene expression changes induced upon expression 

of wild type and mutant alleles, we inferred the activity of specific alleles. Since alleles found to 
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be mutated only once in 5,338 tumors rendered cells tumorigenic, these observations underscore 

the value of integrating genomic information with functional studies.
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 INTRODUCTION

Describing the complete list of genes altered in cancer genomes has been a major goal of 

cancer research, with an expectation that identifying mutated cancer genes would elucidate 

the molecular basis of cancer and nominate potential therapeutic targets (1). Advancements 

in sequencing technologies have facilitated the initial description of the mutational landscape 

in many types of cancers (2, 3). Although these efforts have identified some new classes of 

oncogenes and tumor suppressor genes that occur at high frequency, the majority of 

somatically altered alleles are found at low frequency, making it difficult to differentiate 

functionally relevant alleles from neutral, passenger mutations (2). Computational 

approaches to predict the functional consequences of these low incidence point mutants are 

informative but require experimental and clinical validation (4).

Increasing numbers of cancers are now being sequenced in clinical settings, and in some 

cases this information directs therapeutic decisions (5–8). Although such efforts will 

facilitate recruitment to clinical trials of molecularly targeted agents, it is already clear that 

such efforts identify many somatically altered but unstudied alleles in known oncogenes and 

tumor suppressor genes as well as genes not previously implicated in cancer initiation or 

progression (6, 9). At present, such alleles are either classified as variants of unknown 

significance (VUS) or are not reported (10, 11).

Although the in-depth study of single genes will eventually provide functional information 

for these cancer-associated alleles, it is now possible to systematically study the 

consequences of expressing mutant alleles at scale. To determine whether the systematic 

characterization of cancer alleles provides functional insights, we generated a large number 

of alleles identified in cancer genome sequencing studies and assessed the consequences of 

expressing these alleles on tumor formation and gene expression (Fig. 1A). This approach 

provides a scalable method to characterize and assign function to a large number of alleles 

identified by cancer genome sequencing efforts.

 RESULTS

 Creation of a Pan-Cancer candidate cancer allele panel

To create a panel of cancer alleles, we first identified candidate cancer genes by running 

MutSig2CV (12, 13) on a collection of 5,338 tumors representing 27 cancers that had been 

subjected to whole exome or whole genome sequencing. Specifically, we prioritized genes 

by their p-value calculated from their individualized background mutation rate, which was 

determined by considering covariates such as gene expression level and DNA replication 

timing (12). These analyses identified 381 genes, 220 of which (58%) templates were 
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present in the hORFeome 8.1 collection of cDNA clones (14) (Supplementary Table S1). We 

selected 696 mutant alleles for reagent generation by considering local mutational density 

and evolutionary conservation (described in Methods). Of the 220 alleles for which we had 

templates, we generated 187 wild type alleles and 474 of the 696 nominated mutated alleles 

(68%, 178 genes). In addition, we constructed and included a set of 232 ORFs with known 

functions as well as 24 control ORFs. These alleles were introduced into uniquely barcoded 

lentiviral vectors. In total, this collection included 1163 ORFs (Methods; Supplementary 

Table S2).

The majority of the 474 mutant alleles were infrequently mutated in human cancers. 

Specifically, 350 (73.8%) of the mutant alleles were found only once, and 12.0%, and 4.9% 

of the alleles were found twice and three times, respectively (Fig. 1B). We noted that as the 

frequency of an allele increased, that allele was more likely to be found in multiple lineages 

(Fig. 1C). These observations suggest that testing these alleles in a single cell context may 

provide generalizable information.

 High-throughput identification of transforming alleles in vivo

The assessment of tumor formation potential in mice is a widely used method to assess 

transforming function of specific alleles. We created a high-throughput platform to 

determine whether specific cancer-associated alleles induce tumor formation. For these 

studies, we used the genetically defined, immortalized human embryonic kidney cell line, 

HA1E (15), and a HA1E variant expressing an activated MEK1DD allele (HA1E-M) as 

model systems. HA1E-M cells are primed for cell transformation and have been previously 

used to identify genes involved in cell transformation (16, 17). We expressed each of the 474 

alleles in HA1E-M cells and then used an in vivo pooled strategy to assess the tumorigenic 

potential of each allele (Fig. 2A).

Based on optimization experiments, we placed all 474 alleles into seven different pools 

(Pool 1–7) and segregated known oncogenic alleles into Pool 1, to reduce the possibility that 

known transforming alleles would dominate tumor formation and mask weaker oncogenic 

alleles. Pool 8 is a biological replicate of Pool 1. We scrambled alleles in Pool 2–7 into Pool 

9–14 to create an additional set of pools, to give each allele two different sets of pool 

neighbors to increase sensitivity. The pool composition is described in Supplementary Table 

S3. We transduced each of the alleles into HA1E-M cells in an arrayed format, then pooled 

and expanded cells for tumorigenicity studies (Fig. 2A; Methods). Barcode sequencing of 

ORFs confirmed that nearly all of the alleles were represented upon implantation, although 

we noted that the representation of the alleles was not equal, likely due to the differences in 

viral titer because of differences in the length of each ORF and nucleotide composition 

(Supplementary Fig. S1A–S1D).

Pools consisting of known cancer alleles (Pool 1 and 8), formed tumors within 1–2 weeks 

(Fig. 2B), and all eight mice in these pools were sacrificed by week 3. Pool 7 and 14, 

experimental pools with a total of 110 unique alleles, failed to form any tumors after 18 

weeks, confirming previous works showing that the background rate of tumor formation is 

low in this experimental model (16, 17) (Fig. 2B). We harvested 69 tumors from 168 
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implantation sites and quantified the barcodes associated with each ORF by PCR 

amplification and sequencing (Methods; Supplementary Table S4A–S4N).

