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Minneapolis, MN 55455, e-mail: cosman(C?ee.umn.edu 

+Information Systems Lab, Stanford University, Stanford, CA 
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Abstract 
Variable-rate tree-structured VQ is applied to the coeficients obtained f rom an or- 
thogonal wavelet decomposition. After encoding a vector, we examine the spatially 
corresponding vectors in the higher subbands to see whether or not they are “sig- 
nificant,” that is, above some threshold. One bit of side inJformation is sent to the 
decoder to inform it of the result. When the higher bands are encoded, those vectors 
which were earlier marked as insignificant are not coded. An  improved version of 
the algorithm makes the decision not to code vectors from the higher bands based on 
a distortion/rate trade08 rather than a strict thresholding criterion. Results of this 
method on the test image “Lena” yielded a PSNR of 30.15 dE at 0.174 bits per pixel. 

1 Introduction 

The discrete wavelet transform combined with scalar or vector quantization has led to 
numerous algorithms for image compression. Using a multiresolution framework, the 
wavelet transform organizes the coefficients to enable effective quantization and en- 
coding. The temporal/scale tessellation of the wavelet transform avoids the blocking 
artifacts that are common for schemes using only temporal tessellation (e.g., JPEG 
and VQ used without transforms). 

Wavelet encoding involves taking the discrete-time wavelet transform of an image 
and quantizing the wavelet coefficients based on some bit allocation scheme. Bit al- 
location is the process of assigning a given number of bits to a set of different sources 
(e.g. For scalar 
quantization, the bit allocation scheme chooses the size of the quantizer step, or bin, 
for each subband. Among the best wavelet coding reported tlo date has been the em- 
bedded zerotree wavelet (EZW) algorithm 191, which uses scalar quantization together 
with an efficient scheme for indicating where the coefficients of large magnitude are 

wavelet subbands) to minimize the overall distortion of a coder. 
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located. For vector quantization, the bit allocation scheme controls the vector dimen- 
sion and the number of codewords for each subband. After quantization the indices 
are usually entropy encoded. Image compression using vector quantization (VQ) ap- 
plied to  wavelet coefficients has been the focus of many recent studies. Lattice VQ, 
full search VQ, entropy-constrained VQ, and finite-state VQ have been tried, with 
good results. 

In this paper, we quantize wavelet coefficients using variable-rate tree-structured 
vector quantizers designed by the generalized Lloyd algorithm, combined with a sim- 
plified version of the zerotree significance map idea for indicating where vectors of 
large coefficients are located. A brief review of tree-structured vector quantization 
is given in Section 2. Section 3 describes the way in which this technique is com- 
bined with a zerotree structure in this work. Results and conclusions are presented 
in Section 4. 

2 Tree-structured vector quantization 

Tree-structured vector quantization (TSVQ) is an image compression technique that 
is rapid for both the encoder and the decoder. A binary TSVQ consists of a tree 
with nodes labeled by candidate reproduction vectors. An input vector is compared 
to  the labels of the two child nodes available at the root node, and the node with 
the minimum distortion label (the nearest neighbor) is selected. The encoder then 
performs a similar test for the new node’s children and continues in this manner until 
a terminal node i s  reached. The label of the terminal node i s  the final reproduction, 
and the binary vector describing the sequence of encoder decisions i s  the codeword 
stored or sent to the decoder: The decoder then performs a table lookup to  produce 
a local reproduction. A TSVQ is thus described by a tree (nodes and labels) and a 
distortion measure used to  select nodes in a nearest neighbor fashion (see, e.g., [ 3 ] ) .  

A balanced TSVQ is grown one levcl at a time using, for example, the splitting 
method of the generalized Lloyd algorithm [4]; this results in a fixed rate code. A 
variable rate code can be implemented by an unbalanced tree, obtained either by 
growing a balanced tree and then pruning it back so that it becomes unbalanced, 
or by “greedily” growing an unbalanced tree directly [6]. The latter algorithm is an 
extension to  VQ of a common decision tree design technique [l]. 

