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           Correcting spurious resolution in defocused images 
  
                                                        John I. Yellotta and John W. Yellott  

   aDepartment of Cognitive Sciences and Institute for Mathematical Behavioral Sciences, 
University of California, Irvine CA 92697 

  
                                                                      ABSTRACT 

 
    Optical modeling suggests that levels of retinal defocus routinely caused by presbyopia should produce phase 

reversals (spurious resolution−SR) for spatial frequencies in the 2 cycles/letter range known to be critical for 
reading. Simulations show that such reversals can have a decisive impact on character legibility, and that 
correcting only this feature of defocused images (by re-reversing contrast sign errors created by defocus) can 
make unrecognizably blurred letters completely legible. This deblurring impact of SR correction is remarkably 
unaffected by the magnitude of defocus, as determined by blur-circle size. Both the deblurrring itself and its 
robustness can be understood from the effect that SR correction has on the defocused pointspread function, which 
changes from a broad flat cake to a sharply pointed cone. This SR-corrected pointspread acts like a delta function, 
preserving image shape during convolution regardless of blur-disk size. Curiously, such pointspread functions 
always contain a narrow annulus of negative light-intensity values whose radius equals the diameter of the blur 
circle. We show that these properties of SR-correction all stem from the mathematical nature of the Fourier 
transform of the sign of the optical transfer function, which also accounts for the inevitable low contrast of 
images pre-corrected for SR.            
     

       Keywords:   phase reversal,  contrast reversal,  phase correction,  pre-correcting defocus, presbyopia 
 
 
                               1. INTRODUCTION: DEFOCUS AND SPURIOUS RESOLUTION 
    
    In Fourier optics the amplitude spectrum and the phase spectrum of an image are equal partners, but the optical 

design of the eye causes retinal images to be much more likely to suffer from amplitude distortion than from phase 
errors. That design makes axial defocus a routine visual event, and defocus in any image-forming device always 
confines its damage to spatial contrast, and has (almost) no impact on spatial phase. One way to demonstrate this is 
to progressively defocus the projected image of a sine wave grating, taking care to compensate for magnification 
artifacts. The image will fade and eventually disappear,  but during this process it always remains fixed in place, 
never shifting laterally one way or the other along its axis. This shows that while defocus has complete power over 
the contrast of the image, it cannot produce any shift in its spatial phase. Such a limitation might be expected a 
priori from symmetry considerations together with the one-dimensional nature of defocus, which is essentially a 
distance error in the positioning of  the image-observation plane along the z-axis of the optical system. That z-axis 
error provides no basis for shifting the image of a spatial sine wave laterally in the x,y plane,  because it does not 
imply a choice of one direction over the other.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Spurious resolution and its correction. a: sinusoidal version of Siemen’s star3: cos72θ. b: image a after 
convolution with a uniform disk, simulating optical defocus. The size of the blur-disk is shown by a white spot in the 
lower left corner.  c: image b with its phase spectrum corrected to undo spurious  resolution. 

b c  a 
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    So defocusing a grating down to its first disappearance yields no surprises. But now if the defocusing process is 
continued beyond the point of zero contrast, one may be surprised to find that the image reappears, only with 
reversed contrast—dark stripes in the object become light stripes in its image, and light stripes turn dark. This 
phenomenon is known as “spurious resolution” 1 (SR). Fig. 1 shows a classic demonstration 2,3, to which we have 
added a new wrinkle by showing what happens when SR is corrected. Here, the visual result is subtle, but for other 
images it can be dramatic.  

 
Another name for spurious resolution is “phase reversal”4. That name is prompted by the fact that from a Fourier 
perspective, these contrast reversals are actually phase changes—half-cycle phase shifts, which leave a spatial sine 
wave in place, but reverse its sign: a cos 2πf(x +1/2f) = ─a cos 2πfx. This is the only  phase change that defocusing 
can produce—the only exception to the rule that defocus cannot alter phase.  It satisfies the demands of symmetry 
by being the only phase change that does not entail choosing sides.   

 
    So during the eye’s constant struggle to stay in focus, SR is the only phase error that can occur when it fails. It is 

natural  to wonder what visual effect such errors have, and  what would happen if they could be corrected. This 
paper deals with these questions.  Our interest is specifically motivated by the fact that SR admits the possibility of 
being pre-corrected in visual targets (e.g., printed letters) by shaping them in a way that anticipates the phase 
reversals to be expected from subsequent defocus (e.g., by a presbyopic eye), and uses them to create recognizable 
retinal images of the original forms. The rest of this section provides a mathematical framework for the analysis. 
Section 2 examines the potential visual impact of SR during out-of-focus reading, which proves to be substantial.  
Section 3 shows that correcting SR in severely blurred letter-images can restore them to legibility, and that the 
effectiveness of this correction is remarkably independent of the extent of defocus.  We show how these properties 
of SR-correction arise from the nature of the change it produces in the defocused pointspread function, and  how 
that the nature of that change stems in turn from properties of the Fourier transform of the sign of the corresponding 
optical transfer function. Finally, Section 4 considers the possibility of achieving the benefits of SR-correction 
during  presbyopic vision by re-shaping printed text in a way that should—in theory—cause a defocused eye to 
correct its own phase error. We show that such pre-corrections are fundamentally limited by contrast constraints 
imposed  by the basic nature of the operation.  We use computation and mathematical analysis to map out this 
territory, which is part of a still largely mysterious domain: the role of phase in visual images. Our goal is develop 
an intuitive mathematical understanding—a geometrical picture--of how SR-correction works on images and their 
spectra, so that its effects can be anticipated,  rather than having to be freshly computed for each situation.  

