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Big data is considered to play an important role in the fourth industrial revolution, which

requires engineers and computers to fully utilize data to make smart decisions and improve

the performance of industrial processes and of their control and safety systems. Traditionally,

industrial process control systems rely on a (usually linear) data-driven model with parameters that

are identified from industrial/simulation data, and in certain cases, for example, in profit-critical

control loops, on first-principles models (with data-determined model parameters) that describe

the underlying physico-chemical phenomena. However, modeling large-scale, complex nonlinear

processes continues to be a major challenge in process systems engineering. Modeling is

particularly important now and into the future, as process models are key elements of advanced

model-based control systems, e.g., model predictive control (MPC) and economic MPC (EMPC).

Due to the wide variety of applications, machine learning models have great potential, yet, the

development of rigorous and systematic methods for incorporating machine learning techniques

in nonlinear process control and operational safety is in its infancy. Traditionally, operational

safety of chemical processes has been addressed through process design considerations and

through a hierarchical, independent design of control and safety systems. However, the consistent

accidents throughout chemical process plant history (including several high profile disasters in
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the last decade) have motivated researchers to design control systems that explicitly account

for process operational safety considerations. In particular, a new design of control systems

such as model predictive controllers (MPC) that incorporate safety considerations and can be

coordinated with safety systems has the potential to significantly improve process operational

safety and avoid unnecessary triggering of alarms systems, where machine learning techniques

can be utilized to derive dynamic process models. However, the rigorous design of safety-based

control systems poses new challenges that cannot be addressed with traditional process control

methods, including, for example, proving simultaneous closed-loop stability and safety. On the

other hand, cybersecurity has become increasingly important in chemical process industries in

recent years as cyber-attacks that have grown in sophistication and frequency have become another

leading cause of process safety incidents. While the traditional methods of handling cyber-attacks

in control systems still rely partly on human analysis and mainly fall into the area of fault diagnosis,

the intelligence of cyber-attacks and their accessibility to control system information has recently

motivated researchers to develop cyber-attack detection and resilient operation control strategies

to address directly cybersecurity concerns.

Motivated by the above considerations, this dissertation presents the use of machine learning

techniques in model predictive control, operational safety and cybersecurity for chemical processes

described by nonlinear dynamic models. The motivation and organization of this dissertation are

first presented. Then, the use of machine learning techniques to develop data-driven nonlinear

dynamic process models to be used in model predictive controllers is presented, followed by

the discussion of real-time implementation with online learning of machine leaning models and

of physics-based machine learning modeling methods. Subsequently, the MPC and economic

MPC schemes that use control Lyapunov-barrier functions (CLBF) are presented in detail with

rigorous analysis provided on their closed-loop stability, operational safety and recursive feasibility

properties. Next, the development of machine-learning-based CLBF-MPC schemes is presented

with process stability and safety analysis. Finally, the development of an integrated detection

and control system for process cybersecurity is developed, in which several types of intelligent
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cyber-attacks, machine learning detection methods and resilient control strategies are presented.

Throughout the dissertation, the control methods are applied to numerical simulations of nonlinear

chemical process examples to demonstrate their effectiveness and performance.
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Chapter 1

Introduction

1.1 Motivation

The last decade has witnessed an explosive growth of data in modern industries, where a total

volume of more than 1000 Exabytes data is estimated to be generated by machines and devices

annually (e.g., [187]) Traditionally, industrial process control systems rely on a (usually linear)

data-driven model with parameters that are identified from industrial/simulation data [38, 166],

and in certain cases, for example, in profit-critical control loops, on first-principles models (with

data-determined model parameters) that describe the underlying physico-chemical phenomena.

However, modeling large-scale, complex nonlinear processes continues to be a major challenge

in process systems engineering. Model quality depends on many factors, including, but not

limited to model parameter estimation, model uncertainty, number of assumptions made in model

development, dimensionality, model structure, and computational burden of solving the model

in real-time (e.g., [47, 48]). In recent years, machine learning has attracted an increased level

of attention in model identification. Among many machine learning techniques, recurrent neural

networks (RNNs) have been widely-used for modeling general classes of nonlinear dynamical

systems [34, 136]. In the last decade, along with the development of machine learning algorithms

and computing resources/platforms, many open-source software libraries for machine learning
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applications (e.g., [1, 33, 66]), such as Tensorflow and Keras, have been created, which have

contributed to the broader use of machine learning techniques in classical engineering fields

in addition to computer science and engineering (e.g., [9, 130, 155, 171, 180]). Specifically,

feed-forward neural networks (FNN) and recurrent neural networks (RNN) (and their variants, see,

for example, [34,53,107,136]) have demonstrated potential for use in model-based control systems

since they are capable of modeling steady-state input-output nonlinear relationships and nonlinear

dynamic behavior, respectively. To further improve the performance of machine learning models,

on-line adaptation and training can be employed using real-time data sets collected from multiple

sensors to reduce modeling error and account for model uncertainties, while implementation in

parallel processing units could be employed to speed-up calculations for real-time tasks like

process control and operational safety. Therefore, designing MPC systems that utilize machine

learning modeling techniques to account in real-time for large data sets is a new frontier in control

systems that will impact the next generation of industrial control systems.