We observed that tumors derived from pools 1 and 8, which were composed of known 

oncogenic alleles, repeatedly demonstrated a similar pattern of allele representation, mainly 

composed of NRAS and KRAS alleles (Fig. 2C). In contrast, we found that tumors derived 

from other experimental pools showed a wide diversity of allele representation. Some pools 

contained a single dominant oncogenic allele while others included several oncogenic alleles 

(Fig. 2D, E, F). Certain alleles, such as KRASD33E, were found enriched in all tumors in 

which they were assessed; we labeled these alleles as highly penetrant (Fig. 2G). Other 

alleles such as POT1G76V were less penetrant but they were highly enriched in a few tumors 

(Fig. 2E, G). We considered alleles that were found at more than 1% in at least two tumors 

or more than 90% in at least one tumor to have scored. KRASA59G, AKT1L52R, AKT1Q79K, 

NFE2L2G31R, NFE2L2WT, PIK3CBE497D, FAM200AS481N alleles also scored in the pooled 

screen (Fig. 2G; Supplementary Fig. S2A–S2H).

The pooled nature of the screen forces competition among alleles in the same pool. For 

example, Pool 1, only eight alleles out of 77 were represented at 1% or higher in tumors and 

when lower threshold of 0.01% was applied, 24 alleles met the cutoff (Supplementary Table 

S4C). Known oncogenic alleles such as AKT1E17K failed to score due to competition, even 

though this allele is known to transform in this cell context (17). Nevertheless, these 

observations allowed us to identify a subset of somatically altered alleles that induce tumor 

formation in this context.

 Gene expression correlation analysis differentiates allele function

In parallel to testing the tumorigenic potential of each allele in vivo, we created expression 

signatures for each of these alleles by expressing the 1163 constructs in HA1E cells (15). We 

selected this cell line since established cancer cell lines harbor many genetic alterations, 

which could confound the interpretation of expressing each allele. We decided to use HA1E 

cells, and not HA1E-M cells, which was used in the in vivo screen, to eliminate the 

contribution of an overexpressed MEKDD allele. We measured transcript levels of 978 

landmark genes using the L1000 Luminex bead-based gene expression assay (18) 

(Methods). Using the normalized gene expression change induced by each overexpressed 

allele, we calculated the pairwise Spearman correlation coefficient of all the alleles included 

in the study (Fig. 3A). We excluded alleles with low infection efficiency (less than 40%), 

allowing us to assess 1036 perturbations (Methods; Supplementary Table S5).

Using the pairwise Spearman correlation coefficient between every pair of alleles included 

in the study, we first examined whether we could detect known relationships. For instance, 

we found that the expression relationship of KRASG12V, a well-known gain-of-function 

mutant of KRAS, correlated highly with other known oncogenic KRAS and NRAS mutants 

(Fig. 3B). Other known oncogenic alleles such as AKTE17K did not correlate with the KRAS 
signature, demonstrating that this correlation was not simply the consequence of a pro-

survival signal induced by an oncogenic allele. Novel alleles of KRAS, D33E and E62K 

correlated less strongly to known KRAS activating mutants but were clearly differentiated 

from the wild type alleles, suggesting they may be activating mutants (Fig. 3B). In addition, 
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when we examined NRASQ61H, a known activating mutant of NRAS, we found that this 

allele was highly correlated with other oncogenic NRAS mutants, but that the novel Y64D 

allele was more similar to the wild type NRAS allele suggesting that this allele is likely to be 

a passenger allele (Fig. 3C). Indeed, Y64D did not score in the pooled in vivo screen.

In addition to oncogenic RAS alleles, we also found a correlation among activating 

mutations for other known oncogenes such as IDH1/2 (Fig. 3D). Specifically, we found that 

other known gain-of-function mutants IDH2R172M, IDH1R132C, IDH1R132S, IDH1R132H and 

IDH1R132L were highly correlated to the known gain-of-function mutant IDH2R172K (19). 

On the other hand, the IDH1 E190K and P33S alleles and the IDH2 G137E, E268D, A416V, 

A47V, T331M, and I138F alleles failed to correlate to known activating mutants, suggesting 

these alleles were more similar to the WT allele (Fig. 3D).

Next, we investigated PTEN, a commonly mutated tumor suppressor gene, whose loss of 

function leads to constitutive activation of the phosphatidylinositol-3-kinase (PI3K) 

signaling pathway (20). Among the eight PTEN alleles included in this study, F90S, R233Q, 

K6N, and R173H correlated with the signature induced by overexpressing wild type PTEN, 

suggesting that these alleles did not completely inactivate PTEN function (Fig. 3E). F90S 

mutant was recently shown to retain lipid phosphatase activity but was unable to translocate 

to the plasma membrane (21). R233Q may also affect localization (22). The R173H variant 

was previously reported to lack phosphoinositide phosphatase activity (23), but its effect was 

later reported to be less severe (24). Our data supports the notion that R173H retains residual 

PTEN function. In contrast, a known loss-of-function, dominant interfering allele (G129E) 

(25, 26) failed to correlate with the wild type allele. We also found that signatures from the 

G129V, G127V and G127R alleles were clearly distinct from the wild type allele and 

moderately correlated to G129E (Supplementary Fig. S3A, S3B), suggesting that these 

alleles are also likely to be loss-of-function variants. Other alleles that activate PI3K 

signaling (AKT1E17K) were anti-correlated with wild type PTEN (Fig. 3E).