  
   1.1 Mathematics of  spurious resolution 
 

 o(x,y) denotes the light intensity in a monochromatic object;  io(x,y) is the intensity in its image;  x and y are visual 
angle coordinates, with axes are labeled so that (x,y) in the image plane is the geometrical optics image of (x,y) in 
the object plane.  Fo(u,v) and Fio(u,v) are the Fourier transforms of o and io; u and v are cycles/unit visual angle. 
We consider a shift-invariant linear optical system with pointspread function p(x,y): p is the image of the point 
object  δ(x,y). The functions o, io, and p are all real and nonnegative;  p is assumed to have volume 1.0.  The system 
is completely characterized by p through the convolution relationship io(x,y) = o(x,y)∗ p(x,y). In the spatial 
frequency domain the same characterization is represented by the product relationship Fio(u,v) = Fo(u,v) Tp(u,v), 
where Tp is the Fourier transform of  p: Tp is the optical transfer function (OTF) of the system.  In  exponential 
form Tp(u,v) = |Tp(u,v)| exp[jΦp(u,v)], where the modulus |Tp(u,v)| is the amplitude spectrum portion of the OTF 
(i.e.., the modulation transfer function), and the argument Φp(u,v) is its phase component—the phase transfer 
function corresponding to the pointspread p.  |Tp| ≥ 0, of course, and because p is real,  |Tp(-u,-v)| = |Tp(u,v)| and  
Φp(-u,-v ) = −Φp(u,v). Those relationships hold for any system, but if we assume in addition that the optical 
system is limited only by factors that produce a radially symmetric pointspread function (in particular, defocus, but 
also diffraction by, e.g., a clear circular pupil), then Φp becomes tightly constrained: radial symmetry in p  (i.e.,  p(-
x,-y) = p(x,y)) implies radial symmetry in Tp, so 

 
                                                |Tp(-u,-v)|exp[jΦp(-u,-v)] =  |Tp(u,v)|exp[jΦp(u,v)] .                                                    (1) 
          

Combining that relationship with the other two, we have exp[-jΦp(u,v)] = exp[jΦp(u,v)]. This can only be true if   
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 Φp(u,v) = nπ for some integer n, so the only possible values of the phase transfer function  exp[jΦp(u,v)] are +1 
and −1.  Consequently the OTF imposed by defocus is always real, and takes the form 

  
                                                         Tp(u,v) = |Tp(u,v)| Sign[Tp(u,v)]                                                                          (2)      
 

where Sign[x] = 1 for x > 0, −1 for x < 0, and 0 at x = 0. This representation of the defocused OTF is the key to 
understanding spurious resolution and its correction. SR occurs at exactly those spatial frequencies (u,v) where 
Sign[Tp(u,v)] = −1; whenever this is true, Tp introduces its only possible phase error: a reversal of contrast-sign . 
We can correct this defect of Tp by multiplying it times its own sign, turning it into |Tp|: 

 
                                  Tp(u,v) Sign[Tp(u,v)] =  |Tp(u,v)| Sign[Tp(u,v)] Sign[Tp(u,v)]  = |Tp(u,v)| .                             (3) 
  

So to correct the phases in the image io of an object o that has been blurred by defocus, we multiply its spectrum Fio  
times the sign of the OTF Tp,  producing a new, phase-corrected, spectrum, denoted  Fcio , whose phase component 
is the same as that of the object spectrum, and only differs from it only in amplitude:                                                                               

                                                                                                                                                                                                                         
                                                     Fcio(u,v ) = Fio(u,v) Sign[Tp(u,v)]  =  Fo(u,v) Tp(u,v) Sign[Tp(u,v)]                                             
 
                                                                      = Fo(u,v) |Tp(u,v)| = |Fo(u,v)| |Tp(u,v)| exp[jΦo(u,v)].                           (4) 
              

The phase-corrected image that results from this operation, cio(x,y), can be obtained by taking the inverse Fourier 
transform of  Fcio. One such image was shown in Fig. 1c. In that case the immediate visual impact of SR correction 
was small. But for other objects the effect can be visually dramatic (Fig. 6) and intellectually surprising (Fig. 7). 
 
Note that the SR-correcting multiplication (4) can be performed directly on the object spectrum rather than on the 
spectrum of its image. In that case we can create a pre-corrected version of object o, denoted  co(x,y), whose 
transform Fco(u,v) is the product Fo(u,v) Sign[Tp(u,v)]. Then when imaging has its usual effect of multiplying the 
object spectrum times Tp, the result will be  Fo Sign[Tp] |Tp| Sign[Tp] =  |Fo| |Tp| exp[jΦo].  So defocusing the 
object co leaves the original object phase spectrum Φo unchanged, and reproduces o with only the loss of contrast 
imposed by the modulation transfer function |Tp|.  Such pre-corrected objects are, in effect, inoculated against 
spurious resolution. The pre-corrected object co(x,y)  itself can be created by Fourier inversion of its spectrum 
Fco(u,v). However as we will see, the actual physical realizability of co is problematic, because the theoretical 
image  produced in this way generally contains negative values, and these prove to impose severe constrains on the 
retinal contrast of  SR-corrected  images.   

