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Motion Planning Algorithms for Safety and Quantum Computing Efficiency
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Motion planning remains a fundamental problem in robotics. Sampling-based algorithms

use randomization to allow efficient solutions to this complex problem. As mobile robots

and autonomous vehicles become more prevalent in everyday life, motion planning must be

applied to increasingly challenging scenarios. Safety has become a paramount concern in motion

planning for ensuring robotic applications enrich human lives. To date, many motion planning

techniques to increase safety in the face of uncertain and dynamic environments have been

developed. This dissertation first addresses distributional safety of Rapidly-Exploring Random

Trees (RRT) through our algorithm W-Safe RRT. To acknowledge distributional uncertainty and

poor modeling, W-Safe RRT uses the Wasserstein metric to provide a probabilistic bound on the
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distributional distance between a robot and obstacles. Human-interpretable environmental agent

classification allows online safety margin adaptation. We propose and analyze an integrating-

region method for online classification that increases actor labeling accuracy based on behavioral

feature values when compared to state of the art methods. The method performs class assignments

based on local maximum likelihood in a created behavioral feature-space, allowing a notion of

classification uncertainty.

Model-based methods with safety guarantees can quickly become computationally in-

tractable, especially with multiple agents, higher dimensions, and plentiful unknowns. Sampling-

based algorithms have been parallelized for computation with multi-core computers and GPUs.

We consider the use of quantum algorithms and computers for sampling-based motion planning

for the first time. Quantum computing performs operations on superpositions of states and can

solve certain problems much more efficiently than classical computers, but introduces previ-

ously unseen challenges. With Quantum-RRT, we recast the motion planning problem into a

database-search structure and use Quantum Amplitude Amplification to find reachable states

in the database with a quadratic performance increase over classical methods. We address two

error sources with this method: quantum measurement and quantum oracle errors. We then

extend this method to Parallel Quantum-RRT, which uses a manager-worker architecture with

multiple parallel quantum workers to increase database search efficiency. We compare algorithm

architectures and characterize probabilities of multiple workers finding solutions. Lastly, we test

in simulation the quantum algorithms against classical versions in a wide variety of scenarios,

concluding that a similar parallelization improvement is to be found in the quantum case as was

found in the parallelization of classical RRT.
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Chapter 1

Introduction

1.1 Introduction

MOTION planning at its heart concerns two things: motion, the act of changing position,

and planning, the creation of a proposal to achieve desired motion. Motion planning

remains one of the fundamental problems in robotics. Planning in online situations requires

quickly combining a basic planning strategy with information about the robot, its dynamics, and

the environment, in order to create a path from a starting location to a goal location. Several

different broad strategies were created to address the challenges of robotic motion planning.

Exact roadmap methods use the connectivity of the planning environment to find paths

from a start to a goal location. Graph search methods rely on discretizing the environment and

then searching the resultant graph for a connected solution. The computationally intensive nature

of graph searching in higher dimensions led to the development of the main subject of this

dissertation, sampling-based planning algorithms, which use randomization to provide faster

solutions. Sampling-based planners are ideal for non-convex high-dimensional environments,

where they can quickly connect random state samples to provide a collision-free path from an

initial to a goal configuration.

Several challenges facing such planners that have inspired the research in this dissertation

are the need for collision free paths in dynamic environments, the need for paths generated in real-

time scenarios, and the need for motion plans that reduce metrics such as distance, environmental
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cost, or computational resources. Improving the safety, efficiency, and optimality of sampling-

based planners has been at the forefront of efforts within the field of robotic motion planning.

The research within this dissertation addresses the use of probabilistic uncertainty for safe motion

planning, strategies for quickly identifying and responding to adversarial environmental behavior,

and finally the use of quantum computers to more efficiently solve these problems.

1.2 Literature Review

In the field of robotic motion planning, many early efforts in deterministic path planning

focused either on exact roadmap methods or cell decomposition and graph-search methods. Exact

roadmap methods, such as visibility graphs [2] and Voronoi diagrams [3] use the connectivity

of the configuration space for planning. Cell decomposition and graph-search methods, such

as Dijkstra’s Algorithm [4] or A* [5], first subdivide the configuration space into cells and

subsequently perform a graph search. Discretization and graph-search methods suffer in high

dimensional configuration spaces and with moving obstacles, which led to the development of

sampling-based planners. An extended overview of the general field of motion planning can

be found at the textbook [6], and an overview of motion planning for robotics and automated

vehicles can be found at [7].

The purpose of this section is to introduce, at a high level, sampling-based motion

planning and the themes, questions, and algorithms which are studied, extended, used throughout

this dissertation. Sampling-based motion planning is the branch of motion planning which

concerns algorithms that generally employ random samples in the quest to create robotic paths.

This approach allows algorithms to find faster solutions to more difficult problems, such as high

dimensional spaces or environments with complex dynamics. However, the approach suffers

from the point of view of completeness. Completeness is the notion that if there is a solution,

then an algorithm will find it. Sampling-based planners are probabilistically complete, meaning

if there is a solution, as runtime goes to infinity, then the algorithm is guaranteed to find the
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solution.

Two sampling-based planning algorithms, the Probabilistic Roadmap (PRM) [8] algo-

rithm and the Rapidly-Exploring Random Tree (RRT) [9] algorithm form the core algorithms for

using random sampling to create roadmaps and trees, respectively, through an environment. A

major difference between the two is that PRMs are typically used for multi-shot path planning,

where roadmaps are reused (and reconnected to) to find paths through environments, and RRTs

are typically used for single-shot path planning, where a tree from one state is branched through

the environment to find a goal state, then discarded. Pseudocode for PRM and RRT are included

in Section 2.2.

At a glance, the RRT algorithm consists of a few relatively simple, looped steps. After

initializing the tree at the start node, the algorithm produces a random state and then attempts to

connect that state to the existing tree. This sample-connect process is repeated until the goal is

found. The basic structure remains consistent across all sampling-based planning algorithms, and

the exact details of the steps are changed, or additional steps added, to produce desired results.

Sampling-based planning algorithms have been modified and extended to address short-

falls, encourage performance, and optimize a host of different heuristics and metrics. Paths

produced with RRT have a tendency to appear jagged due to the random sampling, and without

post-processing the returned path can vary significantly from the solution that optimizes metrics

such as path length. This effect led to several important modifications to RRT: guided sampling,

and near-vertices and rewiring. Guided sampling approaches change what portion of the planning

space is selected for random sampling. Methods such as Dynamic-Domain RRT [10], which

proposes an adaptive sampling framework based on visibility regions of tree nodes, medial axis

sampling [11], and Gaussian obstacle sampling [12] can encourage the expansion of trees in

parts of the configuration space which can lead to more optimal path and search behavior [13].

The RRT* [14] (pronounced RRT ‘Star’) algorithm introduced two processes, called

near-vertices and rewiring, which can guarantee the asymptotic optimality of the algorithm.

Asymptotic optimality is the quality that as the runtime of the algorithm goes to infinity, the
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returned path will approach some idealized path which optimizes some pre-defined metric or

cost. A large number of works have set about defining this metric in different ways [15,16], what

it can mean in different contexts, under what conditions asymptotic optimality is met [17], and

how quickly optimality can be achieved [18]. Rewiring consists of re-testing connections of a

selected node to a batch of the nearest existing vertices, and re-making the connection as the

connection which minimizes the running cost to the selected node.

Of special interest in sampling-based planning are the concepts of safety and uncertainty.

Motion planning with safety can loosely be thought of as planning with constraint satisfaction,

and sampling-based planners such as RRT are inherently able to handle and check constraints

in the ‘connect’ portion of the sample-connect process loop [19]. Early efforts to create safety-

enforcing constraints involved obstacle collision constraints, but more elaborate and abstract

notions have arisen in response to questions and applications regarding moving obstacles [20],

uncertain obstacles [21], disturbances, and errors in modeling [22]. Uncertainty representations

acknowledge lack of state certainty, and some works, such as Chance Constrained RRT (CC-

RRT) [23] and CC-RRT* [24], use the notion of chance constraints to reason probabilistically

about safety constraint satisfaction. The field of safety in robotic motion planning is an active

open research area, especially with respect to uncertain environments and dynamics, system

control guarantees, and incorporating sensing and perception. Work in this dissertation addresses

safety through the additional acknowledgment of model uncertainty (on top of state uncertainty)

for chance constraint creation, followed by how class uncertainty can be incorporated in the

scenario of obstacle classification.

Constraints can also take the form of kinematic constraints, such as rigid body constraints

for robotic arms, and kinodynamic constraints, which include velocity and acceleration limits,

and trajectory limits that satisfy known dynamic models for a robot or vehicle. Kinodynamic

RRT* [25]) introduced a branch of RRTs which use the connection procedure to check dynamic

reachability. This ensures that new nodes in the tree are within the set of states reachable

by a robot, within a certain time and set of controls, when subjected to the dynamics of the
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robot. Ensuring notions such as reachability in the connect phase of the planner is referred to

as local planning [26], and often forms the most computationally challenging portion of RRT

variants [27, 28], which has led to efforts to optimize runtime characteristics of sampling-based

planners. Local planning under dynamic, safety, and uncertainty constraints can present severe

runtime issues, especially in higher dimensional spaces. In this dissertation we explore an entirely

new direction for optimizing sampling-based motion planning runtime: the use of quantum

computing. In a process called quantum parallelism [29], quantum computers are able to perform

simultaneous calculations on superpositions of states, and we exploit this feature to parallelize

the local planning step of motion planners. A deeper introduction into quantum computing as it

applies to this dissertation can be found in Section 2.3.

One such non-quantum method to increase tree creation speed and efficiency comes in the

form of writing parallel sampling-based architectures for computation on GPUs and multi-core

computers [28]. PRMs have been described as ‘embarrassingly parallel’ [30], and even simple

strategies such as OR-Parallel RRT [31], which involves multiple concurrent and independent

trees trying to find the solution, show promise in increasing the speed with which solutions

are found. More nuanced strategies such as scheduler-processor schemes [32] allow a central

processor to assign specific work to processors. This led to such strategies as collaboratively

creating trees with spatial decomposition [33] and functional decomposition, such as a manager-

worker paradigm where the manager accesses the tree and workers perform assigned work [34,35].

In contrast, in Distributed RRT local copies of the tree are maintained by each worker and tree

expansions are communicated via a messaging scheme [36]. In this dissertation we apply the

manager-worker paradigm (due to results expressed in [37]) to quantum computers performing

RRT tree creation in an effort to further increase efficiency (combined with quantum computing).

An extended overview of sampling-based motion planning can be found at [27], and

readers are encouraged to consult the textbook [6] for a thorough discussion of motion planning.

Introductions to quantum computing from a circuits perspective can be found at [38] and [39].

For a comprehensive review on the state of the art of quantum computing as it applies to robotics,
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especially with respect to open research questions, can be found at [40]. Specific literature

reviews for each chapter can be found within each chapter.

1.3 Contributions and Organization

In Chapter 2, we introduce the notation used throughout this dissertation, general algo-

rithm definitions for PRM and RRT for use as an introduction as they are extended in further

chapters, and a brief introduction to quantum computing as it applies to the final two chapters.

In Chapter 3, we propose the algorithm Wasserstein-Safe Rapidly Exploring Random

Trees (W-Safe RRT) which uses probabilistic representations of uncertainty to create motion

plans with a guarantee that a robot’s probability distribution and obstacle probability distributions

are a certain Wasserstein distance apart, given some environmental sampling strategy. This

algorithm enables safer path planning by explicitly acknowledging that environmental uncertainty

distributions can be incorrectly modeled, maintained, and sampled.

In Chapter 4, we consider a scenario where a robot is planning in an environment

with several classes of actors with varying behaviors, and we propose a strategy for allowing

uncertainty in the observation-based classification of environmental actors. We propose an

integral-calculating uncertainty method, which assigns the local maximum likelihood class to

actors during online planning. We analyze actor data in a feature space, which condenses actor

behavior from raw observed trajectories to features, or high level behavioral qualities. This

strategy enables behavioral classifications that acknowledge the uncertain nature of environmental

observations and allows safer path planning through more likely classification labels.

In Chapter 5, we provide an algorithmic basis to solving sampling-based motion planning

problems using quantum computers, with the algorithm Quantum Rapidly Exploring Random

Trees (q-RRT). We recast the problem into a database search structure by considering databases

of possible states to connect dynamically to the path planning tree. We then search this database

for admittable solutions using Quantum Amplitude Amplification, which leverages quantum
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mechanical properties to perform fast and efficient parallel computations. We show simulated

examples of the quadratic run-time advantage of this strategy compared to classical RRT.

In Chapter 6, we extend Quantum RRT for parallel computation on multiple quantum

devices with the algorithm Parallel Quantum Rapidly Exploring Random Trees (Pq-RRT). We

create a parallel formulation where a classical computing manager creates a single database and

assigns work to multiple quantum computing workers in order to produce multiple simultaneous

solutions from a single database for addition to a planning tree. This allows more efficient

database search that helps to bridge the problem of quantum measurement collapse, where infor-

mation about multiple solutions is lost when a single quantum device measures a superposition

to find a single solution. We compare Pq-RRT, q-RRT, a parallel RRT, and RRT for run-time,

efficiency, and their abilities to expand quickly and solve specific problems.
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Chapter 2

Preliminaries

2.1 Notation

We introduce here the general notation that are used throughout this dissertation. Let

d, p ∈ N, and let NN be the set of natural numbers from one to N. Let Rd be the d-dimensional

real space with x ∈ Rd denoting a vector in it. We denote the p-norm on Rd as ∥x∥p =

p
√
∥1x∥p

+ · · ·+∥dx∥p, x∈Rd , with the Euclidean norm as ∥·∥ ≡ ∥·∥2 and 1x, . . . ,dx as the com-

ponents of x. The diameter of a set S in the p-norm is denoted as diamp(S) := supx,y∈S ∥x− y∥p.

Let S̄ = Rd \S be the complement of set S⊆ Rd .

Let the Borel σ -algebra on Rd be denoted as B(Rd), and the set of probability distri-

butions on (Rd,B(Rd)) as P(Rd)≡ P . In what follows, we identify probability distributions

P ∈ P with the measures µ used to generate them. Throughout this dissertation, the empirical

distribution built on a set of samples ξ̂i, i ∈ {1, . . . ,N} is µ̂ = 1
N ∑

N
i=1 δ

ξ̂i
, where δ is the Dirac

delta function. Let X ∈ Rd be a random vector variable. We denote the probability that X ∈ S,

for S⊆ Rd , as P(X ∈ S) ∈ [0,1], for a given P ∈ P .

Let N (y,Σ) refer to the Normal distribution with mean y ∈ Rd and covariance Σ ∈ Rd×d .

Let |z⟩ refer to the quantum state represented by the qubit z. Let E be the expectation operator.

Let U(C) be the uniform distribution over C.
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2.2 Algorithm Definitions

In this section we define the two standard sampling-based motion planning algorithms

that we extend and analyze in this dissertation, Probabilistic Roadmaps and Rapidly-Exploring

Random Trees. The Probabilistic Roadmap algorithm is used to create a roadmap through an

environment. Pseudocode for PRM is included in Alg. 1. The PRM algorithm consists of two

Algorithm. 1 Probabilistic Road-maps (PRM)
Input: Obstacles
Output: Roadmap R

1: while Roadmap R not initiated do
2: xrand = random point
3: Check xrand against obstacles
4: if xrand collision free then
5: Init roadmap R with xrand
6: end if
7: end while
8: while Still building R do
9: xrand = random point

10: Ladj = list of all nodes in R within distance d of xrand
11: for All xadj in Ladj do
12: Check path from xrand to xadj for collisions
13: if path collision free then
14: Add xrand to R with edge to xadj
15: end if
16: end for
17: if R large enough then
18: Stop building R
19: end if
20: end while
21: Return R

loops, one to initiate the roadmap, and the other to build the roadmap. Between lines 1 and 7, the

algorithm attempts to place a single obstacle free point to serve as the initial node. A random

point xrand is chosen, checked against known obstacles, and used to initiate the roadmap R if

it is obstacle free. In the second loop, between lines 8 and 20, a more in depth path check is

performed to admit additional nodes to R. After a random point is drawn, a list of candidate
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existing nodes is found on line 10. In the above formulation, all nodes within a certain distance

d of xrand are chosen as candidate nodes for connecting xrand to R. The ensuing loop between

lines 11 and 16 checks each candidate node xadj within Ladj as to whether there is a collision free

path between xrand and xadj. If the path is collision free, then on line 14, xrand is added to R by an

edge to xadj. For subsequent xadj that also have a collision free path, just the edge is added to R.

After R is large enough, it is returned.

After the roadmap is returned, when a new path planning query arises in the form of a

starting node xstart and goal node xgoal, first the two nodes are connected to the roadmap. Then,

the roadmap (with xstart and xgoal) can be queried with a graph search algorithm such as Dijkstra’s

Algorithm [4] or A* [5].

Algorithm. 2 Rapidly Exploring Random Trees (RRT)
Input: xstart,xgoal
Output: Path γ

1: Init tree T with root at xstart and no parent
2: while goal not found do
3: xrand = random point
4: xparent = closest parent of xrand in T
5: Redefine xrand to be near enough to xparent
6: Check path from xrand to xparent for collisions
7: if path collision free then
8: Add xrand to T with parent xparent
9: end if

10: if xrand and xgoal close enough then
11: Mark goal as found
12: end if
13: end while
14: Unwrap path γ from T
15: Return γ

The Rapidly-Exploring Random Tree (RRT) [9] algorithm takes as inputs a starting state

xstart and a goal state xgoal, as it is generally a single-shot planner. It outputs a path γ from xstart

to xgoal. The root node of the tree T is set at xstart, then the loop from lines 2 to 13 populates the

tree until the goal is found. First, a random node xrand is chosen and the nearest parent xparent (to

10



xrand) is found. If the path from xrand to xparent is collision free, xrand is added to T with parent

xparent. In some formulations, multiple possible parents within a distance d of xrand can be put in

a list and iterated, similar to the PRM description in Alg. 1. If that is the case, the first (closest)

parent is selected as the chosen parent, and the rest discarded so the tree structure is maintained

(different from PRM). Typically, RRT can be terminated by adding a node within some region

of xgoal, with the implicit assumption that the last xrand and xgoal can be connected (with xrand

serving as the parent). After that, the path is unwrapped by tracing from xgoal to xstart via parents

(then reversed). Lastly, the path γ can be returned. The RRT algorithm rapidly grows a tree

toward free space, as the planner is more likely to randomly sample from larger Voronoi regions.

Pseudocode for RRT is included in Alg. 2.

2.3 Quantum Computing Introduction

To aid in understanding of the final two chapters of this dissertation, in this section we

introduce quantum computing basics, how quantum algorithms can be used to solve motion plan-

ning problems, and an explanation of Quantum Amplitude Amplification (QAA), the quantum

algorithm we have selected for use. An extended introduction can be found at [38] and [39]. A

summary of pertinent information from these sources is presented below.

Instead of encoding information classically in bits of either 0 or 1 states, quantum

computers encode information in basic units called quantum bits or qubits [41]. A qubit is given

as the superposition of two basis quantum states, |0⟩ and |1⟩. The latter two correspond to the

two physical states 0 and 1, or the classical computing states. However, a qubit |Ψ⟩ can exist in

a superposition of |0⟩ and |1⟩, of the form |Ψ⟩= α |0⟩+β |1⟩, with α,β ∈ C, |α|2 + |β |2 = 1.

We say that {|0⟩ , |1⟩} defines a basis of quantum states. In this way, a qubit can be given as a

weighted superposition of the basis states, meaning it can be thought of as physically existing

simultaneously in many states at once.

Quantum states in a superposition maintain probability amplitudes α and β , or the relative
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likelihoods of measuring a particular state of the superposition. The measurement process of the

quantum state involves the collapse of the quantum state |Ψ⟩ to a base state {|0⟩ , |1⟩} according

to the measurement probabilities α2 and β 2 (also known as the Born rule [42]).

Qubits are placed in superpositions using the Walsh-Hadamard transform, a multidimen-

sional Fourier operator which forms the quantum Hadamard gate [43]. This is a unitary operator

mapping a quantum state to an equal superposition of all qubit states. Since the Hadamard gate

creates the superposition, it is key to simultaneous computation.

Quantum algorithms use superposition as a tool to perform fast and efficient parallel

computations on superpositions of states. A unitary transformation will act on all basis vectors

of the quantum state and can simultaneously evaluate many values of a function f (x) for many

inputs x in a process known as quantum parallelism [29]. Although the probability amplitudes

α and β of the system cannot be known explicitly [44], quantum algorithms use quantum

parallelism to manipulate the amplitudes. Planning algorithms written for quantum methods can

be thought of as fully parallelized. To accomplish motion planning, we intend to use quantum

algorithms in the following general way:

1. Identify an oracle function (or quantum black box) to check for configuration feasibility or

path reachability.

2. Construct a database of possible paths or points.

3. Encode the database as a qubit register (i.e. a system comprising multiple qubits).

4. Create a superposition across all database elements.

5. Repeatedly apply QAA to increase the probability amplitude of the correct database

elements.

6. Measure the qubit to return a single element.

7. Check the measured answer and repeat the process.
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Figure 2.1. A visualization of the high level workflow, inspired by [1], which we will adapt to
the problems of motion planning. Icons from Flaticon.

This succinct description on how to apply QAA to a specific problem is shown in Fig. 2.1

and is inspired by the work [1], which applies quantum algorithms to financial analysis. We will

use a Boolean oracle function to evaluate the feasibility of a path and later, the reachability to a

state. In the context of quantum computing, a Boolean oracle function, represents a black-box

function that is handed inputs and produces a Boolean, or True/False, output [45]. They are

widely used in quantum algorithms to study complexity and runtime comparisons [46]. We refer

to feasibility as the connectivity of a pair of points, and provable reachability refers to whether,

given a set of dynamics and a type of controller, we can steer the system from a state to another

with a reachable obstacle-free path. Further discussion on applications and local planning is

included in Chapters 5 and 6. The actual state and environmental parameters are not required to

be explicitly known, but the Boolean output of this oracle is assumed to be available.

Quantum Amplitude Amplification uses a Boolean oracle function X to increase the

probability of measuring a good state Ψ. Ψ is defined in terms of being a good state if and

only if X (Ψ) = 1. The oracle function can be described as a Phase Oracle, and it is a unitary

operator which shifts all qubit inputs by a constant phase. The QAA operator Q then performs a

pair of probability amplitude reflections based upon the output of the oracle. This results in the

probability amplitude magnification of good states and decrease of bad states. The QAA precise

definition and mechanism of action can be found at [39], page 56. In what follows, the QAA

operator using oracle X is denoted as Q(X ).

We will take advantage of the fact that QAA can perform a quantum search on a size-N

unordered database for an oracle-tagged item in O(N1/2) oracle calls, whereas classical search
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algorithms require O(N) calls [39].

Quantum oracles are often used to study relativized complexities of algorithms in terms of

oracle calls, or how many times an oracle must be queried to solve a problem. In Chapters 5 and 6

we use a quantum oracle that returns a Boolean value representing reachability (according to

some dynamics) from inputs encoding robot state, environment, and dynamics. The action within

the oracle is constructed from quantum circuits and gates, all of which need to be reversible,

according to the reversibility postulate of quantum mechanics. Reversibility, when applied to

quantum computing gates, refers to the ability to exactly construct the input given the output

of any gate [47]. The action of the oracle seems to violate this postulate, as a Boolean decision

cannot be used to construct the state, environment, and dynamic model input to the oracle. This

problem is studied in quantum information theory, and a solution which allows quantum gate

universality (construction of all classical computing algorithms and gates) involves the use of

ancilla bits, uncomputation, and the Toffoli gate [48], which has been physically realized in

superconducting circuits [49] and trapped ions [50]. In short, in this dissertation we do not

directly create the action of the quantum oracle and instead of reasoning at the quantum circuit

level, we reason at the algorithmic architecture level. However, it is generally possible to create

quantum oracles which can solve arbitrary classical computing queries. A detailed discussion

into quantum information theory can be found at [51] and [52].
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Chapter 3

Wasserstein Safe RRT: Distributionally
Safe Path Planning

3.1 Introduction

Safety is an essential requirement on the operation of autonomous systems in close

proximity to humans, from self-driving cars to more complex human-robot teams. Our ability to

guarantee safety is directly related to how we understand and manage uncertainty [53], from the

epistemic kind —on environment, obstacle, and system modeling errors—to the aleatoric type

—in the form of random noises.

In motion planning, the probabilistic modeling of uncertainty has enabled the integration

of sensing, motion, and environmental uncertainty in a principled manner. This results in less

conservative plans at the expense of higher computational and time complexity costs. However,

distributional errors and lack of knowledge of the underlying probability distributions can nullify

efforts to leverage this approach and guarantee safety. To address this, this work accounts for both

state and obstacle distributional modeling errors through the Wasserstein metric and ambiguity

sets. Using these, we approximate uncertain distributions with a quantification of the error for

finite samples, and create a distributionally robust path planning algorithm for any finite sample

set. The algorithm is applicable to vehicles navigating obstacles in a physical environment and

extends to more abstract state spaces.
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Figure 3.1. Search tree created by W-Safe RRT to path plan in a multi-nonconvex-obstacle 3D
configuration space with drift and rotational uncertainty present.