Machine-learning-based MPC shows great potential in improving process operational safety,

which is a long-standing research problem in optimal operation and control of dynamic systems

and processes. The traditional approach to process operational safety is to employ a hierarchical

approach as shown in Fig. 1.1. Specifically, a complete control and safety system used in industries

includes basic process control systems (BPCS), alarm systems, emergency shut-down systems

(ESS), and safety relief devices. Ideally, BPCS regulates process variables to their set-points while

the layers of the safety system should not be activated regularly. When the BPCS fails to maintain

the process variables within acceptable ranges due to, for example, equipment faults or unusually

large process disturbances, alarms are triggered that alert operators so that actions can be taken to

prevent further unsafe deviations. If the process variables subsequently further exceed allowable

values, the ESS is triggered, which takes automatic and extreme actions such as forcing a valve

to its fully open position to bring the process to a safer state of operation. Safety relief devices

such as relief valves are used on vessels that can become highly pressurized quickly to prevent an

explosion. Though safety systems and feedback control systems are critical to safe plant operation,

2



BPCS

Alarms

ESS

Safety Relief Devices

Containment

Emergency Response

Figure 1.1: Control/safety system layers [91].

they act fully independently in the hierarchical multilevel system of Fig. 1.1 and are not integrated

to yield cooperative actions to ensure both operational safety and economic performance. This has

resulted in staggering profit losses for the chemical process industries. Therefore, it is necessary

to coordinate the actions of process safety and control systems from both the ethical perspective of

saving lives and property, and also from an economics standpoint for the chemical process industry.

One potential solution is to incorporate safety considerations and safety system actions within

optimization-based control schemes, e.g., model predictive control (MPC). While MPC has been

widely-used in real-time operation of industrial chemical plants to optimize process performance

accounting for closed-loop stability and control actuator constraints [46, 94, 99, 101, 125, 129],

current MPC designs do not account for process safety considerations and actions and thus may

lead to process operation in parts of the state space from which migration to an unsafe state may

quickly occur. Therefore, a systematic methodology needs to be developed with rigorous analysis

of process stability, operational safety and recursive feasibility to coordinate MPC systems and

safety systems to ensure operational safety while achieving desired operation performance.

In addition to process operational safety, cybersecurity has become crucially important in recent

years due to increasing risks of cyber-attacks with the development of modern communication
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in industrial process controls and operations. Since both process safety and cybersecurity aim

to prevent or mitigate events involving a loss of control of safety- and security-critical systems,

the layers-of-protection analysis for safety systems can also be employed in the development of

a defense-in-depth strategy for cyber-defense systems, where cybersecurity is incorporated into

control network designs. Industrial control systems or supervisory control and data acquisition

(SCADA) systems are usually large-scale, geographically dispersed and life-critical systems where

embedded sensors, actuators and controllers are connected into a network to sense and control

the physical devices [42]. The failure of cybersecurity can lead to unsafe process operation, and

potentially to catastrophic consequences in chemical process industries, causing environmental

damage, capital loss and human injuries. Cyber-attacks are essentially a series of computer actions

to compromise the security of control systems (e.g., integrity, stability and safety) [41,44,118,186].

Among cyber-attacks, targeted attacks are severe threats for control systems because of their

specific designs with the aim of modifying the control actions applied to a chemical process (for

example, the Stuxnet worm aims to modify the data sent to a Programmable Logic Controller [27]).

As the development of most of the existing detection methods still depends partly on human

analysis, intelligent cyber-attacks that are process-aware and stealthy pose great challenges to

the development of timely detection methods with high detection accuracy for modern industrial

control system where cyber and physical components are closely interacted. Therefore, designing

an advanced detection system and integrating it with MPC to handle cyber-attacks in safety-critical

systems is a new frontier in control systems that will significantly improve security of chemical

production.

1.2 Background

Machine learning has attracted an increased level of attention in model identification in recent

years. Among many machine learning techniques, Recurrent neural networks (RNNs) have

been widely-used for modeling general classes of nonlinear dynamical systems [34, 136]. Since
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there exist feedback loops in RNN architectures that introduce the past information derived

from earlier inputs into the current network, the information preserved in the internal states

exhibits the memory of an RNN and leads to capturing dynamic behavior (from time-series

of process state measurements) in a way conceptually similar to nonlinear dynamic models

derived from first-principles. The history of recurrent neural networks can be traced back to

the 1980s, when Hopfield networks were first created for pattern recognition [61]. Since then,

many learning algorithms (e.g., supervised learning, unsupervised learning, and reinforcement

learning) and modern RNN structures (e.g., Long short-term memory (LSTM), Gated recurrent

unit (GRU) and Bidirectional recurrent neural networks) have been developed for various

applications, for example, human visual pattern recognition. Machine learning techniques have

now become increasingly popular in classical engineering fields in addition to computer science

and engineering [9,19,124,126,130,137,171,180]. Since neural networks are able to approximate

any continuous function according to the universal approximation theorem [141], we can use

recurrent neural networks to derive a nonlinear dynamic prediction model for MPC. MPC has

been applied in real-time operation of industrial chemical plants to optimize process performance

accounting for closed-loop stability, control actuator and safety constraints [46, 94, 99, 102, 125,

