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Precision Redshift-Space Galaxy
Power Spectra using Zel’dovich
Control Variates
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aPhysics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
bInstitute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA
cDepartment of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305,
USA
dKavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Lab-
oratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
eBerkeley Center for Cosmological Physics, Department of Physics, UC Berkeley, CA 94720,
USA
fDepartment of Physics, University of California,Berkeley, CA 94720

E-mail: jderose@lbl.gov, sfschen@ias.edu, kokron@stanford.edu,
mwhite@berkeley.edu

Abstract. Numerical simulations in cosmology require trade-offs between volume, resolution
and run-time that limit the volume of the Universe that can be simulated, leading to sample
variance in predictions of ensemble-average quantities such as the power spectrum or corre-
lation function(s). Sample variance is particularly acute at large scales, which is also where
analytic techniques can be highly reliable. This provides an opportunity to combine analytic
and numerical techniques in a principled way to improve the dynamic range and reliability
of predictions for clustering statistics. In this paper we extend the technique of Zel’dovich
control variates, previously demonstrated for 2-point functions in real space, to reduce the
sample variance in measurements of 2-point statistics of biased tracers in redshift space. We
demonstrate that with this technique, we can reduce the sample variance of these statistics
down to their shot-noise limit out to k ∼ 0.2hMpc−1. This allows a better matching with
perturbative models and improved predictions for the clustering of e.g. quasars, galaxies and
neutral Hydrogen measured in spectroscopic redshift surveys at very modest computational
expense. We discuss the implementation of ZCV, give some examples and provide forecasts
for the efficacy of the method under various conditions.
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1 Introduction

One of the main tools in the employ of the modern cosmologist is the numerical simulation
of structure formation. Such simulations are used in a broad range of cosmological studies,
notably as tests of analytical models of large-scale structure and as forward models for cos-
mological observations. In both cases, one wishes to reduce statistical and systematic errors
on measurements made from these simulations.

In the case of virtually all numerical simulations, run-time scales proportionally to the
number of resolution elements employed, raised to some power (e.g. [1–3]). Thus, for a fixed
number of resolution elements, statistical and systematic errors become anti-correlated, since
statistical errors scale with volume, and systematic errors scale roughly with the size of the
resolution elements employed. Because of this scaling, methods for reducing simulation sta-
tistical errors without increasing simulation volume are highly desirable, as then one can
decrease simulation statistical error without increasing run-time or systematic error. Fur-
thermore, one often wishes to run simulations at a number of different cosmologies in order to
perform inference tasks. In this case, reducing the statistical error of individual simulations
allows for a broader range of cosmologies to be simulated at fixed computational cost, thus
making the models built from said simulations more accurate.

In the context of large-scale structure studies, a number of methods for reducing the
statistical error of N -body simulations have been developed. Perhaps most common is the
‘fixed amplitude’ method [4, 5], where instead of initializing a simulation with a linear density
field whose amplitudes are drawn from a Rayleigh distribution, one chooses the amplitude of
each Fourier mode to be the expectation value determined from the linear power spectrum. In
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doing so, one can reduce the variance of statistics measured from fixed amplitude simulations,
with the largest reduction in variance coming in the linear regime and degrading significantly
in non-linear or stochastic regimes. In addition to this technique, one often runs a second,
‘paired’, simulation with the same fixed amplitude initial conditions, but with modes 180◦

out of phase with the first simulation [5, 6]. Doing so cancels out the next-leading-order
contribution to the variance of two–point matter statistics. There is now a large literature
investigating the performance of these techniques in the context of various cosmological models
[7], and for various statistics beyond the matter power spectrum [6, 8–13]. These techniques
clearly produce non-Gaussian initial conditions, but biases incurred to two- and three-point
functions from this violation have been shown to be small for many cases of interest [8, 9, 13].
Furthermore, these techniques render the simulations unusable for the estimation of covariance
matrices.

More recently, the method of control variates has been introduced in the context of
cosmology. Control variates have been studied for many years in the statistics literature
as a method for reducing the variance of Monte Carlo estimators in general [14]. When
estimating the mean of a random variable of interest via Monte Carlo, if there exists a
correlated random variable, i.e. the control variate, whose mean is precisely known, then
one can construct an estimator for the mean of the variable of interest that has drastically
improved convergence properties. This method was introduced in the cosmology literature
under the name ‘Convergence Acceleration by Regression and Pooling’ (CARPool) in order to
reduce the variance of summary statistics, such as N -point statistics [15, 16], and covariance
matrices [17, 18] measured from cosmological simulations. This method does not require the
simulator to alter any properties of the initial conditions, e.g. by introducing non-Gaussianity,
and with a well chosen control variate one can also reduce the variance of measured statistics to
a significantly larger degree than what is seen with paired and fixed simulations, particularly
beyond the linear regime.

In [15–18], approximate or particle-mesh N -body simulations were used as control vari-
ates for higher resolution N -body simulations. In this case, the dominant cost of the control
variate method was estimating the mean of the control variate, which was still performed via
Monte Carlo. In the case of [16], who used FastPM simulations [19] for their control vari-
ate, estimation of the mean required 500 FastPM simulations, using approximately 24 million
NERSC CPU-hours. This choice of control variate, while having the beneficial properties
mentioned above, is more expensive than the method of pairing and fixing.

This additional expense can be circumvented if an alternative control variate is chosen,
such that it has an analytically calculable mean. In [20], we investigated the use of just such an
alternative: the Zel’dovich approximation (ZA) [21, 22]. This choice, which we call Zel’dovich
control variates (ZCV), comes with the benefit of a mean prediction that is known analytically
to very high precision. Furthermore, when realized with the same initial conditions, ZA
matter density fields are significantly correlated with their full N -body counterparts out to
k ∼ 1hMpc−1. In [20], we showed that the ZA was an effective control variate for real-
space matter, biased tracer auto- and cross-power spectra, and hybrid effective field theory
(HEFT) basis spectra [23–25]. Depending on the statistic in question, ZCV produced variance
reduction factors of 102 to 106 at k < 0.2hMpc−1.

In this work, we further extend the ZCV method to two-point statistics in redshift space.
In section 2, we give an overview of the method of control variates, and work through a sim-
plified example demonstrating how to apply ZCV to redshift-space matter power spectra. In
section 3 we discuss our methodology for producing analytic and Monte Carlo ZA predictions
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for biased tracers in redshift space, and show that they agree with each other. Section 4
describes the simulations that we use in this work, and section 5 summarizes our main re-
sults. We conclude in section 6, with technical details related to our analytic predictions and
estimators relegated to appendices.

2 Control variates: a worked example

In this section we provide a brief overview of the steps required to reduce the variance of the
redshift-space matter power spectrum, P̂mm,`(k), using the ZA as a control variate (throughout
this work, we will make use of P̂ to denote measured power spectra). In the following sections,
we will describe each step in greater detail and investigate corrections beyond these steps,
and their impact on the resulting variance reduction.

Control variates are a general technique that can be applied to reduce the variance of a
random variable, X, when a correlated random variable, C, with known mean, µc, is available.
In this case, a new variable, Y , can be defined as

Y = X − β(C − µc).