3.2 Literature Review

Various existing path planners have been designed to manage uncertainty. Chance-

constrained optimization formulations in sampling-based planning [54–56] have taken the

limelight because they can limit the probability of collision in a straightforward way provided

that models are accurate. Two such algorithms, Chance Constrained Rapidly Exploring Random

Trees (CC-RRT) [23], and Particle Chance Constrained RRT (PCC-RRT) [57], use continuous

and discrete distributions, respectively, to model the vehicle state and limit the probability of

collision with known obstacles. For tractability, CC-RRT uses continuous Gaussian distributions

to represent the state, while PCC-RRT uses sample approximations that allow non-Gaussian

models. Both algorithms return a probabilistic guarantee on safety for a given uncertainty model

of the state (approximated in [57]) and fail to consider distributional modeling errors or unmod-

eled locational obstacle uncertainty. The work [58] characterizes path planning probabilistic
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completeness under uncertainty, but fails to consider distributional uncertainty and associated

probabilistic guarantees.

Wasserstein-based ambiguity sets can handle these types of distributional errors [59],

while retaining tractability in associated optimization problems. Thus, they have been ap-

plied in robust policy optimization against random disturbances [60], and distributed decision-

making [61]. The work [62] characterizes the evolution of ambiguity sets under dynamic

linear-systems transformations, which becomes useful in uncertainty quantification. Further-

more, chance constraints on moment-based ambiguity sets have been used in optimal motion

planning [22], but require known, convex obstacles. Distributionally-robust chance constrained

optimization for convex functions in the decision variables is studied in [63]. Here, for tractability,

the distributional problem is inner-approximated by means of a conditional value-at-risk (CVaR)-

like function. Returning trajectories with bounded-risk guarantees and probabilistic locations of

obstacles is studied in [64], but these require an obstacle model and obstacle movement model.

Furthermore, this work considers bounding risk contours through an obstacle environment and

not dynamic and distributional modeling errors.

Beyond this, risk-aware motion planning algorithms have been developed [65,66] to limit

the risk of collision as modeled by the CVaR metric. While [65] does not consider distributional

uncertainty, [66] employs Wasserstein ambiguity sets around random obstacle drift vectors

to constrain a distributionally robust model predictive control problem. However, the robot

state is assumed to be known with certainty, and obstacles are modeled as non-rotating, convex

polytopes, with random shifts that also belong to a known convex polytope. This results in large,

poorly scaling optimization problems that are solved approximately via McCormick relaxations.

Additionally, no results are shown employing the claimed sample guarantees.

In this chapter, we consider a motion planning problem where we account for uncertainty

in not-necessarily-convex obstacles and in vehicle motion through a novel sampling-based

planner. W-Safe RRT is based upon checking possible paths and states in pre-planning rather

than solving directly constrained optimal control problems online. Because our algorithm is a pre-

17



planner, we create and maintain environmental and state models. Unlike previous Gaussian and

particle-based planners, our algorithm makes use of the Wasserstein metric measured between

individual vehicle-obstacle states to create a distributionally safe and probabilistically complete

random path planner. By exploiting recent results on the number of samples required to obtain

probabilistic guarantees over compact spaces, we can probabilistically guarantee with a precise

bound that a resulting vehicle path is greater than a certain Wasserstein distance (W-distance)

away from a moving obstacle model. We create a minimum encompassing ball algorithm inspired

by PCC-RRT [57] that receives the same information with the same assumptions as W-Safe RRT

for comparison purposes. We show that W-Safe RRT outperforms the comparison algorithm in

simple convex obstacle and rotating non-convex multi-obstacle environments at the expense of

computation time.

3.3 Contributions

We propose a Wasserstein metric-based random path planning algorithm. Wasserstein

Safe RRT (W-Safe RRT) provides finite-sample probabilistic guarantees on the safety of a

returned path in an uncertain obstacle environment. Vehicle and obstacle states are modeled

as distributions based upon state and model observations. We define limits on distributional

sampling error so the Wasserstein distance between a vehicle state distribution and obstacle

distributions can be bounded. This enables the algorithm to return safe paths with a confidence

bound through combining finite sampling error bounds with calculations of the Wasserstein

distance between discrete distributions. W-Safe RRT is compared against a baseline minimum

encompassing ball algorithm, which ensures balls that minimally encompass discrete state and

obstacle distributions do not overlap. The improved performance is verified in a 3D environment

using single, multi, and rotating non-convex obstacle cases, with and without forced obstacle

error in adversarial directions, showing that W-Safe RRT can handle poorly modeled complex

environments.
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3.4 Problem Formulation

We consider a pre-planning mobile robot problem where we assume obstacle and state

dynamics to allow dynamic path planning. Before the algorithm is run, in an observational period,

we observe the environment and robot details to createMr andMO, the assumed dynamic robot

and obstacle models, and the initial states. To cope with incorrect modeling and unknown

disturbances, we will make use of Wasserstein ambiguity sets, see Section 3.5. The robot has

state x ∈ Rd which is constrained within a compact configuration space, Q⊆ Rd , and control

u ∈ Rn, with,

Mr : x(t +1) = Ax(t)+Bu(t)+w(t), ∀ t ∈ N,

where (A,B) is controllable.Mr is a linear time invariant dynamic model chosen to approximate

unknown, possibly nonlinear dynamics. If bounds on the control u(t) are known, they can

be directly applied in the calculation of x(t +1) above. The noise model is chosen as w(t) ∼

N (0,Pw). The robot must avoid NO rigidly rotating and translating obstacles, O1, . . . ,ONO ⊂ Q,

to stay safe. Obstacle movement is modeled as a rigid body transformation,

MO : Ok(t +1) = R̂kOk(t)+ γ̂k, for k ∈ [1,NO],

where R̂k is a time-invariant rotation matrix and γ̂k ∈ Rd is a time-invariant vector translation.

R̂k and γ̂k are estimates of the unknown true dynamics Rk and γk based upon the observation

period. The goal is for the robot to navigate a path within the free space Ō(t) := Q\ (O1(t)∪

·· ·∪ONO(t)), from the initial state xI ∈ Rd to the goal state xG ∈ Rd . The path is denoted as an

ordered set of states Z : xI,x2, . . . ,xG. For the path to be considered safe, xi ∈ Ō(t), ∀ t ≥ 0.

To account for state modeling errors, the state is represented by a distribution,

P1(t) :=N (x(t),Px(t)), Px(t +1) = APx(t)AT +Pw. (3.1)
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To account for obstacle model errors, each obstacle location is represented by a distribu-

tion evolving according to,

P2,k(t) :=N (OC
k (t),Pk(t)), Pk(t +1) = Pk(t)+κk, (3.2)

for k ∈ [1,NO], where OC
k (t) represents the center of mass of Ok(t), and κk represents the

distribution spread since the observation period.

3.5 Algorithm: Wasserstein-Safe RRT

In this section, we define a novel path planning algorithm for uncertain robotic states and

environments based on Rapidly Exploring Random Trees [67]. In Proposition 1, we leverage

the recent probabilistic guarantees on the discrete W -distance from [62], [68] to create a safety

search criterion.

To determine whether states at time t are safe, Algorithm 3 uses empirical distributions

sampled from P1(t) and P2,1(t), . . . ,P2,NO(t), which are available for sampling for all t ≥ 0

because the algorithm creates and maintains them. To sample P1(t) and P2,1(t), . . . ,P2,NO(t) at

time t, a temporarily truncated and finitely supported version of each distribution is created.

Wasserstein truncation errors can be found and added to ε1 and ε2 at each time step to maintain

probabilistic guarantees. Alternatively, any finitely supported distributions can be used.

Proposition 1. Let P1 and P2 be two probability distributions over the compact configuration

space Q⊆Rd . Let Pi be supported on Bi ⊆Q with ρi = 1/2 diam∞(Bi), ρi < ∞. Let P̂N
1 and P̂M

2

be the empirical distributions defined from taking N and M samples of P1 and P2, respectively,

at an arbitrary time t. Given a confidence 1−β ∈ [0,1], for any p≥ 1, N ≥ 1 when p < d/2, it

holds that

Wp(P1,P2)≥Wp(P̂N
1 , P̂

M
2 )− ε

N
1 − ε

M
2 , (3.3)
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with εN
i given by,

ε
N
i (β ,ρi) =

(
ln(Cβ−1)

c

)1/d
ρi

N1/d
,

constants C and c given by,

C =
(C∗)d

2
√

d
d , and c =

1

2d
√

d
d , (3.4)

and constant C∗ given by,

C∗ =
√

d 2
d−2
2p (

1
1−2p−d/2 +

1
1−2−p )

1
p . (3.5)

Proof. Note first that by the triangular inequality,

Wp(P1,P2)≥Wp(P̂N
1 , P̂

M
2 )−Wp(P1, P̂N

1 )−Wp(P̂M
2 ,P2). (3.6)

Let the W -distance between a distribution and an empirical one built with samples of said

distribution be constrained within a bound ε ,

Wp(P1, P̂N
1 )≤ ε

N
1 , Wp(P2, P̂M

2 )≤ ε
M
2 . (3.7)

Proposition 1 Equation (3.3) follows via substitution of (3.7) into (3.6). According to [62, Propo-

sition 6 and 20], the nominal bound εi between the continuous and empirical distributions

with a confidence 1−β is given below. Consider a sequence (Xi)i∈N of i.i.d Rd-valued ran-

dom variables supported compactly on distribution µ . Then, for p < d/2 and N ≥ 1, we have

P(Wp(µ
N ,µ)≤ εN(β ,ρ))≥ 1−β , where,

ρ =
1
2

diam∞(supp(µ)). (3.8)
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Under the assumptions of Proposition 1, we can select εN ,

ε
N(β ,ρ) = ρ(C∗N−

1
d +
√

d(2lnβ
−1)

1
2p N−

1
2p ), (3.9)

with C∗ as given in (3.5). Proposition 1 Equation (3.4) follows as shown in [62, Corollary

21].

We design a sampling-based path planner similar to RRT, but which compares P1(t)

and P2,k(t) for each obstacle k instead of using a collision checker. In particular, the algorithm

bounds the W -distance between the probability distribution of the vehicle state and the obstacle

state by means of the associated empirical distributions and the bounds of Proposition 1. The

Wasserstein metric is used over other approaches, such as Kullback-Leibler divergence, due to

its consistency with state-space Euclidean distance [69]. The inputs to Algorithm 3 are the initial

vehicle state xI ∈ Rd , the goal vehicle state xG ∈ Rd , the robot dynamic modelMr, the obstacle

modelMO, the confidence β , and the W -distance threshold value θ . The output of the algorithm

is the W-Safe path Z = {xI,x2, . . . ,xG}.

To create a tree T , Algorithm 3 generates a random sample, finds the nearest node in the

tree, and simulates control of the vehicle from the parent node to the sample with intermediate

states. The state distribution and obstacle distributions are simulated viaMr andMO, and then

intermediate states are checked for safety with confidence 1−β . If the sample and intermediates

are safe, as explained next, the sample is added to the tree. At intermediate state x( j), we

have the empirical state distribution P̂N
1 ( j) sampled from P1( j), and the NO empirical obstacle

distributions P̂M
2,k( j) sampled from P2,k( j) for k ∈ [0,NO]. Wp(P̂N

1 ( j), P̂M
2,k( j)) for each obstacle

is found through [70], based upon [71], then Proposition 1 is used in Method 1: WCheck to

ensure,

Wp(P̂N
1 ( j), P̂M

2,k( j))− ε
N
1 − ε

M
2 ≥ θ , (3.10)

as shown in Fig 3.2, so that Wp(P1( j),P2,k( j))≥ θ for each obstacle k. New samples are added
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to T until xG ∈ T .

Figure 3.2. Discrete W-distance between robot and obstacle distributions Wp(P̂N
1 , P̂

M
2 ) shown

compared to maximally-poor distributional sampling errors εN
1 and εM

2 , with continuous distribu-
tion locations approximated by ovals.

In contrast to RRT, NO + 1 distinct distribution trees, TP1 and TP2,1, . . . ,TP2,NO , keep

track of P1 and P2,1, . . . ,P2,NO at each vertex in T . The vertices of TP1 and TP2,1, . . . ,TP2,NO are

distributions, and the edges are identical to those in T . Once a parent node xparent ∈ T is found

for a new sample xsample, the distributions Pxparent
1 and Pxparent

2,k , ∀ k ∈ NNO corresponding to xparent

can be quickly found by accessing the same indices in TP1 and TP2,1, . . . ,TP2,NO . If xsample is

added to T , the distributions Pxsample
1 and Pxsample

2,1 , . . . ,Pxsample
2,NO

corresponding with that sample are

added to TP1 and TP2,1, . . . ,TP2,NO .

Under certain conditions, W-Safe RRT is a probabilistically complete planner, and the
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Algorithm. 3 Wasserstein-Safe RRT

Input: xI , xG, Mr, MO, β , θ

Output: Z : xI,x2, . . . ,xG
1: Initialize Tree T with vertex xI , and distribution trees TP1 and

TP2,1, . . . ,TP2,NO usingMO, (3.1), and (3.2)
2: while xG /∈ T do
3: Randomly draw state xnew
4: Find xparent ∈ T , the nearest vertex to xnew

5: Find Pxparent
1 ∈ TP1 and Pxparent

2,1 , . . . ,Pxparent
2,NO

∈ TP2,1, . . . ,TP2,NO corresponding with xparent

6: UsingMr, advance state from xparent to xnew with intermediate states x(1), . . . ,x( j)
7: UsingMO, advance distr. from Pxparent

1 , Pxparent
2,1 , . . . ,Pxparent

2,NO
to Pxnew

1 , Pxnew
2,1 , . . . ,Pxnew

2,NO
with

intermediate distr. P1(1), . . . ,P1( j), {P2,1(1), . . . ,P2,1( j)}, . . . ,{P2,NO(1), . . . ,P2,NO( j)}
8: Unsafe = False
9: for i = 1 : j do

10: Wp = WCheck( P1(i),{P2,1(i), . . .
11: . . . ,P2,NO(i)},β ,N,M)
12: if Wp < θ then
13: Continue
14: else
15: Unsafe = True, Break
16: end if
17: end for
18: if Unsafe then
19: Continue
20: else
21: Add xnew to T , add Pxnew

1 to TP1
22: Add Pxnew

2,1 , . . . ,Pxnew
2,NO

to TP2,1, . . . ,TP2,NO

23: end if
24: end while
25: Trace T from xG to xI to extract path
26: Return path Z : xI,x2, . . . ,xG
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Method 1. WCheck, from Algorithm 3 Line 9

Input: P1(i),{P2,1(i), . . . ,P2,k(i)},β ,N,M
Output: Wp

1: Truncate P1(i),{P2,1(i), . . . ,P2,k(i)} to ρ1,ρ2,1, . . . ,ρ2,k as defined in (3.8)
2: Calculate C∗ via (3.5)
3: Calculate εN

1 and εM
2,1, . . . ,ε

M
2,k via (3.9)

4: Sample P̂N
1 = {ξ̂1, . . . ξ̂N} from P1(i)

5: Sample P̂M
2,l = {ζ̂ l

1, . . . ζ̂
l
M} from P2,l(i) for each l ∈ Nk

6: Find W -distance Wp(P̂N
1 , P̂

M
2,l) between {ξ̂1, . . . ξ̂N} and {ζ̂ l

1, . . . ζ̂
l
M} for each l ∈ Nk

7: Return infl∈Nk(Wp(P̂N
1 , P̂

M
2,l)− εN

1 − εM
2,l) as per (3.10)

statement of probabilistic completeness follows.

Theorem 2. Let Pobs,k(ℓ), be the distributions of obstacles k at time ℓ, for k ∈NNO and ℓ∈ [0,∞),

P0
rob be initial robot configuration, and Bgoal be a ball around the goal configuration in a compact

configuration space Q. Suppose that ∀ k the support of each Pobs,k(ℓ) remains in a ball Bobs, k(ℓ).

Let S ⊂ Q be
⋃NO

k=1 Sk, with Sk such that ∀ ℓ,Bobs,k(ℓ) ⊂ Sk. Assume that for each ℓ there exist

controls such that the robot distribution is transformed into Prob(ℓ), and assume the support

of this distribution remains in a compact ball Brob(ℓ). Assume there is a path Prob(ℓ) from

P0
rob to Bgoal such that the final robot distribution mean µrob ∈ Bgoal and ∀ ℓ, the set distance

distp(Brob(ℓ),S)> δ ,1 for some δ > 0. Then, if we take N,M samples such that Eq. (3.3) from

Proposition 1 holds, W-Safe RRT returns a path from P0
rob to Bgoal with probability 1 that satisfies

Wp(Prob(ℓ),Pobs,k(ℓ))> δ − εN
1 − εM

2 , for all k ∈ NNO and ℓ ∈ [0,∞) with confidence 1−β .

Proof. The proof follows from the probabilistic completeness of RRT [67] and Proposition 1.

These results can be combined because the sampling processes w.r.t. configurations in Q and that

of obtaining samples of each distribution are independent. From the probabilistic completeness

of RRT, the algorithm will produce a path from P0
rob to Bgoal such that ∀ ℓ, distp(Brob(ℓ),S) >

δ , for some δ > 0 with probability 1. Note that ∀ k and ∀ ℓ,

Wp(P̂rob(ℓ), P̂obs,k(ℓ))≥ distp(Brob(ℓ),Bobs,k(ℓ))> δ ,

1Here, distp(A,B) = inf{∥x− y∥p |x ∈ A,y ∈ B}.
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implying via Proposition 1,

Wp(Prob(ℓ),Pobs,k(ℓ))≥ δ − ε
N
1 − ε

M
2 ,

with confidence 1−β .

3.6 Results and Discussion

In this section, we show simulations and results that are performed in a three dimensional

environment run with MATLAB ver. R2020b on a machine with an Intel i5-4690K CPU,

32GB RAM, and an AMD Radeon R9 290X GPU. Algorithm 3 is compared against a baseline

minimum encompassing sphere method that extends PCC-RRT to handle the same assumptions,

modeling, and scenarios as W-Safe RRT. The goal is to compare W-Safe RRT to this baseline,

with and without forced distributional obstacle errors, in a variety of environments.

The chosen configuration space Q⊆ R3 is Q = {(x,y,z)|x,y,z ∈ [0,10]}. The following

vehicle model dynamics and control policy,

x(t +1) = A(x(t)− xnew)+Bu(t)+ xnew , x(0) = xparent,

A =


.9 −.05 .1

.05 .9 −.1

0 .08 .85

 , B =


.85 .2 0

−.15 .85 .1

−.1 .1 .9

 ,

u(t) = 0.4
−K(x(t)− xnew)

∥u(t)∥
,

K =


2.36 −0.51 0.18

0.45 1.93 −0.27

0.21 −0.18 1.55

 ,
are implemented from xparent to xnew each time a random state is drawn. The control policy
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performs reference tracking for controlling to xnew. The constant matrix K can be any gain matrix

such that the closed loop system is stable.

A single, spherical obstacle is used in the initial simulation results. For each path planning

problem, the true obstacle location O(t) is chosen to be a ball of radius 0.5 centered randomly

near the center of Q and drifting in a random direction. The obstacle uncertainty model is,

P2,1(t) =N

OC(t),


0.2 0 0

0 0.1 0

0 0 0.15


 ,

where OC(t) ∈ R3 is the geometric center of O(t). The state uncertainty model, P1(t), centered

at state (x,y,z), is,

P1(t) =N




x

y

z

 ,


0.1 0 0

0 0.2 0

0 0 0.15


 .

For sampling, the support of the distribution in each dimension is an interval centered at x,y, or z,

with length 1 in all dimensions. The start state, xI , and the goal state, xG, are chosen uniformly

randomly to be on opposite sides of the obstacle, forcing the path to interact with the obstacle, as

shown in Fig. 3.3. For all simulations except the drift error percentage study, each algorithm

assumed a drift vector γ̂ with 10 percent error from the true drift γ . In simulation, the maximum

distance between xnew and the closest parent state xparent ∈ T is capped, and the random state xnew

draw is chosen to be toward the goal state xG with 0.3 probability. The Wp-distance is calculated

with p = 1 and d = 3, so that p < d/2. To use higher p values within the Wp-distance, the state

can be lifted into higher dimensions to achieve d > 3.
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3.6.1 Algorithm Performance

For the baseline comparison algorithm, the Method 1 WCheck is swapped out for the

comparison Method 2 CompCheck. In Method 2, both the vehicle and obstacle distributions,

P1( j) and P2,1( j), respectively, are sampled to create two circumspheres, which are then checked

for overlap. The circumspheres are found through Welzl’s Algorithm [72], which is chosen for

simplicity. If there is overlap, the state is not safe with respect to the obstacle. This algorithm,

which is an extension of PCC-RRT, includes similar simulated dynamics, particle sampling and

re-sampling from distributions, and a probabilistic check to admit robot states to the RRT-style

tree. It is modified to accept obstacle uncertainty representations instead of a known convex

obstacle polytope by changing the comparison between two distributions to be via Welzl’s

Algorithm.

Method 2. CompCheck

Input: P1( j),P2( j),N,M
Output: s

1: Sample {ξ̂1, . . . ξ̂N},{ζ̂1, . . . ζ̂M} from P1( j),P2,1( j)
2: Find minimum encompassing spheres characterized by cξ ,rξ and cζ ,rζ , using Welzl’s

Algorithm
3: if ∥cξ − cζ∥< rξ + rζ then
4: s = false
5: else s = true
6: end if

The algorithms are evaluated by comparing returned paths with reality in two ways,

nominally and adversarially. The nominal evaluation analyzes the returned path ensuring it

avoids the 0.5 radius spherical obstacle. The adversarial evaluation assumes that at any state,

xi ∈ Z, each obstacle will have shifted one unit from O(t) toward xi to try to block the path.

The post processing evaluations assess the safety of returned paths and therefore algorithm

performance. Paths are not discarded by the algorithms based on the evaluations.

Table 3.1 records the number of correctly returned paths out of 1000 path planning

problems, the average time to solve each problem, the average path length of each solution, and
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Table 3.1. W-Safe RRT performance comparison in the three dimensional single obstacle case.

Ball Method W-Safe RRT

Average Time 5.345 s 12.786 s
Ave. Path Length 14.89 u 15.23 u
Ave. No. Nodes 40.38 43.76
Nominal Check 997/1000 1000/1000
Adversarial Check 681/1000 998/1000

the average number of nodes per solution. Algorithm 3 using Method 1 took an average of 12.786

seconds to solve each problem and returned 998 safe paths when checked adversarially. Method 2

took an average of 5.345 seconds and returned 681 safe paths when checked adversarially. This

time penalty is largely due to calculating the discrete W -distance, Wp(P̂N
1 , P̂

M
2,1) in Algorithm 1,

which requires solving an optimization problem (discrete optimal transport reduces to a linear

program.) The W -method is more robust in the face of an adversarial path check.

Figure 3.3. Tree of probabilistically feasible states found by W-Safe RRT shown within a
random opposite-corner start and goal location path planning problem.
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Table 3.2. W-Safe RRT performance comparison in the three dimensional three obstacle case.

Ball Method W-Safe RRT

Average Time 16.53 s 45.12 s
Ave. Path Length 14.65 u 16.27 u
Ave. No. Nodes 39.41 51.46
Nominal Check 935/1000 1000/1000
Adversarial Check 344/1000 990/1000

Additionally, Method 1 allows W-Safe RRT to return a path with the probabilistic guaran-

tee on distributional uncertainty given in Proposition 1, while Method 2 does not. The adversarial

check analyzes algorithm resiliency to adversarial distributional modeling errors, where obstacles

exist outside of possible distribution sampling ranges and toward the state in question. W-Safe

RRT outperforms the ball method when returned paths are checked adversarially.

Any finitely supported distribution can be used to represent uncertainty, and poor distri-

bution choice is accounted for by W-Safe RRT. Additionally, when a known state is projected

forward with a dynamic model, unknown future events impact the state. W-Safe RRT accounts

for distributional uncertainty that results from dynamic model errors, noise model errors, and

unpredictable future disturbances.

3.6.2 Multi-Obstacle Performance

We compare the algorithms in a random start and goal environment with 3 randomly

placed and drifting obstacles, as shown in Fig. 3.4. Obstacle drift information is known to each

algorithm with 10% error. Table 3.2 records the number of correctly returned paths out of 1000

as well as the averages of relevant metrics for both algorithms. With the adversarial check on

obstacles, when compared to the single obstacle case, the ball method dropped from 681 safe

paths to 344 while W-Safe RRT dropped from 998 to 990, and both algorithms take about three

times as long to run. W-Safe RRT shows vastly improved performance over the baseline in

uncertain multi-obstacle environments.
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Figure 3.4. Returned path from W-Safe RRT shown navigating a three obstacle environment
with random constant drift values.