 
   
                                   2.  SPURIOUS RESOLUTION IN PRESBYOPIC  VISION 
 

Besides being useful for demonstrating SR with a slide projector, the star pattern in Fig.1a can be used to 
investigate whether SR occurs in out-of-focus human vision, by viewing it very close to one’s own eye--too close 
to focus. (An inch or two should do. If the video image of the star has become distorted in this copy, a printed 
version may still be OK.)  Such experiments generally convince observers that SR does occur in defocused eyes, 
though astigmatism and other aberrations yield a visual experience that is not so clear cut as Fig. 1b.  
Psychophysical evidence on this point is surprisingly scarce and somewhat equivocal1,4−7 ; results depend on what 
is demanded of observers in an experiment,  and on parameters such as pupil size and the sign of defocus .  But it 
seems quite clear that SR would be expected on optical grounds if the eye were a perfect device, limited only by 
defocus plus diffraction at the pupil, and that it should play an important role in vision at levels of defocus that are 
commonly experienced  by many people in daily life. Figure 2 shows an analysis of a bare-bones model of a human 
eye that is correctly focused for infinitely distant objects, but has no ability to refocus for nearer ones, like older 
people who are completely presbyopic and require +3 diopter reading glasses. The figure shows the pointspread 
function  and the OTF  of this eye when viewing incoherent monochromatic objects at infinity (in the upper half of 
the figure) and at 30 cm (lower half). The in-focus pointspread is the Airy pattern (on this scale, visible only as a 
dot) with a central spot about 1 min across; its OTF is monotonically decreasing, and vanishes around 90 
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cycles/deg.  When the object point moves in to 30 cm,  producing 3.3 diopter defocus,  its image becomes a broad 
flat cake with ripples,  about  1/2 degree in diameter. (Fig. 3a below shows the profile of this pointspread function.) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
       
 
 
 

The OTF now has its first zero at 2 cycles/deg and remains negative up to 4 cycles/deg, so all spatial frequencies in 
this range will be imaged with reversed contrast. This should have a significant impact on reading, which depends 
critically on the visibility of frequencies that correspond to around 2 cycles/letter8.  A 10-point letter at 30 cm 
subtends 2/3 deg, so 2 cycles/letter here corresponds to 3 cycles/deg, the center of the first spurious resolution 
range. Lower levels of defocus push that range up to higher frequencies (e.g., for 2D defocus with a 3 mm pupil,  
SR begins at 3.5 cycles/deg)  but larger pupil sizes push it down (for a 6mm pupil, SR begins at 1.8 cycles/deg for 
2D) . Overall, there appears to be a sizable parametric range where SR might be expected to affect presbyopic 
reading by reversing the contrast of critical spatial frequencies.  Section 3 examines  the effect this could have on 
the legibility of text.  For that purpose it is useful to be able to model defocus using a simple uniform disk to 
represent the pointspread function--the geometrical optics approximation--rather than the analytically complicated 
pointspread implied by scalar diffraction theory2,9,10. The remainder of this section deals with the validity of this 
approximation. 

 
    2.1  Geometrical optics versus scalar diffraction theory models for visual defocus     
 

Panel b in Fig. 3 compares the OTF produced by 3.3 diopter defocus in the model eye of Fig. 2 when  the 
pointspread  function is the one implied by diffraction theory  (the rippled-cake shown here in Fig.3a) with the OTF 
produced by a  uniform-disk pointspread function chosen to create the same first zero-crossing in the OTF.  One 
can see that these two OTFs are nearly identical out to their third zeros, so for this level of defocus, geometrical 
optics  provides a close approximation to diffraction optics. (Panel c shows how uniform-disk defocus affects the 
sweep-frequency grating used in Fig. 2.) Figure 4 shows similar comparisons for 1, 2, and 0.3  diopters of defocus.  
For 1 and 2  diopters the geometrical optics  approximation retains its validity. When defocus falls below 1 diopter 
the diffraction OTF undergoes a qualitative change, and the geometrical optics approximation fails. Below about 
0.3 diopters the diffraction OTF ceases to have any negative regions, so at low levels of defocus SR no longer 
occurs at all.  (At these levels the pointspread function is roughly bell-shaped, and could be adequately modeled by 
a Gaussian. But Gaussian pointspread functions always have nonvanishing Gaussian OTFs, so whenever SR 
actually occurs in vision, Gaussian pointspread models cannot account for it.)      