Given a tree T, assume that we split one of its leaves (terminal nodes) j into two 

generalized Lloyd algorithm. Let AD = D’ - D and AR = R’ - R be the change in 
the distortion and rate, respectively, due to splitting j .  The distortion of a node is 
the average squared error bet.ween the centroid of t,he node and the training vectors 
mapping into that node. Then the ratio of the change in distortion to the change in 
rate due to  splitting leaf j i s  

AD A = - - -  
AR’ 

new leaves j~ and j,. The centroids of the two new leaves are determined by the 

(1) 

which is the “goodness of split” for leaf j. 
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As in decision tree design, we can design a TSVQ one node at  a time, always 
splitting the node with the largest A. The algorithm is “greedy” in the sense that 
each node is split without considering its later effect on the tree. This method results 
in an unbalanced tree, because the node that is split can be at any depth. There will 
be more codewords available to  code high distortion events; tjhis is where the tree will 
have been split the most. Thcrefore, unbalanced trees are able to  code high distortion 
events at a higher resolution than can balanced trees which are limited by their initial 
depth. 

The growing method optimally trades off rate and distortion for each new node 
in a greedy fashion. The resulting tree can then be pruned with the generalized 
Breiman, Friedman, Olshen, and Stone (BFOS) algorithm [l]. One can achieve a 
lower distortion for a given average rate by optimally pruning the tree with the 
generalized BFOS algorithm rather than by removing the nodes in the reverse order 
in which they were added. This is because the growing algorithm is greedy, whereas 
the BFOS pruning algorithm removes nodes optimally. 

3 TSVQ with zerotree significance maps 
The zerotree wavelet algorithm of Shapiro [9] uses scalar quantization. A wavelet 
coefficient z is said to be insignificant with respect to  a given threshold T if 1 z I <  T .  
The zerotree algorit,hm is based on the hypothesis that if a wavelet coefficient at  
a coarse scale is insignificant with respect to a given threshold T ,  then all wavelet 
coefficients of the same orientation at  the same spatial location at  finer scales are likely 
to be insignificant with respect t o  T also. Given a threshold ievel T ,  a coefficient 5 is 
said to be an element of a zerotree for threshold T if itself and all of its descendants 
are insignificant with respect to  T .  Figure 1 shows the arrangement of a coefficient 
and its descendants. An element of a zerotree is a zerotree root if its parerit is not 
an element of a zerotree. When wavelet coefficients are to be coded at  low bit rates 
by scalar quantization followed by entropy coding, the zero symbol will be the most 
probable symbol after quantization, and a binary significance 7nap can be used to 
indicate the location of the non-zero values. The EZW algorithm uses the zerotree 
structure as an efficient way to  compress significance maps. EZW is an iterative 
dgorithm that refines the quantization step by one-half at  each iteration and results 
in an embedded code. The quant,ization step used at each iteration applies t o  all of 
thc subbands, so only thc original quantization step needs to  be stored as overhead. 
The iterations repeat until all of the available bits are allocated. Adaptive arithmetic 
coding is applied to the bit stream that results from this process. 

There have been a couple of previous efforts to  make use of the zerotree structure 
as part of a vectorial quantization scheme for wavelet Coefficients. In one approach, 
a coefficient from a coarse band is grouped with 4 coefficients from the next finer 
band of the same orientation, and with the 16 corresponding coefficients of the finest- 
scale band, to produce a. 21-dimensional vector [5]. Those vectors which have all 
components below a specified threshold are designated zerotrees and not coded. The 
remaining coefficients are re-organized into lower dimensional vectors, and vector 
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Figure 1: A coefficient “C” and its descendants 

quantized. An algorithm that is closer to the iterative refinement approach of Shapiro 
uses a multistage lattice to progressively refine the vectors of coefficients [7].  Each 
input vector is coded with a series of vectors of decreasing magnitudes. At each stage, 
the orientation of the reconstruction vector is selected from a finite set of unit energy 
codevectors, which are chosen based on a regular lattice. 

In our work, the Daubechies 
orthogonal 8-tap filter was used to decompose the image to 4 levels [a], producing 
a total of 13 subbands. Different vector sizes and shapes were used in the different 
levels. The lowest band was coded by scalar quantization (1 x 1 vectors). The finest 
scales were encoded using 4 x 4 vectors, and intermediates scales employed vectors of 
size 2, 4, or 8. Figure 2 shows the decomposition together with the size and shape of 
vector used in each subband. 

A training sequence was composed of 10 images from the USC database. Each 
image was transformed. and the various bands blocked into vectors of the size and 
shape chosen for that band. The image “Lena” was used as a test image, and was not 
part of the training sequence. A large tree-structured vector quantizer was greedily 
grown on each training sequence, and optimally pruned back. 

The algorithm described here differs from these. 