3.6.3 Non-convex and Rotating Multiple Obstacle Case

We compare the algorithms in a random start and goal environment with three randomly

placed, drifting, and rotating non-convex obstacles. Obstacles tested were L-shaped, rotate on

multiple world-frame axes, and rotate between a fifth and a half of a full rotation during each

simulation, as shown in Fig. 3.5. Obstacle drift information is again known to each algorithm

with 10% error and no information on obstacle shape and rotation is known. As shown in

Table 3.3, W-Safe RRT returned 867 out of 1000 paths as safe paths, at a cost of approximately

three times the computation time, while the comparison algorithm returned 663 safe paths.

W-Safe RRT outperforms the comparison method in high uncertainty environments with rotating

non-convex obstacles.
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Figure 3.5. A single L-shaped non-convex randomly rotating and translating obstacle moving
across a 3D environment.

3.6.4 Variance of Risk Parameter

The W-distance threshold value θ can be used as a risk parameter to change the margin

of safety, as shown in Fig. 3.6. Risk is defined as the likelihood that returned paths intersect

with obstacles. Risk parameter performance is measured by the nominal and adversarial obstacle

checks on large numbers of produced paths at each parameter level. Since the Ball Method is

independent of θ , its performance is represented as a line at 68.1% adversarially and 99.7%

Table 3.3. W-Safe RRT performance comparison in the three dimensional three rotating noncon-
vex obstacle case.

Ball Method W-Safe RRT

Average Time 20.48 s 62.71 s
Ave. Path Length 14.77 u 16.36 u
Ave. No. Nodes 40.25 47.03
No. Safe Paths 663/1000 867/1000
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nominally. As shown in Fig. 3.6, reducing θ decreases the distributional safety and causes the

percentage of safe paths to drop. With a low enough θ , W-Safe RRT can be outperformed by the

comparison method. The confidence 1−β can also act as a risk parameter, and parameter value

choice is left as a supervisory decision for the appropriate trade-off between performance and

cost in the specific application.

Figure 3.6. Illustration of variance to the risk parameter θ and its effect on percent safe paths.

3.6.5 Variance of Drift Informational Error

When vehicle observations and assumptions toward obstacle drift vector are erroneous,

W-Safe RRT performance and comparison algorithm performance both drop. As the drift error

percentage is larger, the performance of W-Safe RRT drops from 99% correct paths to 80%

correct paths, as shown in Fig. 3.7. The performance of the baseline method also sees an overall

downward trend, but it is bounded from below at 60%, which could represent the proportion of

paths that do not interact with the obstacle at all. With highly erroneous information, W-Safe
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RRT still outperforms the baseline algorithm.

Figure 3.7. Illustration of variance to the drift error percentage and its effect on percent safe
paths

3.6.6 Comparison with Similar Algorithms and Extensions

The work [66] describes a state-of-the-art path planning tool that uses Wasserstein

ambiguity sets around obstacle drift values. The main approach consists of constraining a

model predictive control problem to pick state control u(t) that can closely follow an un-

safety-constrained reference trajectory. In contrast, W-Safe RRT is an offline pre-planning

state estimation algorithm that applies uncertainty models to the vehicle state as well as the

obstacle states and only admits nodes to the RRT tree that satisfy Wasserstein distance safety

constraints. W-Safe RRT can handle rotating non-convex and convex obstacles with non-linear

boundaries and substantially drifting obstacles that are not fully known to the algorithm. In the

spirit of sampling-based motion planners, the explicit boundary representation of the obstacles
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and bounding uncertainty sets is not required; this makes the algorithm generalizable to higher-

dimensional configuration spaces. Crucially, W-Safe RRT is tested to return paths with a

probabilistic guarantee on distributional sampling error. Lastly, because the MPC constraints

in [66] scale with number of samples, the number of obstacles, and time horizon, it becomes

computationally more expensive in the face of a large number of samples, substantial drift, and

offline use over long time horizons.

Because of the assumptions in [66] that include that (i) the robot state and a convex

polytopes of each obstacle are known, and (ii) the uncertainty satisfies known polytope con-

straints; the fact that W-Safe RRT simulations are performed with rotating non-convex and

substantially drifting obstacles; and the fact that [66] considers a MPC decision making solver

that is not readily adaptable to be a pre-planning path finder; a direct comparison in simulation

is neither plausible nor meaningful. Performing fair comparisons between algorithms that rely

on differing assumptions is an important open question in safe learning and control [73]. As a

result, for a state of the art comparison algorithm, we have extended PCC-RRT [57] into the

associated minimum encompassing-ball algorithm. This extension takes the same assumptions

and information as W-Safe RRT, and can compare multiple uncertainty distributions in a direct

way.

W-Safe RRT can be extended to handle known time-varying discrete linear systems by

substituting the appropriate equations intoMr. However, known nonlinear systems will result

in nonlinear distributional evolutions, which can be handled by linearizing dynamics at each

time step. W-Safe RRT can handle continuous-time dynamical systems by taking a small enough

discretization step when performing planning and safety checks.

3.7 Conclusion

In this chapter, we develop the safety-aware algorithm Wasserstein-Safe RRT, which

leverages probabilistic guarantees on discrete sampling error from [62] and [68] to build a
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probabilistically complete RRT-style tree that accounts for distributional uncertainty. When

the vehicle and obstacles are both represented with distributions, W-Safe RRT outperforms

the PCC-RRT-inspired minimum encompassing ball method in both simple convex obstacle

environments and highly uncertain environments with rotating non-convex obstacles. W-Safe

RRT carries probabilistic guarantees on returned paths being a certain Wasserstein distance away

from obstacles at the cost of a time penalty, and shows robustness in the face of distributional error.

The method demonstrates that use of model uncertainty in situations where such uncertainty

is warranted, such as with uncertain obstacle shape and dynamics, leads to safer path planning

behavior. Future work includes testing W-Safe RRT with linear approximations of nonlinear

dynamics, planning with continuous time dynamics, and planning in crowded static environments.

Chapter 3, in full, is a reprint of the material “Distributionally Safe Path Planning:

Wasserstein Safe RRT” as it appears in IEEE Robotics and Automation Letters [74]. Lathrop,

Paul, Beth Boardman, and Sonia Martı́nez. IEEE Robotics and Automation Letters 7.1 (2021):

430-437. The dissertation author was the primary investigator and author of this paper.

Explicit use of uncertainty in state representation and evolution assists in the generation

of safer motion plans, especially when true obstacle shape, dynamics, or behavior is not known

exactly. Additionally, as is demonstrated by the variance in risk parameter section, changes to

risk parameters themselves have a profound impact on algorithm safety performance. However,

risk parameter values are often chosen heuristically (and somewhat arbitrarily) by a supervisor

for particular applications, and are not automatically adjusted. In the following chapter, we

are interested in exploring a few ideas in conjunction: closing the safety parameter feedback

loop with an algorithm that allows automatic safety margin adjustment, employing a human-

debuggable method that classifies obstacle behavior in a more abstract feature space, and how

classification uncertainty can be used in higher order representations of state and behavior.
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Chapter 4

Mobile Robot Behavioral Classification
with Uncertainty for Adaptive Safety

4.1 Introduction

Safety is an essential component of autonomous path planning algorithms. The ability to

assess an environment, classify environmental objects, and adapt safety margins enables both

safer and more efficient path planning, as shown in Fig. 4.1. Numerous trajectory planning

algorithms exist to operate dynamic and often dense obstacle environments. The intersection

between trajectory planning and classification typically takes the form of computer vision and

image classification, especially in autonomous driving scenarios, where trained machine learning

models predict, with uncertainty, what elements of an image correspond with particular agents.

On the other hand, in the field of spatio-temporal data mining, there is often a desire to classify

trajectories to infer semantic information. Examples of this include parsing what type of ship

created a particular GPS trail within a harbor, or predicting whether a GPS track is from a

bicyclist or pedestrian.

Trajectory analysis in motion planning is used in model-heavy trajectory prediction

techniques, but existing trajectory analysis stops short of using inferences for robotic safety

purposes. To improve human-understandable robotic behaviors, methods that employ semantic

models may help robots adhere to common sense safety principals in high-stakes applications

such as driving [75], especially compared to black-box input-output deep learning methods.
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Figure 4.1. Path planning problem solved with time varying safety margins in a 3D environment
with 3 adversarial agents.

Transparency of how safety-related intuitions are used in autonomous algorithms can further

public understanding of robotic behavior. The methods in this chapter follow this thought process

through creating human-understandable semantic behavioral classes, and employing a method

with uncertainty to benefit safe path planning. Thus, we are motivated to investigate safety tuning

strategies that employ behavioral states to directly influence agent-specific safety values.

4.2 Literature Review

Model-based methods offer adaptive safety margins, but methods perform best with

restricted (and sometimes static) agent behaviors, and struggle to adapt to online situations.

Authors in [76] achieves provable safety in the face of adversarial agents with guarantees on

goal satisfaction by using Hamilton-Jacobi reachability to define sequential trajectory planning,

creating a channel-carving effect of reachable guaranteed-safe states. However, agent complexity

and processing time are sacrificed to maintain guarantees on goal satisfaction and safety – which
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can be considered crucial for close human-robot interaction [73]. In general, agents are few, have

known and restricted dynamics, and do not move in a significant way.

Several Reinforcement Learning (RL) approaches integrate learning and planning meth-

ods which balance exploration and exploitation to learn high reward actions within an environ-

ment. Q-Learning [77] and extensions such as Speedy Q-Learning [78] approximate the optimal

action-value function from visits to particular states and actions. However, these RL approaches

function best in stationary environments where environmental states are approximately constant.

Approaches to learning of optimal actions over continuous robot and environmental states with

a continuous action space consist of either function approximation (such as with linear [79] or

neural network [80] functions) combined with a large number of examples [81, 82] or policy-

gradient methods such as Actor-Critic [83] and other hybrid asynchronous methods [84]. The

latter approaches can evaluate policies over continuous spaces, but still suffer from the fact

that they are on-policy and largely only learn about the policy being followed. RL approaches

suffer from the need for a relatively large number of learning runs, which is coupled with the

inability to handle multiple dynamic, adversarial agents. Additionally, we note that behavior-

following agents in general do not satisfy a n-th order Markov assumption, and therefore fall into

a non-Markovian state space because time-series data differentiates agent attitudes. [85] uses

high-level environmental semantics to enable a deep RL approach for mobile autonomous robots,

but RL over high-level semantic trajectory information remains unexplored. RL techniques

for online motion planning fall short in reacting to dynamic agents with high dimension state

and action spaces, and approaches with high level semantic analysis do not address trajectory

differentiation.

In autonomous driving, obstacle classification is focused on vision based classifica-

tion [86, 87] rather than trajectory based. The works [88, 89] predict pedestrian trajectory and

behavior via a model-based probabilistic approach and a deep learning approach respectively.

The former work probabilistically informs a vehicle operator of predicted dangerous situations.

Despite the more in-depth analysis of trajectory data over previous pedestrian detection stud-
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ies, the circle is not fully closed to quickly react by modifying autonomous safety parameters.

Additionally, [90] uses car trajectories and an uncertainty model to predict probabilistic represen-

tations of future possible trajectories. However, the work is heavily model-based with uncertain

real-time performance and the loop is not closed to how trajectory analysis can be used to ensure

safer performance.

In the field of signal processing, expectation maximization (EM) forms a core method

for performing clustering of unlabeled data [91]. EM relies on two steps, iterated multiple times,

to result in a description of a generative model for observed data points. In expectation, the

likelihood of a particular model to generate the observed data is calculated. In maximization,

the model parameters are adjusted in a way that maximizes the likelihood of observed data

generation. EM has been extended into different machine learning clustering algorithms to

accomplish different goals, reweighted EM [92] for improved learning, hybrid and variational

EM [93] that views model parameters as stochastic variables to be estimated, and incremental

EM [94] to calculate only one parameter in each step, to name a few. Evidence lower bound

(ELBO) is a lower bound on log likelihood of observed data, used in clustering as a metric to

maximize to create an accurate generative model. A relaxed version of ELBO was found in [95]

to allow a less computationally intensive calculation.

The analysis and clustering of trajectory data is referred to as spatio-temporal data

mining, and is well explored in signal processing and machine learning literature. The survey

paper [96] summarizes methods and applications of trajectory analysis. Notably (with respect

to this work), [97] uses motion characteristics to cluster trajectories by typical behavior, and

offers comparisons across clustering methods. In [98], authors employ a mixture model approach

to cluster trajectories and allow probabilistic representations of class assignment, with deter-

ministic decisions deferred until assignment is required, but class uncertainty is not discussed.

Uncertainty is studied with respect to incompleteness of data and artificial noise [99], but again

not with respect to class uncertainty. Focus is placed on geospatial trajectory analysis [100]

and classification [101] for semantic information assignment, but these works focus on class
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identification and not on analyzing autonomous agents from the perspective of robotic planning

and safety.

Classification uncertainty is well addressed in machine learning literature, especially with

respect to deep learning classifiers. [102] explicitly models distributions over class probabilities,

trains a neural network to learn the function that creates the class predictions, and creates a

predictor whose distribution parameters are set by the neural network. The work [103] trains

classifiers on human-like uncertainty and finds better out-of-training-distribution performance

and increased robustness to adversarial attacks. While uncertainty of machine learning classifiers

is studied in the general case, there is a lack of study of uncertainty as it relates to trajectory

classification.

For robotic trajectory prediction, in [104] the authors address trajectory prediction, which

lies downstream of class prediction, with a deep learning setup based on the Trajectron++ [105]

method. The work addresses how classification uncertainty can benefit the predictive abilities of

trajectory generation and verifies performance on real world self driving vehicle datasets. Class

uncertainty (in the form of car vs bike vs pedestrian) is fed (alongside state information) into a

contractive variational autoencoder to generate trajectories for autonomous driving scenarios.

The work largely reasons about correctly labeling classes for prediction purposes and methods

are evaluated on whether correct labels are made. Safety, and how class uncertainty relates to

safety in online planning is not directly addressed.

In [106], an obstacle avoidance Model Predictive Control algorithm is characterized

that uses a three-class obstacle trajectory classification to predict future paths based on discrete

dynamics. The three classes of trajectories in the system are static, linear, and trajectory, which

allows trajectory prediction with preset dynamic models. While this work analyzes obstacle

trajectories for motion planning purposes, clustering all nonlinear trajectories into a single class

can miss out on further insights into obstacle behavior.

Trajectory classification uncertainty with respect to safety remains seemingly unexplored

in literature. We aim to incorporate class uncertainty for safety-based applications rather than
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for trajectory prediction itself. A further goal is to create human-understandable notions of

semantic behavior that enables a human-debuggable classification scheme. To do this, we avoid

a deep learning encoder architecture to at least guarantee, for a particular problem, that high level

behavioral qualities of interest are human-selected and not abstractly chosen by deep learning.

We propose a data-driven classification and safety margin adjustment method that catego-

rizes environmental agents with class uncertainty. The approach relies on an abstract created

feature space, which encodes semantic notions of agent behavior. To acknowledge feature-space

uncertainty, we employ a novel integration-based classifier to assign classes to agent observations

with the goal of enabling safer online planning. Class definitions and safety values are based

upon environment observations during an offline phase. Observed agents are classified and safety

margins are tuned during an online phase. The semantic uncertainty-aware classification scheme

is tested against state-of-the-art classification methods in simulation and experimentation.

4.3 Contributions

In this chapter, we consider an online motion planning and classification problem where

we use observations of environmental agents to define semantic attitudes, then adjust safety

margins for an online path planning algorithm. The two main problems this chapter addresses

are: 1) how can we enable hands-off safety parameter adaptation in a way that acknowledges

uncertainty, and 2) how can agent attitudes toward a robot be defined to encompass safety-related

semantic notions.

The main contributions are the following:

• The proposal of semantic trajectory classes for environmental agent classification

• An uncertainty-aware integrating Bayesian classifier

• The use of the above methods for real time adaptive safety margin adjustment
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4.4 Problem Formulation

We consider a robot motion planning problem with an offline training phase and an online

execution phase. The robot, at time t, is described by state x(t) ∈ Rd and is constrained within a

configuration space, Q⊆Rd . The robot must avoid NO agents within the environment, described

respectively by y1(t), . . . ,yNO(t) ∈ Q. Let the free space be,

Qfree(t) := Q\ (Br(y1(t))∪·· ·∪Br(yNO(t))) ,

where Br(y(t)) refers to a ball of radius r centered at y(t). Finally, let X,On ∈ (Rd)T represent

trajectories of the robot and nth agent respectively, each made of a T -long time series of observed

states. To ensure that ∥x(t)− yn(t)∥> r, ∀ n ∈ NNO, ∀ t, the robot maintains a NO long vector of

safety margins θ(t), where the nth entry of θ(t) represents the safety margin with respect to the

nth agent. The goal of the robot is to navigate a path from initial condition x(0) ∈ Rd , to a goal

state xgoal ∈ Rd , such that, ∀t, x(t) ∈ Qfree(t).

When this goal cannot be met due to multiple adversarial agents and planning uncertainty,

the goal is to minimize hits while maintaining as low a safety margin as possible and approaching

the goal. This goal can be expressed by,

min
γ

J = α1∥γ∥+α2 ∑
t,NO

θ +α3 ∑
NO

H,

where ∥γ∥ refers to the length of path γ , ∑t,NO
θ is the sum of safety values ∀t,∀NO obstacles,

and ∑NO
H is the total of the running hit counter that is defined as follows: for a success metric

(and feedback purposes), let a hit be defined as an unsafe encounter, at a single time t, between

the robot and an agent n such that

∥x(t)− yn(t)∥ ≤ r.
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We seek to evaluate the proposed classification strategy against several alternatives in a variety

of dynamic adversarial scenarios.

4.5 Semantic Classification Algorithm

In this section, we define a novel path planning formulation for safety margin adjustment

based on agent classifications. The algorithm contains an offline unsupervised learning period

and an online path planning execution period.

4.5.1 Unsupervised Learning Problem

The goal of the offline learning section shown in Alg. 4 is to analyze environmental

conditions by characterizing observed agents. The word feature describes semantic characteriza-

tions derived from state trajectories that are condensed into single descriptive values for analysis.

Feature values are calculated from time-series trajectory data in order to perform feature-space

classifications of each agent y1(t), . . . ,yNO(t) at each time step t. Classification consists of a class

assignment in a space created by multiple feature values, which we define as the feature space.

The offline process is shown in Alg. 4, where on line 2, the map f defines features of

interest in particular planning scenarios, and may include notions of differential behavior between

an agent and the controlled robot, past safety observations, and future trajectory predictions.

On lines 3-6, a feature-space dataset D ∈ RND×d f of ND agent feature values is collected,

where d f is the dimension of the feature space. Observations of an environment yield T -long

trajectory data Om ∈ (Rd)T , which is condensed into feature data, represented by the symbol Z,

through a user-created map f : X,O 7→ feature point p on line 5, such that for agent m and time

t,

Z(m, t) = f (X,O).

On line 7, the objective of EM in this formulation (and of the unsupervised learning
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problem) is to find k∗-variate Gaussian parameter Φ∗ such that,

Φ
∗ = argmin

Φ

1
ND

ND

∑
i=1
L(N (Φ), i),

where L is the log likelihood that the modelN (Φ) produced the piece of data i (from the dataset

D). The parameter Φ is made of the weights, means, and variances Φ = {Wk ∈ R|0 ≤Wk ≤

1,Mk ∈ Rd f ,Vk ∈ Rd f×d f },∀k ∈ {1,2, . . . ,k∗} to make the multivariate model. The Gaussian

Mixture Model (GMM) described by Φ∗ has a maximal likelihood of producing D, as shown in

the example in Fig. 4.2. EM is chosen over k-medians and k-means clustering (based on Lloyd’s

Algorithm [107]) due to the susceptibility of the latter techniques to arrive at locally, rather than

globally, optimal clustering solutions in closely packed scenarios. EM with a GMM was also

observationally more resilient to input output perturbation.

Algorithm. 4 Offline Data Analysis
Input: k∗

Output: maps f ,g, {W,M,V,L}
1: Select representative agent features
2: Define feature map f : X,O 7→ feature point p ∈ Rd f

3: for i = 1 : N do
4: Observe X,O
5: Dataset D(i)← f (X,O)
6: end for
7: {W ∈ Rk∗,M ∈ Rk∗×d f ,V ∈ Rk∗×d f×d f ,L ∈ R}← EM(D,k∗)
8: for i = 1 : N do
9: for k = 1 : k∗ do

10: P(i,k)←MVNPDF(D(i),M(k),V (k))
11: end for
12: T (i)← argmaxNk∗

(P(i, :))
13: end for
14: Observe structure of (D,T ) and (M,V )
15: Design safety margin loss function J
16: Define map g : class k 7→ θ ∀ k∗ classes by argminθ J

On lines 8-13, the model is used alongside the multivariate normal probability density

function (MVNPDF) to classify existing data. The model is also used to classify new observations
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in the online planning portion shown in Alg. 5. Tagging the dataset allows observations of the

structure of the feature space and clustering model. Observations of representative tagged data

allows for construction of the safety margin loss function on line 15, which is minimized using

gradient descent to select safety margins that smoothly mix safety, runtime, and path optimality.

A sample model, trained on naturally clustered data, is shown in Fig. 4.2 to illustrate the

trained model’s ability to classify observations based on differences in behavior. Observations

placed in the feature space can be classified by the mixture model.

Figure 4.2. Feature-space simulated data is clustered using EM with three components. Data,
category means, and data labels are denoted with ◦, X, and colors, respectively. Data in red
refers to agents behaving adversarially, blue to static, purple to drifting, and black to avoidant.
Covariance rings are depicted as ovals.

46



4.5.2 Online Planning Algorithm

The goal of this section is to perform safety-aware online planning using the clustering

model produced by the offline portion detailed above, where the GMM is used to classify new

agent observations. The algorithm takes as inputs start and goal locations xstart and xgoal, a

feature map f and safety margin assignments g, and the mixture model. Of particular interest is

mitigation of noise introduced and amplified by the use of a feature map that turns trajectory

information into more abstract behavioral notions.

In Alg. 5, on lines 3 and 6, the robot state x(t) and all NO agent states are observed (at

each time step t) and appended to the trajectories X and O respectively. If no observation is

available at time t for agent m, a dynamic projection can be appended and corrected in future

time steps. The trajectory sets X and O can contain all prior state information or can be truncated.

In order to observe and compile trajectory data, observations of each agent in the environment

need to be separable from other agents.

Algorithm. 5 Online Planning

Input: xstart,xgoal, maps f ,g, {W,M,V}
1: x← xstart
2: while ∥x− xgoal∥> δ do
3: X.append(x)
4: for m = 1 : M agents do
5: xobs(m)← observe agent m
6: O(m).append(xobs(m))
7: Z(m)← f (X,O(m))
8: T (m)← Classify(Z(m),W,M,V )
9: θ(m)← g(T (m))

10: end for
11: x←WaypointFinder(x,xgoal,xobs,d,{θ1, . . . ,θM})
12: end while

On line 7, the feature map f transfers trajectories O into feature-space points Z(m),m ∈

{1, . . . ,NO}, t ≥ 0. On line 8, the feature-space points are classified with the novel uncertainty-

aware integral method shown in Alg. 6, which outputs a class T (m) for the feature point Z(m).

The integral classification algorithm is detailed next. On line 9, the tag T (m) maps from feature
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classes to safety margin values, which are updated. After each agent is observed, classified, and

has undergone a safety margin update, state information and safety margins are passed to an

intermediate waypoint finding routine on line 11.

In order to close the loop from classification to safe set determination, the waypoint

finding routine outputs the next intermediate control point that satisfies all safety constraints

(as given by safety margin assignments on line 9 of Alg. 5). In the event that all constraints

cannot be met due to spatial limitations and/or number of nearby agents, a point is output that

violates the fewest number of safety constraints. The waypoint finder uses safety values to

minimize hits in the event that staying within the defined safe set is impossible. Any safety-

aware controller/waypoint generator can be used, and applications of particular interest include

situations where, due to agent number and behavior, guaranteed safe-set behavior (and associated

safety guarantees) are impossible.

Algorithm. 6 Uncertainty Integral Classification
Input: Z,W,M,V
Output: T

1: Define feature-space region R around Z
2: for k = 1 : k∗ do
3: P(k)←

∫
···
∫

RPW (k),M(k),V (k)(Z)d f1 . . .d fd f

4: end for
5: T ← argmaxNk∗

(P)

The integral classification algorithm shown in Alg. 6 is an alternative to simpler probability-

density-function-based classifiers such as the naive Bayes classifier. Instead of making assign-

ments as per the highest likelihood class at point Z, Alg. 6 uses a sense of classification uncertainty

to make the assignment as the highest local likelihood (rather than point).

Alg. 6 takes as inputs a feature-space point Z and the mixture model (here represented by

the weights, means, and variances W,M,L). It outputs a class assignment T corresponding to

the feature point Z. The classifier uses a novel feature-space integration that allows a sense of

uncertainty on the actual feature values of a particular agent/trajectory. Integration is performed
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over a region R centered at the feature point of interest Z, as shown on line 1 and in Fig. 4.3.

On line 3, for each class represented in W,M, and V , an integration over R of PW (k),M(k),V (k) at

the point Z is performed, where PW (k),M(k),V (k) is the weighted probability density function of

the kth class of the mixture model. The integration variables are each of the d f variables of the

feature space.