─minutes─    ──cycles/min── 

                OTF 

Fig. 2. Spurious resolution created by defocus in a model eye. 3 mm circular pupil, thin lens focal length = retinal 
distance = 17mm, monochromatic 550 nm point object. Upper row: object at  ∞; no defocus, OTF due to diffraction 
alone. Lower row: object at 30 cm, OTF due to diffraction plus defocus (3.3 diopters) . OTFs and point spreads based 
on Hopkins9,10; at 30 cm the wavefront error w20  is -6.7λ. The Strehl ratio here is around 10-3.  Panels on the right 
show a sweep-frequency grating before and after defocus. The line | marks a stripe whose contrast is reversed by SR.  

 pointspread function 

· 
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                                    3. EFFECT OF CORRECTING SPURIOUS RESOLUTION 
 

Section 1.1 showed that correcting SR in a defocused image io(x,y) is computationally straightforward, provided we 
know the sign of the OTF Tp. In that case we multiply the image transform Fio(u,v) times the function 
Sign[Tp(u,v)],  and take the Fourier inverse of the product; the result is the phase-corrected image cio(x,y), which 
differs from the original object o(x,y) only in its amplitude spectrum: Fcio(u,v) = |Fo(u,v)||Tp(u,v)|exp[jΦo(u,v)], 
where Φo is the phase spectrum of  o.  But what this SR-corrected image will look like is not so obvious.  Fig. 1 
already showed that for some objects the change produced by SR correction is quite inconspicuous, and can only be 
detected by close inspection.  Fig. 5 shows another example of this using a sweep-frequency grating. These 
demonstrations are consistent with psychophysical experiments showing that phase reversals can have little impact 
on the perception of natural scenes4.     
 
But for other visual objects, SR correction can have a profound effect, turning hopelessly blurred images into easily 
recognizable low-contrast versions of their objects. This is notably true of  printed letters; Fig. 6 shows an example .  
To appreciate the visual significance of this demonstration, suppose the letters in Fig. 6a correspond to 10 point 

Fig. 4  Comparison of  geometrical vs.diffraction models for 2, 1 and .3 diopters of defocus in the model eye of Fig. 2. 
Upper row: OTFs  Lower row: pointspread functions. Diffraction model predictions are the thick lines. 

retinal distance (min) 

    cycles/min 

  2 D 1 D .3 D 

a 

  pointspreads   optical transfer functions    grating response 

b c 

Fig.3  Comparison of geometrical optics and diffraction optics models for the  3.3 D defocused eye in Fig.2. 
a: pointspread functions. The geometrical pointspread is a uniform disk with volume 1.0 and diameter 33 min. 
b: OTFs. c: grating response for uniform-disk defocus (blur disk shown in the lower right corner). The diffraction 
model response (Fig. 2) is indistinguishable from the one here.  
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type viewed at 30 cm.  Then their retinal images are on the order of 2/3 deg, giving the blur disk in 6b a diameter 
around 1/3 deg. In our model eye that pointspread diameter corresponds to 2 diopters of defocus ( Fig. 4). So the  

 
 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
devastating effect of defocus seen in 6c would be a routine visual experience for people who normally rely on 
reading glasses in the 2 diopter range, whenever they try to read without them.  Glasses, of course, simultaneously 
correct both the contrast losses and phase changes created by defocus. The dramatic improvement in letter 
readability produced here by correcting SR alone (Fig. 6d ) indicates that the impact of presbyopic defocus on 
reading may be mainly due to phase errors. Others have come to the same conclusion11.  So reading glasses that 
correct phase alone--if such things could be made—might work fairly well.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1 Effect of  defocus severity on SR correction  
 
Demonstrations showing that correcting SR can restore the legibility of defocused letters are not new11. But 
exploring this effect systematically reveals a remarkable property that does not seem to have been previously noted: 
the visual effectiveness of the correction is independent of the amount of defocus. Figure 7 shows the results of  
defocusing letters with blur-disks of increasing size, and then correcting the blurred image for SR. Defocus quickly 
makes the letters illegible, but their SR-corrected images remain completely legible for blur-disks of every size. For 
them, the only effect of increasing defocus is reduced contrast; the legibility of the letters is not impaired at all, but 
they appear to be veiled by an increasingly bright luminous fog.   
 
 

Fig 6.  Effect of correcting SR in defocused letters. a is the original image; b is the blur-disk.  Panel c shows the 
defocused letters, i.e., image a convolved with blur-disk b. Panel d shows image c after SR correction.    

a b   c d 

Fig. 5.  Effect of correcting SR in a defocused sweep-frequency grating. The upper row shows the grating (from the top 
right of Fig. 2) after convolution with a uniform disk; the corresponding OTF (from Fig. 3) is on the left.  SR correction 
is equivalent to rectifying that OTF, forming the nonnegative OTF shown in the lower row. This produces the phase-
corrected grating response shown there. The thin line marks a stripe whose contrast-sign was erroneously reversed by 
defocus; SR correction restores the proper  sign. 
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3.2  SR-corrected pointspread functions 
 
To understand the effect of SR correction on defocused letters, we start by examining its effect on single points. 
Using the notation of Section 1.1, correcting SR in images formed by a defocused optical system with OTF Tp (i.e., 
multiplying Fio times Sign[Tp] ) is equivalent to changing the system OTF from Tp  to |Tp|.  This OTF has its own 
pointspread function, denoted cp(x,y), which can be found  by taking the Fourier inverse of  |Tp|. We will use FT[f] 
to denote the Fourier transform of a function f: FT[f(x,y)](u,v) = ∫∫ f(x,y) exp[-j2π(ux+vy)]dxdy  (∫∫  stands for  
integration over the whole plane).  Its inverse FT-1[F](x,y) = ∫∫ F(u,v) exp[j2π(ux+vy)] dudv.   Then  cp(x,y) = FT-