We used a similar approach to differentiate several alleles of SPOP, a gene mutated in 

prostate and endometrial cancers (27, 28) (Fig. 3F). Specifically, we found that the W131G, 

F133S, K134N, and W131C alleles strongly correlated with F102C, a known loss-of-

function, dominant negative variant (29, 30), but that the WT, K101I, E50K, and E47A did 

not correlate with the F102C allele. Codons F102, W131, F133 and K134 are mutated 

mostly in prostate cancers and E47 and E50 are altered in endometrial cancers (27, 28, 31). 

Recently, SPOP was shown to induce ubiquitination and degradation of androgen receptor 

and ERG in prostate cancer and estrogen receptor-α in endometrial cancer, but the SPOP 

mutants were impaired in this ubiquitination activity (29, 30, 32, 33). When we looked for 

alleles correlated to the E50K, loss-of-function allele in endometrial cancer (32), E47A was 

highly correlated, suggesting that this allele may also be a loss-of-function allele 

(Supplementary Fig. S3C). Gene expression signatures of E47 and E50 variants clustered 

with that of wild type but were distinct from F102, W131, F133 and K134 variants 

(Supplementary Fig. S3D). These findings suggest that gene expression analysis may allow 

nuanced interpretation of loss-of-function alleles that are associated with specific context. 

Since missense mutations in tumor suppressor genes tend to occur throughout their coding 

sequences, it is often difficult to differentiate functional from nonfunctional mutations by 
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inspecting of the mutations or their frequency. Examining gene expression changes induced 

by these mutations may facilitate the classification of missense mutant alleles.

We also examined which of the included alleles correlated with the proto-oncogene MYC, a 

commonly amplified oncogenic transcription factor (34). The most positively correlated 

allele in our dataset was wild type BRD4, which is a transcriptional activator of MYC (Fig. 

3G) (35). BRD4 has been shown to regulate MYC transcription, and pharmacologic 

modulation of BRD4 inhibited proliferation in MYC-dependent cancers (35). We found that 

the FBXW7 wild type, R658Q, I347M, R689Q, and S462Y alleles were anti-correlated to 

wild type MYC (Fig. 3G). FBXW7 is the substrate recognition component of the SCF 

ubiquitin ligase targeting MYC (36), suggesting that these four alleles do not affect FBXW7 

function. In contrast, we found that the known dominant interfering alleles, FBXW7 R505C, 

R465C, and R465H (37, 38), were anti-correlated to wild type FBXW7, in consonance with 

the interpretation that these alleles inhibit endogenous wild type FBXW7 (Supplementary 

Fig. S3E).

 Validation of rare oncogenic alleles

To validate the tumor formation of rare alleles, we performed individual tumorigenicity 

experiments with the candidate oncogenic alleles and their allelic series (Fig. 4A–D; 

Supplementary Fig. S4A–S4C). We defined tumorigenic allele in as an allele that formed 

any tumor larger than 500 mm3 by 130 days. We validated that AKT1L52R, NFE2L2G31R, 

POT1G76V, KRASD33E, and KRASA59G were tumorigenic. In addition, some alleles that did 

not score in pooled screen formed tumors in individual experiment including KRASE62K, 

PIK3CBA1048V, NFE2L2G31A, NFE2L2G31V, NFE2L2N160S, AKT1E267G and AKT1R370C.

We found that the KRASD33E and KRASA59G alleles were potently tumorigenic, while the 

KRASE62K allele induced tumor formation at much longer latencies (Fig. 4A). When we 

mapped the KRASD33E, KRASE62K, and KRASA59G on the KRAS structure (39), we found 

that these mutations occur in close proximity with known transforming alleles (Fig. 4E). 

Cells expressing KRASD33E and KRASA59G showed increased activation of the MAP kinase 

and PI3K pathways as assessed by phosphorylation of specific effectors and a RAF binding 

domain pull down assay (Fig. 4F, G). These observations suggest that these rare KRAS 
alleles are indeed oncogenic.

When we examined the NFE2L2 allelic series, we found that the G31R, G31V, G31A, and 

T80K alleles robustly formed tumors (Fig. 4B), while the N160S allele formed small tumors 

at a much later time point. We note that expression of wild type NFE2L2 induced the 

formation of a single tumor formation at long latency. Tumor formation by NFE2L2 wild 

type overexpression was also observed in the pooled screen (Supplementary Fig. S2C, S2G). 

In consonance with these observations, we found that tumorigenic NFE2L2 mutants were 

expressed a higher levels, likely due to defective degradation by endogenous KEAP1 (Fig. 

4H, I). Gene expression analysis of NFE2L2 mutants showed a similar gene expression 

pattern to that of wild type, presumably because overexpression of the wild type allele 

induced similar gene expression changes as did the overexpression of gain-of-function 

mutants in the short term gene expression assay (Supplementary Fig. S5). These 

observations demonstrate that the in vivo tumorigenicity assay differentiates gain-of-
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function mutants even when we were unable to detect a difference in short term in vitro gene 

expression assays.

In individual tumor assays, PIK3CBE497D showed delayed tumor formation, similar to what 

we observed when we expressed the wild type PIK3CB (Fig. 4C), implying that E497D is a 

passenger mutation. Wild type PIK3CB was previously shown to induce foci in a foci 

formation assay (40). PIK3CBA1048V, on the other hand, induced tumors in the majority of 

replicates with shorter latency, demonstrating that PIK3CBA1048V is a transforming gain-of-

function mutant. In the POT1 allelic series, we noted that only POT1G76V formed tumors in 

individual tumor experiments after long latency (Fig. 4D). POT1 was recently shown to be 

mutated in familial melanoma (41, 42), chronic lymphocytic leukemia (43), familial glioma 

(44), and cardiac angiosarcoma (45). In particular, the Y89C, Q94E, R273L, Y223C, and 

S270N alleles were previously shown to be loss-of-function alleles, resulting in elongated 

telomeres and increased genomic instability (41, 42). These observations suggest that 

POT1G76V may also contribute to cell transformation through a similar mechanism.