Figure 4.3. The action of the integral classification method is depicted for a region R (depicted
floating above the feature space, in black), centered at a feature space point Z on a two component
Gaussian Mixture Model (shown in blue and red). The method integrates the region of each
component within R and selects the maximum integrated likelihood as the class assignment.

The regional class likelihood is calculated,instead of the point-likelihood which is cal-

culated with a naive Bayesian classifier. This allows the integral classifier to admit locational

uncertainty of the feature-space point, enabling robustness to trajectory perturbations that are

exacerbated by the map f from trajectory to features, leading to noisy time-series behavior in the

feature space. Lastly, on line 5, the maximum regional likelihood over the classes is chosen as

the tag T for Z, and the tag is passed back to Alg. 5 for planning.
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4.5.3 Divergent Case

To understand a capability of the integral region method, we explore behavior compared

to a highest-likelihood classifier in a one-dimensional two-peak Gaussian case with divergent

covariances. The probability density function (pdf) of N (µ,σ) at a point x is,

ϕ(x,µ,σ) =
1

σ
√

2π
e−

1
2 (

x−µ

σ
)2
.

Let the generative model contain N1(µ1,σ1) and N2(µ2,σ2). The action of a naive Bayesian

classifier is given by,

fpdf(x,N1,N2) = argmax
n

ϕ(x,µn,σn),

and in the two-peak case, n ∈ {1,2}.

The integral classification method compares a definite integral of the probability density

function through a difference in the cumulative density function (cdf), which for Gaussians can

be expressed as,

Φ(x) =
1
2

(
1+ erf

(
x√
2

))
,

where erf is the standard error function given by,

erf(x) =
2√
π

∫ x

0
e−t2

dt.

The action of the integral classification method is given by

fcdf(x,N1,N2) =

argmax
n

(
erf
(

x+ r−µn

σn
√

2

)
− erf

(
x− r−µn

σn
√

2

))
,

where again in the two-peak case, n∈ {1,2}. As σ1→ 0, the behavior of ϕ(x,µ1,σ1) approaches
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the Dirac delta function, with all mass concentrated at µ1,

lim
σ1→0

ϕ(x,µ1,σ1) = δ (x−µ1).

As σ2 → ∞, the behavior of ϕ(x,µ2,σ2) approaches a constant function of infinitesimal but

nonzero height ε ,

lim
σ2→∞

ϕ(x,µ2,σ2) = ε.

A 2D visualization of the divergent covariance cases for a Gaussian distribution is shown in

Fig. 4.4.

Figure 4.4. Visualization of the divergent Gaussian analysis is shown for the two dimensional
case. At left, a generic Gaussian is shown. At top right, a Dirac delta function is shown for the
approaching zero covariance case, and at bottom right, a nonzero constant function is shown for
the approaching infinity covariance case.

Consider the case where a piece of data x is generated from N1 and noise is injected into

the measurement so as to perturb the data point from x = µ1 to x = µ1 +∆,∆ > 0. Under these

conditions the pdf of model 1 evaluated at x = µ1 +∆ goes to 0,

lim
σ1→0

ϕ(µ1 +∆,µ1,σ1) = 0,
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while the pdf of model 2 evaluated at x = µ1 +∆ goes to ε ,

lim
σ2→∞

ϕ(µ1 +∆,µ2,σ2) = ε,

causing fpdf(x,N1,N2) to incorrectly return model 2. This error is caused by the perturba-

tion/noise ∆.

However, when the integration region radius r >∆, the cdf difference of model 1 evaluated

at x = µ1 +∆ goes to 1,

lim
σ1→0

(
erf
(

x+ r−µ1

σ1
√

2

)
− erf

(
x− r−µ1

σ1
√

2

))
= 1,

while the cdf difference of model 2 evaluated at x = µ1 +∆ goes to 2rε ,

lim
σ2→∞

(
erf
(

x+ r−µ2

σ2
√

2

)
− erf

(
x− r−µ2

σ2
√

2

))
= 2rε,

causing fcdf(x,N1,N2) to correctly return model 1 as the generative model of the perturbed point

x. This is provided that ε < 1
2r , a condition that is easily met for two reasons: 1. ε is small even

in non-divergent cases when σ2 is relatively large (but finite), and 2. r is a chosen parameter of

the integrating method, and should be chosen such that it contains possible disturbances (r > ∆)

and does not approach 1
ε
, which in non-divergent cases can be described as the model 2 local

height.

The thought process of the preceding example can be extended into the non-divergent

case where σ1 << σ2, such as is shown in Fig. 4.3, to explain the qualitative advantage of the

integral method over a pdf-based method. For r > ∆, the bulk of the model 1 curve can be

included in the model 1 integral as compared to the model 2 integral. In the convergent case,

when σ1 = σ2 but µ1 ̸= µ2, the classification choice of the pdf and integral methods are the same.

The above can also be extended into higher dimensional representations, albeit with less explicit

notation (the cdf of multivariate Gaussians, for example, is not well defined).
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The ability of the integral method to correct perturbed and noisy sensor readings and

localizations in the feature space allows it to be an effective uncertainty-aware classification

method, especially in cases of a highly concentrated (with respect to possible noise) but relatively

heavily weighted class (with respect to other classes).

4.6 Results and Discussion

In this section, we show chasing-game simulation results that were performed in a

simulated three-dimensional environment run with Matlab v2023a on an 8-core MacBook Pro

with M2 chip, followed by real-world chasing-game results with noisy GPS data. Algorithm 5

using Algorithm 6 as a classifier is compared against two similar algorithms using alternative

classifiers, a naive Bayesian classifier (NBC) and an aggregated naive Bayes optimal ensemble

classifier. The ensemble classifiers are trained on random subsets of the original data, and

make class assignments by vote. We defer a more in-depth analysis of ensemble methods

to [108]. Comparisons are performed in multiple scenarios to evaluate the ability of the integral

classification method as compared to state-of-the-art alternatives.

All simulations are performed against multiple agents, with a two-dimensional feature-

space for enhanced visualization and coherence. The used features encode ‘adversarialness’

of the differential trajectory between robot and agent, and a past hit count combined with a

time-to-collision prediction into a single metric. For each cluster, the safety margins are found

through gradient descent using a weighted cost function in offline training. The cost function

includes number of hits, runtime, number of steps, and the safety value itself in an attempt to

balance safety and optimality in a way that does not admit maximal safety values for all clusters.

4.6.1 General Comparison Results

The goal of the chasing and avoiding game simulations is to present a sufficiently difficult

and complex scenario where hits from adversarial agents are unavoidable, so that performance

can be tested rigorously. To accomplish this, both the robot and each adversarial agent are
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performing path planning using the same control algorithm. All of the cases presented in

Table 4.1 are run with eight agents for 1000 simulations each. Each simulation consists of

a robot that is tasked with moving from one corner of the environment to the opposite, with

randomly placed agents. The agent behaviors during this task vary by simulation as described

below. The comparison methods are a naive Bayesian classifier (NBC) performing feature-point

maximum probability classification over clusters, and an aggregated ensemble classifier with

three separately (and randomly) trained NBC modules performing classification by vote. A

bootstrap aggregated classifier can reduce classification variance and the tendency to overfit that

single classifiers can exhibit.

Table 4.1. Classifier Comparison

Method Correct Hits Time Steps

Mixture
NBC 0.459 10.4 0.016 s 39.2

Ensemble 0.458 9.9 0.041 s 38.3
Integral 0.656 8.4 0.039 s 39.9

Many Adversary
NBC 0.585 23.3 0.020 s 42.6

Ensemble 0.583 21.5 0.047 s 41.3
Integral 0.719 17.7 0.046 s 43.1

No Adversary
NBC 0.436 0.3 0.015 s 37.9

Ensemble 0.442 0.3 0.040 s 38.1
Integral 0.533 0.0 0.038 s 38.3

Mixture cases are run with two adversarial agents, two passively and randomly drifting

agents, two static agents, and two avoidant agents. Many adversary cases are run with five agents

pursuing the robot and one of each other type. No adversary cases are run with two static agents,

three passively drifting agents, and three avoidant agents that actively try to run away from the

robot. In the correct column, the proportion of correct agent classifications at each time step

is shown. For each algorithm, there are on average 320,000 time step opportunities within the

1,000 simulations of 8 agents to correctly classify an agent. According to the selected feature

metrics, passively drifting and static agents occupy the same place in the feature space and are
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therefore clustered together. The three behaviors (adversarial, drifting/static, avoidant) form

three clusters in the feature space and correctness is determined by a correct classification of an

agent at a time step.

Hits are counted as defined in the problem formulation with r = 0.7, and the average

total number (from all agents) of hits per simulation is shown in the table. The average wall

clock run-time and average number of steps each algorithm took to reach the goal location are

both shown in the table for a cost performance in terms of computation time and path optimality.

Table 4.1 highlights the advantages of the uncertainty-aware integral method over the

naive Bayes classifier and the ensemble method. The integral method is able to make a signifi-

cantly larger proportion of correct classifications, with 65.6% correct as compared to 45.9% and

45.8% for the naive classifier and ensemble method respectively. We believe this is due to the

integral method’s ability to model uncertainty and handle the effect of noise propagation from

raw trajectory data to the feature space.

Additionally, the integral method was able to reduce the average number of hits from

all agents per problem, from 10.4 for the naive classifier and 9.9 for the ensemble method

to 8.4 for the integral method. This is likely stemming from the increased ability to classify

correctly, meaning correct classification is closely tied to a notion of safety when safety margins

are assigned to classes. The integral method comes at a computation time cost over the naive

classifier, with each problem average 0.039s vs 0.016s for the NBC. However, runtime is not a

concern as each 40-step simulation is still performed in under a hundrenth of a second, as each

step of the integral method is fairly computationally light. Cost in the form of path optimality

shows no significant changes.

4.6.2 Categorization Comparison

In this section we compare the behavioral trajectory categorization scheme with integrat-

ing classifier against the closest agent trajectory categorization scheme available in literature, the

Static-Linear-Trajectory (SLT) method, in a three dimensional obstacle environment with eight
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agents. The SLT method breaks trajectories into three classes based on behavior (rather than

differential behavior between robot and agent), with largely immobile agents classes as static,

agents drifting roughly in lines as linear, and all else as trajectory.

Figure 4.5. Two environmental agents following ‘trajectories’ yet exhibiting vastly differing
behaviors toward a robot in a 2D environment. Each object begins at the X .

In Table 4.2, we show comparison results of the two trajectory classification methods in

three scenarios: mixture, many adversary, and no adversary, averaged over 1,000 simulations

per line. With a mixture of agent behaviors (two adversarial, two avoidant, two static, and two

drifting), our behavioral class method averaged 8.5 hits as compared to 15.2 for the SLT method.

A similar safety performance advantage is shown in the “many adversary scenario”, with five

adversarial agents, and one each of avoidant, static, and drifting.

The correct column again measures the proportion of total classification opportunities

(per agent, per time step, per simulation) where agents are correctly classified. For the multi-

class behavioral method, classifications are counted as correct according to the three behaviors
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Table 4.2. Categorization Comparison

Method Correct Hits Time Steps

Mixture
Multi-class 0.640 8.5 0.041 s 40.6

Stat/Lin/Traj 0.910 15.2 0.007 s 37.0

Many Adversary
Multi-class 0.749 17.2 0.047 s 42.9

Stat/Lin/Traj 0.866 31.7 0.008 s 36.9

No Adversary
Multi-class 0.625 0.0 0.039 s 38.3

Stat/Lin/Traj 0.939 0.6 0.007 s 37.8

adversarial, drifting/static, and avoidant as explained in the previous section. For the SLT method,

both adversarial and avoidant behaviors are correctly identified if the method classifies the agent

as trajectory. This greatly increases the ability of the method to “correctly” identify the simplified

class, and this is reflected in the near 90% correct identification performance of the SLT method

as compared to 60−70% for the multi-class method analyzing a more difficult problem.

Adding behavioral nuance to trajectory feature classification allows more detailed and

therefore more safe performance around dynamic agents and adversarial conditions.

4.6.3 Categorization Comparison Experiments

To assess the integrating classifier’s ability to correct noisy real-world data, we performed

comparative testing on GPS tracks from single-actor chasing-game simulations in a large field,

as shown in Fig. 4.6. In table 4.3, the proportion of correct actor tags is shown as a decimal

for the three methods, over 450 classification opportunities, split between adversarial behavior,

drifting, and avoidant. The NBC was able to correctly identify classes 0.487 of the time, the

ensemble method 0.501 of the time, and the integrating method 0.555 of the time.

The relatively lower classification ability of all methods (compared from simulation

data to experimental data) is due to both noisier data and smaller sample sizes. This example

showcases the ability of the integrating method to filter out noise uncertainty present in the GPS

data, which is combined with noise associated with the mapping to the feature space.
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Figure 4.6. Time-series trajectories of a chasing game experiment in a field with a single
adversarial actor. The subject robot is shown with the symbol × and the adversary with the
symbol ◦.

4.7 Conclusion

The presented algorithm forms safety attitudes toward each agent in a path planning

environment and uses those attitudes to automatically adapt safety margins for safer path plan-

ning. We present an integrating uncertainty classification method, which makes class decisions

for actors and takes uncertainty into account. The algorithm increases safety in simulated en-

vironments when compared to alternative classification methods, and uses abstract behavioral

characterizations to outperform simpler trajectory classification algorithms in adversarial and

unstructured environments. Chapter 4, or portion thereof, is currently being prepared for pub-

lication of the material. Lathrop, Paul, Beth Boardman, and Sonia Martı́nez. “Mobile Robot

Behavioral Classification with Uncertainty for Adaptive Safety.” In preparation. (2023). The
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Table 4.3. GPS Experiment Comparison

Method Correctness
NBC 0.487

Ensemble 0.501
Integral 0.555

dissertation author was the primary investigator and author of this paper. Future work includes

planning with missing trajectory points, multi-robot coordination planning, and implementing a

feature-space error flow-map for enhanced predictive classification.

While some motion planning methods, such as the safety margin adaptation scheme

presented in this chapter, are amenable to online execution, safety-related algorithmic devel-

opment has also trended in another direction: that of provable safety, reinforcement learning

(RL), and optimization. Efficient computation of actions in RL schemes, optimal motion plans,

and provably reachable and safe trajectories can be difficult at best on GPU-enabled parallel-

computing hardware. Computing time, computing device metrics, and symbolic comparative

runtime analysis are reported in a fraction of cases, and failure to report or analyze algorithm

computational costs represents a failure to properly frame work in existing literature. The rise of

parallel computing, especially through multi-core computers and through the use of GPUs, has

opened a new landscape in algorithmic development: that of parallelization. In the next chapter,

we turn our attention to an even newer landscape of computational efficiency, through the lens of

sampling-based motion planning algorithms.

Quantum computing represents a fully-parallelized architecture, with idyllic potential

computational advantages ripe for algorithmic adaptation. But, as is true of many things, with

inordinate advantages comes a fresh Pandora’s box of complications to address, questions to

ponder, and drawbacks to mitigate.
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Chapter 5

Quantum Computing for Motion Plan-
ning: Quantum RRT

5.1 Introduction

The emergence of digital electronic computing in the 1940s and 50s brought widespread

changes to virtually every area of human life. More recently, in 1980, Paul Benioff presented

the quantum Turing machine [109], which outlined a simple computer using the principles of

quantum mechanics to represent mixed states. The concept of quantum gates [110], which

fulfill a similar function to the binary logic gates of classical computing, paved the way for

the emerging field of quantum computing. Physically different from traditional computing,

quantum computers leverage the quantum mechanical properties of physical matter to perform

calculations simultaneously. Quantum computation is on the horizon and awaits the development

of reliable physical mediums to be used in practice [111]. Candidates for physical implementation

of quantum bits (qubits) include superconducting circuits [112] (with information storage in

harmonic oscillations between energy levels of an inductor-capacitor circuit), the trapped ion

quantum computer [113] (with information storage in stable electronic ion states), and the

semiconductor quantum dot quantum computer [114] (with information storage in nuclei spin

states). However, the theory behind quantum computing is well established and has shown the

potential to dramatically impact the solutions to many complex problems, such as in physics [115,

116] and chemistry [117] simulations, cryptography [118, 119], optimization [120, 121], and
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machine learning [122].

Quantum algorithms such as Grover’s Algorithm and its generalization, Quantum Ampli-

tude Amplification (QAA), have a proven quadratic speedup in unstructured database searches

when compared to classical algorithms [39, 123]. We believe this property allows quantum

algorithms to parallelize computationally heavy steps in motion planning. Quantum search

algorithms have been applied to several areas within robotics, such as machine learning and

estimation, but have yet to be applied to sampling-based motion planning algorithms. Motivated

by this, we seek to explore how quantum algorithms and quantum speedup can be applied to

sampling-based motion planning algorithms in complex spaces with dynamic constraints.

5.2 Literature Review

In this section, we provide a brief account of related works employing quantum computa-

tion in incidental problems in robotics, planning, and control theory. This is followed by a brief

overview on sampling-based motion planning.

With respect to motion planning, quantum algorithms have been applied to reinforcement

learning in [29, 124–126]. Quantum methods have been shown to increase speed [124] and

robustness [125] of state-action pair learning algorithms in gridded environments when compared

to temporal difference epsilon-greedy and softmax choice strategies. Quantum reinforcement

learning [29] relies on encoding the state-action set as an eigen-state eigen-action set, with prob-

ability amplitudes characterized by quantum states in order to update the value function [127].

As is well known, exact reinforcement learning does not scale well to high-dimensional dis-

crete state and action spaces. Even when using neural-network function approximations, the

identification of the best reward functions for planning tasks in complex environments is an

open question [128]. Instead, we seek to apply quantum computing methods to sampling-based

motion planners to solve simpler path feasibility problems. This has the advantage to provide

fast solutions in multi-dimensional environments with probabilistic completeness guarantees [6].
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Simple robotic trajectory planning is addressed in the work [129], which uses the Quan-

tum Evolutionary Algorithm [130], to obtain optimal trajectories with respect to an obstacle-

distance-based objective function. A quantum genetic evolutionary algorithm is shown to

compute trajectories in a two dimensional obstacle environment using a population-crossover-

mutation workflow. This is enabled via particle swarm optimization (PSO); however, it is known

that PSO approaches to motion planning suffer from a host of problems, including premature

convergence, the inability to adapt to high dimensional search spaces (due to local optima traps

and the potential to be restricted to a sub-plane of the entire search hyperplane), ambiguity in

optimizer form (to yield both useful motion plans and solutions via PSO), and ad-hoc parameter

tuning [131].

Quantum methods have been applied to several other motion-planning-adjacent areas

within robotics. [40] outlines the state of the art of quantum computation (in terms of quantum

algorithms) in robotic science and helps frame open future research topics on sensing and

perception, “traditional artificial intelligence” such as graph search algorithms, the integration of

quantum computers into robotic and distributed systems, and testing frameworks for quantum

computation. In particular, combinatorial graph search algorithms may be amenable to quantum

speedup through the application of Grover’s Algorithm, quantum annealing, or quantum random

walks. Additionally, [40] outlines applications of quantum algorithms to inverse kinematics

and optimal planning problems for manipulators, by means of static optimization and model

predictive control approaches. Here, we evaluate the integration of Grover’s Algorithm and its

extension, QAA, with sampling-based motion planners. While this is unaddressed in [40], it

aligns with the general proposed research agenda. The review [132] outlines the state of the art of

quantum mechanics and quantum control algorithms, addressing questions of controllability, open

and closed loop control, and feedback control methods through the lens of quantum computing.

The work at hand focuses on the computation of motion plans in obstacle environments with the

help of quantum algorithms, rather than on the computation of feedback controls for quantum

systems.
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The speed up of search algorithms via quantum computation has also received attention

from other application areas; see the textbook [133]. In particular, Grover’s Quantum Search

Algorithm has been used in [134] to search a physical region, with special focus on 2D grids,

with the goal of addressing information storage constraints. The authors define quantum query

algorithms on predefined graphs, which could in theory be applied to algorithms such as the A*

graph search algorithm [5]. However, a proven advantage of sampling-based motion planners

over A* approaches is that they automatically tune their resolution as the number of samples

increases.

Quantum walks are used in [135] to find a marked element in a discrete and finite state

space. If the quantum walk is ergodic and symmetric, quadratic speedup is achieved with respect

to classical Markov-chain counterparts [136]. Similarly, quantum walks have been applied to

search over more abstract spaces; see [137] on search engine network navigation. Quantum

walks are an extension of classical random walks, and they require state space discretization.

Instead, we seek to extend quantum speedup to tree-based planners that use randomness to find

samples in continuous spaces, rather than performing motion planning over a discrete graph with

random walks. This approach has been proven to efficiently solve difficult planning problems

compared to methods based on discrete counterparts, and can also better handle robot dynamics.

Compared to other motion planning paradigms, sampling-based motion planning avoids

explicit construction of obstacle spaces in favor of performing collision checks on generated

samples [6]. We provide an introductory set of references, and readers are encouraged to consult

the textbook [6] for further reading. In sampling-based motion planning, the most commonly

used algorithms are Probabilistic Roadmaps (PRM) [8] and the Rapidly-exploring Random Trees

(RRT) [9], both of which provide samples to grow graphs and trees respectively. These algorithms

have been extended and modified in their sampling strategies [138, 139], exploration [140, 141],

collision checking [142, 143], speed and optimality [14, 144, 145], and kinodynamic constraint

satisfaction [17, 146], among other parameters and heuristics. An extended review of the field

of sampling-based motion planning and the relative merits and advantages of extending motion
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planning algorithms to satisfy certain parameters can be found at [27]. In this chapter, we

apply quantum algorithms to basic RRTs specifically as they are able to find fast solutions in

multi-dimensional systems, with no discretization required, and can account for robot dynamic

constraints. This has made possible their widespread application in autonomous vehicle motion

planning and complex object manipulation. Moving forward, the benefits of this approach can

only be enhanced by integration with quantum computing tools. To the best of our knowledge,

this work takes a first step in this direction.

Algorithm parallelization is related to quantum computation, as the heart of quantum

speedup lies in the ability to perform simultaneous calculations on superpositions of states [38,

111]. Motion planning algorithms have been rewritten for multi-threading [147], parallel tree

creation [148], and parallel computation with GPUs [28]. In [147], the authors devise a message

passing scheme and compare performance of several parallel RRT schemes, such as OR Parallel

RRT, Distributed RRT, and Manager-Worker RRT. The work [28] identifies the collision checking

procedure as the computationally expensive portion of sampling-based motion planning and seeks

to parallelize it. We therefore target the collision checking procedure as the main candidate for

quantum computing speedup. Although parallel computation is not always a tractable solution,

as with single tree creation, path planning in dense spaces with dynamic constraints can benefit

from parallelization for quantum algorithm application.

As is detailed above, quantum search algorithms have been applied to several areas within

and adjacent to robotics, such as optimization, machine learning, and estimation, but have yet

to be directly applied to sampling-based motion planning algorithms, which is what we seek to

accomplish here.

In this chapter, we present a novel formulation of traditional sampling-based motion

planners as database-oracle structures that can be solved via quantum search algorithms. We

consider two complementary scenarios: for simpler sparse environments, we formulate the

Quantum Full Path Search Algorithm (q-FPS), which creates a superposition of full random

path solutions, manipulates probability amplitudes with Quantum Amplitude Amplification
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(QAA), and quantum measures a single obstacle free full path solution. For dense unstructured

environments, we formulate the the Quantum Rapidly Exploring Random Tree algorithm, q-RRT,

that creates quantum superpositions of possible parent-child connections, manipulates probability

amplitudes with QAA, and quantum measures a single reachable state, which is added to a tree.

As performance depends on the number of oracle calls and the probability of measuring good

quantum states, we quantify how these errors factor into the probabilistic completeness properties

of the algorithm. We then numerically estimate the expected number of database solutions to

provide an approximation of the optimal number of oracle calls in the algorithm. We compare

the q-RRT algorithm with a classical implementation and verify quadratic run-time speedup in

the largest connected component of a 2D dense random lattice. We conclude by evaluating a

proposed approach to limit the expected number of database solutions and thus limit the optimal

number of oracle calls to a given number.

5.3 Contributions

We introduce two novel formulations of path planning algorithms using QAA. In Quan-

tum Full Path Search (q-FPS), we describe a quantum search over a database of randomly

generated paths from a start to a goal configuration over sparse environments. Next, we describe

a Quantum Rapidly Exploring Random Tree (q-RRT) algorithm that admits reachable states to

the tree through a quantum search of a randomly constructed database of points.

The main contributions of this work are the following.

• Creation of a strategy for achieving path planning using quantum computing in sparse

environments with Quantum Full Path Search (q-FPS);

• Re-framing of RRTs for quantum computation with the algorithm Quantum RRT (q-RRT);

• Analysis of the probabilistic completeness (PC) properties and derivations of key probabil-

ity values of interest with respect to adding unreachable tree elements;

65



• Characterization of oracle and measurement errors, how these errors affect PC, and how to

ensure PC properties remain intact;

• Simulations of the use of quantum algorithms for sampling-based motion planning and

verification of quadratic speedup;

• Numerical simulations regarding connectivity within 2D square random lattices for op-

timal QAA application and the creation of a sampling method for selecting (rather than

estimating) the optimal number of QAA applications.