1[|Tp|] is the pointspread function of the SR-corrected system, and the corrected image of any object o is the 
convolution o∗ cp . In particular, of course, cp(x,y) itself is the SR-corrected image of the point object δ(x,y).  
Figure 8 shows SR-corrected pointspread functions for both the geometrical-optics and diffraction-optics models of 
the 3.3 D defocused eye analyzed earlier in Fig. 2.  Direct comparison (in Fig. 8f)  shows that the two functions 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Fig. 8. Effect of SR correction on pointspread functions.  a and b show the pre-and post-correction OTF of the 
defocused model eye in Fig. 2 (the geometrical optics version).  c and d show profiles of the pre-and post-correction 
pointspread functions for the geometrical optics model (c) and the scalar diffraction model (d); top-down views of those 
functions are shown in column e. The middle panel   in e is the SR-corrected geometrical pointspread; the diffraction 
version is indistinguishable. f  shows a direct comparison of the two SR-corrected pointspeads; the negative light-
intensity region around radius 30 min is circled, and indicated by a light ring in the top-down view (f inset). 

─ 1 deg ─ 

a 

b 

c 

  d 

e 

──1 deg −── 

f 

Fig. 7  Effect of correcting spurious resolution in letters blurred by increasing amounts of defocus.  In each 
series panel 1 is the blur disk;  panel 2 shows the letters after convolution with that disk; and panel 3 shows 
the result of correcting the phase reversals in image 2.  

     1                           2                           3  1 

1 

2 

2 

3 

3 1 2 3 
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are practically identical.  We see that correcting SR here has the effect of changing the pointspread function from a 
broad flat cake (with ripples in the diffraction version) to a sharply pointed cone—like a sagging tent supported by 
a single pole.  Fig. 8  also  shows that both corrected pointspread functions have a narrow circular annulus of 
negative values at a radius of about ½ deg—the width of the blur disk. These “negative light” intensities are not 
computational artifacts, but rather constitute an intrinsic feature of the SR-corrected pointspread function. That is , 
for both the geometrical-optics and diffraction-optics forms of the defocused OTF Tp, the function  cp(x,y)  =     
FT-1[|Tp|](x,y)  really is distinctly negative within a  narrow  annular ring in the x,y plane. (Section 3.3 shows why 
this must be so.) This effect is numerically small, but theoretically significant.  It means that a pure phase-only 
correction of  spurious resolution phase-errors is physically impossible, because the SR-corrected  pointspread 
function cp(x,y) cannot be exactly represented by a pattern of non-negative light intensities. Of course in practice 
we can display a facsimile of cp by adding a uniform background to it (as we do here), and an image of the form 
cp(x,y) + constant  retains the phase-corrected property of cp. As illustrated by Fig. 8 (and Fig. 9 below), the 
constant here is generally quite small, so adding it does not produce any significant distortion.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 shows how increasing the size of the blur-disk affects the SR-corrected pointspread function. One can see 
that for all disk sizes—all levels of defocus--the corrected pointspread always retains its  sharp central spike, and 
the ring of negative light intensity values always has  a radius equal to the blur-disk diameter. This behavior would 
be expected from scaling considerations:  resizing the unit-volume pointspread function  p(x,y) by a width factor w  
means changing  it  to p(x/w, y/w)/w2,  so the form of the  OTF  at all scales is FT[p(x/w,y/w)/w2] = Tp(wu,wv).  The 
SR-corrected OTF then is |Tp(wu,wv)|,  and  taking FT-1 of  this to create the SR-corrected pointspread yields 
cp(x/w,y/w)/w2.  So changing the magnitude of defocus by altering the width of the blur-disk cannot alter the basic 
form of the SR-corrected pointspread function: it always consists of a sharp spike at the origin surrounded by a 
fringe of  scattered light, with a negative ring at a radius equal to the blur-disk diameter.  (Of course for the 
diffraction model the pointspread  function does not actually have an abrupt edge.  But for these high levels of 
defocus, its edge is sharp enough to justify this way of describing things.) When this corrected pointspread is 
convolved with an object to create the SR-corrected version of its defocused image,  its effect is dominated by its 
central spike, which acts like a δ(x,y) impulse by accurately reproducing the spatial form of the object (i.e., o∗δ = 
o), with an overall amplitude reduction proportional to 1/w2 .  To this low intensity copy of the object, the broad 
fringe of the corrected pointspread function adds a veil of light whose intensity also proportional to 1/w2.  So the 
ratio of the central spike to its own background can be expected to remain constant, independent of the blur-disk 
width w, i.e., independent of the severity of defocus.  Of course for an object composed of several points the 
effective background will be the sum of  all their fringes, and the extent of overlap will depend on the amount of 
defocus;  so contrast can be expected to suffer somewhat as defocus increases.   
 