Bit allocation: Fewer bits can be allocated to the high frequency subbands than to  
the low frequency ones, as they possess smaller variance, corresponding to less infor- 
mation. Senoo and Girod examined the optimal allocation of bits among the various 
subhands [8], and their method is employed in the current work. They showed that 
the minimum overall distortion for a given total rate is achieved when the individual 
distortion rate curves D,(R,) are of equal slope, that is 

-- - -A, dDi (R;) 
d R; 

for all subbands i. This condition is referred to as “Pareto optimality” in economics. 
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Figure 2: The 4-level wavelet decomposition produces 13 sulbbands. Here are shown 
the size and shape of the vectors chosen for each subband. 

Each TSVQ was grown out to a large size and then optimally pruned back. For 
each band, the distortions and rates for the sequence of pruned subtrees provided 
the D,(R,)  curves on which we found the points of equal slope. This is only an 
approximation to the optimal bit allocation because the distortions and rates of the 
pruned subtrees are computed on the training sequence, not on the test sequence. It is 
also approximate because only a discrete set of optimally pruned subtrees is available, 
and these subtrees may be spaced far apart in rate, which may mean the available 
slopes are widely separated. So by using only these optimally pruned subtrees, one 
is not actually obtaining equal (or nearly equal) slopes in the different bands. 

Zerotrees: A simplified version of the zerotree significance map was incorporated 
into this algorithm as follows. The lowest subband is encoded without examining 
future bands. When subband 2 is encoded, a given 2-D vector z is in spatial corre- 
spondence with two 4-D vectors of subband 5. Each of these 4-D vectors is in spatial 
correspondence with two 8-D vectors of subband 8. And each of these 8-D vectors is 
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in spatial correspondence with two 16-D vectors of subband 11. Thus 2 vectors from 
subband 5, 4 vectors from subband 8, and 8 vectors from subband 11 are all consid- 
ered to  be the descendants of the vector z of subband 2. The vector z is encoded 
to  the reproduction vector ?. If the magnitudes of all the components of vector i 
are below some threshold 7'1 then we will transmit one bit to the decoder to  inform 
it of whether this entire collection of descendants is significant with respect to  some 
threshold Tz. If either component of f has magnitude greater than T,, then we do 
not transmit any side information about the significance of its descendants. Because 
the decoder receives the encoded vectors of subband 2, it knows the value of 2 ,  and 
therefore knows whether the extra bit is being sent or not. The threshold Ti is used 
for deciding when to  spend the extra bit. The threshold 2'2 is used for determining 
whether the descendants can be declared insignificant or not. In this study, Ti values 
of 96, 64, and 32, and Tz values of 48, 32; and 16 were examined. When subband 5 
is encoded, those vectors which were previously marked as insignificant will not be 
coded. The other vectors will be coded. Such vectors arise either because no extra 
marking bit was transmitted for the parent at  all, or because the marking bit for the 
parent indicated that the descendants could not be ignored. If a vector in subband 5 
is encoded, then components of its reproduction are similarly compared to  7'1 to see 
whether or not its descendants in subbands 8 and 11 should be examined for insignif- 
icance. For the finest subbands ( l l >  12, 13) the vectors have no descendants, and 
thus no extra bits are sent. At low bit rates, the optimal bit allocation scheme may 
determine that no bits should be allocated to  subbands 12 and 13, in which case the 
zerotree bits for subbands 9 and 10 need not be sent. The extra bits corresponding 
to  the significance map can be entropy coded (as can the bits corresponding to  the 
tree encoding), although in this study entropy coding has not been implemented. 