5.4 Full Path Database Search with Quantum Amplitude
Amplification

In this section, we outline a first algorithm for path planning based on a direct application

of QAA, with an illustration of its advantages over classical methods in a particular example.

We outline a path planning algorithm, Quantum Full Path Search, Alg. 7 (q-FPS), which

uses QAA to search a database D of completed paths. The robot is described by state x ∈ Rd

which is constrained within a compact configuration space, C ⊆ Rd . Let Cfree denote the free

space, or the space within C outside of all static obstacles. The goal is for the robot to navigate

a path, in Cfree, from the initial state x0 ∈Cfree to a goal state xG ∈Cfree. The path is denoted

as an ordered set of states γ : x0,x1, . . . ,xG. For the path to be considered safe, xi ∈Cfree, ∀ i.

Continuous path curves can also be considered.

Algorithm 7, the Quantum Full Path Search (q-FPS) takes as input the initial and goal

states, the desired number of quantum registers n (for database size 2n), and an oracle function

X . The algorithm output is a path γ ∈Cfree from x0 to xG.

The q-FPS algorithm relies on the creation of a database of full length path solutions

on line 3. In order to create a database that is likely to contain solutions, random paths should

deviate from straight line behavior. In more complex or blocked environments, higher deviation

alongside larger database sizing n can lead to a higher likelihood of a valid solution. In Alg 7,
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Algorithm. 7 Quantum Full Path Search (q-FPS)
Input: x0, xG, n, oracle function X
Output: γ : x0,x1, . . . ,xG

1: Init Database D
2: for i = 1 to 2n do
3: D(i)← random path from x0 to xG
4: end for
5: m = QCA(X ,D)
6: Enumerate D via F : {0,1}n → D
7: Init n qubit register |z⟩ ← |0⟩⊗n

8: |Ψ⟩ ←W |z⟩
9: for i = 1 to

⌊
π

4

√
2n/m

⌋
do

10: |Ψ⟩ ← Q(X ) |Ψ⟩
11: end for
12: γ ← F(measure(|Ψ⟩))
13: Return γ

on line 5, QCA refers to the Quantum Counting Algorithm [149], an extension of Grover’s

algorithm and the quantum phase estimation algorithm that estimates directly the number of

solutions within the database. Line 6 refers to a 1−to−1 mapping from the elements of database

D to states of a qubit register. It can also be thought of as a numbering scheme. Let W be the

Walsh-Hadamard transform.

In the loop, from lines 9 to 11, we apply the QAA operator (combined with oracle X ) to

the qubit multiple times to increase the amplitude of correct database entries. The exact number

of iterations depends on the database size 2n and the number of solutions m in D, as discussed in

Section 5.5. In this application, the oracle X functions as a black box indicating whether a path

is obstacle collision-free. If m is known, then the number of applications of Q that maximize the

feasible paths amplitudes is,

imax =
⌊

π

4

√
2n/m

⌋
; (5.1)

see [150]. If Q is further applied, the amplitudes of correct solutions will start to decrease, as

shown in Fig. 5.2. Lines 12 to 13 refer to the process of measuring the qubit, retrieving the

database path element, and returning said path.
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This method provides us with a quantum algorithm approach to motion planning problems

with a quadratic speedup over the same method using classical search algorithms. Speedup is

effected on path collision-checking, which is the most computationally heavy portion of path

planning.

5.4.1 q-FPS Example

We illustrate the algorithm and speedup on the following example. The probabilities are

known because we simulate the quantum computer on a classical device. Consider a randomized

database in a 2−dimensional obstacle environment using a n = 10 register qubit corresponding

to a database with 1024 random paths. A visualization of a sample full path databse is shown

in Fig. 5.1. Let there be a total of m = 5 obstacle free solutions within D (as measured by

QCA) and Q will be applied to the equal-superposition qubit |Ψ⟩ a total of i = ⌊11.24⌋ times,

calculated using Eq. (5.1). After 11 iterations, the total probability of measuring one of the 5

correct solutions is 99.86% and the total probability of measuring one of the 1019 incorrect

solutions is 0.14%, as shown in Fig. 5.2. Classically (on a non-quantum computer), the expected

value of oracle calls to find one of five solutions in a database of size N = 1024 with m = 5

solutions is (N/m)/2 = 102.4.

5.5 Quantum Rapidly Exploring Random Tree Algorithm

The approach of the previous section only works successfully for obstacle-sparse environ-

ments, as randomly generated full paths are very unlikely to find a valid, obstacle free path when

the density of obstacles is high. Instead, RRTs and Probabilistic Roadmaps (PRMs) [67] are

devised to produce successful collision free-paths more quickly in cluttered environments. In this

section, we outline the q-RRT Algorithm (Alg. 8), an RRT-like path planning algorithm, , which

is based on RRTs. The q-RRT algorithm uses QAA on a database of individual points during

tree creation to only admit reachable points that are within the same connected component. The

main algorithmic differences between the q-RRT algorithm and RRT are as follows:
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Figure 5.1. A visualization of a full path search database in a two dimensional environment.
Randomly generated full path solutions are depicted in blue, and a single circular obstacle is
depicted in red.

• q-RRT creates databases of possible states to analyze simultaneously, rather than single

states.

• States are assessed simultaneously for addition to the tree using quantum algorithms and

measurement.

• A metric, p∗, is used to estimate the number of correct database solutions.

We analyze the algorithm performance in a d-dimensional finite square (lattice) envi-

ronment C ⊆ Rd . The reason for this choice is twofold: firstly, there are established tools,

methods, and theory regarding them, and secondly, they can yield sufficiently dense and scattered

environments to provide an interesting study. Related applications include cave exploring or

search and rescue efforts in collapsed structures [151].

The lattice environment is shown in Fig. 5.4 and is defined as a square region C =⋃
i∈N Si ⊆ Rd that is partitioned into equal sized squares (d = 2), cubes (d = 3), or hypercubes
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Figure 5.2. Effect of repeated applications of operator Q on probability amplitudes of a 210 qubit
representing a database with 5 free paths. Each register corresponds with a database element.
The amplitudes of non-collision-free paths is shown as a small (non-zero) magnitude line that
decreases with increased iterations. Further applications of Q decrease amplitudes of free paths.

(d > 3) Si, i ∈ N. Each element is either obstacle free with probability 1− r or occupied with

probability (or concentration) r. Obstacle free elements are denoted by white in our figures,

and form Cfree ⊆ Rd , and occupied elements are denoted by black and form Cobs ⊆ Rd . The

characteristic length L is the ratio of the side length of C to the square increment spacing. In this

section, we allow the lattice spacing to be defined as size one and the side length of C to be L.

Two d-dimensional elements are adjacent in Rd if and only if they share a d−1 edge.

For d = 2, adjacency is defined for edges and not corners. Let a connected component Z be a set

of adjacent grid cells
⋃

i=1 Si such that, Si ⊆Cfree,∀i, and any two points x1,x2 ∈ Z be connected

by a continuous path γ ⊆ Z.
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5.5.1 Quantum RRT Algorithm

The q-RRT algorithm, Alg. 8, takes as inputs an initial point x0 ∈ Cfree, the number

of qubit registers n, a number of nodes M, the oracle function X , a concentration r, and the

characteristic length L. It outputs a connected tree T of M reachable states (or tree nodes) from

x0. We note that, traditionally, RRTs end when a goal is found and return a path. Instead, the

goal is to construct an RRT that ends when the given number of nodes M are added successfully

to the tree, providing a type of PRM.

To add a node, q-RRT creates a size 2n database D of random states-nearest parent

pairs, as shown in lines 3 through 7. The nearest parent in this context is defined using the d-

dimensional Euclidean distance. On lines 8 to 10, a 1−to−1 database-element-to-qubit mapping

is created and an equal superposition is created across all qubit states. Recall that W is the

Walsh-Hadamard transform, the equal superposition operator. On lines 12 through 14, QAA is

performed on |Ψ⟩ a repeated number of times (as per Eq. (5.1)) based on an estimate of number

of solutions m on Line 11, where p∗ refers to estimates of m/2n. A single database element is

added to the tree on line 16 based upon the quantum measurement on line 15. The oracle function

performs a reachability check (within the operator Q) with a local planner on the random point t

from the proposed parent point P to certify that the returned tree is fully reachable. Our specific

local planner for simulation is explained in Section 5.5.4, and a more general discussion on

reachability estimations can be found in Sec. 5.6.1. We note that the method is defined as RRT

(but can be extended to RRT* through the addition of standard rewiring after line 17) in order to

apply quantum algorithms to the most broadly applicable sampling-based motion planner.

5.5.2 Probabilistic Completeness and Probability Results

This section analyzes the effect of two sources of error that can affect probabilistic

completeness (PC) and the admission of unreachable states to the tree in q-RRT, leading to wrong

solutions. These are imperfect oracles and the measurement process. The following discussion
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Algorithm. 8 Quantum RRT (q-RRT)
Input: x0, n, M, oracle X , r, L
Output: Tree T

1: Init T with root at x0
2: while size(T )< M do
3: for i = 1 to 2n do
4: t = random point
5: P = closest parent of t in T
6: D(i) = [t; P]
7: end for
8: Enumerate D via F : {0,1}n → D
9: Init n qubit register |z⟩ ← |0⟩⊗n

10: |Ψ⟩ ←W |z⟩
11: p∗1 = p∗(r,L), p∗2 = p∗

(
r,L/

√
size(T )

)
from Eq. (5.14)

12: for i = 1 to
⌊

π

4

√
1/p∗1

⌋
do

13: |Ψ⟩ ← Q(X ) |Ψ⟩
14: end for
15: [xlast,P]← F(measure(|Ψ⟩))
16: Add [xlast,P] to T
17: end while
18: Return T

and statements apply to any path planner with similar inaccuracies.

In what follows, we define PC with respect to q-RRT. For any x1 and x2 that belong to

the same connected component Z ⊆Cfree, it requires that:

A: Eventually x2 ∈ T , for T rooted at x1 with probability 1.

B: ∃ a good path from x1 to x2 in T with probability 1.

We relax this standard definition to just A for the following Lemma and we address B in

Thm. 3. When there are no errors, A is sufficient because every node admitted to T is reachable.

We show how q-RRT can meet these criteria in Lemma 1.

Lemma 1. For every x1,x2 ∈ Z, where Z ⊆Cfree is a connected component, the output tree T of

q-RRT with a final check, with root x1 satisfies P(x2 ∈ T )→ 1, as the number of tested samples

goes to ∞.

Proof. The proof follows from the probabilistic completeness of RRTs [67]. The output of RRT,
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TRRT, satisfies P(x2 ∈ TRRT)→ 1 as the number of samples→ ∞. All points in C will be tested

for addition to Tq-RRT, similar to TRRT, and reachable states will be admitted to Tq-RRT. This

result holds for the output of q-RRT, Tq-RRT, because the sampling distribution (and process for

selecting and admitting states) and configuration space satisfy the same conditions as the proof

for RRT, as explained next.

In database creation, q-RRT uses independent uniform sampling of points from within

C, where C is a nonconvex bounded open n-dimensional configuration space. This distribution

is multiplied by the probability of tagging each of these states as good by the oracle process

(regardless of whether they are good or bad as ground truth), and by the probability of measuring

one of these states to be added to the tree. It holds that Tq-RRT contains a tree TRRT-m, which

is created with only correctly identified samples (generated by a uniform distribution over

C) that have been measured. The latter net distribution satisfies the necessary conditions for

the RRT result, namely that it is a smooth strictly positive probability density function over

the connected component Z ⊆Cfree of interest. Then, TRRT-m satisfies the theorem of RRT, and

P(x2 ∈ TRRT-m)→ 1. Since we have P(x2 ∈ TRRT-m)≤P(x2 ∈ Tq-RRT)≤ 1, the result follows.

If the oracle in Alg. 8 Line 13 is imperfect, reachable states may be tagged as unreachable

(false negative oracle error) and vice versa, unreachable states may be tagged as reachable (false

positive oracle error), as shown in Fig. 5.3. An “imperfect oracle” is one that admits any type of

error. False negative errors reduce efficiency and have the potential to remove PC properties, as

good states may not be added to the tree. False positive errors serve to increase the likelihood

that unreachable states are admitted to the tree. The local planner employed does not make

repeatable false negative errors, as reachability is defined with respect to a current state, and as

the current state approaches the target state (as discussed later), if the target state is reachable, the

oracle will identify it as such. Therefore, oracle false negative errors do not affect PC properties.

These errors are compounded with those introduced by the measurement step on Alg. 8

Line 15, which may admit unreachable states to the tree (additional false positive measurement
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error), but because the measurement produces a reachable output (and not a tag like the oracle),

additional false negative measurement error is not possible.

We analyze these error-measurement likelihoods next, and their impact on property B.

First, we note that the false positive measurement error can be mitigated through a final deter-

ministic oracle check before a state is added to T . We call this the “final check”, to be applied

after Alg. 8 Line 15, to verify that the measured node is indeed reachable with an obstacle-free

path before it is added to T , allowing us to use the PC definition according to solely criteria A.

However, this final check comes at a cost of additional oracle calls.

Measurement error stems from the probabilistic nature of the qubit measurement process

(Alg. 8 Line 15). In general, there is a nonzero probability that a database element marked (by

the oracle) as bad is selected for addition to T (false positive measurement error). The quantum

measurement process takes a qubit and returns a deterministic state, where the returned state

probability of selection is the square of the probability amplitude (Born’s rule) [152]. In general,

the probability amplitude of bad states after successive applications of Q is nonzero, and the

following theorem provides a characterization of this probability and its impact on criterion B.

Theorem 3. Let E be the event of a bad state, as tagged by the oracle (regardless of ground

truth), being added to T on a particular qubit measurement (false positive measurement error).

Let database sampling be uniform over C and let the database be optimally amplified. The

probability of E is,

P(E) = 1− sin2

((
π

2

√
2n

m
+1

)
arcsin

(√
m
2n

))
, (5.2)

where 2n is the current database size and m is the current number of solutions within the database.

Eq. (5.2) is the minimum value that is achieved when Q is applied exactly according to Eq. (5.6)1.

1Functionally, Eq. (5.2) will be modified by the fact that Q is applied an integer number of times.
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As the number of nodes M→ ∞, P(E) monotonically increases to limM→∞P(E)≡ P(Elim),

P(Elim) = 1− sin2
((

π

2

√
1/r+1

)
arcsin

(√
r
))

, (5.3)

where r is the environment concentration. Lastly, let F be the event that at least one bad state

exists within T . When M nodes are in T , an upper bound on the probability of F is,

P(F)≤ 1− (1−P(Elim))
M, (5.4)

and an upper bound on the probability that at least one bad state is part of a given path γ ,

P(Fγ)≤ 1− (1−P(Elim))
|γ|, (5.5)

where |γ| is the number of nodes in γ .

We remark that there is no way of finding lower bounds similar to Eq. (5.4) and Eq. (5.5),

as the expected lower bound value of Eq. (5.2) depends on the local planner. In this case, Eq. (5.4)

and Eq. (5.5) form expected worst-case estimates to tree and path errors, respectively, when

using q-RRT.

Proof. First, we note that the optimal number of applications of Q to maximize the chance of a

good measurement is,

imax =
π

4

√
2n

m
, (5.6)

as given in [39]. We further note that, after imax iterations, the probability of measuring a good

state is,

P(Ec) = sin2((2imax +1)θ), (5.7)

where θ is defined such that sin2(θ) = m
2n [39], and where m

2n is the success probability of the

database. Thm. 3 Eq. (5.2) follows via substitution. For local planners testing reachability, as

75



M→ ∞, in the maximal case the entirety of Cfree becomes locally reachable. Therefore, the ratio

of correct database solutions 2n/m approaches the environment concentration r, yielding Thm. 3

Eq. (5.3).

Lastly, we observe that P(E) is upper bounded by Eq. (5.3) and P(E) is strictly increasing

as a function of m, over our entire effective domain of m/2n = (0.04 0.75). If we assume the

upper bound for each node in the tree, Thm. 3 Eq. (5.4) follows by substituting Eq. (5.3) into the

probability formula of at least one P(E) occurring over M events. Eq. (5.4) is an upper bound

over the number of nodes M, as it is found by assuming an upper bound value occurs in every

case. This is modified by replacing the power M for |γ| for the case of a path γ with node length

|γ|, yielding Eq. (5.5).

We note that for databases with less than 75% solutions, 0 < m < 0.75 ∗ 2n, P(E) is

strictly increasing as the fraction of solutions in the database m/2n increases. It is also well

approximated by a linear function, P̂(E) = 1.251 m
2n −0.0159, achieved with linear least squares

on m/2n = (0.04 0.75) with coefficient of determination R2 > 0.999. With a local planner

testing reachability, in general, as M ↑, the number of database solutions m ↑. We defer this

discussion to Section 5.5.4.

The above quantum measurement error analysis is modified in Prop. 4 to additionally

account for false positive and false negative errors by the oracle.

Proposition 4. Let G be the event that a good state, with respect to ground truth (rather than as

tagged by the oracle), is measured for addition to the tree. Let the probability of a state marked

incorrectly as good be given by q∈ [0,1] (false positive), and let the probability of a state marked

incorrectly as bad be given by v ∈ [0,1] (false negative). Let the database be optimally amplified.

Then, the event G has probability,

P(G) = (−1+q+ v)P(E)+1−q, (5.8)
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where P(E) is given by Eq. (5.2). As the number of nodes M→ ∞, the probability of event G,

denoted as limM→∞P(G)≡ P(Glim), is given by,

P(Glim) = (−1+q+ v)P(Elim)+1−q, (5.9)

where P(Elim) is given by Eq. (5.3) and where the maximum value is again achieved when the

database is optimally amplified. Let F∗ be the event that at least one bad state exists within T ,

when oracle errors are considered. When M nodes are in T , an upper bound on the probability

of F∗ is,

P(F∗)≤ 1− (P(Glim))
M, (5.10)

and an upper bound on the probability that at least one bad state is part of a given path γ is

given by,

P(F∗γ )≤ 1− (P(Glim))
|γ|, (5.11)

where |γ| is the number of nodes in γ .

Proof. The proof stems from modifications made to the statement of Eq. (5.2) to move from

measurement probability with respect to the oracle to measurement probability with respect to

ground truth. To factor in both types of error, P(Ec)q (fraction of false positive error, as given

in Eq. (5.7)) must be added to P(E) from Eq. (5.2), and P(E)v (fraction of false negative error)

must be subtracted from P(E), as shown in Fig. 5.3. This yields,

P(Ḡ) = P(E)+P(Ec)q−P(E)v, (5.12)

where Ḡ denotes the complement of event G. Eq. (5.12) can be simplified, and the complement

taken, to give Eq. (5.8). Eq. (5.9) is found by taking Eq. (5.8) and substituting P(G) and P(E)

with P(Glim) and P(Elim), respectively. Eq. (5.10) and Eq. (5.11) are found with the same process

as Eq. (5.4) and Eq. (5.5) with the complement of event G.
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Figure 5.3. A visual depiction of the false positive and false negative regions of the good and
bad tags by an oracle.

A tree with as many good states as possible is achieved with the lower bounds of error in

Thm. 3. Attaining this bound requires applying QAA an optimal number of times, which is what

we estimate next.

5.5.3 Estimate of the Number of Correct Solutions

In this section, we explore methods for estimating the number of tree-admittable states

out of a database of uniformly random points inside of a 2-dimensional periodic finite square

lattice of characteristic length L and concentration r. This estimation will guide the algorithm in

applying QAA the optimal number of times (Eq. (5.1)). Let the function,

p(x1,x2) =


1, if x1,x2 ∈ Z,

0, otherwise,

represent connectivity, for a connected component Z ⊆Cfree. Initially, we are concerned with

whether or not the two states are within the same connected component. In Section 5.5.4, we
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discuss local planners and reachability. We estimate the average connectivity p∗ of 2 random

points within the square lattice as an estimator of the number of correct solutions to the database

D,

p∗ = Eπ(x1,x2)(p(x1,x2)), (5.13)

where π(x1,x2) = U(Cfree)×U(C).

Several results from Percolation Theory provide insight as to average connectivity of

finite square lattices [153], [154], [155]. The work [156] uses results from [157] to calculate

and estimate wrapping probabilities of 2D square lattices. Wrapping probabilities refer to the

probability that there exists a giant connected component from one edge of the 2D square lattice

to the opposite edge. In the context of q-RRT, since each parent is assumed to be in Cfree,

wrapping probabilities, as presented in [156], cannot be directly used. Additionally, our desired

estimation is with respect to individual points and not a set of points representing an edge, as

in [156].

We calculate the connection probability, Eq. (5.13), from a state x1 ∈Cfree to a random

state x2 ∈C. This reflects an estimate for correct solutions to the database in the case where

all nodes of the tree reduce to the root x0. In the next section, we evaluate the case where trees

that are maximally spread in the environment. We fit a model to numerical simulations over

concentration r and characteristic length L to estimate connection probability p∗,

p∗(r,L) =
f

1+ e−a(L−b)(r−c)
+dL−2, (5.14)

with a =−0.1597, b =−54.59, c = 0.3212, d = 1.195, f = 0.9542, found with nonlinear least

squares and with an ordinary coefficient of determination R2 = 0.9957; see [158]. The model

was chosen as a logistic function due to observations on matching function data in [156, Fig. 5].

While (p∗, r) slices of data exhibit a logistic relation, it is not independent of L based on

inspection of level sets in L, which is therefore modeled as a scaling parameter of the logistic

function. It is observed that (p∗, L) slices exhibit a negative nonlinear relation which is modeled
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Figure 5.4. A sample random square lattice with L = 32 and r = 0.5 spanned by a 20 node tree
with x0 in green.

with a quadratic.

Each point ◦ in Fig. 5.5 in the parameter space (r,L) represents the average of 1,000

random connectivity tests over 25 different random lattices each, totaling 25,000 points. In

aggregate, data was collected over 209 parameter-space points, totaling 5.225 million data

points. The total dataset was condensed, and the model was trained on averages because we

seek to estimate averages. Since the number of data points (209 averages) is large compared to

the number of parameters (5), we are not concerned with over-fitting and therefore report the

coefficient of determination R2 and do not split the data into training and validation sets. We

refer the reader to Section 5.6.1 for an evaluation of this metric.
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Figure 5.5. Numerically generated data points (◦) estimating p∗ (free-random point connectivity)
as a function of concentration r and length L. The model is depicted as the gray surface, with a
coefficient of determination R2 = 0.9957.

5.5.4 Local Planners and Upper Bound Limit

The choice of local planner affects the accuracy and, therefore, the relevance of Sec-

tion 5.5.3. Previously, we sought to add points to the tree that are connectable to the tree, i.e.

within the same connected component, with no restrictions on the connecting path. If we instead

desire the local planner admit reachable points to the tree (which account for some dynamics),

the model of Fig. 5.5 can be tweaked to yield a second estimate. We also note that considering

dynamic models in the estimation in Eq. (5.14) leads to an expansion of the parameter space in

an unmanageable way, so the model estimates connectivity sans dynamics.

Given x1 ∈Cfree, we define the reachable set from x1 as the states x2 ∈Cfree that can be

connected to x1 by a dynamic, obstacle-free path generated by a predefined type of control. We
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choose this type of restricted reachability2, so we can factor in system dynamics and remain

according to [160], who note that it is preferable to use a very fast local planner even if it is not

too powerful. The oracle marks dynamic paths as not reachable if they are not obstacle-free, as

we are more concerned with testing many solutions quickly rather than every solution rigorously,

even if it may reachable be with a modified controller or intermediate references.

Next, we provide an upper bound characterization to reachability from a tree of M nodes

in free space by considering the case where the tree is maximally spread. This case gives the

minimum effective characteristic length because new samples are connected to the nearest node,

and for a maximally spread tree, the Euclidean distance of that node to the nearest one in the tree

should be the smallest. The minimum characteristic length maximizes reachability, maximizing

the proportion of the database marked as correct, which enables us to lower bound the number

of applications of Q as per Eq. (5.6). An upper bound p∗2 on the average reachability to a set of

nodes in random square lattices is defined in Thm. 5.

Theorem 5. For a random square lattice C characterized by length L, with concentration r and

an arbitrary set T of M nodes in free space, an upper bound p∗2(r,L) with x1 ∈ T ⊆Cfree and

x2 ∼ U(C) is given by Eq. (5.14) with characteristic length L∗ = 3L√
M

. p∗2 is the absolute upper

bound of the number of correct database solutions, which is related to the number of times to

apply QAA by Eq. (5.1).

Proof. The proof follows by considering the best case of a maximally spread tree T of M̃ nodes

(and M feasible nodes) within lattice C. A tree T with nodes placed according to a centroidal

Voronoi tessellation (CVT) [161] of C with M̃ nodes and regions, is one that minimizes the

expected distance of every node in C to the closest generator. Assume that M̃ is sufficiently large

so that there M feasible nodes in Cfree. A random point will attempt to connect with the closest

parent. Each existing node, when placed according to a CVT in a convex region, creates a region

of connection characterized (in 2D) by length L√
M̃

for a C of area L2 with M̃ regions. A CVT, by

2More generally, a reachable state from x1 is x2 for which there exists a control u(t) that connects these states by
a dynamic path. [159]
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definition, creates Voronoi regions of connectivity of expected minimal characteristic length. If a

certain node turns out to be infeasible, the distance of a point to the nearest feasible generator is

3L√
M̃

, which can be upper bounded by 3L√
M

. This minimal characteristic length yields a maximum

connectivity estimate by substituting L∗ = 3L√
M

for L into Eq. (5.14).