Although some of the alleles that we found induced tumor formation were recurrently 

observed in particular human cancer types, we noted that many of the alleles that we found 

were able to induce tumor formation, including KRASD33E, KRASE62K, NFE2L2G31R, 

NFE2L2G31V, NFE2L2N160S, POT1G76V and PIK3CBA1048V, were found to be mutated 

only once in our set of 5,338 tumors. These observations demonstrate that rare alleles may 

be functionally important in tumorigenesis.

To investigate whether high throughput functional phenotyping complements in silico 
predictions, we compared our observations pertaining to 71 alleles analyzed herein to four 

different in silico methods, Polyphen2 (46), Mutation Assessor (47), CHASM (48), and 

VEST (49). Each of these methods makes predictions about whether a mutation is likely to 

affect protein function but does not attempt to predict whether the mutation induces gain or 

loss of function. To compare these approaches, we used the term “functional variant” to 

denote both gain-of-function and loss-of-function alleles (50) and “neutral variant” for all 

other alleles. The concordance rates between each of these methods and our approach 

ranged from 66% to 77% (Methods; Supplementary Table S6; Supplementary Fig. S6A, 

S6B), suggesting that gene expression comparisons provided additional information about 

gene function. For example, Polyphen2 and CHASM predicted that SPOPK134N was likely 

to be a functional variant while Mutation Assessor and VEST assessed this to be a neutral 

variant. We found that the gene expression of SPOPK134N correlated with that of 

SPOPF102C, providing evidence that this allele is a functional variant. Together, these 

observations suggest that the experimental characterization of alleles complements in silico 
methods.

 DISCUSSION

Cancer genome sequencing projects have already identified thousands of variants of 

unknown significance, and this number is likely to increase rapidly as more tumors are 

sequenced. Here we report a pilot study to facilitate functional characterization of these 

alleles by creating a large number of cancer-associated variants and testing them in two 
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phenotypic assays. Using an in vivo tumorigenesis assay and gene expression profiling, we 

identified a subset of these variants that exhibit tumorigenic phenotypes and induced 

changes in gene expression different from that of wild type or known gain-of-function 

counterparts. This study provides proof of principle evidence that large-scale mutant 

characterization is both tractable and provides new information about the functional 

relevance of many alleles.

We recognize that these studies are not exhaustive. For example, we performed all 

experiments using immortalized kidney epithelial cells, thus limiting those genes that are 

potentially transforming in a specific tissue context. In addition, the tumorigenesis assay we 

used here does not assess all tumor-essential phenotypes, and this experimental design does 

not permit the discovery of loss-of-function tumor suppressor alleles. For example, alleles 

involved in metastasis, angiogenesis, immune response, and splicing changes may not score 

in this assay. Weaker transforming alleles may be masked by stronger oncogenic alleles in 

the pooled format used in these experiments, and it is possible that there are both productive 

and inhibitory interactions between cells harboring different alleles. Furthermore, alleles that 

affect pathways that were already perturbed in our engineered system, which include 

inhibition of TP53 and RB as well as hTERT and MEKDD overexpression, are not likely to 

be discovered in this context. Also, in cases where presumable mechanisms involve 

stochastic accumulation of mutations over long time periods, as in the case of genes involved 

in genomic instability such as POT1, these genes may not reliably score in this context. 

However, considering the very low background tumor formation rate in this assay, even a 

single instance of tumor formation lends support for future studies. As such, this approach 

provides a powerful paradigm to discover functionally relevant rare alleles that may 

otherwise not be considered for functional studies due to their rarity. Further studies such as 

those described herein using similar approaches in other genetic and lineage contexts will 

facilitate the comprehensive discovery of transforming alleles.

Using gene expression signatures generated by expressing wild type or mutant alleles, we 

found that some PTEN, FBXW7, NRAS, IDH1/2, and SPOP alleles resembled the wild type 

alleles or known functional variants, suggesting that these alleles are functionally similar to 

those alleles. On the other hand, in oncogenes such as NFE2L2, we found that gain-of-

function mutants induced similar gene expression signatures as the wild type allele. This 

observation suggests that some truly transforming alleles may not score in the short term in 
vitro gene expression assay. Furthermore, for genes whose mechanism of action involves 

longer-term processes such as DNA repair, the acute effect of overexpressing alleles may not 

be reflected in gene expression changes. Combining expression profiling with tumor 

formation or other phenotypic experiments may provide complementary information in these 

cases.

Using the in vivo tumorigenesis assay, we identified rare mutants with transforming 

function, such as KRASD33E. As this variant was identified only once in the cohort of 5,338 

tumors, a large number of tumors would need to be sequenced before the frequency of this 

allele reached statistical significance. As KRAS mutational status is already used in 

directing therapeutic decisions (51), this observation demonstrates the importance of 

studying rare alleles for accurate patient stratification. PIK3CBA1048V and POT1G76V were 
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also rare alleles that were found only once in our cohort. PIK3CB was recently shown to be 

mutated in prostate cancer (52), and computational analysis using network mutation burden 

nominated PIK3CB to be a significantly mutated gene (53). Although further studies are 

required to elucidate the mechanisms by which PIK3CBA1048V and POT1G76V contribute to 

malignant transformation, this study provides evidence that these alleles are indeed 

transforming alleles.