Dispensing wi th  t h e  thresholds:  Using thresholds introduces the danger that 
the thresholds may not be well suited to a particular test image, and that the results 
may be radically different for different choices of the thresholds. An improved version 
of the algorithm dispenses with the thresholds entirely. The first threshold TI can be 
eliminated simply by choosing to  examine the descendants of all encoded vectors. This 
is equivalent to  setting TI to  be infinite. The second threshold Tz can be eliminated 
by choosing the zerotrees according to a distortion-rate tradeoff, rather than by a 
strict thresholdiiig criterion. If one considers, for instance, a 2-D vector in subband 
2, its two 4-D descendant vectors in subband 5, and all their descendants in subband 
8 and 11, one has a collection of 170 coefficients. There are a number of ways to code 
these 170 coefficients. For example, the lone ancestor vector could be encoded and the 
decoder could be told that its descendants constitute a zerotree, without consideration 
of what threshold level would actually make those descendants a zerotree. This would 
lead to  a certain distortion D1 and rate RI associated with the entire collection of 170 
coefficients. Or the two children vectors in subband 5 could be encoded, and their 
descendants could be declared a zerotree, which would lead to a distortion D2 and a 
rate Rz for the whole set of 170 coefficients. Or the descendants of only one of the 
children vectors in subband 5 could be declared a zerotree, but not the descendants 
of the other. This would lead to additional possibilities for D and R. In all, there 
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are 26 ways that the group can be encoded, and each choice produces a (D, R)  pair. 
These pairs can plotted in the D , R  plane and the convex hull of the set ran be 
extracted. This curve, which we call the zerotree choice curve, then represents the 
various optimal distortion/rate tradeoffs obtainable for the group of 170 coefficients 
by different choices of where to root the zerotrees. We recall that bits were allocated 
among the subbands by finding points along the D ( R )  curves for each subband that 
had equal slope. This same slope can be used to guide the selection of the operating 
point along the zerotree choice curve. In this way, groups of coefficients are zeroed 
out not because they meet some strict thresholding criterion, but because zeroing 
them out makes sense according to a distortion/rate tradeoff. And in fact, it is the 
same distortion/rate tradeoff that is used to choose the vector quantizer subtree for 
encoding each subband. 

4 Results and Conclusions 
The test image “Lena” was decomposed 4 levels using the Daubechies orthogonal 
8-tap filter. The subbands were blocked into vectors, and each vector was encoded by 
the pruned subtree for its subband. With the thresholds TI and TZ set at 64 and 32 
respectively, the image encoded to  0.187 bits per pixel (bpp) with a PSNR of 30.0 dB. 
Those thresholds provided about the best PSNR at that bit, rate. The method that 
did not use thresholds outperformed the threshold method a.t all bit rates examined, 
In particular, PSNRs of 29.2, 30.15, and 30.6 were obtained <at bit rates of 0.13, 0.17, 
and 0.21 bpp, respectively. The original image is shown in Figure 3, and an encoded 
image is shown in Figure 4. These results do not include any entropy coding on the 
resulting bit stream. 

When the test image was encoded using TSVQ without examining the significance 
of later coefficients (equivalent to just taking TI = 0) a PSNR of 30.0 dB was obtained 
at 0.27 bpp, and a PSNR of 28.8 was obtained at 0.183 bpp. This means that using 
the zerotrees saved about 1/3 of the bits when the PSNR was held to be the same, 
and improved the PSNR by about 1.2 dB, when the bit rate was held to be the same. 
The vector quantization that used the zerotree consistently performed better than 
the one that did not. 

We note that the 13 training sequences used all of the training vectors from the 
corresponding subbands. The training sequences therefore were not quite represen- 
tative of the test vectors that  were later encoded, since when the zerotrees are used, 
fewer test vectors of low magnitude are encoded. That is, the training sequences were 
appropriate for the regular TSVQ case, and the TSVQs with zerotrees performed well 
despite this handicap. 

duce excellent quality images at low bit rates. The contribution of the current work 
is two-fold: first, it demonstrates that good quality at low bit rates can be obtained 
using variable-rate tree-structured VQ on wavelet coefficients. Secondly, and more 
importantly, the use of the simplified vectorial version of the effective zerotree strat- 
egy for eliminating groups of insignificant coefficients provided more than a 1 dB 

VQ applied to  wavelet coefficients has been shown by several researchers to pro 
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Figure 3:  Original ”Lena’i image 

Figure 4: “Lena” encoded at 0.174 bpp with a PSNR of 30.15 dB 
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improvement over the same wavelet-TSVQ that did not use it. One can speculate 
therefore that some of the recent excellent results of wavelet-VQ applied to  intra- 
band vect>ors could be improved upon by the incorporation of this simple technique, 
although the technique would be of less use for wavelet-VQ methods that employ 
cross-band vectors. 

In this study, the ranges of various parameters in this algorithm have not yet been 
explored. Only one filter has been tried (Daubechies 8-tap), at  only one depth of 
decomposition (4 levels), with only one set of choices for the different vector sizes 
and shapes in the various bands (as shown in Figure 2). One aspect of continuing 
this work is to explore the results obtainable by varying these different parameters, 
and by using entropy coding. The basic structure of the vector quantizer could be 
changed as well. 
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