This is similar to the noted result in [160] regarding the restriction of new test nodes to

sufficiently close existing nodes in the tree to maximize the connection likelihood. In the q-RRT

Alg. 8, p∗2 serves to lower bound the number of times QAA must be applied to the database qubit.

The intuition behind Thm. 5 is that as the tree grows in number of nodes, it is easier to prove

reachability to the tree. The bounding case is when the tree is maximally spread within C, as

given by a CVT. In that case, the characteristic length can be thought of as L√
M

, or the original

environment size split into M equal sized and roughly convex regions.

5.6 q-RRT Results and Discussion

5.6.1 Comparison With Ground Truth

In the following, we evaluate p∗ and p∗2 on a particular example. Quantum computers

must find the number of correct solutions within the database using the Quantum Counting

Algorithm [149], which is a mix of quantum phase estimation and Grover’s Algorithm. Due

to the use of a quantum computing simulation on a classical computer, this value is knowable.

To ascertain reachability, the oracle X uses the following robot dynamics and control law and

performs reference tracking from an xparent to a xnew,

x(t +1) = Ax(t)+Bu(t) , x(0) = xparent,

A =

−1.5 −2

1 3

 , B =

0.5 0.25

0 1

 ,
u(t) =−Kx(t),

83



K =

1.9 −7.5

1 7

 .
The constant gain matrix K can be any matrix such that the closed loop system is stable.

Figure 5.6. Comparison of p∗ and p∗2 with a histogram of 250 random cases of database size 211

with L = 32, r = 0.6, and a tree of M = 5 nodes.

In Fig. 5.6, we compare p∗ and p∗2 against a histogram of 250 simulations, in randomized

environments, of a 211 size database. Each of the 250 simulations are grouped according to the

proportion of correct database solutions they provide. Cases are run with L = 32, r = 0.6, and

with a tree of M = 5 nodes. From the figure, observe that p∗ forms a slightly high estimation,

while p∗2 is validated to form an upper bound. Since p∗ refers to mean connectivity, and not

reachability, the proportion of correct solutions, when we factor in provable reachability, is

generally less than p∗. This concept is shown in Fig. 5.7, where the forward reachable set is

shown as a subset of the connected component. This explains why p∗ forms a slightly high

estimation of the mean. On the other hand, p∗2 correctly upper bounds the proportion in the case
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where M = 5.

Figure 5.7. An illustration of why p∗ forms a slightly high estimation: the forward reachable set
is generally a subset of the connected component. Reachability tests will return a lower estimate
of database correctness than connectability, which is what p∗ is based upon.

5.6.2 Results in Dense Random Lattices

In this section, we show the results of q-RRT creating a tree within large connected

components of random 2D lattices (explained in Section 5.5), as shown in Fig. 5.4. We compare

algorithm performance with a classical, and largely identical, version of RRT attempting to

span the same connected component. The classical version of RRT replaces the quantum
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database search with a classical oracle check on a single point. All path planning simulations

are performed in a 2D environment run with Matlab v2022b on a desktop computer with an

Intel i5-4690K CPU and an AMD RX 6600XT GPU. A selection of Matlab code is available at

github.com/pdlathrop/QRRT. The quantum states and algorithms are simulated using the Matlab

Quantum Computing Functions library [150]. Simulations are run in a random square lattice

of size L = 72, where each method is given a random start node within the largest connected

component. In the simulations, r varies because concentration creates large differences in

performance of both algorithms. Fig. 5.8 and Fig. 5.9 show the average number of oracle calls

and average real run-time of each algorithm to create an 11 node tree, which is an arbitrary

number chosen to showcase average performance. Each data point is averaged over 50 planning

problems, in 50 random environments. Both algorithms are tested against the same environments.

Figure 5.8. Comparison of the average number of oracle calls by q-RRT and RRT as concentra-
tion varies, for L = 72.
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Figure 5.9. Comparison of the average real run-time of q-RRT and RRT as concentration varies,
for L = 72.

Over the range [0.45,0.7] in concentration r, q-RRT averaged 308 oracle calls, while

the classical RRT averaged 3820 oracle calls, as a result of a quadratic performance increase.

Algorithm q-RRT averaged 14.7 seconds per case, compared to RRT’s average of 4.3 seconds,

and this is due to the implementation of quantum algorithms via arrays on a classical computer.

On a quantum computer, the actual run-time advantage would be proportional to the average

oracle call advantage. As r increases, the average number of oracle calls also generally increases

due to the increased difficulty in making connections in denser environments. For RRT, the

average time per case shows this increase because most of the algorithm run-time is in performing

reachability tests. For q-RRT, as r increases, there is an initial decrease in average run-time,

possibly because at low r, the largest connected component tends to be very non-convex and

widely spread. This causes additional reachability tests to be performed because of a run-time
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optimization where points are excluded first based on whether they are not in the same connected

component, then based on reachability.

Minimizing oracle calls is useful in situations where admitting points to the tree has

high computational cost, or where reachability checks carry a cost. In our method, the oracle

tests experimentally whether a possible point (or database of points) is within the reachable set,

which is a complex problem to solve analytically for non-simple systems [162]. This can result

in significant time savings, and in some cases may allow offline algorithms to become online.

In large dense environments where most random points are not admittable to the tree, many

reachability tests must be performed to admit even a single valid state. In such situations, q-RRT

far outperforms RRT in the ability to admit new nodes to the tree (per oracle call).

5.6.3 Database Size Comparison

In this section, we show the effect of variance of total database size 2n on the performance

of q-RRT as compared to classical RRT. In Fig. 5.10 and Fig. 5.11 we show the average number

of oracle calls and the average real run-time, respectively, of q-RRT with databases sized 28 and

29 for L = 72 while concentration varies. Again, we compared q-RRT with RRT in creating a

tree with 11 nodes, and each data point is averaged over 50 planning problems, in 50 random

environments.

We verify that changes to database sizing does not effect the overall trend of average

number of oracle calls or average run-time over varying concentration. The larger 29 sized

database resulted in lowered average oracle calls, especially at higher r, when compared to 28

sizing. This is consistent with the main reason the quantum algorithm provides a reduction at

all, which is the ability to perform reachability tests on many possible states simultaneously.

Predictably, with respect to real run-time on a classical computer, larger database versions of

q-RPM take longer across all r, as more reachability tests need to be performed with the quantum

computing simulation. However, on a quantum device, we expect the run-time to be analogous

to the number of oracle calls.
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Figure 5.10. Comparison of the average number of oracle calls by q-RRT and RRT as concentra-
tion varies, for L = 72 and Database sizes 28 and 29.

5.6.4 Oracle Call Constraint

In this section, we identify an approach for tree construction that limits the optimal

number of oracle calls to a maximum of NX per node added to the tree. We may want to

create databases of correctness proportion p, rather than just predict p from the environmental

parameters, especially in time limited cases. In order to limit the number of optimal oracle calls

to NX , we constrain the L1 (Manhattan) sampling distance to evaluate reachability to be equal to

a certain value, which we call DL1. L1 ‘rings’ around existing nodes in a lattice environment

is shown in Fig. 5.12, and sampling for new points to add to the database is restricted to the

edge/surface of the rings (or, alternatively, to within the rings). This will ensure that the number

of successful reachable connections becomes higher in cluttered environments, thus requiring a

smaller number of oracle calls. We consider an environment with a fixed L value and measure
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Figure 5.11. Comparison of the average run-time of q-RRT and RRT as r varies, for L = 72 and
Database sizes 28 and 29.

distance in terms of the 1-norm or Manhattan distance. The 1-norm is chosen over the Euclidean

distance as, intuitively, it can yield a superior parameter for estimating connectivity within

a square lattice. In this context, the word optimum refers to the number of oracle calls that

maximizes the likelihood of measuring a correct database element.

In Fig. 5.13, we show how average connectivity p scales according to a negative expo-

nential with increasing L1 distance between parent and child. Values spread at the larger L1

distances due to smaller sample sizes. For a given concentration r and an oracle call constraint

NX , Fig. 5.13 can be used to select the maximum DL1 that will select NX as the approximate

number of optimal oracle calls. To exemplify how such a tool can be used, we fit a model using
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Figure 5.12. An illustration of the constrained sampling idea in a two dimensional lattice with
L1 ‘rings’ shown around each existing node in the tree. New samples are restricted to the edge
of the rings.

nonlinear least squares to the numerical L = 72 data shown in Fig. 5.13, which takes the form,

p = a e(br+c) DL1 , (5.15)

with a = 0.479, b =−1.72, and c = 0.674 with coefficient of determination R2 = 0.981. Again,

over-fitting is not a concern for three parameters modeling 336 data points. Equivalently,

DL1 = ln
(

π2

16N2
X a

)
/(br+ c), (5.16)

when Eq. (5.15) is solved for DL1 and p is related to NX via Eq. (5.1). Eq. (5.16) allows an

algorithmic distance constraint to be found from an oracle call constraint and the environment

concentration. From here, when q-RRT is building a database, states should be randomly selected

from the boundary of a ball at radius DL1 . In order to further restrict oracle calls, q-RRT can
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Figure 5.13. Semilog plot of numerically generated data points (◦) estimating p, the likelihood
of free-random point connectivity as a function of DL1, the L1 distance between parent and child,
for various concentrations r. The model is depicted as the gray surface. Data is generated with
L = 72.

instead randomly sample within a ball of radius DL1 , which results in a lower mean L1 distance,

and therefore higher p and lower number of oracle calls.

An analysis of the ability to select p given a concentration r and oracle call constraint NX

is given in Fig. 5.14. Datasets of size 214 are constructed in a random square lattice of r = 0.5

and L = 72 (chosen for discretizability) for various NX . The goal points are the p that correspond

with an optimum number of oracle calls NX to admit one node to the RRT. Therefore, the number

of oracle calls which yields the maximum likelihood of adding M nodes to the RRT from M

database creations is MNX . The use of an L1 restricting version of q-RRT alongside Eq. (5.16)

allows the creation of an M node RRT where NX has been approximately chosen as the optimum

number of oracle calls per node. Fig. 5.14 shows that, as NX increases, we have a more accurate

92



Figure 5.14. Evaluation of the ability to select p given NX using the model. Data is generated
with L = 72, r = 0.5, and the database size 214.

ability to select p.

5.7 Conclusion

The goal of this work was to provide a first study of the application of quantum algorithms

to sampling-based robotic motion planning. We developed a full path quantum search algorithm

for sparse environments and a Quantum RRT algorithm for dense random square lattices. The

q-RRT algorithm uses Quantum Amplitude Amplification to search a database of possible

parent-child relationships for reachable states to add to the tree. The q-RRT algorithm, tested

on a simulated quantum device, successfully employs a quadratic speedup of database searches

to reduce oracle reachability calls when constructing a tree. We also provide key quantum

measurement probability results, and tools for estimating and selecting the number of correct
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database entries using numerical modeling and guided sampling. Future work includes path

planning employing quantum mean estimation for uncertainty modeling [163], implementing

q-RRT on disjoint trees [164] for planning over multiple disconnected components, and exploring

path-optimality based algorithms in the context of quantum computing.

Chapter 5, in full, is a reprint of material “Quantum Search Approaches to Sampling-

Based Motion Planning” as it appears in IEEE Access. Lathrop, Paul, Beth Boardman, and Sonia

Martı́nez. IEEE Access, vol. 11, pp. 89506-89519, 2023, doi: 10.1109/ACCESS.2023.3307316.

The dissertation author was the primary investigator and author of this paper.

Initial exploration into sampling-based motion planning for quantum computing yielded

several distinct problems. The nature of the probabilistic measurement process and the possibility

of incorrect oracles yielded two sources of error, which we symbolically quantified with respect

to the growing tree. In order to optimally amplify a database, knowledge of what proportion of

that database is correct was needed, for which we introduced a particular environment (random

square lattices) that enabled numerical estimations of that quantity. In order to extend this work

to more general obstacle environments, we seek to move on from addressing the question of

database correctness, and focus on addressing the problem of measurement collapse.

When the amplified quantum state is measured to return a single database element, prob-

ability information on the database is lost due to wave function collapse, an inescapable reality

of the quantum world. The focus of the following chapter is on this subject, which is highlighted

in Fig. 5.15. However, even though qubits in superpositions cannot be copied, introducing a

parallel quantum structure to the architecture can enable multiple qubit superpositions to be

created in parallel, allowing multiple database solutions to be found simultaneously, albeit by

different workers.
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Figure 5.15. Highlighted in red is the measurement collapse problem in a nutshell: probability
amplitude information on multiple solutions is lost when the superposition qubit is measured
and collapses to a deterministic state. This is one of the motivations of the following chapter.
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Chapter 6

Parallel Quantum Rapidly-Exploring Ran-
dom Trees

6.1 Introduction

Quantum computing algorithms have shown promise in accelerating the search for

solutions when applied to computationally intensive, complex problems. More efficient so-

lutions have been found and proven with quantum computing in fields such as pure science

simulations [165], cryptography [166], and machine learning [167].

With respect to robotics and motion planning, quantum algorithms have also been found

to increase speed and efficiency. The heart of quantum advantage is derived from quantum

parallelism and the ability to perform simultaneous computations on superpositions of states,

which motivated our work in [168]. To aid in sampling-based motion planning, the key effi-

ciency bottleneck is the search for dynamically-reachable, obstacle-free states to connect to

the search tree. Unstructured databases of possible next states can be searched simultaneously

with Quantum Amplitude Amplification (QAA) to efficiently find an amenable state, but the

quantum measurement process forces information loss through the collapse of the superposition.

Although all database states are searched in parallel, the process can only return one state. In this

chapter we are motivated by efforts in traditional motion planning to parallelize sampling-based

planners for efficient path generation using multi-core computers and GPUs, and the ability of

quantum algorithms to perform parallel computations. We seek to explore ways for quantum
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motion planning algorithms to allow multiple, parallel quantum computers to more efficiently

search a database of states and return multiple possible solutions.

6.2 Literature Review

In this section, we provide an overview of quantum computing as it applies to robotic

applications, non-quantum efforts to parallelize sampling-based motion planning algorithms, the

use of annealing and temperature constructs as they applies to motion planning, and how this is

related to our efforts to increase the efficiency of q-RRT.

Quantum algorithms have been applied to a range of robotic and motion planning-related

applications. They have been used to solve generalized optimization problems [169], estimate

stochastic processes [170], and provide speedup to Monte Carlo methods [171]. They have

also performed quantum searches [133] of physical regions [134], found marked elements of a

Markov chain [135], and searched more abstract spaces such as a search engine network [137].

A more detailed overview on how quantum computing has been applied to robotics, along with

open questions, can be found at [40].

Quantum computing has also been used to improve motion planning specifically. Quan-

tum reinforcement learning [127] has increased the speed and robustness (when compared to

classical, non-quantum algorithms) of robotic reinforcement learning algorithms when learning

optimal policies in gridded environments [29, 124]. An additional use of quantum computing

for robotic trajectory planning is addressed in [129], which uses a Quantum Evolutionary Algo-

rithm to search for optimal trajectories with a population dynamics/mutation quantum algorithm.

Lastly, the review [132] examines quantum control algorithms, and the topic of feedback control

accomplished using quantum computing. The work at hand is distinct from the state of the art of

quantum computing as applied to motion planners, as we apply such methods to sampling-based

planners, which have the advantage of providing fast solutions in high dimensional environments

alongside providing probabilistic completeness guarantees [6]. Besides our previous q-RRT algo-
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rithm, quantum computing has not, to the best of our knowledge, been applied to sampling-based

planning algorithms. A further overview on how quantum computing has been applied to motion

planning and robotics can be found in [168].

In the field of non-quantum motion planning, sampling-based planning algorithms such

as Probabilistic Roadmaps (PRMs) [8] and Rapidly-exploring Random Trees (RRT) [9] have

taken the forefront due to their efficiencies in high-dimensional planning spaces and ability to

handle complex robot dynamic constraints [27], such as robotic grasping tasks, autonomous

vehicle planning, and UAV navigation. RRTs and PRMs have been extended in many ways

to improve their sampling speed, exploration ability, and collision-checking subroutine. RRT*

is an important extension regarding path optimality through rewiring [14]. An overview of

sampling-based motion planning can be found in the textbook [6]. Three ways to increase

motion planning efficiency are the use of quantum computing, the use of parallel algorithms and

architectures, and the use of sampling strategies. In this chapter we consider the combinations of

the three approaches through parallel quantum computing and database construction strategies,

which is akin to sampling strategies in classical algorithms.

Motion planning algorithms have been written for parallel tree creation [148] and parallel

computation with GPUs [28]. In [148], local trees are built in parallel to explore difficult

regions, and guidelines on when to create and grow local trees are made. In [28], the authors

parallelize the collision-checking procedure using GPUs to increase optimal planning speed in

high-dimensional spaces. The work [172] outlines Parallel RRT and Parallel RRT*, which uses

lock free parallelism and partition based sampling to provide superlinear speedup to RRT and

RRT*. The work [37] compares parallel versions of RRTs on large scale distributed memory

architectures, including or-Parallel RRT (multiple simultaneous individual RRT’s) and two

methods of collaborative single RRT, Distributed RRT and Manager-Worker RRT. The work [37]

also includes a succinct literature review regarding parallel motion planning and Parallel RRT. For

comparison purposes, in the work at hand we consider a class of Manager-Worker Parallel RRTs,

focusing on the parallelization of the collision-checking procedure of RRT. This is justified
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by the findings in [37], which concludes that for variable expansion cost cases, where the

communication load is insignificant compared to the computation load, Manager-Worker RRT

outperforms, or nearly matches, Distributed RRT in studied passage, corridor, and roundabout

environments. Several prominent architectures are visualized in Fig. 6.1.

Figure 6.1. Several prominent high level architectures for parallel tree construction. At left,
Or-parallel architecture, with different workers/cores performing individual tree construction
until one finds a path. In the middle, a distributed collaborative tree construction with spatial
decomposition is shown where different workers/cores work on expanding into different regions
of the configuration space. At right, a functional decomposition is shown with Manager-Worker
RRT where a manager interacts with a central tree and workers test add additional nodes. Icons
provided from Flaticon.

The work [173] discusses parallel quantum computing architectures and control strategies

for distributed quantum machines, noting that multiple few-qubit devices may be more techno-

logically feasible than single many-qubit devices. In this chapter, we consider parallel quantum

computers to be multiple simultaneous identical quantum devices governed by a classical device

in order to perform parallel computation.

A second extension to increase the efficiency of q-RRT relies on database construction,

where we employ a method inspired by simulated annealing. Simulated annealing [174] is an

optimization technique that relies on decreasing a temperature parameter to find global maxima

and minima of a nonconvex optimization problem, which is somewhat robust to local features.

Temperature acts as a guide to the probability of accepting a worse state, allowing an optimizer

to explore past local features while eventually settling on estimates of global optima when
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temperature falls. An overview can be found at [175] and [176].

Although a temperature construct is mainly used in the context of optimization, similar

annealing ideas have also been applied to motion planning, and we intend to apply them

to guiding the exploration vs exploitation trade-off of the planning algorithm. In a manner

somewhat reminiscent of annealing, the work [177] uses a dynamic reaction-diffusion process

to propagate, then contract, a search area for a goal location. Additionally, the covariant

Hamiltonian optimization for motion planning (CHOMP) method [178] uses gradient techniques

to improve trajectories and solve motion planning queries. CHOMP uses simulated annealing to

avoid local minima in trajectory optimization and not to guide sampling-based motion planning

itself. The work [179] uses simulated annealing to balance exploitation of Sampling-Based

A* (SBA*) and exploration of Rapidly-exploring Random Tree* (RRT*). As cooling occurs,

the probability of choosing the exploration strategy drops and the probability of choosing the

exploitation strategy increases. Similarly, the transition based RRT [180, 181] method uses a

temperature quantity inspired by simulated annealing to define the difficulty level of transition

tests to accept higher cost configurations in an effort to explore a configuration space. Similar

to this work, we use a temperature quantity to guide the level of exploration, but because we

are using quantum computing with q-RRT to perform motion planning, temperature factors into

database construction rather than individual samples themselves.

In [168], we introduced how quantum computing methods can be applied to sampling-

based motion planning in two ways, a full path database search and an RRT-based single-state

database search q-RRT. The Quantum Rapidly-Exploring Random Trees algorithm, q-RRT, uses

Quantum Amplitude Amplification (QAA) to search databases of possible reachable states. A

focus of our work [168] was in estimating solution likelihood (so QAA could be performed an

optimal number of times) through the use of random square lattice environments and numerical

simulations. We chose this approach over quantum counting in an effort to keep oracle efficiency

high. In the work at hand, we shift focus to address a particular shortcoming of quantum

computers and qubits: this approach suffers from the limits of quantum mechanics, as qubits
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cannot be copied and the quantum measurement process admits a single solution. We study how

quantum devices, working in parallel, can efficiently solve motion planning problems, while

generalizing environments away from random square lattices. Instead of focusing on how many

solutions exist within a database (which can be found with the Quantum Counting Algorithm

(QCA)), we focus on how multiple solutions can efficiently be found from a single database, as

is depicted in Fig. 6.2.

Figure 6.2. An illustration into how a parallel approach to amplification and measurement
can result in multiple deterministic solutions attained from a single superposition, created and
manipulated in parallel. Probability amplitudes of a sample qubit are shown amplified, indicating
two distinct solutions, which are both found by parallel processes. Icons from Flaticon.

6.3 Contributions

The main contributions of this work are the following.

• Creation of a parallel quantum computing variation to q-RRT, called Parallel q-RRT (Pq-

RRT), which uses a parallel quantum computing structure to allow multiple solutions from

a single database in general obstacle environments;

• Symbolic runtime analysis of shared and unshared database formulations of a Manager-

Worker parallel architecture;

• Characterization of key probability values for multiple quantum workers searching a
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shared database, with and without false positive and false negative oracle errors in order to

minimize efficiency loss;

• Creation of a construction strategy for quantum-search databases, called Quantum Database

Annealing, which uses a temperature construct to select sample distances and balance

exploration vs exploitation;

• Demonstration (through simulation) of the increased efficiency of Pq-RRT over q-RRT, as

compared to the efficiency increase of Parallel RRT over RRT;

• Simulations of faster tree exploration with Quantum Database Annealing as compared to

standard uniform-sampling database construction.

6.4 Organization

In Section 6.5.1, for reference purposes we provide a working definition of q-RRT

from [168]. In Sections 6.5.2 and 6.5.4, we define Parallel q-RRT then key probability results for

Pq-RRT, respectively. In Section 6.5.5, we define the database construction strategy Quantum

Database Annealing. In Section 6.6.1, we provide runtime and efficiency results for q-RRT and

Pq-RRT as compared to RRT and Parallel RRT. In section 6.6.2, we provide heatmaps of q-RRT’s

node placement speed over RRT, and in Section 6.6.3 we provide narrow corridor results for

q-RRT. In Section 6.6.4, we provide tree comparisons between Quantum Database Annealing

and standard database construction.

6.5 Parallel Quantum RRT and Quantum Database Anneal-
ing

In Section 6.5.1, we outline the q-RRT Algorithm from [168], followed by a presentation

of the Parallel Quantum RRT Algorithm in Section 6.5.2, and then probability results for Pq-RRT

in Section 6.5.4. Lastly, in Section 6.5.5, we present the Quantum Database Annealing strategy.
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6.5.1 Quantum RRT Algorithm

The q-RRT algorithm from our previous work [168] is a tree-based search algorithm

based on RRTs [67]. Quantum RRT uses QAA on a database of possible parent-child pairs

to admit reachable points to the tree. In this work, q-RRT returns a path (as opposed to the

full tree in [168]) and has the end condition of finding a goal. The line-by-line algorithm can

be found at [168], and because of q-RRT’s similarities with Pq-RRT Manager (Alg. 9) and

Pq-RRT Worker (Alg. 10), we omit the line-by-line and instead reference lines of the latter two

enumerated algorithm descriptions.

The q-RRT Algorithm takes as input an initial state x0 and a goal state xG in a compact

configuration space C ⊆ Rd , a number of qubit registers n, and a quantum oracle function X . It

returns a dynamically feasible obstacle free path γ . The q-RRT algorithm adds nodes to graph T

until there is a node within distance δ of the goal xG. To add a node, q-RRT creates a 2n sized

database D of random possible nodes and the nearest parent in T to the random node, as shown in

Alg. 9 on lines 4-8. A 1−to−1 mapping F is created between database D and qubit |Ψ⟩ (shown

in Alg. 10, line 1). Then, the qubit is initialized and an equal superposition between states set

(shown in Alg. 10 on lines 2 and 3 respectively). Let W be the Walsh-Hadamard transform, the

operator which maps a qubit to an equal superposition of all qubit states. On lines 4-6 of Alg. 10,

the operator Q performs QAA to amplify the probability amplitudes of correct states as defined

by oracle X , which tests the reachability of random samples to the nearest proposed parent P of

the existing graph T , thus ensuring that T is fully reachable. For an analysis into selecting imax

we refer readers to [168].