This is an unbiased estimator of X regardless of what β is set to, as 〈C − µc〉 = 0 (some
caveats are discussed in appendix C). If we wish to minimize the variance of Y , it can be
shown that the optimal choice for β is

β? =
Cov[X,C]

Var[C]
. (2.1)

In this case, the variance of Y is given by

Var[Y ] = Var[X](1− Cov[X,C]

Var[C]Var[X]
+ β2Var[µc])

= Var[X](1− ρ2
xc + β2Var[µc]).

where ρxc is the cross-correlation coefficient between X and C, and Var[µc] is the uncertainty
on the mean of C. The first line holds so long as µc and β are not correlated with each other,
nor with X. Typically, what has been done in the control variate literature in the context of
cosmology is to estimate µc via Monte Carlo realizations of C, in which case the dominant cost
of the control variate technique is this process. On the other hand, if µc is known analytically,
then this additional expense can be circumvented, and Var[Y ] = Var[X](1− ρ2

xc).
In cosmology, X is often a measurement, such as the redshift-space matter power spec-

trum, P̂mm,`(k), estimated from an expensive simulation. In this case, we would like to choose
C such that it is highly correlated with the redshift-space matter field, while still having an
analytically known mean. In [20], we showed that the ZA satisfies both of these requirements
for real space fields, and in this work, we demonstrate that this also holds in redshift space,
for matter, halos and simulated galaxies.

The algorithm for using the ZA to reduce the variance of P̂mm,`(k) measured from an
N -body simulation is as follows:

1. Generate an initial linear density field δ(k) using the same random seed as used to run
the N -body simulation, and use this to compute Zel’dovich displacements, Ψ(q).
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2. Compute the redshift-space Zel’dovich density field δZA
s (k, z) at the desired redshift z

using the linear growth factor, D(z), and growth rate, f(z).

3. Measure the ZA and N -body matter auto-power spectra, and ZA–N -body cross-power
spectra, P̂ zzmm,`(k), P̂nnmm,`(k), and P̂ znmm,`(k) and estimate β using a disconnected approx-
imation for Cov[P̂ zzmm,`(k), P̂nnmm,`(k)].

4. Analytically compute the mean Zel’dovich redshift-space auto-power spectrum, P zzmm,`(k),
and construct the reduced variance matter power spectrum via P̂ ∗,nnmm,`(k) = P̂nnmm,`(k)−
β
(
P̂ zzmm,`(k)− P zzmm,`(k)

)
.

The results of this process are summarized in figure 1. The blue curves in the top
panels display the monopole and quadrupole moments of the redshift-space matter power
spectrum measured from our N -body simulation, with their fractional errors, estimated using
a disconnected covariance approximation, shown in blue in the bottom panels. In solid black,
we also display the ZA matter power spectra produced with the same initial conditions.
On large scales, these curves are almost indistinguishable, indicating the large amount of
correlation that exists between the ZA and N -body matter fields in redshift space. The
black dashed line displays the analytic prediction for P zzmm,`(k), whose computation we will
briefly overview in §3. The orange curve in the bottom panel displays the fractional error
on P̂ ∗,nnmm,`(k), which is reduced with respect to the blue curve by a factor of 1 − ρ2

xc. ρxc
is estimated from a single simulation as described in section 5.1 and appendix C. We see
that for the redshift-space matter power spectrum we are able to reduce the errors on our
measurements from a (1050h−1 Mpc)3 simulation to yield fractional errors that are at or
below the ∼ 0.5% expected contribution from simulation systematic errors, represented by
the shaded gray regions in the bottom panel [26–28].

For the purposes of demonstration, we also display the effect of applying the ZCV method
to correlation functions in figure 2. Here, we apply Hankel transforms to the redshift-space
matter power spectra in figure 1, extrapolating at k < 0.01hMpc−1 using our analytic ZA
model, and at k > 4 using a power law extrapolation. The comparison between the correlation
functions with and without ZCV applied is quite stark, with the large scales matching ZA
nearly perfectly in the ZCV case, while significant noise is apparent in its absence. Correlation
functions can be estimated more accurately by using ZCV to reduce the variance of the
un-binned three-dimensional redshift-space power spectrum, Fourier transforming to three-
dimensional correlation functions, and measuring multipoles. This would avoid any reliance
on interpolation and extrapolation. Doing so is readily possible with the methods presented
in this work.

In the following sections, we will elaborate on this example, demonstrating the efficacy of
ZCV for redshift-space galaxy and halo power spectra. In order to do this, we will introduce
bias operators in our Zel’dovich field in section 5.1. We have also glossed over a number
of technical details that are important for obtaining an unbiased control variate estimator,
such as window function deconvolution and the estimation of β that are discussed in detail
in Appendix B and C, respectively.

3 The Zel’dovich approximation in redshift space

Within a cold dark matter universe, structure formation is entirely determined by the displace-
ments Ψ(q, a), or trajectories, of phase-space elements over cosmic time. The displacements
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Figure 1. (Top) Comparison of redshift-space matter power spectrum multipoles measured from our
fiducial (1050h−1 Mpc)3 N -body simulation (blue), a numerical realization of the ZA using the same
initial linear density field as the N -body simulation (black), and the N -body spectrum with reduced
variance using the black curve as a control variate (orange). For reference, we also display the mean
prediction for the Zel’dovich matter power spectrum (black dashed). On large scales, the variance
reduced N -body spectra agree nearly perfectly with the noiseless analytic ZA prediction. (Bottom)
Fractional errors, computed via a disconnected covariance approximation (blue), and the variance
reduced version of these errors (orange). The variance reduction is given by 1− ρ2xc. The shaded gray
region below 0.5% fractional error is approximately where we expect the contribution from systematic
errors in simulations to become appreciable.
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translate between the initial positions q of these elements and their positions x = q+ Ψ(q, a)
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at scale factor a. The matter density δm is obtained by counting the particles that end up at
position x at a, i.e.

1 + δm(x, a) =

∫
d3q F (q) δD(x− q −Ψ(q, a)), (3.1)

where the weight given to each dark matter particle is F (q) = 1, so that the non-linear
clustering of matter can be entirely written in terms of the statistics of the displacements.
For biased tracers like galaxies we need to additionally weight each q by functions of the
initial conditions using the so-called bias expansion (see e.g. [29, 30]) such that

F (q) = 1 + b1δ0 + b2
(
δ0(q)2 − 〈δ2

0〉
)

+ bs
(
s0(q)2 − 〈s2

0〉
)

+ ... (3.2)

where s2 = sijsij is the local shear field. From eq. 3.1 we can then see that the final biased
tracer field, δt(x, a), can be expressed in terms of an expansion in the advected initial fields,

1 + δt(x, a) =
∑

Oi∈m,δ0, δ20 , s20, ...

bOiOi(x, a) , (3.3)

where the advected operators Oi are given in both configuration and Fourier space by

Oi(x, a) =

∫
d3q Oi(q) δD(x− q −Ψ(q, a))

Oi(k, a) =

∫
d3q e−ik·(q+Ψ(q)) Oi(q) (3.4)

where we will denote the advected initial fields as Oi(x, a). Furthermore, for notational
convenience, we have set Om(q) = 1, bOm = 1, and thus Om(x, a) = δm(x, a).

There exist many ways to compute the displacements, Ψ. Perhaps the most straightfor-
ward is to directly simulate the dynamics of structure formation using N -body simulations. In
this case, the Lagrangian position q is the grid position set in the initial conditions, and Ψ is
simply given by the trajectory of the N -body particle over the simulated time. Within ΛCDM
universes close to our own, however, the largest contribution to Ψ comes from large-scale bulk
flows that are extremely well captured by first-order Lagrangian perturbation theory (LPT),
also known as the Zel’dovich approximation (ZA) [21]. The advection of dark matter particles
away from their initial positions q by the Zel’dovich displacement is the leading contribution
to the decorrelation of large scale structure with the initial conditions [31], and the can-
cellation of this effect by using Zel’dovich power spectra as our control variate is the main
advantage of ZCV over linear initial condition control variates, as we show in §5.3.