129]. Additionally, EMPC (in which the cost function does not have its minimum at a steady-state)

may operate the system in a time-varying fashion (off steady-state) by optimizing an economic cost

function accounting for stability constraints in one layer [14, 43, 104, 175]. One key requirement

of MPC/EMPC is the availability of an accurate process model to predict states. Considering

that in most cases it is difficult to obtain a first-principles model that captures complex, nonlinear

behavior of a large-scale process, data-driven modeling [20,148,153,157] has historically received

significant attention in the context of MPC. Modeling through neural networks has proven to be

successful in approximating nonlinear dynamical systems in [9,80,148]. Compared to polynomial

approximation [4, 115, 152] which is generally easy to solve, neural networks may capture better

‘difficult nonlinearities’ via a richer class of nonlinear functions that can be learned effectively.

Extensive research efforts have been made on RNN-based modeling, which also contributes to the
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development of model-based control schemes that utilize data-driven models to predict process

dynamics [116,167,184]. However, the existing works do not address real-time critical issues such

as RNN-training and prediction error that ensures closed-loop stability under ML-MPC as well as

computation time reduction for real-time implementation of machine-learning-based MPC.

Chemical process safety has traditionally been addressed through process design decisions

(e.g., designing the process to be inherently safe in terms of its chemistry and physics [49,58]) and

control and safety system design decisions (e.g., adding sensors for critical process variables that

trigger an alarm when a measurement outside of the desired range is obtained [91]). Inherently

safer designs are achieved through four primary principles: minimize (reduce the quantity of

hazardous substances used and stored by a process), substitute (utilize less hazardous process

chemicals), moderate (dilute chemicals or change operating conditions), and simplify (choose

designs with less complexity and less potential to create hazardous conditions when faults or

errors occur) [52, 73]. However, it is not possible to eliminate all hazards at a plant, so a

safety system, comprised of several independent layers, should be added (Fig. 1.1). While the

hierarchical approach that utilizes control and safety systems independently for process safety

has been successfully deployed in chemical process industries, the accidents throughout chemical

plant history [76, 78, 90] have led some researchers to suggest that the philosophy used in the

design of the control and safety system layers (i.e., designing barriers against specific unsafe

scenarios using the safety system) is quite limited, particularly as economic considerations drive

more optimized and integrated system designs [51, 55, 85, 110], and that a systems approach

coordinating directly the actions of control and safety systems and analyzing closed-loop process

operational safety should instead be used [7, 17, 37, 64, 82, 89, 154]. One step toward this

systems approach is by incorporating safety considerations and safety system actions within the

BPCS. However, the single-input/single-output controllers (e.g., proportional-integral-derivative

controller (PID controller)) traditionally used within the BPCS cannot account for factors that are

important to process safety such as multivariable interactions and state/input constraints. On the

other hand, advanced model-based control methodologies such as model predictive control (MPC)
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can account for these factors and thus can be integrated with safety considerations [82,94,99,125].

A large number of works in the MPC literature have addressed the robustness, performance

and closed-loop stability of MPC (e.g., [26, 43, 57, 63, 94, 97, 101, 113, 188] and the references

therein); but have not considered explicit safety considerations and safety system actions in their

formulations.

Additionally, industrial process control systems rely heavily on information and

communication technologies for automated operations. Particularly, industrial control systems

integrate computation, networking and physical process components to seamlessly combine

hardware and software resources for reliable operation and robust control. In more recent years,

wireless networks and Internet communication are starting to replace or complement existing wired

point-to-point communications in traditional large-scale process operations as well [35]. As these

new developments bring efficiency to the existing system by enabling transmission of signals to

remote locations without adding or altering the current hardwire infrastructure, heightened concern

for security also arises [18]. A number of industrial cyber-attacks in recent years, such as the

Stuxnet worm attacking Iran’s nuclear centrifuges, the 2014 cyber-attack targeting a German steel

mill, the 2015 cyber-attack on Ukraine’s electric power grid, have all proven their detrimental

physical impacts [75]. In recent years, cyber-security and cyber-defense have garnered increasing

research interests with the rise of virtualization and big data [16, 39, 79], where machine learning

techniques that can learn the system pattern from big data, provide a powerful tool to analyze

industrial process data for the development of cyber-attack detection algorithms. In fact, machine

learning has become increasingly popular in classical engineering fields in addition to computer

science and engineering [9,19,124,126,130,137,155,166], and has shown promising potential for

use in detection of cyber-attacks. For example, model-based fault diagnosis and classification in

electric drives was carried out using a fault diagnostic neural network in [105] and automated

fault detection and diagnosis of HVAC subsystems using hidden Markov models is shown in

[163]. Using various machine learning classification methods, cyber-attacks on power systems

are distinguished from process disturbances in [59], and a behavior-based intrusion detection
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algorithm is developed to identify the types of attack [67]. Moreover, machine learning methods

deployed for attack detection are presented in a number of literatures [24, 114, 135, 149, 164, 190].