Measurement is performed and the correct database element selected in Alg. 10 on line 7.

After measurement is performed, the quantum state has collapsed and no further information

(beyond the selected state) can be gained from the qubit. Lines 14-16 of Alg. 9 allow a node

placed within δ of xG to be admitted to T as xG, ending the algorithm. The path is returned after

successful loop execution on Alg. 9, line 19.

103



6.5.2 Parallel Quantum RRT

In this section, we define the Parallel Quantum RRT (Pq-RRT) algorithm as a manager

(Alg. 9) worker (Alg. 10) formulation. The Pq-RRT algorithm performs reachability tests using

a parallel pool of quantum computers, and is a direct extension of q-RRT inspired by parallel

motion planning. The manager algorithm assigns work to the parallel pool and adds results to

the tree T . The assigned work consists of each quantum worker performing a reachability check

on a database D using QAA with a quantum oracle, and returning a single database element. The

specific parallelization architecture is chosen for a few reasons. We consider scenarios where

generally worker runtime cost dominates the message passing cost (as per [37]). This rules out

such architectures as disjoint workers independently searching for a solution by growing separate

trees, which have relatively little message passing but are much less runtime-efficient in finding

a solution.

In the chosen manager-worker scheme, instead of discretizing a search space to allow

workers to each grow a separate part of a tree, each worker is tasked with adding a single element

to the tree (anywhere). This removes the idleness aspect of workers, as workers do not have

to be actively listening for tree updates and do not rely on the work of others to perform their

own search. Additionally, because of the probabilistic nature of the quantum search process, the

parallel quantum routine generally can have all workers complete work simultaneously. This

feature is not possible in non-quantum parallel architectures, as each worker is performing a

stochastic search for a solution, which generally takes differing times between workers. In the

quantum architecture, however, the runtime to amplify a database is much more consistent, and if

each quantum worker is performing the same number of amplifications before measurement, they

should complete a search nearly simultaneously. The key difference lies in the goal of the work

performed. A solution does not need to be deterministically found for work to be completed (as

in the non-quantum case). Work is instead completed when a solution is more likely to be found,

which can be standardized for runtime across the workers.
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Alg. 9, the manager algorithm, has the same inputs and outputs as q-RRT. The worker

algorithm, Alg. 10, admits as inputs the current tree T , the number of qubit registers n, the

quantum oracle function X , and a copy of the shared database D, and returns a selected element

of the database [xadd,P].

Algorithm. 9 Pq-RRT Manager, shared database
Input: x0,xG n, oracle X
Output: Path γ

1: Init p-worker pool
2: Init tree T with root at x0
3: while xG /∈ T do
4: for i = 1 to 2n do
5: t = random point
6: P = closest parent of t in T
7: D(i) = [t; P]
8: end for
9: [xadd,P](k) = Worker(T,n,X ,D), for k ∈ p

10: for k = 1 to p do
11: if [xadd,P](k) /∈ T then
12: Add [xadd,P](k) to T
13: end if
14: if ∥xadd(k)− xG∥< δ then
15: xadd(k) = xG
16: end if
17: end for
18: end while
19: Return path γ from T

Two versions of this parallel formulation are possible, shared and unshared database. The

fundamental difference is whether parallel pool workers create a database or perform QAA on

copies of the same database D, which is created by the manager. For the shared database version,

as shown in Fig. 6.3, in Alg. 9 Lines 4-8 the manager creates the database D and passes copies to

each worker k ∈ p, as shown by the inputs to Alg. 10. In this way, the workers would “share” and

search (copies of) the same database. The manager ignores additional identical solutions returned

by different workers, which is a fast process given that the workers essentially are returning an

index to a database element.
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Algorithm. 10 Pq-RRT Worker, shared database
Input: T,n,X ,D
Output: [xadd,P]

1: Enumerate D via F : {0,1}n → D
2: Init n qubit register |z⟩ ← |0⟩⊗n

3: |Ψ⟩ ←W |z⟩
4: for i = 1 to imax do
5: |Ψ⟩ ← Q(X ) |Ψ⟩
6: end for
7: [xadd,P]← F(measure(|Ψ⟩))
8: Return [xadd,P]

For an unshared database, as shown in Fig. 6.4, the database construction step is per-

formed within the worker algorithm (Alg. 10), which can be a classical worker until QAA is

performed.

The advantage of the shared database approach is an increase in database-use-efficiency

due to extracting multiple possible reachable states per database construction. This aligns with

the main motivation behind this work, which is to mitigate the probability information loss due

to quantum measurement collapse. Because quantum computers are reducing the time spent

on the computationally intensive portion of the algorithm (state collision/reachability checks),

steps such as database construction will become a larger proportion of algorithm runtime, so it

is advantageous to have high database-use-efficiency. We reserve additional runtime analysis

for future work. However, the shared database approach can be slightly less oracle-call efficient

(compared to unshared database), with fewer reachable states are admitted per oracle call because

repeated identical solutions are discarded. This is shown in Section 6.6.1 Fig. 6.14, and we

discuss how important that efficiency loss is and how to mitigate it in the next section.

6.5.3 Runtime Analysis

We consider runtime and computational cost comparisons of the shared and unshared

database formulations to characterize database-use efficiency and discuss potential trade-offs.

Since databases are made from parent–child connections, adding an element to a database
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Figure 6.3. A graphical depiction of the shared database Quantum Parallel RRT algorithm. The
manager (Alg. 9) creates a database and passes copies to the quantum workers (Alg 10).

requires a tree search. Let the cost of randomly generating a possible node be τ0 (generally

small), and let the unit search cost of finding a parent be τs (generally computing some distance

metric). Then, when the tree has M nodes, building a database of size 2n (where n is the number

of qubits in use) has cost CD(M),

CD(M) = (τ0 + τsM)2n.

Remark. We note that this search cost of τsM can be minimized through a spatial tree discretiza-

tion scheme where only partial local tree searches are necessary, but generally this cost still

scales as a function of M.

107



Figure 6.4. A graphical depiction of the unshared database Quantum Parallel RRT algorithm.
The manager prompts p classical workers to create p different databases, which are passed to p
quantum workers to find solutions, which are returned to the manager.

Let the message passing costs of passing a node between manager and worker be τν .

Then, the cost of passing an M-node tree is Mτν and the cost of passing a 2n-sized database is

2n+1τν .

Remark. The +1 appears in the exponent of the database-passing cost due to database elements

being a parent–child pair, but this can be reduced to be an index rather than node.

Let the cost of one application of QAA be τQ. Since optimal amplification is achieved by

π

4

√
2n/m applications of QAA, we define the optimal amplification cost as CQ,

CQ =

⌊
π

4

√
2n

m

⌋
τQ,

where m is the number of solutions within the database.
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Remark. In general, for traditional (non-quantum) sampling-based planning algorithms, costs

like τQ >> τ0,s,ν . Connection costs far outweigh sampling and tree-traversal costs. Additionally,

the function is floored, as QAA can only be applied a discrete number of times.

In the following, we derive two types of costs: runtime and total cost. Runtime cost, for

p-core parallel algorithms, is the analog to computation time, where centralized components are

counted fully and decentralized components (that run in parallel) are discounted by a factor of

p. Total cost has two analogous scenarios: total power consumption and sequential algorithm

runtime (to accomplish the same task), where decentralized components lose the p-fold discount

factor. Terms in Props. 6 and 7 are presented in the order with which they are incurred when the

algorithm is running.

Proposition 6. The runtime cost of the unshared database algorithm shown in Fig. 6.4, with p

workers, is,

CRun
Unsh = p

M

∑
k=1::p

kτν +
M
p

2n
τ0 +2n

M

∑
k=1::p

kτs +
M
p

CQ +Mτν , (6.1)

and the total cost is,

CTot
Unsh = p

M

∑
k=1::p

kτν +M2n
τ0 +2n p

M

∑
k=1::p

kτs +MCQ +Mτν , (6.2)

where the notation ∑
M
k=1::p refers to the sum from k = 1, stepping by p, to M, while k < M.

For the runtime cost in Eq. (6.1), the first term, p∑
M
k=1::p kτν , is the message passing

cost of the current tree, of growing size, being sent to the p workers. Since the tree is growing

by p nodes each iteration, the message passing cost is made of a sum and must be incurred p

times, as the tree must be sent to each worker each iteration. The second term, M
p 2nτ0, is the

random sampling cost incurred in database construction but each worker, and since this process is

distributed, at runtime the M multiplier is scaled by 1
p . The third term, 2n

∑
M
k=1::p kτs, is the parent

search cost, which grows as the tree grows by p nodes each iteration. The fourth term, M
p CQ, is

the cost of applying QAA (and testing for reachability), and is distributed at runtime (divided
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over p). The last term, Mτν , is the cost of sending all M found nodes back to the manager.

To attain the total cost in Eq. (6.2), the distributed terms of Eq. (6.1) (terms 2, 3, and 4)

are multiplied by p to find sequential runtime cost.

Proposition 7. The runtime cost of the shared database algorithm shown in Fig. 6.3, with p

workers, is,

CRun
Sh =

M
p

2n
τ0 +2n

M

∑
k=1::p

kτs +M2n+1
τν +

M
p

CQ +Mτν , (6.3)

and the total cost is,

CTot
Sh =

M
p

2n
τ0 +2n

M

∑
k=1::p

kτs +M2n+1
τν +MCQ +Mτν , (6.4)

where the notation ∑
M
k=1::p refers to the same as previous.

For the runtime cost in Eq. (6.3), the first term, M
p 2nτ0, is the random sampling cost

incurred by the manager in database construction, which occurs M
p times in the shared database

case. The second term, 2n
∑

M
k=1::p kτs, is the parent search cost, which is identical to term 2

of Eq. (6.1). The third term, M2n+1τν , is the message passing cost of sending each worker a

database (for a total of M passes). The fourth term, M
p CQ, is the cost of applying QAA and is

distributed at runtime. The last term, Mτν , is the cost of sending all M found nodes back to

the manager. To attain the total cost in Eq. (6.4), the distributed term of Eq. (6.3) (term 4) is

multiplied by p to find sequential runtime cost.

There are two main cost differences between the unshared and shared database formu-

lations in creating an M-node tree. In both the runtime cost, in Eq. (6.1), and the total cost, in

Eq. (6.2), the unshared algorithm incurs a message passing cost of p∑
M
k=1::p kτν in passing the

growing tree (from 1 to M nodes) to p workers. In Eq. (6.3) and (6.4), the shared algorithm

incurs a message passing cost of M2n+1τν instead, in passing the database to workers (M times).

The other terms in the runtime costs between the versions are identical. Whether the difference

in message passing costs favors one scheme over the other is dependent on the relative sizes of

110



M and 2n. For small trees and large databases, the unshared database method incurs a smaller

cost. For large trees and small databases, the shared database method incurs a smaller cost.

The second difference is in the total cost. In Eq. (6.2), the unshared algorithm incurs a

total database creation cost of M2nτ0 + 2n p∑
M
k=1::p kτs to create an M node tree. In Eq. (6.4),

the shared algorithm incurs a total database creation cost of M
p 2nτ0 +2n

∑
M
k=1::p kτs, effectively

giving a p-fold reduction in total database creation cost. We refer to this as increased database

efficiency, since an M-node tree is created with fewer database constructions.

Figure 6.5. A comparison in loglog space of the cost differences between the unshared and
shared database architectures as the relative final tree size M varies with respect to database size
2n.

In Fig. 6.5, we compare runtime costs of the two architectures when weights are assigned

to each cost. As noted above, at runtime, the cost difference comes in message passing either the

tree or the database, so the ratio of number of desired nodes M to total database size is plotted

against cost. We show cost curves for the 8 and 32 core cases for both architectures to further
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understanding on how costs scale with number of cores. As is expected, 32-core cases minimize

costs across the entire plotted domain for both architectures. Additional cores seem to minimize

the unshared database cost to a greater extent than the shared database cost. At small tree sizes

relative to the database, the unshared architecture minimizes cost, and the curves appear to

converge as the end tree size eclipses the database. The visualization is possible through the

log scaling of the cost, but this scaling obscures the fact that the shared formulation actually

becomes lower cost at high ratios of M
2n .

Figure 6.6. The differential cost between the shared and unshared database architectures as the
relative final tree size M varies with respect to database size 2n.

In Fig. 6.6, we depict a semilog plot of the cost differential between the shared and

unshared architectures over the saim domain of ratios of tree to database size. For smaller final

trees, the unshared formulation maintains a cost advantage, but the advantage skews strongly
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to the shared database as the tree size grows. This effect is obscured in Fig. 6.5 by the loglog

nature of the scaling and apparent equal performance on the upper end of the domain. The cost

differential over the entire domain appears relatively similar between 1, 8, and 32 core cases.

A key assumption in the above analysis is that for both algorithm architectures, in each

iteration, the p cores add p nodes to the tree. For both architectures this is overlooking the

fact that the database cannot be optimally amplified, as applying an operator can only be done

an integer number of times, and the optimal amplification number is exactly defined using an

irrational number (π). Furthermore, even if optimal amplification was possible, in general there

is still a nonzero probability of measuring a ‘bad’ (unamplified; as defined by the oracle) element,

which should not be admitted to the tree (and can be caught with a final deterministic check).

This simple fact eliminates the possibility that in each iteration, the p cores can always add p

nodes to the tree.

A further complication for the shared database setup is that nodes may find identical

solutions, further lowering efficiency. In the following section we explore to what extent this is

likely, and guidelines for minimizing this effect to allow high database use efficiency.

A different possible solution is to use a partitioned “shared” database, where a single

larger database is passed to each worker with a partition rule such that each worker searches

different and non-overlapping portions of the database. This would eliminate the repeated

solution problem, but is more database efficient (if each partitioned database is considered part of

one database), but would require larger databases and is functionally equivalent to the unshared

database architecture, with the manager creating databases rather than the workers. A larger

database with more solutions also helps to eliminate the repeated solution problem. We also note

that although classically connection costs τQ >> τ0,s,ν , this may no longer be the case when

quantum computers are used to determine reachability.
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6.5.4 Pq-RRT Probability Results

In this section, we characterize p parallel quantum workers finding multiple solutions

when Pq-RRT is operating in a shared database setup. Since all the workers are independently

analyzing the same 2n-sized database D, with m oracle-marked solutions, in general multiple

workers may arrive at the same solution. This represents an efficiency loss to the shared database

setup, so in what follows we characterize the worst and best case events. The worst case event

is all workers arriving at the same solution, which has the runtime performance as non-parallel

q-RRT but is p-times less oracle call efficient. The best case event is each worker finding a

different solution, which has no runtime or oracle call efficiency loss, and ends with p solutions.

Only when p≥ m can all solutions be found in a single parallel pass. To build fast solutions, an

understanding of the effects of choices of p (and to some extent m) is necessary to maximize

efficiency.

We assume that the database is optimally amplified according to imax applications of Q,

where imax is given by,

imax =
π

4

√
2n/m ;

see [150]. We note that our connectivity analysis on estimating database correctness in [168] can

be applied to the section at hand in order to attain optimal amplification (to maximize chances of

measuring a solution). In what follows, let G be the event that a good state, as defined by the

oracle, is measured by a worker after imax iterations of Q.

Without Oracle Errors

Lemma 2. Let there be a parallel quantum process with p workers and a shared 2n-sized

database with m solutions. The probability that all p workers find the same solution, as shown in

Fig. 6.7, is,

P(same solution) = P(G)pm1−p, (6.5)
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Figure 6.7. A visual depiction of Lemma 2, where each quantum worker finds the same solution
in the database. This is the worst case scenario (besides all quantum workers finding incorrect
solutions, which are depicted as small dots) in terms of efficiency. The database is depicted as
dots, with larger dots indicating the solutions. The arrows indicate measurement of a particular
solution, to be passed back to the manager.

where P(G) is the total probability of event G,

P(G) = sin2((2imax +1)θ),

and where θ is defined such that sin2(θ) = m
2n .

Proof. To attain this result, we observe that after imax iterations of Q, all m solutions have equal

probability of measurement given by P(G)/m. The probability that all p workers measure a

particular solution i is,

P(particular solution) =
(
P(G)

m

)p

,

and this is multiplied by m to generalize to finding any same solution, yielding Eq. (6.5). The

total good measurement probability and the definition of θ can be found at [39].

Lemma 3. For m≥ p and m, p ∈ N, the probability that all workers find different solutions, as
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Figure 6.8. A visual depiction of Lemma 3, where each quantum worker finds a different
solution in the database. This is the best case scenario in terms of efficiency.

shown in Fig. 6.8, is given by,

P(different solutions) =
P(G)pm!

mp(m− p)!
, (6.6)

Proof. This result follows from m permute p (the number of possible ways p objects can be

selected, without replacement, from m possibilities) over the total number of possible outcomes

mp. This is scaled by the likelihood that all workers find a correct solution, P(G)p, to yield

Eq. (6.6).

For the worst case scenario in Eq. (6.5), as m→ ∞, P(same solution)→ 0. This makes

intuitive sense: as the number of available solutions increases, the likelihood of all workers

finding the same solution decreases as a function with power 1− p, where p≥ 2, as it is only

sensible to conjecture about the parallel behavior of 2 or more workers.

For the best case scenario in Eq. (6.6), as m→ ∞, P(different solutions)→ P(G)p. This

also makes intuitive sense: as the number of solutions increases, the likelihood of all workers

finding different solutions approaches the total likelihood of all workers finding a solution. We
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note that for m≥ p and m, p ∈ N:

lim
m→∞

m!
mp(m− p)!

= 1.

The number of solutions m should be as large as practicable to reduce efficiency loss through

oracle overlap.

Lemma 4. For p≥ m, the expected number of workers p, to find all m solutions within D in one

pass, is given by,

E(p) =
mHm

P(G)
,

where Hm is the mth harmonic number. Equivalently, E(p)
p2

also describes the expected number of

passes at a single database that the set number of workers p2 must make to find all solutions.

Proof. We reach this result from the application of the Coupon Collector’s problem [182], with

a minor modification, to the independent quantum computing worker processes. Briefly, the

coupon collector’s problem concerns questions about the “collect all coupons from cereal boxes

to win” contest. In this context, solutions in the database represent coupons (to be found with

a certain probability), and number of workers represents (the expectation of) how many cereal

boxes must be opened to find one of each solution/coupon. The result takes into account that

workers may return the same solution. This application is scaled by the total probability of

correct solutions, P(G), to account for the proportion of the time when a good solution is not

measured.

Lemma 4 allows a parallel (and repeated) architecture to be chosen based upon knowl-

edge of m, such as from our connectivity analysis on estimating database correctness in [168].

Additionally, this leads to the database construction tool described in the following section that

allows the proportion m/2n to be made larger or smaller. We remark that in general, it is possible

to calculate the probability of n workers coinciding on the same exact solution, as it relates to the

multinomial distribution.
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With Oracle Errors

We also consider the case where the oracle is making repeated false positive and false

negative errors. Let the probability that a state is marked by the oracle incorrectly as good be

given by q ∈ [0,1] (false positive), and let the probability that a state is marked by the oracle

incorrectly as bad be given by v∈ [0,1] (false negative). Let the number of ground-truth solutions

in the database tagged by the oracle as a solution be m1 ≤ m. Let the number of actual ground

truth solutions in the database, which were mistakenly tagged by the oracle as bad be m2, such

that,

q =
1−m1

m
, v =

m2

2n−m
,

as shown in Fig. 6.9.

First, we derive the likelihood that a single worker finds a real solution. Let G∗ be the

event that a real, ground truth solution (not according to the oracle) is measured for addition to

the tree after optimal amplification with QAA.

Lemma 5. The total probability of measuring real, ground truth solutions is,

P(G∗) =
m1

m
P(G)+

m2

2n−m
(1−P(G)).

Proof. We attain this result by adding the probability of measuring a correctly tagged good

solution, m1
m P(G) to the probability of measuring an incorrectly tagged bad solution, m2

2n−m(1−

P(G)).

The following lemma is a modification of Lemma 2 to include oracle errors.

Lemma 6. The probability that all p workers find the same ground truth solution, adjusted for

oracle mistakes, is,

P(same solution) = m1

(
P(G)

m

)p

+m2

(
1−P(G)

2n−m

)p

. (6.7)
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Figure 6.9. A graphical depiction of the false positive and false negative regions of a database
with good and bad tags by an oracle. Of the m good tags, m1 are true good tags, with a false
positive probability of q. Of the 2n−m bad tags, m2 are actually good elements, with a false
negative probability of v. After optimal QAA, the probability of a tagged-as-good state being
measured is P(G).

Proof. This result follows from the addition of the probability of all p workers measuring

a particular correctly tagged good solution,
(
P(G)

m

)p
, and the probability of all p workers

measuring a particular incorrectly tagged bad solution,
(

1−P(G)
2n−m

)p
. Each of these is multiplied by

m1 and m2 respectively, to consider any real solution, then added together to yield Eq. (6.7).

For the worst case scenario in Lemma 6, again, as m→ ∞, P(same solution)→ 0. The

following lemma is a modification of Lemma 4, adjusted for oracle false positive errors.

Lemma 7. The expected number of workers p to find all m1 ground truth solutions, when false

positive oracle errors are taken into account, is given by,

E(p∗) =
m1Hm1
m1
m P(G)

,

where Hm1 is the m1
th harmonic number.
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Proof. This result follows similarly to Lemma 4, with m1 rather than m, and where the expecta-

tion from the Coupon Collector’s Problem is scaled by the proportion of the time that a ground

truth good solution is found, m1
m P(G).

Remark. Oracle false negative errors, when considered in Lemma 7, transform the problem into

a simple version of the Weighted Coupon Collector’s Problem [183] (also known as McDonald’s

Monopoly), with some “rare coupons” to find (represented by the m2 false negative solutions),

and some “common coupons” (represented by the m1 real positive solutions). In reality, after

optimal amplification, the probability of measuring the m2 good solutions incorrectly tagged as

bad, m2
2n−m(1−P(G)), is small, and additionally we care more about finding correctly identified

good solutions than determining incorrectly tagged bad solutions from a database.

6.5.5 Quantum Database Annealing

In this section, we define the Quantum Database Annealing (QDA) strategy, shown in

Alg. 11. QDA builds databases with elements constrained to a certain distance from the parent

node, as defined by a temperature matrix H and iterator h. The QDA strategy is an alternative to

standard database construction and is inspired by the optimization technique simulated annealing

and our investigations into oracle call constraints in [168]. It represents a possible way to guide

database construction to achieve a particular algorithmic goal, such as approximately selecting

m (with regard to the previous section), or in this case, initial fast expansion via spread node

placement followed by increasing density through closer node placement.

In a broad sense, sampling strategies for motion planning have been explored since

the beginning, with strategies such as medial axis sampling, boundary sampling, Gaussian

(obstacle) sampling, goal biasing, and hybrid schemes [27]. QDA is distinct from current

classical computing approaches because the initial goal in this quantum formulation is to make

sample connections less likely. When paired with a large database, QDA exploits quantum

computing’s ability to quickly find unlikely solutions, as shown in Fig. 6.10. This results in a

motion planner that can explore very quickly when measured on oracle calls.
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Figure 6.10. An illustration of a larger database with fewer but more desirable solutions, to be
exploited by quantum computing to provide farther away solutions, resulting in faster exploration.
Icons from Flaticon.

QDA first samples according to a uniform distribution over the configuration space C.

The nearest (Euclidean distance) existing node to the sample is chosen as the parent. Next, the

resulting parent-child relationship is constrained to be within a ball of radius H(h) (with iterator

h) while maintaining child-sample direction. The resultant pair is added to the database. An

alternative is to sample initially over a disc or boundary at a distance constrained by H(h).

In the beginning, with high temperature (when H(h) is large), QDA will build a large

database of further away and therefore less likely solutions. This allows further reachable

solutions to be found quickly as compared to q-RRT and RRT. As the path planning problem

continues (as h increases), the temperature (H(h)) may drop to account for the addition of new

nodes and to increase the ratio of good solutions in the database. The database size 2n may also

drop throughout the problem to increase efficiency, as when there are more solutions, smaller

databases function as well as larger. When no additional information is known to guide sampling

region, an alternative but similar sampling method in very large bounded configuration spaces is

to build extremely large databases of unlikely solutions in an attempt to span long obstacle free

channels quickly.