In the ZA, the displacement is set by the initial gravitational potential gradient experi-
enced by the particle, given by Poisson’s equation to be k2Φ ∝ δm, such that

Ψ(1)(k, a) =
ik
k2

D(a) δ0(k) (3.5)

where D(a) is the linear-theory growth factor. Likewise, peculiar velocities are linearly pro-
portional to v(1) = fHΨ(1), where f = d lnD/d ln a is the linear growth rate and H is the
conformal Hubble parameter. The peculiar velocity is important because, in most situations,
the distance to a galaxy is inferred from its cosmological redshift, which receives a contribu-
tion from the peculiar line-of-sight velocity u = v‖/H. Within the ZA this is equivalent to
multiplying the displacement by a constant matrix [32]

Ψ
(1)
s,i = RijΨ

(1)
j , Rij = δij + fn̂in̂j . (3.6)
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where n̂ is the line-of-sight unit vector.
In this paper we will be mostly concerned with the redshift-space 2-point function in

configuration space and Fourier space, i.e. the correlation function and power spectrum. From
Equation 3.1 one can show [33] that the biased tracer power spectrum is given by

P tts (k) =
∑
Oi,Oj

bOibOjPij, s(k) (3.7)

where we have defined the basis spectra

Pij,s(k)(2π)3δD(k + k′) =
〈
Oi,s(k)Oj,s(k′)

〉
. (3.8)

The operators Oi,s(k) are the redshift-space counterparts of Oi(k), defined such that Ψ is
replaced by Ψs in their construction. We make predictions for the ensemble mean of these
statistics with the ZeNBu code1.

For a given realization of the initial conditions on a grid we can numerically construct
these Zel’dovich operators and their spectra by realizing the linear density field δ0 on a
cubic grid, and constructing the relevant initial condition fields, δ2

0 , s
2
0, from δ0. We can

then numerically compute the displacements using Eqs. 3.5 and 3.6, which we can use to
perform the advection integral in Eq. 3.3, using Ψ(q) and Ψs(q) for real and redshift-space
quantities, respectively. Predicting biased tracer power spectra is then as simple as measuring
the cross-power spectra between the advected operators and performing the sum in Eq. 3.7.
We make use of CLASS [34, 35] to compute linear power spectra, growth and growth rates,
and Monofonic [36] for our grid-based predictions of δ0 and Ψ. The code to compute the rest
of the quantities required for this work is publicly available2.

We can also compute these spectra analytically without sample variance. Within the
ZA, the expectation value of the exponentiated displacements in eq. 3.4 can be solved exactly
since the displacements are purely Gaussian; for the bias expansion in Equation 3.2 this was
done in real space to all orders in ref. [20]. In order to perform the same calculation in redshift
space, it is necessary to transform the displacements via the matrix Rij , or alternatively by
transforming the Fourier space wavenumber by the same amount, since kT (R∆) = (kR)T∆.
Numerical methods to compute the quantities in the latter choice of coordinates were devel-
oped in [37–40]; roughly, the azimuthally symmetric real space integrals are replaced with ones
accounting for the line-of-sight dependence in redshift space. We review these developments
in the specific context of the ZA in Appendix A.

The validity of the Zel’dovich control variate method depends on our ability to very accu-
rately predict the ensemble average of the grid-based realizations, averaging over realizations
of δ0. In [20], we showed that we were able to do this in real space after smoothing δ0 using
a Gaussian kernel with a width equal to the mesh scale, Nπ/L where N is the mesh size and
L is the side length of the simulation cube. We find that we are able to predict our redshift-
space grid-based results with our analytic code to comparable accuracy after performing this
same smoothing procedure, using two times the smoothing scale, i.e. ksmooth = Nπ/(2L),
as shown in figure 3. We were not able to achieve a comparable level of accuracy for the
hexadecapole, and so do not treat it in this work. Care must be taken to correct for artifacts
in our grid-based measurements imparted due to discrete k sampling in our simulations. This
is discussed in Appendix B.

1https://github.com/sfschen/ZeNBu
2https://github.com/kokron/anzu
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Figure 3. The difference between our grid-based ZA realizations and their analytic predictions for
Pij,`(k) up to linear order in δ0. These measurements are averaged over 60 random seeds, and coarsely
binned in k to suppress variance. We have offset the measurements for the different basis spectra in k
to aid in presentation. The lines displayed are 0.0025Pij,`(k), i.e. they represent a 0.25% error in each
spectrum. Away from zero-crossings, the difference between our grid-based and analytic ensemble
mean predictions is consistent with or less than this, and thus any uncertainty due to our ability to
predict the mean of Pij,`(k) is negligible. We find consistent behavior for all other basis spectra, but
we do not display them in order to facilitate presentation. On large scales, a proper treatment of the
mixing of multipoles due to discreteness effects in our simulation is of great importance for obtaining
this level of agreement, see app. B.

4 Simulations and galaxy models

In this work, we employ the Aemulus ν simulations [41], a suite of CDM and massive neu-
trino simulations run in a similar configuration to the Aemulus α simulations [42], but with
an expanded cosmological parameter space, and a greater number of realizations. Each sim-
ulation has a volume of (1.05h−1Gpc)3, evolving 14003 CDM particles, and the same number
of neutrino particles. The simulations are initialized at z = 12 with 3rd-order Lagrangian
perturbation theory, using a version of the Monofonic code [36] modified to account for the
presence of neutrinos on the evolution of δcb [43]. Further details and convergence tests of
these simulations will be presented in [41]. In this work, we make use of the α000 sim-
ulation with a cosmology of ns = 0.97, H0 = 67.0, w = −1.0, ωb = 0.0223, ωc = 0.12,∑
Mν = 0.07eV, σ8 = 0.81. For simplicity, we will conflate matter and δcb power spectra in

this work, as the difference between the two is unimportant for all of the findings presented
here. Halo finding was performed using the ROCKSTAR spherical overdensity halo finder [44]
and M200b strict spherical overdensity (SO) masses.

When populating galaxies in our simulation, we make use of the halo occupation dis-
tribution (HOD) formalism [45, 46]. In particular, we present tests using galaxies populated
with HODs consistent with the DESI luminous red galaxy (LRG) sample, making use of the
HOD functional form presented in [47]. We take as parameters of this model the best-fit
values for the second redshift bin presented in [48]. For the LRG sample, we make use of the
z = 0.56 output from our simulation, yielding a number density of n̄ = 3× 10−4 h3Mpc−3.
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5 Results and discussion

Here we demonstrate the effectiveness of ZCV for halo and galaxy samples, and discuss
some of the complications that arise in these cases. We begin by investigating the impact
of biasing, followed by satellite galaxies and their accompanying addition of stochastic small
scale velocities. We will see that even in the presence of these complications, we can reduce
the sample variance of redshift-space power spectra down to the shot-noise limit until k ∼
0.2hMpc−1. We then compare the ZCV method to a simpler method using linear theory as
a control variate. Finally, we take advantage of the demonstrated performance of ZCV to
forecast the amount of variance reduction we expect to achieve for a number of key galaxy
samples that will be used for cosmological studies in the coming years. For most of the
samples we consider, we find variance reduction factors of ∼ 10− 100×.