In this study, we focused on alleles that have been identified in cancer genome sequencing 

efforts. An alternative approach would be to create a set of alleles where each amino acid is 

substituted to prospectively identify alleles that alter wild type gene function and to 

interrogate the relationship among evolutionary conservation, gene function and prevalence 

of mutations in tumors. Although this type of study is not yet feasible at the scale presented 

here, our studies suggest that expanding the number of alleles in genes will provide useful 

information. We acknowledge that arbitrarily limiting the number of alleles per gene, 

especially in known cancer genes, excluded some well-studied alleles. Including additional 

criteria, such as 3D spatial clustering (54), may increase the sensitivity of discovering 

functional alleles. Expanding the number of alleles in genes, especially those already used in 

clinical decision-making, is also desirable. Furthermore, high throughput adaptation of other 

functional assays, such as experiments that quantify morphologic changes as well as 

proteomic and epigenetic differences will expand our knowledge of the functional 

consequences of mutant alleles.

In summary, these studies demonstrate that systematically performing functional assays 

complements the structural information gathered from the sequencing efforts to accelerate 

the interpretation of cancer associated variants. We anticipate that as additional tumors are 

characterized in both research and clinical settings, additional cancer associated genes and 

alleles will be identified, and the approach described here can be useful to ascertain the 

function of these alleles. Using diverse cellular backgrounds and different phenotypic assays 

will also increase the power to detect functional variants and reduce false negatives. As more 

functional data become available, we may also be able to gain insights on empirically 

improving the accuracy of mutation impact calling algorithms by incorporating information 

from high confidence functional data. This iterative process between functional and 

structural genomics will synergistically facilitate the complete description of cancer-

associated mutations.

 Methods

 Mutated gene curation

271 mutated genes were called from the analysis of 5,338 tumor normal pairs by running 

MutSig2CV and setting the q-value cutoff at 0.1. The algorithm was described previously 

(13). 13 genes were manually added (PIK3C2G, PIK3R2, PIK3CG, PIK3C2B, PIK3CB, 

PIK3C2A, PIK3R4, BCL2, BCL3, BCL6, BCL9, BCOR, ISX). 49 likely false positive 

genes (genes with high background mutation rate) and 48 randomly chosen, likely neutral 

genes, were added. Total of 381 genes were selected for the project. 220 of these genes had 

matching template in the hORFeome 8.1 collection and these were used for subsequent steps 

(Supplementary Table S1).
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 Selection of alleles from significantly mutated genes

For each missense mutation, “priority” was calculated, which was defined as “density” 

(local concentration of mutations) multiplied by conservation.

Mutation density was calculated by counting the number of mutations in 20 bp window, with 

the allele of interest at the center of the window. Conservation was calculated by using 

phyloP (55), which scores evolutionary conservation from sequence alignment of 46 

vertebrates. Conservation values were scaled linearly to range from 0 to 100.

We chose an allele by taking the highest-priority mutated allele. The same procedure was 

repeated until we selected as many alleles as desired. The number of alleles selected for each 

gene was decided by the number of times the gene was mutated in patients.

1. If a gene was mutated in 120 patients or more, then 8 alleles were chosen.

2. If a gene was mutated in 100 patients or more, then 7 alleles were chosen.

3. If a gene was mutated in 80 patients or more, then 6 alleles were chosen.

4. If a gene was mutated in 70 patients or more, then 5 alleles were chosen.

5. If a gene was mutated in 60 patients or more, then 4 alleles were chosen.

6. If a gene was mutated in 50 patients or more, then 3 alleles were chosen.

7. If a gene was mutated in 30 patients or more, then 2 alleles were chosen.

8. Otherwise, one allele per gene was chosen.

For HRAS, SPOP, MAP2K1, B2M, AKT1, RHOA, IDH1, and IDH2, 8 alleles were chosen.

For genes with one or two alleles selected, we considered all the mutations as ‘experimental’ 

alleles. For genes with three or more alleles selected, we selected one allele that we 

predicted to be less likely to be functional as a ‘control’ allele. The other alleles were 

considered ‘experimental’ alleles. The ‘control’ allele was chosen as an internal control that 

is less likely than the ‘experimental’ alleles to be functional. The ‘control’ alleles were 

chosen by the following criteria.

1. Remove any positions that were chosen above.

2. Remove any mutations with conservation above a threshold of 60.

3. For the remaining mutations, define controlpriority = (100 - conservation) / (# 

of times that exact mutation occurs)^2.

4. Add a bonus for mutations that are close to the first or second mutations 

chosen above. If distance between first or second experimental allele and the 

control allele was less than one fifth of the total gene length, bonus of 20 was 

given. If distance between first or second experimental allele and the control 

allele was less than one third of the total gene length, bonus of 10 was given.
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5. Choose the mutated allele with the highest controlpriority + bonus.

All selected alleles are shown in Supplemental Table S1.

 Barcoded mutant allele generation in lentiviral vectors

We used a previously published method to perform high-throughput mutagenesis (56). 

Briefly, each ORF was PCR amplified by using primers that contain mutated sequence 

incorporated. These fragments were transferred to pDONR223 vector (Invitrogen) through 

BP cloning (Invitrogen) and the constructs were transformed into competent cells. The 

discontinuity at the mutation introduction site was repaired by endogenous bacterial repair 

mechanism. The mutated ORF was transferred to the barcoded destination vector by LR 

reaction (Invitrogen).

 Lentivirus generation

Virus were prepared according to the RNAi Consortium (TRC) virus protocol.