While these recent literature contributions have demonstrated the feasibility of machine learning

algorithms in anomaly management, the development of a protective safeguard through the

integration of existing advanced control techniques (e.g., MPC) and online machine-learning-based

detection algorithms to the multi-layer cyber-defense system that is of significant importance to

next-generation smart manufacturing is still in its infancy.

1.3 Operational Safety and Cybersecurity of Chemical

Processes

In this section, a chemical process example is presented to provide the motivation for developing

novel control algorithms that account for operational safety and cybersecurity. In the first

case study, the chemical process is operated in an off steady-state manner under economic

model predictive control (EMPC) to optimize process economic performance. While the formal

definition of EMPC will not be presented until the subsequent chapters, we can think of EMPC a

predictive control scheme that optimizes operating strategy in real time to dynamically operate

chemical processes in a bounded operating region in order to maximize process economic

benefits accounting for time-varying economic factors, e.g., real-time energy and material pricing.

However, in the case that the economically optimal regions include unsafe operating conditions,

the time-varying operation of EMPC without accounting for safety region constraints may lead

to unsafe operations when attempting to maximize process economic profits. The second case

study considers the same chemical process and demonstrates the impact of cyber-attacks that

compromise one of sensor measurements. Specifically, the system is normally operated at a

pre-specified steady-state (either originally at the steady-state or forced to the steady-state from

another operating condition) under feedback-based tracking model predictive control (MPC) with

secure sensor measurements of process variables, e.g., temperature and species concentration;
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Figure 1.2: Diagram of a CSTR where a second-order reaction occurs that produces a desired
product B from a reactant A.

however, it will be demonstrated that process stability is no longer guaranteed in the sense that

the system may deviate from the steady-state and even leave the normal operating region when

sensor measurements are tampered by cyber-attacks. The two case studies indicate the importance

of having advanced control systems that account for process operational safety and cybersecurity,

and have motivated much of the work contained in this dissertation. The chemical process example

and the two case studies are provided below.

1.3.1 Continuously-Stirred Tank Reactor

Continuously stirred tank reactor (CSTR) with a second-order reaction is a well-established

chemical engineering example that demonstrates performance improvement through time-varying

operation. Specifically, we consider a non-isothermal CSTR where an elementary second-order

reaction takes place that converts the reactant A to the desired product B. As shown in Fig. 1.2,
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Table 1.1: Process parameters of the CSTR

T0 = 300 K F = 5 m3

hr
V = 1.0 m3 E = 5×104 kJ

kmol

k0 = 8.46×106 m3

kmolhr ∆H =−1.15×104 kJ
kmol

Cp = 0.231 kJ
kgK R = 8.314 kJ

kmolK

ρL = 1000 kg
m3 CA0s = 4 kmol

m3

Qs = 0 kJ
hr

the reactant is fed to the reactor through a feedstock stream with concentration CA0, volumetric

flow rate F , and temperature T0. The CSTR contents are assumed to be well-mixed, and the

reactor is assumed to have a static liquid hold-up. The CSTR is equipped with a jacket to

provide/remove heat to/from the reactor at a heat rate Q. Applying first principles and standard

modeling assumptions, e.g., constant fluid density and heat capacity, which are denoted by ρL and

Cp, respectively and Arrhenius rate dependence of the reaction rate on temperature, the following

system of ordinary differential equations (ODEs) are developed to describe the evolution of the

CSTR reactant concentration and temperature:

dCA

dt
=

F
V
(CA0−CA)− k0e

−E
RT C2

A (1.1a)

dT
dt

=
F
V
(T0−T )+

−∆H
ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV
(1.1b)

where t is the time, CA denotes the concentration of A in the reactor, T denotes the temperature of

the reactor contents, V is the volume of the liquid hold-up in the reactor, k0 is the rate constant, E

is the reaction activation energy, ∆H is the enthalpy of reaction, and R is gas constant. The process

parameter values are listed in Table 1.1.

The CSTR has an open-loop asymptotically stable steady-state at [CAs Ts] = [1.22 kmol
m3 438 K]

and an unstable steady-state at [CAs Ts]=[1.95 kmol
m3 402K] which correspond to the steady-state

input [CA0s Qs] = [4 kmol
m3 0 kJ

hr ]. In this example, the following production rate of B represents the
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operating profit of the reactor:

rB = k0e−
E

RT C2
A (1.2)

The concentration CA0 of the reactant species A in the feed and the heat input/removal rate Q

are used as the two manipulated inputs. Considering the physical bounds on CA0 and Q, the input

constraints of the manipulated inputs are defined as follows: |CA0−CA0s| ≤ 3.5 kmol
m3 and |Q−Qs| ≤

5×105 kJ
hr .