5.1 Biased tracers

In section 2, we introduced the ZCV method in the context of the redshift-space matter power
spectrum. While this application may be useful in some contexts, it represents an idealized
case. Instead, one is often interested in measuring power spectra of biased tracers such as
halos or galaxies. In this section, we will investigate the extent to which ZA predictions are
correlated with these statistics. Importantly, we wish to disentangle the effects that biasing,
shot noise, and stochastic small scale velocities, i.e. the finger of god (FoG), have on the
efficacy of the ZCV method. In order to do so, we will first consider ZCV in the context of
power spectra of halos in bins of mass. By varying halo mass, we aim to isolate the impact
that halo bias, both linear and non-linear, as well as shot noise, has on the performance of
the ZCV algorithm.

First, we consider the ability of the Zel’dovich matter power spectrum to act as a control
variate for the power spectra of halo samples split into three logarithmically spaced bins in
mass between 1013 h−1M� and 1014.5 h−1M�. We have chosen relatively high mass halos
to emphasize the role of shot noise, which leads to decorrelation and hence reduces the
effectiveness of the control variates technique. In order to quantify the effectiveness of the ZA
as a control variate, we measure the cross correlation coefficient, ρxc, between the redshift-
space power spectra of these halo samples, and the redshift-space Zel’dovich matter power
spectrum. We compute this quantity as

ρxc =
Cov[P̂ tt` (k), P̂ zz` (k)]√
Var[P̂ tt` (k)]Var[P̂ zz` (k)]

(5.1)

where P̂ tt` (k) are the multipoles of the redshift-space power spectrum of the (biased) tracer
under consideration, and P̂ zz` (k) are the same for the ZA field that we employ as a control
variate. The fractional variance reduction afforded by a particular control variate is equal to
1−ρ2

xc, making this the main quantity of interest in our study. We approximate the covariances
and variances in eq. 5.1, keeping only their disconnected contributions, as described in app. C.
In this case, the Zel’dovich field is simply the unweighted matter field, but we will make use
of the same method for measuring ρxc when we include bias operators in the ZA. We expect
the disconnected approximation to break down at high k, but for k < 0.2hMpc−1 it holds
to very high accuracy [49]. As we will see, above k ∼ 0.2hMpc−1 the ZA fields decorrelate
from the fields of interest, and so break-downs in this approximation are not important for
the conclusions of this work.
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Figure 4. Cross-correlation coefficient between the redshift-space ZA matter power spectrum and
various tracer power spectra, including the non-linear matter field, and halos in three bins of mass as
denoted in the legend. The different panels show the cross correlation between different multipoles
of the redshift-space power spectrum. The dashed lines are the cross-correlation coefficient that we
would expect if the tracer field were perfectly correlated with the ZA field apart from a constant shot-
noise contribution. The different multipoles exhibit very similar behavior, with more biased, higher
shot-noise samples decorrelating more. As discussed later, including higher-order bias operators allows
us to saturate the shot-noise limit for all samples to k ∼ 0.2hMpc−1.

Figure 4 displays ρxc for each of the three halo mass bins that we consider. For reference,
we also compare ρxc between the nonlinear redshift-space matter power spectrum, P̂mm,`(k),
and the Zeldovich redshift-space matter power spectrum, P̂ zzmm,`(k), in black. The main aspect
of note is that ρxc decreases monotonically with halo mass, and this decrease becomes even
more pronounced with respect to the P̂mm,` case at high k. The dashed lines in this figure show
the expectation for ρxc in the limiting case where the halo power spectra correlate perfectly
with their ZA counterparts except for the shot-noise contribution to the former (we describe
how we estimate the shot noise momentarily). These dashed lines are the best one can do
without incorporating a control variate with the same shot-noise properties as the tracer
sample in question. Finding such a control variate is highly nontrivial, as is analytically or
cheaply computing its mean, as the shot-noise level depends on a number of things other than
the number density of the sample in question, such as halo exclusion, and non-linear biasing
effects [50–52].

Now we proceed to investigate the extent to which including bias operators in our
Zel’dovich field increases ρxc for the halo power spectra discussed above. In order to in-
clude additional bias operators in the ZA, we must fit for the bias coefficients of each tracer
sample. We do this at the field level, minimizing the residuals between the Zel’dovich and
halo fields in real space by minimizing

S = 〈ε(x)2〉|k|<kmax

≈
∫
|k|<kmax

d3k
(2π)3

∣∣∣∣δt(k)− δzm(k)−
∑
Oi

bOiOi(k)

∣∣∣∣2 ,
following the procedure outlined in section 2.3 of [52], but replacing the HEFT operators
with their ZA counterparts. We perform fits including the δ0(k), δ2

0(k) and s2
0(k) fields. This

procedure also allows us to precisely determine the shot-noise contribution to the tracer power
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spectra, because at low-k, shot noise is equivalent to the error power spectrum:

P εε(k) = 〈ε(k)ε(−k)〉
= 〈[δt(k)− δz(k)][δt(−k)− δz(−k)]〉 ,

where we have applied the shorthand δz(k) = δzm(k) +
∑
Oi bOiOi(k).

We perform fits to kmax = 0.15hMpc−1, and average P̂ εε(k) over this range in order
to estimate the shot-noise values. We have confirmed that our shot-noise estimates do not
change when including the effects of nonlinear displacements, e.g. by replacing the Zel’dovich
fields used above with their HEFT counterparts. We make use of this estimate of shot noise,
rather than the Poissonian expectation, because it incorporates the effect of higher-order
biasing and halo exclusion [52]. Poissonian shot-noise estimates would mostly overestimate
the impact of shot noise on the performance of ZCV for our halo and galaxy samples, as halo
exclusion effects tend to reduce the level of shot noise compared to the Poisson expectation
for the halo mass range used here, leading to lower levels of uncorrelated noise than the naive
estimate.

With an estimate of the shot noise of the tracer in question, we can then construct our
estimate of the shot-noise limit of ρxc as

ρSN. limit
xc =

VarnoSN[P̂ tt` (k)]√
Var[P̂ tt` (k)]VarnoSN[P̂ tt` (k)]

(5.2)

where VarnoSN[P̂ tt` (k)] is estimated by subtracting 〈P̂ εε(k)〉|k|<kmax
from the monopole in the

disconnected approximation for the variance.
Figure 5 demonstrates the extent to which adding bias operators to our ZA control

variate can optimize the sample variance reduction properties of the ZCV method. The top
and bottom panels demonstrate two different regimes. The top shows the behavior of ZCV for
a relatively low-bias halo sample, with bias values of bδ0 = 1.06, bδ20 = −0.14 and bs20 = 0.26.
We see that including additional bias operators makes a relatively minor difference. Using
the unbiased (i.e. matter) ZA redshift-space power spectrum nearly saturates the shot-noise
limit, and operators beyond linear bias yield no additional improvement.

The bottom panel displays a much higher bias halo sample, with bδ0 = 3.72, bδ20 = 9.09
and bs20 = −3.0. Here we see large improvements going from the unbiased ZA, to linear
bias and quadratic bias, with the latter saturating the shot-noise limit to k ∼ 0.2hMpc−1.
Somewhat unsurprisingly, we never observe improvements when adding in tidal bias. This
is simply explained by the fact that the basis spectra, Pij(k), that contain the tidal field
operator in eq. 3.7 are highly subdominant to the linear and quadratic bias terms on scales
where the ZA is still correlated with our halo fields. As such, it seems unlikely that tidal bias
operators will ever be required for an optimal ZCV implementation.