3.3 Understanding the SR-corrected pointspread function 
 
The corrected pointspread function cp(x,y) has two main properties: (1) its basic shape, consisting of a tall sharp 
spike at the origin surrounded by rapidly tapering fringe; and (2) a narrow ring of  negative intensity values whose 
radius equals the diameter of the blur-disk correspond to the uncorrected defocused pointspread p(x,y). To 
understand how these properties arise mathematically, we consider the operation that creates cp:  FT-1[ |Tp| ].  The 

Fig. 9  SR-corrected pointspread functions for blur-disks of  increasing size (diameters 1:2:4). The  y-axes are    
on different scales: the peak response value for the largest disk would actually be  1/16 the value for the 
smallest disk.  Both pre-and post –correction pointspeads always have volume 1.0.
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true functional form of the OTF  of a defocused diffraction-limited optical system is a very complicated object9,10  
involving infinite sums of Bessel functions of all orders, and taking its absolute value makes the mathematical 
situation worse, since that loses the resources of analytic function theory.  Fortunately, for the levels of defocus that 
concern us here, computational comparisons (Figs. 3,4, 8) show that we can use the geometrical optics 
approximation of this function, which is much simpler. The pointspread function for a blur-disk of width 1.0 is the 
circularly symmetric function p(x,y) =  p1(r) = (4/π) rect(r), where r = (x2  + y 2)  1/2  and  rect(r) = 1 for |x| ≤ 1/2 
and =  0  for x>1/2. (4/π  makes the volume 1.0. ) The corresponding OTF is Tp1(q) = FT[ p1(r)] = (4/π) jinc(q), 
where  q = (u2  + v 2)  1/2  and  jinc[q] = J1(πq)/2q.  The Fourier (Hankel) transform relationship  rect(r) ↔ jinc(q) is 
very well understood12 , and jinc[q]2 is also well known: its Fourier transform is the Airy pattern—the diffraction-
limited image of a star. But the object we need is the Fourier transform of |jinc(q)|, which appears to be unknown.  
Specifically, the function cp1 that we need to understand is defined by    
                                                                                                                             ∞   

             cp1(r) = FT-1[|Tp1(q)|](r) = FT-1[(4/π ) |jinc(q)| )](r) = (4/π) { 2π ∫  |jinc(q)| J0(2πqp) q dq }.                 (5) 
                                                                                                                         0  

(The profile of cp1(r) is shown in Fig. 9.) The integral expression inside the braces in (5) is the Fourier transform of 
|jinc(q)|. We have not been able to find an explicit solution for this integral, and the absolute value property makes 
it seem unlikely that such an expression can be found. Computation (and no doubt a little analytic thought) shows 
that it diverges (slowly) for r = 0, so the SR-corrected pointspread function cp1(r) is infinite at the origin, which 
accounts for its impulsive nature—its δ-like effect when convolved with object functions. (In a real optical device,  
diffraction would prevent this infinity by imposing a finite upper limit on  the integral in (5). ) But apart from this,  
(5) provides no obvious insight into the properties of cp1(r), or cp(x,y) in general. 
 
 In search of that, we try another approach, based on the fact that cp is the convolution of the pointspread p and the 
function  FT-1[Sign[Tp] ]. That relationship follows from the product representation of  |Tp|  in Eq.3 :  
 
                cp = FT-1[ |Tp| ] = FT-1[ Tp  Sign[Tp]  ]  = FT -1 [Tp ] ∗ FT -1[ Sign[Tp] ] =  p∗ FT-1[ Sign[Tp] ]           (6) 
 
For our special case,  cp1(r) = p1(r) ∗ FT-1[ Sign[jinc(q)] ].  In this convolution p1 is a familiar object, so all of 
cp1’s novel properties must stem from FT-1[Sign[jinc(q)].  That function is not known analytically, but its general 
form can be discerned from computation and comparison with known spectra for similar functions. Fig. 10 shows 
FT-1[Sign[jinc(q)] computed by numerical integration using an upper limit of q = 10.  Its main feature is a pair of  
positive and negative rings located just inside and outside radius r = 0.5.  In profile (Fig. 10e) these rings  look like 
low-pass versions of  positive and negative ring-impulses: radial delta-functions of the form +δ(r – .5+ε)) and        
─ δ(r ─.5−ε), where ε is some small value << .5. Increasing the upper limit of integration enhances this impulse-
ring quality, and drives ε towards zero, suggesting that the limit of the full integration will be something close to 
the radial dipole δ'(r−.5). That object is essentially a pair of  + and – ring impulses with ε = 0.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 a: (4/π) jinc(q)  (profile)  b: Sign[jinc(q)] (top view)  c: FT-1[ Sign[jinc(q)] ] (top view)                            
d: FT-1[ Sign[jinc(q) ] (profile) e: blowup of FT-1[Sign[jinc]] at its first ring  f: blowup at second ring 
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That expectation is supported by comparison with the closely related radially periodic function Sign[sinc(q)] = 
Sign[sin πq/πq] = Sign[sin π|q| ]. The analytic form of the FT of this function has been derived by Amidror13,14, 
who shows that its main feature is an impulsive dipole-like ring of the form δ(1/2) (r −.5), i.e., a half-order derivative 
impulse-ring at r = 0.5. Amidror’s generalized function analysis of periodic radial functions cannot be directly 
applied to Sign[jinc(q )], which is not (quite) periodic. But computational comparisons (see Fig. 11) indicate that 
these two FTs have essentially the same form out through the critical first ± impulse-ring pair, and differ only in 
the exact shape of those impulses. This leaves little doubt that the limit for FT-1[Sign[jinc(q)]] will be dominated 
by an impulsive radial dipole of the general form δ(λ)(r −.5), with λ in the range ½ to 1. Finding an exact 
generalized function representation for this fundamental object is an interesting open problem. With that function in 
hand, convolution with the uniform disk p1(r) would provide an exact expression for the phase-corrected 
pointspread function cp1(r).  (We have obtained an exact result of this sort for the case of defocus with a square 
pupil. There the role played by the half-order deriviative δ(1/2)(r-.5) in the spectrum of Sign[sinc(q)] falls instead to 
the 1-dimensional Hilbert transform of δ(x-.5)--another kind of approximate derivative.)  
 