 Cell lines

HA1E-M and HA1E cell lines were established in our laboratory and were authenticated by 

using Fluidigm-enable genotyping assay that queries a set of 96 single nucleotide 

polymorphism (SNP) markers. Both cell lines were cultured in MEM-alpha (Invitrogen) 

with 10% FBS (Sigma-Aldrich) and 1% penicillin/streptomycin (Gibco) supplementation. 

Both cell lines tested negative for mycoplasma.

 Multiplexed in vivo screening

All animal experiments were approved by the Institutional Animal Care and Use Committee 

at the Dana-Farber Cancer Institute. To determine whether the number of cells transduced 

with a particular allele in a pool of ~80 alleles was sufficient to form tumors, we performed 

serial dilution and subcutaneous injection with activating KRAS allele, G12V, and found 

that cells diluted to a representation of 1/96 dilution (approximately 20,000 cells) formed 

tumors in all injection sites. For the screen, 2,500 HA1E-M cells were plated in 100 ul of 

media per well in a 96-well plate on day 1. On day 2, polybrene was added to a final 

concentration of 4 ug/ml and 12 ul of arrayed viral supernatant was added to the target cell 

plates. Plates were spun at 2,250 rpm for 30 min at room temperature. After 4 hours, media 

was changed. After 18 hours, puromycin was added to a final concentration of 2ug/ml. After 

48 hours of puromycin selection, cells were trypsinized and pooled. 96 wells were combined 

into one pool per pool composition (Supplementary Table S3). Cell pellets were taken 

immediately after pooling (called “pre-expansion”), and also on day 15 to use as a reference 

points for future analysis. Transduced HA1E-M cells were propagated for 15 days to obtain 

at least 60 million cells per pool. More than 90% of the ORFs in each pool were represented 

at 0.01% of the injected cell population (Supplementary Fig. S1C, S1D). We note that alleles 

with even lower representation, such as NFE2L2G31R, which represented 0.0089% of the 

cells in pre-injection cell pellet of Pool4, formed multiple tumors.

On day 15, cells were trypsinized, washed, and counted (called “pre-injection”). Five million 

cells were prepped in 200ul of PBS per injection site, except pools 2 and 11, for which 4 
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million cells were prepped per site. Three sites—inter-scapular area, right and left flanks—

were injected in each mouse and four mice were injected per pool (12 sites per pool). Mice 

were monitored for tumor formation and the longest dimension of each tumor was 

measured. Tumors were harvested when they reached around 2cm. The tumor tissue was 

finely minced and subjected to genomic DNA extraction with Qiagen DNeasy blood and 

tissue kit. 1ug of genomic DNA was subjected to PCR amplification for barcode de-

multiplexing by sequencing. To amplify the barcodes with Illumina sequencing primer 

integrated, following primers were used (different sequence components are demarcated by 

“<>”):

P5 ORF primer:

<P5 flow cell attachment sequence><Illumina sequencing primer><Vector primer 

binding>

<AATGATACGGCGACCACCGAGATCT><ACACTCTTTCCCTACACGACGCT

CTTCCGATCT[s]><TCTT GTGGAAAGGACGA>

P7 ORF primer:

<P7 flow cell attachment sequence><Barcode><Illumina sequencing 

primer><Vector primer binding>

<CAAGCAGAAGACGGCATACGAGAT><NNNNNNNN><GTGACTGGAGTT

CAGACGTGTGCTCTTCCG ATCT><TAAAGCAGCGTATCCACATAGCGT>

Upon amplification, the PCR products were purified with AMPure beads and subjected to 

Illumina sequencing. On average, 1.6 million reads were obtained per tumor.

 In vivo screening analysis

The barcode reads were de-multiplexed by custom scripts. Less than 1% of contaminating 

reads (barcode reads that do not belong to the specific pool) were found and removed. The 

rest of the reads were normalized by dividing the number of reads by the total number of 

reads from the tumor. Penetrance was calculated by (number of times in which specific 

allele was represented at more than 0.01%) / (number of times that allele was injected). 

Since the mouse needs to be sacrificed when the biggest tumor reaches certain diameter per 

protocol, not all three sites per mouse were observed for full 18 weeks. Maximum 

enrichment was calculated by (maximum percentage of tumor reads each allele accounted 

for) – (percentage of that allele in pre-injection cell pellet). We defined “scoring allele” as an 

allele that was found at more than 1% in at least two tumors or more than 90% in at least one 

tumor.

 Expression profiling using L1000

L1000 is a high-throughput, bead-based gene expression assay in which mRNA is extracted 

from cultured human cells treated with various chemical or genomic perturbagens (small 

molecules, gene knockdowns, or gene over-expression constructs). HA1E cells were plated 

at 400 cells per well in 384 well plates. The next day cells were transduced with 3 μl of 

lentiviral supernatant by spin infection. Infections were performed in 5 replicates, 2 of which 
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were used to assess infection efficiency and the remaining 3 for gene expression profiling. 

Following 24-h incubation, media and virus were removed and replaced with complete 

growth media or media containing antibiotics (for infection efficiency calculation). Cell 

plates used for gene expression analysis were not selected to reduce the effect of antibiotics 

on the gene expression. 96 hours after infection, cells were lysed with addition of TCL 

buffer (Qiagen) and incubated for 30 minutes at room temperature. mRNA is reverse-

transcribed into first-strand cDNA. Gene specific probes containing barcodes and universal 

primer sites are annealed to the first strand cDNA. The probes are ligated to form a template 

for PCR. The template is PCR amplified with biotinylated universal primers. The end 

products are biotinylated, fixed length, barcoded amplicons. The amplicons are then mixed 

with Luminex beads that contain complementary barcodes to those encoded in each of the 

978 amplified landmark genes. These beads are then stained with fluorescent streptavidin-

phycoerythrin (SAPE) and detected in 384 well plate format on a Luminex FlexMap flow 

cytometry-based scanner. The resulting readout is a measure of mean fluorescent intensity 

(MFI) for each landmark gene. The raw expression data are log2-scaled, quantile 

normalized, and z-scored, such that a differential expression value is achieved for each gene 

in each well. These differential expression values are collapsed across replicate wells using a 

weighted average to yield a differential expression signature for each perturbagen. Each 

replicate is weighted according to its correlation with the others. These signatures were used 

for subsequent analysis. Detailed protocol is available at LINCS website.