5.2 Satellite galaxies

Having seen that ZCV is able to saturate the shot-noise limit for halos, we now turn to
investigating whether this still holds for galaxy samples populated via HODs. In particular,
one might expect the addition of satellite galaxies to boost stochastic contributions from non-
perturbative small scale velocities, i.e. the FoG, thus decorrelating our ZA control variate
from the galaxy field more than what we found for halos. We consider three different samples
for this test. First, we examine the LRG-like HOD described in Sec. 4, taken from [48]. We
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Figure 5. The effect of including additional bias terms in the ZA on the cross-correlation coefficient
between multipoles of the redshift-space Zel’dovich and halo power spectra. We show the two extreme
halo mass bins: 13 < lgM ≤ 13.5 (top) and 14 < lgM ≤ 14.5 (bottom). For reference, we display
the expectation for the correlation coefficient if all of the signal in the field were perfectly correlated
(and only shot noise contributed to decorrelation) in solid black. We saturate the shot-noise limit in
both bins, although including higher order bias operators is much more important in doing so for the
higher mass sample.

also consider a galaxy sample with two times the satellite fraction of the LRG-like sample, i.e.
fsat = 0.3 compared to the original fsat = 0.15, which we have achieved by setting lgM1 = 13.6
and leaving the remaining HOD parameters fixed. Finally, we use a sample containing only
the central galaxies from the LRG-like HOD, thus minimizing the FoG effect but otherwise
keeping the mean halo mass nearly the same.

Figure 6 investigates the extent to which these samples correlate with a Zel’dovich control
variate that includes linear and quadratic bias operators. The top panel shows ρxc for these
samples, compared to dashed lines representing each respective samples’ shot-noise limit.
Here, we see that the samples including satellite galaxies decorrelate from our control variate
more rapidly than the central-galaxy-only sample, suggesting that non-linearities in the form
of non-linear bias and small scale velocity contributions do lead to additional decorrelation, as
expected. Somewhat surprisingly, the amount of additional decorrelation is not particularly
sensitive to what multipole we are looking at, although some slight additional decorrelation is
apparent for ` = 2 with respect to ` = 0. The fact that the behavior is so similar between the
multipoles can largely be attributed to the fact that P0(k) is the dominant contribution to our
disconnected covariances. We have also examined the convergence of our covariance matrices
with respect to `max in App. C, demonstrating that our findings are not highly sensitive to
our choice of `max = 4.

The bottom panels then show the ratio of ρxc to the shot-noise limit for each sample,
where the dashed lines in the bottom left panel show the equivalent quantity in real space. At
k < 0.2hMpc−1, the solid and dashed lines are nearly identical, although at higher k the real-
space power spectra remain more correlated with our control variate than their redshift-space
counterparts. Thus, it is apparent that non-linear velocities do degrade the performance of
the ZCV method, but only slightly.

– 12 –



0.0

0.5

1.0
ρ
x
c

` = 0

Cens. only

LRG-like

2x sats.

SN. limit

` = 2

10−2 10−1

k [hMpc−1]

0.5

1.0

ρ
x
c/

S
N

.
L

im
it

10−2 10−1

k [hMpc−1]

Figure 6. (Top) Comparison of ρxc for an LRG-like galaxy sample, the central galaxies from that
sample, and an HOD with two times the number of satellite galaxies as the fiducial HOD. All samples
use a control variate that includes linear and quadratic bias. The shot-noise limit for each sample
is shown by the dashed lines. To k ∼ 0.2hMpc−1, we find that we are able to reduce the variance
of all the samples to this limit. At higher k, the extent to which we are able to reduce the variance
is sensitive to decorrelation between the Zel’dovich and galaxy fields beyond the effect of shot noise.
(Bottom) The ratio of ρxc to the shot-noise expectation for each sample. Dashed lines represent this
value for the real-space power spectra. The real space measurements exhibit less decorrelation beyond
k ∼ 0.2hMpc−1, indicating that additional decorrelation is present in redshift space due to, e.g., the
finger of god effect.

5.3 Comparison to a linear theory control variate

A common strategy for mitigating sample variance in simulations that has been used for many
years is to divide the measurement of interest by the power spectrum of the linear density
field used to initialize the simulation, i.e.

Y =
X

C
µc

where X is the simulation measurement in question, C is the linear matter power spectrum
measured from the initial conditions of the simulation, and µc is the noiseless linear power
spectrum. This estimator, known as the “ratio control variate” estimator [14], is biased
because 〈X/C〉 6= 〈X〉/〈C〉.

A similar, but unbiased estimator using the same measured quantities is to use the
measured linear power spectrum as a replacement for the ZA in the control variate estimator
that we have been using for the rest of this work [6, 14]. It is interesting to consider how well
this linear theory control variate performs compared to ZCV.

In fig. 7, we make just such a comparison using our fiducial LRG HOD. We include the
Kaiser factor [53], (1+bδ0 +fµ2)2, in our linear theory control variate in order to optimize its
performance. For ZCV, we use a combination of linear and quadratic bias. We see that for
scales with k < 0.05hMpc−1, linear theory performs as well as ZCV, but for k larger than this
the performance degrades significantly. Thus, unless one only cares about reducing variance
on these very large scales, then ZCV performs significantly better and should be preferred
given the small difference in computational cost between the two.
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Figure 7. (Top) Here we compare the performance of the ZCV method to an alternative linear
control variate using the LRG HOD as a test case. We see that the linear control variate performs
well out to k ∼ 0.05hMpc−1, but rapidly degrades in performance on smaller scales with respect to
ZCV. Furthermore, ρxc is noisier for the linear control variate, exacerbating the bias discussed in app.
C. (Bottom) A direct comparison of ZCV and linear control variates to the shot-noise limit. Again
we see the linear control variate performs significantly worse.

5.4 Variance reduction forecasts

In the previous sections we demonstrated that we can reduce the variance of biased tracer
power spectra in real and redshift space to their shot-noise limit to k ∼ 0.2hMpc−1. Using
this fact, we now proceed to forecast the variance reduction that we can expect for a number
of galaxy samples of interest for ongoing and upcoming galaxy surveys such as DESI [54], and
planned future spectroscopic surveys [55, 56]. We focus on forecasting two quantities. The
first is 1−ρ2

xc, which is the effective decrease in variance that is delivered by the ZCV method.
We make our forecasts for real- and redshift-space galaxy auto-power spectra as well as for
galaxy-matter cross-power spectra. With these, and matter power spectra shown in Fig. 1,
we have all the statistics necessary for two-point function analyses of galaxy surveys and their
cross-correlations with lensing. We also show σ[P (k)]/P (k) assuming a (2h−1Gpc)3 volume
used in this work in order to demonstrate that for the vast majority of galaxy samples, one
never needs to simulate a larger volume than this in order to make statistical simulation error
subdominant to the systematic error floor associated with current N -body codes.