 
 
 
 
 
 
 
 
 
 
But even without an exact expression for FT-1[[Sign[jinc(q)]](r) , we can be confident that in its convolution with 
p1(r),  this function will act essentially like a pair of  positive and negative impulse rings located just inside and just 
outside the circle r = 0.5.  This allows us to understand how the SR-corrected pointspread cp1 gets its characteristic 
form.  Figure 11 illustrates the process.  The basic effect is that the positive impulse ring  with radius 0.5−ε creates 
an annulus of overlapping positive-value unit-diameter disks, all centered on the circle r =  0.5-ε. The negative 
impulse ring (with radius 0.5+ε) creates a second annulus composed of  overlapping negative-value unit-diameter 
disks centered on the circle r = 0.5+ε.  These positive and negative annuli add together to cancel one another 
everywhere, except for a small intensely positive spot at the origin, where all of the positive disks overlap and there 
is no negative cancellation, and a thin negative annulus with radius ~1.0,where the outer rims of the negative disks 
add  together uncancelled, and produce a ring of negative light-intensities.  This accounts for the two characteristic 
properities of SR-corrected pointspread functions: a sharp impulsive spike at the origin, and a negative ring whose 
radius is the diameter  of the blur-disk.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=∗

 

                     Fig. 11.  FT-1[ Sign[jinc(q)] ](r)  (thin line) versus  FT-1[ Sign[sinc(q)] ](r) ; -2 ≤  r ≤ 2 

= 

Fig. 12.  Effect of convolving positive and negative impulse-rings with a uniform disk. The top-left series illustrates the 
idea in 1-D: Convolving rect(x) with δ(x –.5+ε) − δ( x –.5−ε)) + (δ(x +.5–ε) − δ(x+.5+ε)  (here ε =.05) creates a 
positive pulse with amplitude +2 at x =0, and negative pulses with amplitude -1 at x =± 1. The bottom-left series 
illustrates the analogous operation in 2-D: convolving a uniform disk with a pair of impulse rings ± δ(r -.5 ± ε). The 
center figure schematizes the effect of adding partially-overlapping positive and negative disks.  Figures a-c on the right 
show profiles of the functions created by (a) convolving a unit-diameter disk with the positive  impulse ring +δ(r−.5+ε); 
(b) convolving the disk with a negative ring −δ(r −.5−ε);  (c) adding a and b. This creates a sharp spike at the origin and 
a negative annulus at r = 1, reproducing the basic form of  the SR corrected pointspread function  shown in Fig. 8.  
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                                      4.  PRE-CORRECTING SPURIOUS RESOLUTION 
 
Our analysis so far has dealt with correcting SR in an image io that has already been defocused by a known 
pointspread  function  p ( io= o∗ p ), and is available in a form that allows us compute its spectrum Fio  ( = Fo Tp), 
correct the phase errors in that spectrum ( Fcio = Fio  Sign[Tp] ), and invert the result to produce a corrected image 
(cio = FT-1[Fcio] ) which still suffers the contrast-loss imposed by defocus, but has a perfect phase spectrum      
( Fcio = |Fo| |Tp| exp[jΦo] ). We have seen that this operation can greatly improve the recognizability of objects 
defocused by amounts that commonly occur in presbyopic vision (Figs. 6,7).  Of course there the defocused image 
that needs correction is on the retina, beyond our reach. But as noted in Sec. 1, we can still hope to repair its phase 
errors by correcting them  in  advance, using the mathematical fact that Sign[Tp] in the product  (Fo Tp) Sign[Tp] = 
Fcio  can just as well be inserted in the order (Fo Sign[Tp]) Tp = Fcio.  So if we  could  create  the  pre-corrected 
object co = FT -1[Fo Sign[Tp]],  its retinal image would be FT-1[Fo Sign[Tp] Tp] =  FT-1[ Fcio] = cio , the same 
image created by post-defocus SR-correction. In that case the same improvement in image quality produced by 
correcting SR in defocused images of letters could be achieved by pre-correcting the letters themselves.  
   