 Gene expression correlation analysis

Each normalized gene expression data was filtered by infection efficiency, which was 

calculated by dividing cell viability after antibiotic selection with cell viability without 

antibiotic selection by CellTiter-Glo Luminescent Cell Viability Assay (Promega). Viability 

was assessed 96h post-infection. 40% infection efficiency was used as cutoff to filter 

inadequately transduced alleles. 1036 gene expression signatures were Spearman correlated 

with gene expression signature of all other ORFs. “cor(method=”spearman”)” function in R 

was used for Spearman correlation coefficient calculation (57). Negative controls (BFP, 

eGFP, HcRed, LacZ, Luciferase), L1000 expression plate controls (NFE2L2, RHEB, 

NFKB1A, DNMT3A) were also included. After pairwise Spearman correlation, alleles at 

the extreme ends of the spectrum were manually curated to find alleles that are consistent 

with previously known relationship.

 Stable cell line generation for validation

For individual validation experiments, the same vector used for the pooled screen was used 

to generate lentiviruses. 80,000 293T cells were plated in one well of 6-well plates. Delta8.9 

(900ng), vsv-g (100ng), the ORF vectors (1ug) were transfected in 3ul of TransIT-LT1 

Transfection Reagent (Mirus Bio). The viral supernatant was collected after 48 hrs and was 

frozen at −80C until use. HA1E-M cells were plated in 6-well plate at 100,000 cells per 

well. HA1E-M cells were transduced with 300ul of viral supernatant in 8ul/ml polybrene 

and were spin-infected at 2250rpm for 30 minutes. The next day, the media was changed to 

selection media (puromycin 2ug/ml). After 48 hrs of selection, cells were cultured in 

puromycin free MEM-alpha complete media (Invitrogen).
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 Screen validation

Six-week old male homozygous NCR-Nu mice (Taconic) were used for xenograft 

experiments. HA1E-M cell lines stably expressing individual candidate alleles were injected 

at two million cells per site, except for NFE2L2 alleles, which were injected at one million 

cells per site. Each stable cell line was injected at three sites per animal, and into two 

animals, with the total of six sites per cell line. Tumor formation was monitored using 

calipers twice weekly for 130 days (or 106 days for ERBB2 alleles). Tumor volume was 

calculated as ((tumor length)*(tumor width)^2))/2. We defined scoring allele in validation 

experiment as an allele that formed any tumor larger than 500 mm3 by 130 days.

 KRAS structure analysis

KRAS mutations of interest were overlaid onto the structure of the protein product (PDB: 

4EPV) and visualized the structure using PyMOL (The PyMOL Molecular Graphics 

System, Version 1.7.4 Schrödinger, LLC.).

 Immunoblots

Protein lysates were resolved on 7.5, 4–12, or 8–16% polyacrylamide SDS gels (Bio-Rad), 

transferred onto nitrocellulose membranes (Bio-Rad) using standard wet-transfer 

procedures, and incubated with primary antibodies as indicated. All immunoblot assays were 

visualized using a LI-COR Odyssey infrared imager. The following antibodies were used: 

KRAS (Proteintech Group 12063-1-AP), RAS (CST 3965), RAS (clone 10, EMD Millipore 

05-516), pERK (CST 4370), ERK (CST 9102), pAKT (S473, CST 4060), a-tubulin (Sigma 

Aldrich, clone DM1A, T9026), NRF2 (CST 12721), and NRF2 (R&D Systems AF3925) 

(CST: Cell Signaling Technologies). Secondary anti-rabbit and anti-mouse IRDye antibodies 

were from LI-COR Biosciences.

 RAS activation assay

Ras activation assays were performed according to the manufacturer’s protocol (Millipore 

17–218). In brief, cells were cultured on 6-well dishes and harvested for lysates. A sample of 

each lysate was saved for input (total Ras load) and the remaining lysate was rocked with 

glutathione-sepharose 1:1 Raf-RBD slurry in lysis buffer for 1 hour at 4°C. The beads were 

then washed three times with ice-cold lysis buffer, followed by addition of Laemmli/SDS 

buffer to elute the bound proteins. The Ras-GTP pull-down samples were loaded and 

resolved on 12% polyacrylamide SDS gels (Bio-Rad).

 Quantitative real-time PCR (qPCR)

RNeasy kit (Qiagen) was used to purify total RNA from cells and cDNA was generated 

using Superscript III Vilo (Life Technologies). Quantitative real-time PCR was performed 

using SYBR reagents (Life Technologies) on an ABI-7300 instrument following a two-step 

cycling protocol with the following primers:

NFE2L2_FWD: CACATCCAGTCAGAAACCAGTGG

NFE2L2_REV: GGAATGTCTGCGCCAAAAGCTG

ACTB FWD: CACCATTGGCAATGAGCGGTTC
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ACTB REV: AGGTCTTTGCGGATGTCCACGT

Relative expression was calculated using the ΔΔCt method with ACTB for normalization 

between samples.