In order to perform these forecasts, we assume that we can achieve the shot-noise limit
for ρxc, and thus can predict it given a model for the power spectrum in question, its covari-
ance, and shot-noise level. For simplicity, we assume that only linear bias contributes to the
signal, since for k < 0.2hMpc−1 higher order bias operators contribute at the tens of percent
level for reasonable bias values. Furthermore, the covariances are approximated using their
disconnected parts, and the shot noise is assumed to be given by the Poisson expectation.
We forecast 1− ρ2

xc and σ[P (k)]/P (k) for five samples: DESI Bright Galaxy Survey (BGS),
LRGs, emission line galaxies (ELGs) and quasars (QSOs), as well as for Lyman-alpha emit-
ters (LAEs) which may form the workhorse sample for future spectroscopic surveys [57]. For
BGS, we assume bδ0 = 0, i.e. an Eulerian bias of 1, a number density of n̄ = 0.01h3Mpc−3
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and an effective redshift of zeff = 0.3, comparable to the Mr < −19.5 sample from SDSS [58],
but at higher redshift. For DESI LRGs [59], we use bδ0 = 1.2 and zeff = 0.56, consistent with
the HOD model used in this paper, and n̄ = 3× 10−4 h3Mpc−3. For ELGs, we take bδ = 0.7,
zeff = 1.25, and n̄ = 3.8 × 10−4 h3Mpc−3 based on [54, 60]. For QSOs, we assume bδ = 2,
zeff = 2, and n̄ = 2.6 × 10−5 h3Mpc−3 based on [61]. Finally, for LAEs we set bδ = 1.5,
zeff = 2.5, and n̄ = 4× 10−4h3Mpc−3 [62].

Figure 8 shows the results of these forecasts. The top panel shows 1/(1 − ρ2
xc), which

is the effective increase in volume as a function of scale that the ZCV method provides. We
see marked improvements in effective volume for all the samples considered, other than the
DESI QSOs which are almost entirely shot-noise dominated at all relevant scales. Unsurpris-
ingly, the sample that performs best is DESI BGS, with its extremely high number density.
Pgm(k) also exhibits a greater variance reduction for all samples, as the shot-noise contri-
bution to its covariance is reduced with respect to galaxy density auto-correlations. Above
k ∼ 0.2hMpc−1, the approximation that ZCV achieves the shot-noise limit on ρxc may break
depending on the satellite fraction and non-linear biasing behavior of the galaxy samples
under consideration, and so our forecasts become less trustworthy above these scales.

The solid lines in the bottom panel show the fractional errors that we expect for each
sample when applying ZCV, to be compared to the raw fractional errors shown by the dashed
lines. The grayed out region roughly represents the level at which we expect systematic
errors in our simulations to dominate over statistical errors [26–28]. We have assumed a
simulation volume of (2h−1Gpc)3 and a binning of ∆k = 0.01 to compute the errors. We see
that with this volume we achieve the systematic error floor by k ∼ 0.07hMpc−1 for all the
samples considered other than QSOs, thus suggesting that for the majority of galaxy samples
that will be observed in the coming years, it will not be important to simulate more than a
volume of (2h−1Gpc)3 in order to remove statistical error from simulated two-point galaxy
measurements on scales with k > 0.1hMpc−1. At larger scales, perturbation theory is known
to work exquisitely well [40, 63].

6 Conclusions

In this work, we have extended the Zel’dovich control variate (ZCV) technique to redshift
space. In [20], we demonstrated the utility of the Zel’dovich approximation (ZA) as a control
variate for real-space measurements. The great benefit of ZCV in real space comes from our
ability to inexpensively produce realizations of the ZA, and to analytically predict the mean
of those realizations, obviating the two main costs usually associated with the control variate
technique. In this work, we showed that we can do so equally well for multipoles of the
redshift-space power spectrum of biased tracers, achieving the theoretical limit for variance
reduction imposed by the shot noise of those tracers.

In section 2, we gave an overview of the ZCV technique in its simplest form, providing a
recipe for applying it to the redshift-space matter power spectrum, which we then expanded
to include a treatment for biased tracers in the following sections. In section 3, we described
how we make redshift-space power spectrum predictions in the ZA, both on a grid for a
particular realization of a linear density field, and for noiseless analytical calculations of the
ensemble mean. Section 4 introduced the simulations and HOD that we used to illustrate
the ZCV technique. In section 5, we proceeded to demonstrate the extent to which ZCV can
reduce the variance of biased tracers by measuring the cross-correlation coefficient between
our ZA control variates and power spectra of halos and galaxies measured from an N -body
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Figure 8. (Top) The factor by which the variance of P̂gg,`(k) (left), P̂gg(k) (middle), and P̂gm(k)
(right) would be reduced using ZCV for a variety of galaxy samples, as listed in the legend. We
have assumed that we can reduce the variance with ZCV up to the shot-noise limit. This assumption
should hold to k ∼ 0.2hMpc−1, as seen in fig. 6. The number densities, redshifts and linear bias
values assumed for these samples are described in the text. (Bottom) The fractional error on each
statistic for the same galaxy samples as in the top, with (solid) and without (dashed) using ZCV,
assuming a volume of (2h−1Gpc)3. The gray shaded region roughly represents the level at which
we expect systematics in simulations to become the dominant error. Thus, for most applications a
volume of (2h−1Gpc)3 is sufficient to remove statistical error from simulated measurements of two-
point clustering for galaxy surveys.

simulation. This cross-correlation coefficient, ρxc, is the key statistic that determines the
performance of the ZCV method, as the amount of variance reduction achieved by ZCV is
given by 1− ρ2

xc.
In section 5.1 we showed that even with the simplest unbiased ZA control variate we are

able to achieve a significant cross-correlation with redshift-space halo power spectra. Adding
linear and quadratic bias operators to our ZA control variate significantly improves on this
performance for more biased samples, while including tidal bias offers little to no additional
gain. Including satellite galaxies somewhat degrades the cross-correlation at k > 0.2hMpc−1,
depending on the satellite fraction of the galaxy sample in question. Nevertheless, when using
a Zel’dovich control variate that incorporates linear and quadratic bias, we are able to achieve
the theoretical maximum cross-correlation in the presence of shot noise out to k ∼ 0.2hMpc−1

for all the tracers considered in this work. Here we have focused on z = 0.55 as a fiducial
redshift for our tests, but we expect that this performance will improve at higher redshift. At
lower redshifts it may degrade, but the volumes probed at redshifts z < 0.5 are small enough
to be simulated at relatively low cost. In section 5.3, we compared ZCV to a linear theory
control variate, showing that ZCV performs significantly better for k > 0.05hMpc−1

In section 5.4 we proceeded to forecast the factor by which the variance of clustering
measurements made using a number of galaxy samples of relevance to upcoming cosmological
measurements can be reduced using ZCV. Figure 8 shows this variance reduction or equiva-
lently, the effective increase in simulation volume. It also shows the expected fractional error
on measurements made from a hypothetical (2h−1Gpc)3 simulation. When using ZCV, it is
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clear that running simulations with volumes larger than (2h−1Gpc)3 is unnecessary for most
applications involving two-point functions of biased tracers, and their cross-correlation with
matter in either real or redshift space. This has broad implications for a variety of simula-
tion use cases. For example, ZCV will drastically reduce the cost of producing mock galaxy
catalogs that have the sufficient statistical precision to test theoretical models at the accu-
racy required by upcoming surveys. Furthermore, ZCV will allow those wishing to run suites
of simulations for the purposes of emulation to run more simulations at higher resolution
than would otherwise be possible, thus making the task of interpolating between simulated
cosmologies significantly simpler.

There are still a number of applications that we imagine to be similarly suitable to the
ZCV method. Nearest to the current application, one can imagine reducing the variance
of reconstructed power spectra or correlation functions [64, 65]. It is possible that an opti-
mal variance reduction of such measurements may even be achieved with just linear theory,
given that much of the displacement responsible for the decorrelation with the linear initial
conditions is removed by the reconstruction algorithm.