1.3.2 Case Study: Process Operational Safety in EMPC

We first demonstrate the operational safety issue during the time-varying operation of the CSTR

system of Eq. 1.1 under EMPC. The EMPC is designed to maximize process operating profits

while maintaining the process states CA and T within a bounded operating region around the stable

steady-state at (CAs, Ts) = (1.22 kmol
m3 , 438 K). Considering that thermal runaway may occur in

CSTR systems when an increase in temperature changes the conditions in a way that causes a

further increase in temperature, operating conditions of high temperature should be avoided in

the dynamic operation. Additionally, to ensure that the operating profits of the CSTR system is

maximized while the consumption of reactant A (i.e., inlet concentration CA0) does not exceed its

steady-state value, i.e., CA0s, over the entire operating period, the following material constraint is

employed in the optimization problem of EMPC:

1
tp

∫ tp

0
(CA0(t)−CA0s(t)) dt =CA0s (1.3)

where tp is the length of operation. It is trivial to show that without material constraint, the system

will attempt to use the maximum amount of material for all times to maximize the production rate,

which is not desired in an economical viewpoint as our goal is to determine the optimal strategy to

distribute the material to the reactor.

The closed-loop simulation result under EMPC is shown in Fig. 1.3. It is demonstrated that

the CSTR system is operated in an optimal time-varying manner where the process state, i.e.,
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(CA−CAs, T − Ts), starts from the steady-state and first reaches the boundary of the operating

region Ωρ which is a bounded set around the steady-state, then enters the unsafe region where

temperature T −Ts is greater than 47 K, and is finally driven back into the safe region due to the

material constraint. Fig. 1.4b shows the accumulated operating profit profiles over the operating

period tp = 1 hr, i.e.,
∫ t=tp

t=0 rB(τ)dτ , under EMPC and under the steady-state operation (i.e., the

CSTR is operated at the steady-state (CAs Ts) for all times), from which it is demonstrated that

the time-varying operation of EMPC outperforms the steady-state operation in terms of economic

performance. Additionally, the production rate profile for all the operating conditions within the

operating region Ωρ is shown in Fig. 1.4a. It is observed that the optimal operating profit (i.e.,

the maximum value for the production rate of Eq. 1.2) is achieved near the right boundary of

Ωρ , which explains why the state trajectory (blue dashed line) in Fig. 1.3 stays at the boundary

of Ωρ for the majority of the operating time. From this case study, it is demonstrated that the

EMPC scheme targeting process economic performance only is not able to achieve operational

safety and economic optimality simultaneously, and therefore, a new EMPC design needs to be

developed to incorporate safety considerations in its decision making to ensure operational safety

while achieving desired economic performance.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-50
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Figure 1.3: Closed-loop state trajectory for the CSTR under EMPC with the initial condition is at
the steady-state, i.e., (CA(0)−CAs, T (0)−Ts)=(0 kmol

m3 , 0K).
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Figure 1.4: (a) Production rate profile k0e−E/RTC2
A(

kmol
m3 hr ) within the safe operating region of

the CSTR, and (b) accumulated operating profits for the closed-loop CSTR under EMPC and
steady-state operation, respectively.

1.3.3 Case Study: Cybersecurity in Tracking MPC

Consider the same CSTR system under a tracking MPC that aims to track the system state to an

unstable steady-state (CAs Ts)=(1.95 kmol
m3 , 402K). The intrinsic unstable nature of the steady-state

implies that without an appropriate controller, the CSTR system is not able to stably operate at

the unstable steady-state; in other words, the steady-state inputs CA0s and Qs can neither stabilize

the system at the steady-state if starting from another operating condition, nor maintain the system

at the original steady-state under small perturbations. Therefore, a stabilizing controller such as

proportional-integral-derivative controller or tracking MPC is required to operate the system at the

unstable steady-state. We assume that the temperature sensor measurement for MPC is vulnerable

to cyber-attacks in the sense that the measurement value that will be sent to the controller can

be manipulated by attackers. Additionally, it is assumed that the intelligent cyber-attacks are

process and controller behavior aware by having access to information on the CSTR operating

region and existing alarms configured on the input and output ranges (in this particular example,

alarms are triggered when the process state leaves the operating region). In this case, the controller

that takes falsified temperature measurements will compute unreasonable control actions that may

destabilize the system and lead to unsafe operations by driving process state off steady-state and

ultimately out of the operating region. Fig. 1.5 shows the closed-loop simulation results for the
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nominal CSTR system (i.e., under no attack) and the system under cyber-attacks. Specifically, the

temperature sensor measurement is intruded by an intelligent cyber-attack that induces maximum

disruption by setting the temperature value at its lower bound within the operating region since

time t = 0.03 hr. This type of cyber-attack is termed min-max cyber-attack, and will be formally

defined in Chapter 8. As the temperature measurements (red trajectory) are maintained within

the operating region Ωρ for all times as shown in Fig. 1.5, the min-max cyber-attack cannot be

detected by conventional detection methods designed based on the boundary values. In Fig. 1.5, it

is shown that starting from the initial condition (CA−CAs, T−Ts)=(-1.2 kmol
m3 , 60K), the closed-loop

state trajectory (black, dashed line) is able to converge to the steady-state (CAs, Ts) under tracking