The differences between q-RRT and q-RRT with QDA, Alg. 11, lie in the latter algo-
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Algorithm. 11 q-RRT with Quantum Database Annealing
Input: x0,xG n, oracle X
Output: Path γ

1: Init tree T with root at x0
2: Define temperature array H, index h = 0
3: while xG /∈ T do
4: for i = 1 to 2n do
5: t = random point
6: P = closest parent of t in T
7: Constrain t to disc of dist. H(h) from P
8: D(i) = [t; P]
9: end for

10: Enumerate D via F : {0,1}n → D
11: Init n qubit register |z⟩ ← |0⟩⊗n

12: |Ψ⟩ ←W |z⟩
13: for i = 1 to 2 do
14: |Ψ⟩ ← Q(X ) |Ψ⟩
15: end for
16: [xadd,P]← F(measure(|Ψ⟩))
17: if ∥xadd− xG∥< δ then
18: xadd = xG
19: end if
20: Add [xadd,P] to T
21: h++
22: end while
23: Return path γ from T
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rithm’s lines 2, 7, and 21. Alg. 11 line 2 is where the temperature array H is defined and iterator

h initialized. On Alg. 11 line 7, the temperature constraint is carried out by modifying the

random point t with respect to P, the closest parent of t in T . On Alg. 11 line 21, the iterator h

is incremented to allow different temperatures on future database constructions. In the defined

formalism, the database size 2n is set and not decreased.

This approach to guided sampling is distinct from efforts within guided sampling in

non-quantum literature. Generally, the point of guided sampling is to make the search for

additional states and solutions easier. Additionally, there is no reason (until the introduction

of quantum computers to motion planning) to construct databases of possible solutions, the

algorithms always progress by testing one possible state at a time. With QDA, however, we

design a guided sampling scheme with a polar opposite goal to existing efforts: making the

solution process more difficult. This is because we are able to exploit the quantum advantage,

and by making the solution process more difficult, we are able to find ‘better’ solutions in the

sense of solutions that allow vigorous (and provable with respect to metrics such as reachability

and safety) expansion into an environment. When constructing databases, we also think of

guided sampling in a different lens.

6.6 Results and Discussion

In this section, we show tree creation comparison results within two dimensional obstacle

environments for Pq-RRT, q-RRT, Parallel RRT, and RRT. Direct comparisons highlighting the

simulated quadratic runtime advantage of q-RRT over standard RRT are shown in detail in our

previous work at [168]. Unless otherwise stated, results are presented comparing algorithm

performance for solving the same problem in the same randomized obstacle environments. Both

Pq-RRT and Parallel RRT are implemented with eight cores (workers). Both quantum algorithms

use databases of size 28, and the classical versions of the algorithms (RRT and Parallel RRT)

replace the database construction and quantum search process with single reachability tests.
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The specific version of Parallel RRT is a Manager-Worker formulation (outlined in [37] under

Manager-Worker RRT), where a manager processes the tree and assigns single-node expansion

work to workers, as expansion is the computationally expensive part of planning.

All path planning simulations are run with Matlab v2022b on an eight core MacBook

Pro with M2 chip. Quantum states and algorithms are simulated with the Matlab Quantum

Computing Functions library [150]. All algorithms use the following arbitrary dynamics and

reference tracking controller to test reachability for node admittance to the tree,

x(t +1) = Ax(t)+Bu(t) , x(0) = xparent,

A =

−1.5 −2

1 3

 , B =

0.5 0.25

0 1

 ,
u(t) =−Kx(t),

K =

1.9 −7.5

1 7

 .
The constant gain matrix K can be any matrix such that the closed loop system is stable.

6.6.1 Node Placement and Oracle Calls

In this section, we highlight the advantages and disadvantages of q-RRT and Pq-RRT over

RRT and Parallel RRT in being able to add nodes to the tree. We show performance compared to

runtime in seconds, which we call wall-clock time to highlight that this is the “real” runtime of

the simulations, and then to number of oracle calls, which functions as the projected runtime

improvement if algorithms are run on quantum devices. For performance metrics, we consider

two quantities: number of oracle calls and number of nodes. Number of oracle calls is the metric

for comparing how much Parallel q-RRT is able to speed up computation as compared to q-RRT.

For all other comparisons, number of nodes is the chosen metric, as it signifies on a functional
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level the ability of each algorithm to search for a solution. Each point in Fig. 6.11- 6.14 represents

one 30-node tree creation, chosen to showcase average performance.

First, in Fig. 6.11 we show the wall-clock speed of Pq-RRT and q-RRT in being able

to perform oracle calls to analyze the amount of computation speedup achieved. Next, we

compare the wall clock speed of the two classical algorithms (in Fig. 6.12) and the two quantum

algorithms (in Fig. 6.13) to study the relative performance gain in parallelizing the quantum

routines compared to classical parallel advantage. Lastly, in Fig. 6.14, we change to an oracle

call (our quantum time surrogate) vs node creation comparison to show the efficiency of the

quantum algorithms in admitting nodes to the tree. The performance advantage of Pq-RRT is

inferred to combine the advantage shown over q-RRT in Fig. 6.13 and the advantage shown over

the classical algorithms shown in Fig. 6.14.

Figure 6.11. Comparison of the wall-clock speed (in seconds) of q-RRT, and shared database
Pq-RRT in performing oracle calls or reachability tests.
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Figure 6.11 depicts the wall-clock speed of q-RRT and parallel q-RRT in performing

oracle calls. Pq-RRT performs oracle calls in less time than q-RRT, as it more efficiently uses

multiple workers to retrieve information from created databases. The relationship between oracle

calls and time is approximately linear (as expected), and with a linear fit (using linear least

squares), Pq-RRT shows a smaller slope (0.20) compared to q-RRT (3.52), with slope referring

to seconds per oracle call (lower is more efficient). A classical computing shortcut is used which

allows Pq-RRT to be 17.6 times more efficient in performing work. In quantum computing

simulation, a single created database is analyzed for reachability once, then amplified once,

and each worker then measures a solution. This shortcut would not be possible on a quantum

device, as qubits, once they are created, cannot be copied, so each worker would need to perform

the reachability analysis separately. This would change the expected slope difference to be

approximately 8 times less than 17.6 (as 8 cores are used), for a total work (oracle call) efficiency

gain of 2.2.

Figure 6.12 depicts the wall-clock speed of RRT and Parallel RRT in admitting nodes

to the graph, as opposed to performing oracle calls. The same data for q-RRT and Pq-RRT is

shown in Fig. 6.13. This comparison factors in differing node-admission oracle call efficiencies.

The parallel versions of both algorithms, Parallel RRT and Pq-RRT, each are on average more

time efficient than the non-parallel versions in admitting reachable states to the tree.

The intuition behind slope in Figures 6.12 and 6.13 is seconds per node, with lower

numbers meaning more efficient. Pq-RRT (slope 3.17) in particular shows greater improvement

over q-RRT (slope 25.3) than Parallel RRT (slope 0.58) over RRT (slope 1.23), as is evidenced

by a larger difference in slope (8.0-fold efficiency increase compared to 2.1-fold), as calculated

with a linear fit and linear least squares. The quantum algorithms, when measured by real time,

lag behind both non-quantum RRT versions because they are not benchmarked on quantum

computers (see the y-axis label differences between Fig. 6.12 and Fig. 6.13). The quantum

computing simulations are performed via large arrays on classical devices. On a quantum device,

we expect the run-time to be analogous to oracle calls, as discussed next.

126



Figure 6.12. Comparison of the wall-clock speed (in seconds) of RRT and Parallel RRT in
admitting reachable states to the tree.

Figure 6.14 depicts the oracle call efficiency of all four algorithms in admitting reachable

states to the tree as a function of the number of oracle calls it takes. This figure is analogous to

expected run-time when the quantum algorithms are executed on a quantum device. Slopes are

found with a linear fit using linear least squares and represent the number of oracle calls per node,

with lower being more efficient. The efficiency advantage of q-RRT (slope 7.6) and Pq-RRT

(slope 10.7) in admitting reachable states is shown over RRT (slope 21.5) and Parallel RRT

(slope 19.4). The q-RRT algorithm is more efficient than Pq-RRT due to the fact that multiple

workers can simultaneously return the same solution from a database (as explored in Props. 2

to 7), and repeat solutions are discarded. However, Pq-RRT is capable of making simultaneous

oracle calls with different workers, so for parallel vs not parallel time comparisons we refer the

reader to Fig. 6.12 and Fig. 6.13.
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Figure 6.13. Comparison of the wall-clock speed (in seconds) of q-RRT and Pq-RRT in admitting
reachable states to the tree.

The conclusions of the above analysis are the following: Pq-RRT is more time-efficient

than q-RRT in performing work and placing nodes, Pq-RRT shows a greater time efficiency

increase over q-RRT than Parallel RRT does over RRT, and q-RRT is slightly more oracle-

call-efficient than Pq-RRT, but both quantum algorithms are more oracle-call-efficient than the

classical algorithms.

6.6.2 Exploration Speed

The results of this section are extensions to our results in [168] between q-RRT and

RRT, showing q-RRT’s ability to explore quickly and in a generalized environment. We show a

heat-map of state space nodes placed within a certain number of oracle calls. Oracle calls are

chosen as a substitute to time because the quantum computer simulation performs slowly on

classical devices. Actual runtime is expected to be analogous to the number of oracle calls, as
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Figure 6.14. Comparison of the oracle call efficiency of RRT, Parallel RRT, q-RRT, and Pq-RRT
in admitting reachable states to the tree.

reachability tests for the local planner consume the majority of the algorithm runtimes. Each

algorithm is tested over 100 trials. Each trial is cut off after a certain number of oracle calls to

show each algorithm’s speed of node placement. Let oracle efficiency be the ratio of total nodes

placed over total oracle calls. In each figure, the red circle refers to a goal zone.

Figure 6.15 depicts the initial exploration speeds, from 0 to 10 oracle calls, of RRT and

q-RRT. Each path planning problem is cut off after 10 oracle calls and a heatmap is created of

the total node placement in the state space over 100 trials. The q-RRT method shows much faster

initial node placements over RRT, admitting 372 nodes with an oracle efficiency of 31.2%. The

q-RRT method has more than a thousand total oracle calls due to the inclusion of a finalizer

line before nodes are admitted to the tree. RRT admitted 125 nodes with an oracle efficiency of

12.5%. Node placement is more dense both in the initial node pocket and along lines exploring
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Figure 6.15. Comparison of initial exploration speeds (up to 10 oracle calls) of RRT and q-RRT.
Data is shown as a state space heat-map of node placements over 100 trials of each algorithm in
the shown obstacle environment. A goal zone is shown as a red ring in the bottom right, and the
heatmap color key is shown on the right of the graph.

outward between obstacles away from the initial node.

Figure 6.16 depicts the middle-time exploration speed, from 0 to 20 oracle calls, of RRT

and q-RRT. Similarly, each path planning problem is cut off after 20 oracle calls and a heatmap

created from the total node placement of each algorithm over 100 trials. The q-RRT method

shows much faster and more full middle-time node placement, admitting 650 nodes with an

oracle efficiency of 31.0%. RRT admitted 231 nodes with an oracle efficiency of 11.6%. Node

placement is more “full” in the initial pcket, and is much more dense along lines exploring out

between obstacles from the initial node.
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Figure 6.16. Comparison of middle-time exploration speeds (up to 20 oracle calls) of RRT
and q-RRT. Data is shown as a state space heat-map of node placements over 100 trials of each
algorithm in the shown obstacle environment.

Figure 6.17 depicts the “late-time” exploration speed, from 0 to 40 oracle calls, of RRT

and q-RRT. Heatmap creation is again similar to previous. The q-RRT method has admitted

more nodes in nearby pockets, and has a more dense spread of nodes in further away regions,

admitting 1091 nodes with an oracle efficiency of 26.0%, compared to RRT, which admitted

526 nodes with an oracle efficiency of 13.2%. The average oracle efficiency of q-RRT has

dropped somewhat compared to the initial and middle time exploration, and this is due to the

fact that, as the existing tree grows, new random points are more likely to be reachable to the

existing graph. This serves to allow RRT to catch up in terms of efficiency, and q-RRT’s created

database, on average, has allowed more solutions. The quantum version of the algorithms thrive
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Figure 6.17. Comparison of late-time exploration speeds (up to 60 oracle calls) of RRT and
q-RRT. Data is shown as a state space heat-map of node placements over 100 trials of each
algorithm in the shown obstacle environment.

(in comparison) in situations where there are few solutions. Heatmaps for Pq-RRT were also

created for 10, 20, and 40 oracle call cases as shown in Fig. 6.15- 6.17. The Pq-RRT heatmaps

were omitted, as results were largely similar between q-RRT and Pq-RRT. This is similar to

findings in Fig. 6.14 that, when compared over oracle calls (quantum time surrogate), Pq-RRT’s

advantage is not apparent, as Pq-RRT is able to make simultaneous oracle calls.

6.6.3 Narrow Corridor Exploration

The ability of motion planning algorithms to find paths through narrow corridor envi-

ronments serves as a benchmark for the ability to find difficult solutions in narrow spaces. In
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Figs. 6.18 and 6.19 we show, through a heatmap, the ability of q-RRT to find passage through a

narrow corridor when compared to RRT. The figures depict a heatmap of node placements of 50

trials of each algorithm in the overlaid environment, where each method is cut off after 25 oracle

calls to analyze ability to quickly place nodes in the narrow corridor. Obstacles are depicted in

black, and are distributed randomly on both sides of the narrow corridor, which is created by 2

large obstacles.

Figure 6.18. A heatmap of q-RRT’s node placement in a narrow corridor environment (up to 25
oracle calls) over 50 trial runs, with 47 nodes in the channel. Obstacles are depicted in black,
and a color key of node placements is shown to the right of the graph.

The q-RRT method placed 47 nodes in the narrow corridor, compared to RRT’s 14 nodes.

Results are presented with no guided sampling or known-goal direction to guide sampling. The

q-RRT algorithm is quicker to find paths into narrow corridors toward possible goal locations.

6.6.4 Quantum Database Annealing

We compare the abilities of Quantum Database Annealing and standard q-RRT database

construction to create trees that spread across larger configuration spaces with a large number

(6025) of obstacles. In this formulation, Quantum Database Annealing is initially creating

databases of points at a distance between 2.7 and 4.2 units from current nodes, then dropping that
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Figure 6.19. A heatmap of RRT’s node placement in a narrow corridor environment (up to 25
oracle calls) over 50 trial runs, with 14 nodes in the channel.

range to between 0.8 and 2.0 units to fill in the space around the initially spread tree. On the other

hand, q-RRT with standard database construction is sampling across the entire configuration

space C. Both algorithms are using databases of size 29.

Fig. 6.20 depicts a 16-node tree with initial fast expansion made with Quantum Database

Annealing, and Fig. 6.21 shows continued node addition to a 48-node tree with lower temperature

to fill in the area around the initial spread tree. Fig. 6.22 depicts the standard q-RRT created

16-node tree in the same environment, to compare against Fig. 6.20. Obstacles are depicted as

small black rectangles, the root node of each tree is shown as a black circle, nodes in each tree

are shown as red circles, and parent child connections are shown as black lines.

The resulting trees differ in how spread they are for the same number of oracle calls (the

quantum analog of runtime). Quantum Database Annealing initially creates nodes an average

of 3.68 units away (with the above temperature setting) from their parent and standard q-RRT

creates nodes an average of 1.70 units away from their parent. For a fixed number and size

of obstacles, it should be noted that sampling parameters affect the average distance in the

q-RRT tree, and different average distances can be obtained by varying the size of the database.
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Figure 6.20. A 16 node tree created with Quantum Database Annealing with high temperature,
showing fast initial exploration. The root node is a black circle and tree nodes are red circles.
Parent-child relationships are shown via black lines, and obstacles depicted as small black
rectangles.

For uniform sampling over C, as the database becomes larger, the average distance drops, as

nodes are more frequently found near existing nodes. For equal-sized large databases, in the

same amount of (quantum) time, QDA is able to create trees with more spread, as only further

away nodes are admitted to the database. The temperature construct allows a balance between

exploration and density of nodes, enabling a version of q-RRT that can connect distant regions

of a configuration space very quickly before back-filling with lower temperature.

6.7 Conclusion

To generalize and extend q-RRT, we provide analysis in more general obstacle envi-

ronments, a formulation of q-RRT with parallel quantum computers, and a database building

strategy based on simulated annealing. The Parallel Quantum RRT algorithm uses parallel
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Figure 6.21. A 48 node tree created with Quantum Database Annealing with initial high
temperature, then a dropping temperature, showing how temperature can be used to fill in the
area around a spread tree. The root node is a black circle and tree nodes are red circles. Parent-
child relationships are shown via black lines, and obstacles depicted as small black rectangles.

quantum computers in a manager-worker formulation to provide simultaneous measurements

of a shared database, allowing more time-efficient tree construction with a higher exploration

speed. We also provide key probability results for parallel quantum computers searching the

same database. Quantum Database Annealing uses a temperature construct to guide database

construction, providing trees that spread more quickly compared to those created with standard

database construction. To support these claims, we provide analysis in the form of efficiency and

run-time results, heatmaps for speed-of-exploration results, thin channel environment results,

and database construction comparisons. Future work includes expanding on alternate methods

of database construction and creating path planning algorithms that rely on alternate quantum

algorithms to QAA.

Chapter 6, in full, has been submitted for publication as “Parallel Quantum Rapidly-
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Figure 6.22. A 16 node tree created with q-RRT (with standard database construction) in the
same 6025 obstacles environment.

Exploring Random Trees” as it may appear in IEEE Access. Lathrop, Paul, Beth Boardman, and

Sonia Martı́nez. The dissertation author was the primary investigator and author of this paper.
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Chapter 7

Conclusion

This dissertation covers several areas within the field of sampling-based motion planning

for autonomous robotic vehicles. The area of motion planning shows general active interest in the

topic of safety with respect to environmental conditions and actors. A particularly potent method

for addressing safety involves the use of uncertainty representations to characterize robots and

environmental actors, alongside more abstract concepts such as behaviors and attitudes. The

acknowledgement and use of uncertainty can address real-world conditions such as environmental

disturbances (wind, unstable surfaces), poorly modeled or unknown dynamics, faulty or poor

sensor readings, the inability to exactly localize oneself, and unknown changing future conditions.

In Chapter 3, in addition to using robotic and obstacle uncertainty representations, we

create the algorithm W-Safe RRT that employs the Wasserstein metric to bound distances

between distributions. This effectively acknowledges uncertainty in uncertainty representations,

addressing the question ‘what if robot and obstacle distributional shapes are poorly chosen or

maintained’. To test this idea, we show simulated results in multi-obstacle situations where the

selected distributional representation does not well represent the actual obstacle shape. W-Safe

RRT shows robustness to poorly modeled distributions when compared to a state-of-the-art

method inspired by Particle Chance Constrained RRT, but this performance increase comes

with a time penalty. A future research direction is to extend W-Safe RRT in situations with

continuous time dynamics and planning in more crowded environments. Additional emphasis
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can also be placed on uncertainty-informed methods to adjust safety parameter values, which

have a tendency to simply be chosen by a supervisor yet have the ability to drastically affect

safety performance.

In situations with multiple classes of obstacles, where some may be adversarial in nature,

some passive, and some static or drifting, the ability to quickly discern between obstacle classes

is the key to efficient safe path planning. Environmental actor classification considering more

abstract behavioral metrics can dually allow safer planning around adversarial actors and more

efficient planning around harmless actors, all while ensuring an algorithm remains human

understandable and therefore human debuggable. However, higher level notions of behavior

introduce additional noise to the behavioral space, especially when trajectory information is

noisy itself. Uncertainty representations in classification tasks in more abstract robotic spaces is

addressed in Chapter 4, where we introduce an integral classification method in a space we dub

the behavioral feature space. We find that the method allows for noisy data to be labeled correctly

more often when compared to a naive Bayesian classifier and an ensemble classification-by-vote

method. Future research directions include thoughtful definitions of abstract behavioral metrics

and additional feature space analytical methods. Concepts such as feature space flow maps,

history and future predictability analysis, and data-driven probabilistic behavioral guarantees can

assist when actors exhibit behavioral dynamics, or switches between behaviors.

For motion planners, when the local planning procedure of connecting a new state to

an existing state is made computationally expensive, such as planning in high dimensions, or

when dynamics, safety, and optimality are desired, once-online planners can lose the functional

ability to practically compute motion plans on-the-fly. This complication often goes unaddressed,

especially in planners with strict performance or safety guarantees, and in cases where poorly-

scaled optimization problems are presented with minimal evidence of practical use. To this point,

we turn our attention to quantum computers, which use quantum parallelism and superpositions

of states to efficiently perform simultaneous calculations. While practical and widespread

quantum computers are still in active development, the mechanics and methodology of many
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quantum algorithms are well known.

In Chapter 5, we present the first formulation of sampling-based motion planning built to

be solved with quantum algorithms, on quantum devices. The algorithm q-RRT uses a database-

search formulation alongside Quantum Amplitude Amplification to amplify the probability

of measuring possible next states from the database. We address the effects of measurement

error, present due to the probability-measurement process, and oracle errors, due to incorrectly

performing connectivity or reachability tests on new states. The q-RRT algorithm is shown, in

quantum computing simulation, to successfully employ a quadratic runtime improvement over

classical RRT in building trees in dense random lattices.

Operating within the quantum realm offers tantalizing rewards in return for being at the

mercy of the laws of quantum physics. One such law, dubbed quantum measurement collapse,

ensures that probability information on a quantum state is lost when a single database element

is desired and measurement performed. To this end, we establish two additional ideas that

mimic the development of classical sampling-based motion planning: parallel structure and

guided sampling. In Chapter 6, we introduce Pq-RRT: a parallel-quantum-computing extension

to q-RRT. Using a classical-manager quantum-worker approach, we define a shared database

architecture that allows additional efficiency increase over q-RRT in extracting simultaneous

solutions. We provide symbolic runtime analysis of shared and unshared database formulations

for the manager-worker architecture. The nature of the shared database leads us to derive

probability characterizations of quantum workers searching the database, and finally the database

construction strategy Quantum Database Annealing. With QDA, a temperature variable (inspired

by simulated annealing) is used alongside a minimum sampling distance restriction to guide

the database construction process in a way that is shown in simulation to effectively control the

exploration vs exploitation tradeoff. We provide extensive simulations of Pq-RRT and q-RRT

compared to Parallel RRT and RRT in oracle call efficiency, node placement efficiency, real

runtime, thin channel environments, and heatmap exploration speed trials.

Future work related to q-RRT includes creating a sampling-based motion planning
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structure to utilize alternative quantum algorithms, and comparing performance with q-RRT

employing Quantum Amplitude Amplification. An additional area is to explore path-optimality

based algorithms, and formal safety-guaranteeing planning methods, such as motion-planning-

related safe reinforcement learning, in the context of quantum computing. The link between

alternative quantum algorithms and motion planning and control is tenuously explored at best,

and algorithms such as variational quantum eigensolvers with applications to quantum machine

learning and quantum optimization has promise in solving existing issues in motion planning.

Early applications of quantum computing to particle-level physics and chemistry simulations may

also have some links to ideas in motion planning such as particle filters, Monte Carlo methods,

and probabilistic uncertainty.

Future work also includes testing the presented methods on physical quantum devices,

even in a limited way. An additional further research direction is a deeper exploration into

database construction strategies to optimize various performance objectives and contexts, such as

different construction strategies for different parallel architectures. From a broader perspective,

adding in quantum computers as an additional tool in algorithmic architecture may have long

reaching consequences across many areas of motion planning, including hierarchical planning,

local planning, safe reinforcement learning, optimization, and neural networks. Combinations

of these approaches have long been used to address the complex problem of motion planning.

Efficiently exploiting quantum computation, balancing the use of classical computers, addressing

quantum computing’s downsides, and performing algorithmic architectural analysis with quantum

components may prove to be a bountiful line of future research.

The adaptation of successful current methods and algorithms (such as RRT) to be assisted

by possible tools of the future is of future interest to humanity, but the exercise also provides

more practical insights to current problems and approaches. Exploration of out-of-the-box (and

out-of-the-field) solutions to key issues (such as scaling and runtime) in provably safe, optimal,

and/or reachable algorithms is of paramount importance for practical and real world adoption

of such algorithms and general advancement of the field of autonomous vehicles. Quantum
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computing represents one possible line of approach, and countless others lie dormant, awaiting

unconventional application to the problems of motion planning.
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domain for dynamic-domain RRTs,” in IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems, 2005, pp. 2851–2856.

[141] B. Burns and O. Brock, “Single-query motion planning with utility-guided random trees,”
in IEEE Int. Conf. on Robotics and Automation, 2007, pp. 3307–3312.

[142] J. Bruce and M. Veloso, “Real-time randomized path planning for robot navigation,” in
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, vol. 3, 2002, p. 2383–2388.

[143] Z. Sun, D. Hsu, T. Jiang, H. Kurniawati, and J. Reif, “Narrow passage sampling for
probabilistic roadmap planning,” IEEE Transactions on Robotics, vol. 21, no. 6, pp.
1105–1115, 2005.

[144] K. Solovey, O. Salzman, and D. Halperin, “Finding a needle in an exponential haystack:
Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning,”
International Journal of Robotics Research, vol. 35, no. 5, pp. 501–513, 2016.

[145] Y. Li, W. Wei, Y. Gao, D. Wang, and Z. Fan, “PQ-RRT*: An improved path planning
algorithm for mobile robots,” Expert Systems with Applications, vol. 152, no. 113425,
2020.

[146] J. Canny, B. Donald, J. Reif, and P. Xavier, “On the complexity of kinodynamic planning,”
Cornell University, Tech. Rep., 1988.
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