Another potential application is to use ZCV to reduce the variance of measurements
made in lightcone simulations [66, 67] in order to produce variance reduced measurements
with realistic observational systematics. This will likely require the construction of a pipeline
to produce ZA lightcones to pair with their N -body counterparts, but otherwise the same
ZCV procedure presented here should be appropriate.

Given the limitations on ZCV imposed by shot noise that we have observed here, it
is clear that applications to samples with low shot noise are ideal. Measurements of the
power spectra of neutral hydrogen, Lyman-alpha flux, or other low shot-noise fields may
be particularly suitable for the ZCV method. To what extent these measurements remain
cross-correlated with ZA control variates must still be checked.

Finally, higher order correlation functions are a particularly appealing target, both be-
cause they have become a common statistic measured in surveys and because of their utility
in predicting covariance matrices beyond the disconnected approximation. Going beyond
the ZA may be necessary for such applications, and analytic methods for predicting these
higher-order functions are numerically complicated to evaluate in LPT. Nevertheless, mean
predictions for these statistics in LPT can still be computed via brute force Monte-Carlo,
potentially providing a path forward. We leave these additional avenues to future work.
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A Exact redshift-space power spectrum in the Zel’dovich approximation

In ref. [20], the present authors derived exact expressions for the real-space power spectrum
within the ZA for tracers up to quadratic order in the bias. Using the cumulant theorem for
Gaussian variables, the power spectrum can be put into the form

P (k) =
∑
Oα,Oβ

bOαbOβ

∫
d3q eik·q−

1
2
kikjAij(q) FOαOβ (k, q) (A.1)

where the sum is over the operators m, δ0, δ2
0 and s2

0, and the correlator in the exponent
Aij = 〈∆i∆j〉 is the second moment of the pairwise displacement ∆ = Ψ(q) − Ψ(0). For
example, the (δ2

0 , s
2
0) contribution is given by

Fδ20s20(k, q) = 2EabEab − 4kikjUiEabBjab + kikjkkklUiUjBkabBlab (A.2)

where we are using i, j, k, l, ... to denote indices on displacements Ψi and a, b, c, d, ... to denote
indices on shears sab in correlators like Ui and Biab. These correlators are functions of the
Lagrangian pairwise separation q by construction, e.g. Ui = 〈Ψi(q)δ0(0)〉 is the correlation
function between the Lagrangian displacement and the initial density. A comprehensive list
of FOαOβ are given in Equation A.7 of ref. [20].

The functions FOαOβ , thus defined, can be decomposed into scalar products of k̂ and q̂;
that is, defining µq = k̂ · q̂, we can write

FOαOβ = F
(0)
OαOβ (k, q) + F

(1)
OαOβ (k, q)µq + F

(2)
OαOβ (k, q)µ2

q + ... (A.3)

Importantly, with the µq dependence factored out, the coefficients F (n)
OαOβ are scalar functions

of the vector magnitudes k, q only. Similarly, we can write by symmetry Aij(q) = X(q)δij +
Y (q)q̂iq̂j . The angular dependence of Equation A.1 can then be explicitly separated out as

P (k) =
∑
Oα,Oβ

bOαbOβ
∑
n

∫
dq q2 Kn(k, q) e−

1
2
k2X(q) F

(n)
OαOβ (k, q). (A.4)

The angular kernel is given by

Kn(q) =

∫
dφ dµq e

ikqµq− 1
2
k2Y (q)µ2q µnq (A.5)

independent of Oα,Oβ and can be expressed as a series of spherical bessel functions [71, 72],
and the spherical coordinates are set up such that k̂ is at the zenith.3.

As described in Section 3, the only difference incurred by moving to redshift space is
that all the displacements must now be multiplied by the matrix R or, equivalently, since all
displacements are dotted with wavevectors, all wavevectors other than the one in the Fourier
transform (k · q) must be transformed into Ki = Rijkj , such that now [38, 39]

Ps(k) =
∑
Oα,Oβ

bOαbOβ

∫
d3q eik·q−

1
2
KiKjAij(q) FOαOβ (K, q). (A.6)

3See Equation F.1 of ref. [73] for an exact expression.
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In this case it is sensible to choose a new system of spherical coordinates with K̂ at the zenith;
then, the angular dependence can be captured simply by replacing the real-space kernel in
Equation A.4 with

Kn,s(q) =

∫
dφ dµq e

ik·q− 1
2
K2Y (q)µ2q µnq . (A.7)

The evaluation of this kernel was performed explicitly in the above references, and the reader
is directed to them for further details.

B Accounting for incomplete µ sampling

Measurements of power spectrum multipoles in a periodic box with finite volume incur errors
due to mixing between multipoles. This mixing is caused by the sparse sampling in µ imposed
by the discrete nature of the wave modes sampled by the mesh used to measure the simulated
power spectra. These artifacts are most significant for large scales and multipoles with ` > 0,
where the Legendre polynomials become highly oscillatory and so fine µ sampling becomes
more important. This is analogous to the mixing between multipoles (and wavenumbers)
caused by incomplete sky coverage in observational data [74], often referred to as the survey
window function effect.

To see how to correct for this effect, we can write our power spectra as

P̂`(ki) = N−1
i

∑
k

Bi(k)L`(µ)|δ(k)|2 (B.1)

= N−1
i

∑
k,`′

Bi(k)L`(µ)L`′(µ)P`′(k) (B.2)

where k = |k|, and µ = n̂ ·k̂, with n̂ the line-of-sight unit vector. Bi(k) is a top-hat around ki,
and Ni =

∑
kBi(k). The response of this estimator to a change in the uncoupled, noiseless

theory, P`′(k′), is:

W i
`,`′ =

∂〈P̂`(ki)〉
∂P`′(k′)

= N−1
i

∑
k

Bi(k)L`(µ)L`′(µ)δD(k − k′) . (B.3)

With this window matrix, we can correctly account for the simulation window function when
making theory predictions. Alternatively, by assuming that P`′(k′) is constant over the width
of the bin, ki, then we have

W̄ i
`,`′ =

∂〈P̂`(ki)〉
∂P`′(ki)

= N−1
i

∑
k

Bi(k)L`(µ)L`′(µ) , (B.4)

where P`′(ki) = N−1
i

∑
k′ Bi(k

′)P`′(k
′). Then we have

P ∗` (ki) = (W̄−1)i`,`′P̂`′(ki) , (B.5)

where repeated indices are summed over. P̂ ∗` (ki) is now an unbiased estimator of P̂`(ki) to
the extent that our piecewise constant approximation holds and we have included a sufficient
number of multipoles in eq. B.5.

Whether one should deconvolve this effect from the simulation measurements, or con-
volve the theory with the window matrix depends on the application under consideration.
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If the simulation measurements are binned finely in k, then deconvolution is appropriate,
because the assumption that the theory is piecewise constant likely holds to a good approxi-
mation. When one wishes to bin more coarsely in k, then convolving a finely sampled theory
prediction with the window is more appropriate. In this work we deconvolve the window
from all the multipole measurements made, in order to ensure that the ensemble mean of our
Zel’dovich realizations is equal to the noiseless, uncoupled mean predicted by our analytic ZA
model.

C Estimating β and ρxc

We have seen that accurate estimates of β and ρxc are of significant importance, β for ob-
taining an optimal control variate estimator, and ρxc for accurately predicting the variance
reduction factor provided by said control variate. We can see from eqs. 2.1 and 5.1 that β
and ρxc both rely on accurate estimates of the variance of the control variate, Var[C], and the
covariance between the control variate and the statistic whose variance we wish to reduce,
Cov[X,C]. ρxc additionally depends on the variance of the latter, Var[X].