MPC if no cyber-attack occurs. However, it is shown that without any detection system, the state

trajectory (blue, solid line) with the same initial condition initially moves towards the origin

following the same path under no attack. Then it starts deviating from the direction towards

the origin and quickly leaves the operating region Ωρ due to incorrect control actions computed

based on falsified temperature measurement (red, dash-dotted line) shown in Fig 1.6a. The system

finally enters an unsafe region of extremely high temperature without being detected from sensor

measurements, and therefore, alarm and emergency shut down systems based on other process

variables are employed to prevent further unsafe deviations. Although the above cyber-attack only

attacks one sensor, i.e., temperature sensor, it cannot be easily detected by control engineers by

reading sensor measurements since the compromised values are bounded in the operating region

at all times. Moreover, the cyber-attacks that are designed for industrial control systems will be

more complicated in the sense that they can attack sensor networks in a coupled way, which makes

it barely possible to detect from human analysis. Therefore, the example motivates the inquiry and

theoretical developments of efficient data-based detection methods and resilient control strategies

in the context of MPC systems that can eliminate the impact of cyber-attacks upon timely detection.
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Figure 1.5: Closed-loop state trajectories for the CSTR under tracking MPC when the temperature
sensor is under no attack, and under a min-max attack, respectively.
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Figure 1.6: (a) State and (b) input profiles for the CSTR under tracking MPC when the temperature
sensor is under no attack, and under a min-max attack, respectively.
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1.4 Dissertation Objectives and Structure

This dissertation presents control theoretic approaches to process operational safety and

cybersecurity in the context of machine-learning-based model predictive control systems, and

illustrates the applications of the proposed control methods using chemical process examples.

Specifically, the objectives of this dissertation are summarized as follows:

1. To develop machine-learning-based model predictive control schemes by taking advantage

of recurrent neural network modeling techniques with rigorous analysis provided on their

closed-loop stability and safety properties.

2. To develop novel model predictive control systems using a new function termed control

Lyapunov-barrier function to achieve guaranteed stability and safety properties and allow

for recursive feasibility of MPCs.

3. To present a framework of integrating machine-learning-based detection systems with

resilient control methods to handle cyber-attacks in industrial control systems.

4. To illustrate the applications of the developed control methods that account for process

operational safety and cybersecurity to chemical process examples.

The dissertation is organized as follows. In Chapter 2 and Chapter 3, some definitions and

preliminary results on stability and stabilization of nonlinear systems using Lyapunov’s method

are first provided. Then, the concept of recurrent neural networks (RNN) and a general framework

to develop RNN models for nonlinear dynamic systems are introduced. The MPC and economic

MPC schemes using RNN models for predicting system dynamics are developed, with sufficient

conditions under which closed-loop stability and operational safety are derived. Computational

implementation issues such as parallel computing and numerical approximation are also discussed.

The methods are applied to the benchmark chemical reactor example.

In Chapter 4, real-time adaptive machine-learning-based predictive control scheme is

developed by integrating online learning of RNN models. Event-triggered and error-triggered
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mechanisms are designed to trigger online update within MPCs to capture process dynamics

subject to time-varying disturbances using the most recent process operating data. The

proposed methodology is applied to a chemical process example with disturbances under LMPC

and LEMPC, respectively, to demonstrate the effectiveness of real-time implementation of

machine-learning-based MPCs.

In Chapter 5, physics-based RNN modeling approaches are proposed for a general class of

nonlinear dynamic process systems to improve prediction accuracy by incorporating a priori

process knowledge. Three physics-based modeling approaches are presented, including a hybrid

modeling method that integrates first-principles models and RNN models, a partially-connected

RNN modeling method that designs the RNN structure based on a priori structural process

knowledge, and a weight-constrained RNN modeling method that employs weight constraints in

the optimization problem of the RNN training process. The proposed physics-based RNN models

are utilized in model predictive controllers and applied to a chemical process network example

to demonstrate their improved approximation performance compared to the fully-connected RNN

model that is developed as a black box model.

In Chapter 6, the concept of operational safety in process control is introduced. Then, control

Lyapunov-barrier function (CLBF) and CLBF-based MPC schemes are developed to integrate

operational safety within control systems that optimize process performance. Based on that, the

EMPC scheme that uses CLBF constraints to ensure stability and safety is developed to optimize

process economic performance. Rigorous theoretical results of closed-loop stability, process

operational safety and recursive feasibility of MPCs are developed. The methodologies are applied

to chemical process examples with different types of unsafe operating regions to demonstrate their

effectiveness.