 Comparison to the in silico methods

We compared our observations to four different in silico methods, Polyphen2 (46), Mutation 

Assessor (47), CHASM (48), and VEST (49). We used the term “functional variant,” to 

denote both gain and loss of function alleles (50), and “neutral variant” otherwise. For 

PolyPhen2, “possibly damaging” and “probably damaging” categories were considered 

functional variants. We used the HumDiv-trained version of Polyphen2. For Mutation 

Assessor, “high” and “medium” were considered functional variants. For CHASM and 

VEST, alleles with FDR <0.05 were considered functional variants. Default parameters were 

used for PolyPhen2 and Mutation Assessor and “cancer type: other” was chosen for 

CHASM analysis. The Venn diagram was drawn with Venny (58)

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE

Experimentally inferring the functional status of cancer-associated mutations facilitates 

the interpretation of genomic information in cancer. Pooled in vivo screen and gene 

expression profiling identified functional variants and demonstrated that expression of 

rare variants induced tumorigenesis. Variant phenotyping through functional studies will 

facilitate defining key somatic events in cancer.
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Figure 1. Project pipeline and summary of alleles included in this study
(A) Project pipeline.

(B) Distribution of incidence of the alleles included in the project. 73.8% of the 474 alleles 

included in this study were found to be mutated only once.

(C) Alleles mutated frequently were also found to be mutated in larger number of lineages. 

The size of dots corresponds to the number of overlapping dots.

Kim et al. Page 20

Cancer Discov. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Pooled in vivo screen identifies novel transforming alleles
(A) Pooled in vivo screen design.

(B) Tumor formation over an 18 week timeframe per pool.

(C) Pool 1, a positive control pool, showed consistent tumor composition across tumors. 

Each tumor is represented as a bar. The compositions of tumors were shown as different 

colors.

(D) KRASD33E induced tumor formation in pool 5.

(E) NFE2L2G31R and POT1G76V induced tumor formation in pool 4.

(F) NFE2L2G31R and PIK3CBE497D induced tumor formation in pool 9.

(G) Summary of the in vivo pooled screen. X-axis shows penetrance, which was calculated 

to be (times each allele was more than 0.01% of tumor reads) / (number of sites the allele 
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was implanted). Since tumor size cannot exceed 2cm in the longest dimension, not all sites 

were observed for the full length of time. Y-axis shows maximum enrichment, which was 

calculated to be (maximum percentage of allele in any tumor) – (percentage of the allele in 

pre-injection cell pellet). Positive controls (colored in grey) had penetrance of around 80%, 

and low maximum enrichment due to competition against each other.
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Figure 3. Gene expression profiling differentiates functional variants
(A) Expression signatures were analyzed by pairwise Spearman correlation to identify 

similar or dissimilar alleles to the allele of interest.

(B) KRASG12V induces similar gene expression changes as other known activating alleles of 

KRAS and NRAS.

(C) NRASQ61H induces similar gene expression changes as other known activating alleles of 

NRAS. However, the signature from the novel Y64D allele had a lower correlation, similar 

to wild type.

(D) IDH1/2 alleles were correlated to known activating mutant IDH2R172K. Other known 

activating alleles of IDH1/2 are highly correlated to IDH2R172K.

(E) When correlated to the PTEN wild type, F90S, R233Q, K6N, R173H correlated strongly 

with the wild type PTEN. The known loss-of-function, dominant negative allele G129E 

showed a lower correlation. G127R, G129V, G127V also showed low correlation to the wild 

type.

(F) When alleles were correlated against SPOPF102C, a loss-of-function, dominant negative 

SPOP allele, other known loss-of-function, dominant negative alleles W131G, F133S, 

K134N, and W131C were highly correlated. On the other hand, E50K, K101I, E47A had 

lower correlation to F102C.

(G) FBXW7 wild type, R658Q, I347M, S462Y, and R689Q, were strongly anti-correlated to 

MYC. Known dominant negative alleles (R505C, R465C, R465H) no longer were anti-

correlated to MYC. BRD4 wild type was the most closely correlated to MYC.
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Figure 4. Validation of rare oncogenic alleles
(A) Individual tumor validation of KRAS alleles. The KRASD33E and KRASA59G alleles 

formed tumors robustly. E62K did not form tumors in the pooled assay but formed tumors in 

individual assays, at a later time point.

(B) Individual tumor validation of NFE2L2 alleles. In the pooled assay, only G31R scored in 

multiple tumors. In the individual assay, G31V, G31A, T80K formed tumors as well. N160S 

formed tumors at a later time point. NFE2L2 wild type formed one small tumor by the end 

of the experiment.

(C) Individual tumor validation of PIK3CB alleles. E497D and the wild type formed tumors 

after long latency. PIK3CBA1048V formed tumors with shorter latency at the majority of 

injection sites.

(D) Individual tumor validation of POT1 alleles. The G76V allele formed tumor at a later 

time point. One of the POT1G76V mice died of unknown cause.

(E) The structure of KRAS (PDB: 4EPV) shows that all four of the mutants are in close 

spatial proximity. Mutated residues are shown in red, GDP bound to the substrate pocket is 

shown in blue.

(F) Immunoblot of KRAS alleles (including other positive control alleles) shows increased 

phospho-ERK and phospho-AKT1 levels in KRASD33E, and KRASA59G overexpressed 

cells.

(G) RAF binding domain pull down assay shows increased GTP bound KRAS in D33E and 

A59G mutants.

(H) Quantitative PCR of NFE2L2 mRNA expression shows all alleles were expressed.
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(I) Immunoblot of NFE2L2 alleles show increased NFE2L2 protein level in G31A, G31R, 

G31V and T80K overexpressed cells. There was no change in phospho-ERK or phospho-

AKT1 levels.
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