In this work, we have employed the disconnected approximation to estimate covariances,
using power spectra measured from our simulations where required. For example, when
measuring β for real space power spectra, our estimator reads:

β =
P tz(k)2

P zz(k)2
(C.1)

where P̂ tz(k) is the measured cross-power spectrum between the tracer in question and our
ZA control variate, and P̂ zz(k) is the auto-power spectrum of the ZA control variate. Because
the tracer field and Zel’dovich field come from the same initial noise realization, the variance
of the two spectra largely cancels out, yielding a low-noise estimate of β.

For multipoles of the redshift-space cross-power spectrum between two fields a and b,
this disconnected covariance reads

Cov
[
P aa` (k), P bb`′ (k)

]
=

(2`+ 1)(2`′ + 1)

Vobs

1

4πk2∆k

∫
dµ L`(µ)L`′(µ) P ab(k, µ)2 (C.2)

Avoiding the full generality of Wigner-3j symbols, we can approximate P ab(k, µ) = P0L0 +
P2L2 + P4L4 in order to compute the necessary covariances. Thus, our estimates of β and
ρxc depend on the maximum ` that we include in our multipole expansion of P ab(k, µ). As a
cross-check that we are not particularly sensitive to our chosen `max = 4, we have re-estimated
β and ρxc setting `max = 2 for the "2x sats." HOD depicted in fig. 6. This should be a
worst-case scenario for the tracers considered in this work, as it exhibits the most significant
hexadecapole moment. As seen in the bottom two panels of fig. 9, for k < 0.4hMpc−1 the
impact is consistent with zero. For k > 0.4hMpc−1 we observe ∼ 10− 20% effects, but these
are mitigated by the fact that we apply a damping factor to β that we discuss presently.

The disconnected approximation that we assume for covariances breaks down when non-
linear mode coupling becomes significant [75]. This leads to a significant overestimation of β,
compared to the value that we would measure if we had access to the true covariance of the
measurements in question. In order to mitigate this and avoid adding extra variance to our
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simulations at high-k where our ZA surrogate is no longer strongly correlated, we damp β to
zero by applying a tanh function:

F (k; k0,∆k) =
1

2

[
1− tanh

(
k − k0

∆k

)]
. (C.3)

using k0 = 0.618hMpc−1 and ∆k = 0.167hMpc−1, which were determined by [20] to bring β
into agreement with measurement made using an ensemble of simulations. In the future we
will redetermine these constants for specific use cases as needed. The upshot of this damping
is that we set β = 0 for nearly the same k range as where we observe significant variation
when varying `max.

There is also a subtle bias that enters into the control variate estimator when reducing
the variance of measurements from the same simulation that is used to estimate β. Using
real-space auto-power spectra as an example, this can be seen by the fact that the ensemble
average

〈y〉 = 〈P̂ tt(k)− β̂(P̂ zz(k)− P zz(k))〉 (C.4)

=

〈
P̂ tt(k)− P̂ tz(k)2

P̂ zz(k)2
(P̂ zz(k)− P zz(k))

〉
(C.5)

=

〈
P̂ tt(k)−

(
P̂ tz(k)2

P̂ zz(k)
− P̂ tz(k)2

P̂ zz(k)2
P zz(k)

)〉
6= 〈P̂ tt(k)〉 (C.6)

where hatted variables are measurements from individual realizations, and the ensemble av-
erage is taken over many realizations. In order to mitigate this bias, we smooth our estimates
of β using a third-order Savitsky-Golay filter with a window length of 21. For each k bin, this
filter fits a third order polynomial to the 20 adjacent k bins. Thus it is possible to calculate
that the effective number of points that each smoothed point receives contributions from is
9.3. In the regime where ZCV yields significant gains, these points are largely uncorrelated.
Thus, this process serves to suppress any small correlation between β and P̂ zz(k) that might
prevent β̂(P̂ zz(k) − P zz(k))〉 from averaging to zero.4 Furthermore, since P̂ tz,tt are highly

4Let us consider the effect of smoothing within a simple toy model. Consider a set of N random variables
xi with associated control variates µi with zero mean, as well as estimated βi, such that we can form the
variance-reduced combination yi = xi − βiµi. Here we imagine xi is the power spectrum in bin i, so for
simplicity let us assume 〈xi〉 = σ and that different bins are uncorrelated; in particular, let us assume that βi
and µi can be correlated, as discussed above, such that 〈βiµj〉 = c δij . In this case we see that yi is biased:

〈yi〉 = σ − c. (C.7)

Now, suppose we instead estimate the correlation by taking the mean across bins, i.e. β = 1
N

∑
i βi. In this

case we can see that
y′i = xi − βµi, 〈yi〉 = σ − c

N
, (C.8)

i.e. the bias is suppressed by the number of samples. Moreover, we can see that in the case that we are
interested in the overall amplitude of the xi (e.g. σ8) that

Y =
1

N

∑
i

yi, 〈Y 〉 = σ − c

N
(C.9)

similarly has a suppressed bias. It is worth noting however that the additional correlation between β and µi
will increase the noise of y′i, i.e.

〈y′iy′i〉c 3 〈βµi〉2 =
c2

N2
(C.10)
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Figure 9. (Top) A depiction of our procedure for estimating β from our simulations, in the case
of the "2x sats." HOD shown in fig. 6. The raw measurements assuming a disconnected covariance
approximation are shown in blue. We then apply a damping function (eq. C.3) to these measure-
ments in order to take β to 0 where we expect this disconnected approximation to break down. We
additionally smooth β with a Savitsky-Golay filter in order to debias our control variate estimator.
(Middle) The fractional error that is made in β by not including the hexadecapole in our covariance
estimates. This error is negligible in the regime that we do not damp β to zero. Note, that we include
the hexadecapole for the rest of this work, and that we expect inclusion of even higher multipoles in
our covariance to have even less of an impact. (Bottom) Same as the middle panel but for ρxc. Again,
the error incurred is negligible.

correlated, their ratio β should be significantly less correlated with P̂ zz than each individually,
suppressing the bias due to correlations of the control variate with β. This is why the ρxc’s
shown in this paper are far less noisy than the spectra themselves, with noise primarily due
to stochasticity on large scales. The process of smoothing and damping β described here is
depicted in the top panel of fig. 9.

Alternatively, if one wishes to avoid these complications and set β to some anzatz, e.g.
β = 1, as it must be on large scales when including linear and quadratic bias, then the
variance of y is

Var[Y |β] = Var[X] + β2Var[C]− 2βρxcσxσc = σ2
c (β − β∗)2 + Var[Y |β∗]

and is thus degraded from the optimal choice of β = β∗ by

Var[Y |β]

Var[Y |β∗] =
1 + β2 Var[C]

Var[X] − 2βρxc
σc
σx

1− ρ2
xc

= 1 +
σ2
c

σ2
x

(β − β∗)2

1− ρ2
.

If we take the LRG-like HOD as an example, we find Var[Y |β = 1]/Var[Y |β∗] ' 1.05 at
k ' 0.2hMpc−1. Thus, one can eliminate the need to estimate β, apply smoothing, etc., by
setting β = 1 without incurring a large penalty in variance, although there is no guarantee
of this fact. This simplifies the pipeline and saves approximately 25% of the computing cost
required by ZCV as there is no longer a need to compute cross correlations between the
Zel’dovich and tracer fields.
however this too is suppressed by N and, in our case, further by the smallness of the correlation between β
and µ as argued in the text.
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