In Chapter 7, machine-learning-based detection systems and resilient control schemes are

developed to detect and mitigate the impact of stealthy cyber-attacks in MPC and EMPC systems.

The construction method of data-based machine-learning detectors that can detect multiple classes

of intelligent cyber-attacks is first presented. Several cyber-attack resilient control strategies are
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subsequently developed to contain and eliminate the impact of cyber-attacks by reconfiguring

the control system. The application to a benchmark multivariable nonlinear process example is

presented to evaluate the ability of the integrated detection and mitigation scheme.

Chapter 8 summarizes the main results of the dissertation.
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Chapter 2

Machine Learning in Model Predictive

Control

2.1 Introduction

In industry linear empirical models are often used in controllers to operate the system at the

steady-state. Despite the successful applications of linear empirical modeling in process industries,

modeling nonlinear systems is always valuable to address systems-level task since chemical

processes are inherently nonlinear, and thus, require nonlinear process models to improve the

closed-loop performance of model-based controllers. Motivated by the above, machine learning,

a method of data analysis that can be utilized to model nonlinear systems for model-based

controllers, has attracted an increased level of attention in model identification in recent years.

Specifically, among many machine learning techniques, recurrent neural networks (RNN) have

been widely-used for modeling a general class of nonlinear dynamical systems. While feedforward

neural networks use a one-way connectivity between units to model nonlinear systems, RNN

architectures include feedback loops that introduce the past information derived from earlier

inputs to the current network. Thus, the information preserved in the internal states exhibits

the memory of an RNN and leads to capturing dynamic behavior in a way conceptually similar
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to nonlinear state-space ordinary differential equation models. The history of recurrent neural

networks can be traced back to the 1980s, when Hopfield networks were first created for pattern

recognition [61]. With the rapid development of computational resources, machine learning

techniques have become accessible in classical engineering fields in addition to computer science

and engineering, and have shown many successful applications for modeling nonlinear systems,

e.g., [30,31,80,137,148,162,177,181,182]. Moreover, given that a single data-driven model may

not perfectly represent the process dynamics in the entire operating region, ensemble learning, a

multi-model approach, has been utilized to combine the results of multiple models for complex

systems. Specifically, ensemble learning uses several models that are obtained during a learning

step to approximate particular outputs. Compared to a single model prediction, ensemble learning

has demonstrated benefits in robustness and accuracy in solving classification and regression

problems, e.g., [21, 96, 111, 120, 132, 147, 180, 189].

In this chapter and the next chapter, we present the use of machine learning techniques in

developing data-driven models for MPCs that target process stability and economic optimality

properties. The concept of recurrent neural networks and a general framework for developing RNN

models for nonlinear dynamical systems are introduced. Subsequently, machine-learning-based

MPC and EMPC schemes that use RNN models for prediction are presented with guaranteed

closed-loop stability, followed by the discussion of ensemble learning of multiple RNN models

in MPCs to improve prediction accuracy and the use of parallel computing to address the

resulting computational implementation issues. The applications of machine learning-based

control schemes to a chemical reactor demonstrate the ability of RNNs to model nonlinear

dynamical systems and the effectiveness of the control schemes in stabilizing systems.

2.1.1 Notation

The set of real numbers is denoted by R, and the set of nonnegative real numbers is denoted

by R+. Rn is an n-dimensional real (Euclidean) space. The notation |·| is used to denote the

Euclidean norm of a vector, and the notation |·|Q denotes a weighted Euclidean norm of a vector
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(i.e., |x|Q =
√

xT Qx where Q is a positive definite matrix). The floor and ceiling functions, denoted

as bac and dae for a scalar a ∈ R, respectively, are the largest integer not greater than a and

the smallest integer not less than a, respectively. xT denotes the transpose of x. The variable t

where t ∈ R+ is typically used to represent time, and thus, the notation x(t) ∈ Rn represents an

n-dimensional time-dependent vector. An infinite sequence is denoted by {tk}k≥0, while a finite

sequence is written as {ti}N
i=0 which describes the sequence: t0, t1, . . . , tN−1, tN .

The notation L fV (x) denotes the standard Lie derivative of function V (x) with respect to the

vector field f , i.e., L fV (x) := ∂V (x)
∂x f . A scalar continuous function V : Rn → R is proper if the

set {x ∈ Rn | V (x) ≤ k} is compact for all k ∈ R, or equivalently, V is radially unbounded in the

sense that lim|x|→+∞V (x) = +∞ holds. A function V : Rn→R+ is said to be positive definite with

respect to x ∈ Rn if V (x)> 0 for all x ∈ Rn except that V (x) = 0 if and only if x = 0. A function,

V : Rn→ (−∞,0], is negative definite (with respect to the origin) if −V is positive definite. The

set Ωρ is used to represent a level set of a scalar-valued positive definite function V : Ωρ := {x ∈

Rn | V (x)≤ ρ} where ρ > 0.