 
 
 
 
 
 
 
 
 
 
The problem with this scheme is that the mathematical object co(x,y) created by the operation FT -1[Fo Sign[Tp]] 
will generally not be a physically possible image, and the changes required to turn it into one have the effect of 
greatly reducing the contrast of the final image (i.e., the retinal image) that results after optical defocus.  Figure 13 
shows sample results: pre-corrected versions of a point, and of the letters whose SR-correction was illustrated in 
Fig. 6. These images  might be expected to look like low-contrast   points and letters after sufficient defocus (i.e., if 
viewed sufficiently close up. Several magnifications are included to facilitate observations with printed copies)  
With a little visual exploration, the point image seems to work fairly well. The visual impression it gives is one of a 
fuzzy low-contrast white point on a roughly uniform gray background, much like panel 9 in Fig. 14 below. (The 
letters also can become faintly visible, but this requires a more sympathetic eye.)  That figure illustrates why SR 
pre-correction followed by defocused imaging creates  a lower contrast physical image than the one produced by  
 
 

 Fig.13  Images pre-corrected for spurious resolution.  Left series: point object δ(r) and its pre-corrected   
version cδ(r) at four magnification levels.  Right series: pre-corrected images of the letters used in Fig. 6. 
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Fig. 14   Effect of pre-correcting a point for spurious resolution using the model  eye from Fig.2.  Panel 1: point object  
o = δ and uniform-disk pointspread p  2: OTF Tp(q)   3: Sign[Tp(q)]  4: FT-1[Sign[Tp]]  (This is cδ when Tp(q)  is low-
pass filtered to q ≤15 cycles/deg.)   5:  cδ made nonnegative by adding a constant M = |Min[cδ ]|.  6: spectrum of cδ + M    
7: Top view of   cδ + M. Defocusing this image should produce a retinal version of the SR-corrected image of a point. 
(For 3 diopter defocused viewing at 30 cm with a 3 mm pupil, the white-black ring radius should be 1.5 mm.) Panels 8 
and 9: image  cδ + M  after  defocus (i.e.,  after  convolution with p); profile and top view. This is the retinal image of 
the pre-corrected point. Panels 10 and 11 show the image produced by correcting SR post-defocus (i.e., FT-1[|Tp|]). Its 
peak/background intensity ratio is 16.7 vs. 1.3 for the image in panels 8,9. 
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correcting SR in an image that has already been defocused. (Fig. 14-11 shows the comparable post-defocus SR-
corrected image, i.e., FT-1[|Tp|] obtained with the same parameters that produce 14-9 when used in pre-correction.) 
The object here is a point  δ(x,y) viewed at 30 cm by the model  presbyopic eye analyzed  earlier in Sec. 2 (Figs. 2 
and 3). Defocused imaging is modeled by convolution with a  uniform disk p(r) = (4/πD2) rect(r/D), with  diameter 
D = 33 min. The OTF  is Tp(q)= (4/π) jinc(Dq). The theoretical SR pre-corrected point cδ(r) is FT-1[ Sign[Tp]] (r) 
=  FT-1[Sign[jinc(Dq)](r).  That function cannot be directly represented as  a physical image, for two reasons: it has 
infinite values (because it consists of a set of ring impulses), and it has negative values (in particular, the dominant 
ring-impulse pair at r = D/2 has the form  ± δ(r − (D/2) ± ε)). Infinite values do not pose a fundamental  problem, 
because Tp in reality always incorporates low-pass filtering by diffraction at the pupil (not to mention limits 
imposed by printing or video display), so we always have effectively Tp(q) = Tp(q) rect(q/2qmax ) for some cutoff 
frequency qmax. This means that our infinite ring-impulses are really finite functions of the form                     
(2qmax)2 jinc(r/2qmax) ∗ ± δ(r − (D/2) ± ε).  ( Fig. 14-4 shows the filtered version of cδ(r) produced by qmax  = .25 
cycles/min.)  But this still leaves a function whose negative values are as large as its positive values. To make this 
object into a physical image,  we have to add  a constant M large enough to cancel its most negative value. This 
creates an entirely positive,and thus imagable, function, like the profile shown in  Fig. 14-5. Fig. 14-7 shows the 
corresponding image; 14-6 is the profile of its spectrum (which is  Sign[Tp] rect(q/2qmax ) + Mδ(u,v) ). When this 
physical version of  the pre-corrected object cδ is  imaged by a presbyopic eye (i.e., when its spectrum is multiplied 
by Tp), the added DC level M passes through the imaging process unattentuated, and acts like a veiling light: the 
retinal image  will be FT-1[|Tp(q)| rect(q/2qmax )](r) + M.  Here the FT-1 part is the sharply peaked pointspread 
function that results from correcting SR in a defocused filtering image (e.g., Fig. 8, and here in Fig. 14-10,11), and 
M is always a relatively large constant that dwarfs the rest of the function,  giving the entire image uniformly low 
contrast (as shown in Fig. 14-8,9).   
 
Such low-contrast (but phase-perfect) images seem to be the best we can expect from  phase-only reading glasses. 
The problem stems from the essential nature of SR-correction,  based as it is on the cancellation of  equally large 
positive and negative light intensities, as we saw in Sec. 3.3. It seems to impose a fundamental  limit on the visual 
improvement that can be expected from pre-correcting phase alone in objects destined for out-of-focus viewing.  
Progress along this line can perhaps be made by  pre-correcting  spectral amplitude as well as phase. 
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