For given positive real numbers β and ε , Bβ (ε) := {x ∈ Rn | |x− ε| < β} is an open ball

around ε with radius of β . The relative complement of the set A in B is denoted by A\B := {x ∈

A,x /∈ B}. A function f (·) is of class C 1 if it is continuously differentiable. A real-valued function

f (·) : Rn → R is called Lipschitz continuous if there exists a positive real constant k such that

| f (x)− f (y)| ≤ k|x−y| holds for all x,y∈Rn, and is called locally Lipschitz continuous if for each

y ∈ Rn, there exists an L > 0 such that f is Lipschitz continuous on the open ball BL(y).

Given a set D , the boundary, the closure, and the interior of D are denoted by ∂D , D , and

Int(D), respectively. A continuous function α : [0,a)→R+ is said to be of class K if it is strictly

increasing and α(0) = 0. The family of piecewise constant, right-continuous functions with period

∆ > 0 is denoted as S(∆). If the vector-valued function u(t) : [0,N∆)→ Rm can be described by

u(t) = ūi, for t ∈ [i∆,(i+1)∆), where N is a positive integer and ūi ∈ Rm, i = 0,1, ...,N−1, then

we say u ∈ S(∆).
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2.1.2 Class of Nonlinear Systems

The class of continuous-time nonlinear systems considered is described by the following system

of first-order nonlinear ordinary differential equations:

ẋ = F(x,u,w) := f (x)+g(x)u+h(x)w, x(t0) = x0 (2.1)

where x ∈ D ⊂ Rn is the state vector, u ∈U ⊂ Rm is the manipulated input vector, and w ∈W is

the disturbance vector, where W := {w ∈ Rl | |w| ≤ wm, wm ≥ 0}. The control action constraint

is defined by u ∈ U := {umin ≤ u ≤ umax} ⊂ Rm, where umin and umax are the lower and upper

bounds for the input vector, respectively. It is assumed that f (·), g(·), and h(·) are sufficiently

smooth vector and matrix functions of dimensions n×1, n×m, and n× l, respectively, with f (0) =

0. Therefore, the origin is a steady-state of the nominal system of Eq. 2.1 with w(t) ≡ 0. The

measurement of x(t) is assumed to be available for feedback at each sampling time tk = t0+k∆, k =

0,1, . . ., where ∆ is the sampling period.

2.1.3 Stabilization Via Control Lyapunov Function

Assumption 2.1. We assume that there exists a stabilizing feedback controller u = Φ(x) ∈U for

the nominal system of Eq. 2.1 with w(t)≡ 0 that renders the origin of the closed-loop system under

continuous implementation of the controller exponentially stable in the sense that there exists a C 1

Lyapunov function V : D→R+ such that the following inequalities hold for all x in a neighborhood

D around the origin:

c1|x|2 ≤V (x)≤ c2|x|2, (2.2a)

∂V (x)
∂x

F(x,Φ(x),0)≤−c3|x|2, (2.2b)

∣∣∣∣
∂V (x)

∂x

∣∣∣∣≤ c4|x| (2.2c)

where ci, i = 1,2,3,4 are positive real numbers.
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The stability region Ωρ is designed as a level set of the Lyapunov function V (x) within D, from

which Eq. 2.2 is satisfied: Ωρ := {x ∈ D | V (x) ≤ ρ, ρ > 0}. It is readily shown that Ωρ is an

invariant set since it holds that V̇ ≤ −c3|x|2 under u = Φ(x) ∈U for all x ∈ Ωρ . The following

control law is used to render the origin of the nominal system of Eq. 2.1 exponentially stable.

ki(x) =




− p+

√
p2 + γ|q|4
|q|2 qi if q 6= 0

0 if q = 0
(2.3a)

Φi(x) =





umin if ki(x)< umin

ki(x) if umin ≤ ki(x)≤ umax

umax if ki(x)> umax

(2.3b)

where p denotes L fV (x), qi denotes LgiV (x), q= [q1 · · ·qm]
T , f = [ f1 · · · fn]

T , gi = [gi1 · · ·gin]
T , (i=

1,2, · · · ,m) and γ > 0. ki(x) of Eq. 2.3a represents the original Sontag control law without

saturation. Φi(x) of Eq. 2.3b represents the ith component of the saturated control law Φ(x) that

accounts for the input constraint u ∈U .

2.2 Recurrent Neural Network

We develop a recurrent neural network (RNN) model with the following form:

˙̂x = Fnn(x̂,u) := Ax̂+Θ
T y (2.4)

where x̂ ∈ D ⊂ Rn is the RNN state vector and u ∈ Rm is the manipulated input vector. y =

[y1, ...,yn,yn+1, ...,ym+n] = [σ(x̂1), ...,σ(x̂n),u1, ...,um]∈Rn+m is a vector of both the network state

x̂ and the input u, where σ(·) is the nonlinear activation function (e.g., a sigmoid function σ(x) =

1/(1+ e−x)). A is a diagonal coefficient matrix, i.e., A = diag{−a1, ...,−an} ∈ Rn×n, and Θ =

[θ1, ...,θn] ∈ R(m+n)×n with θi = bi[wi1, ...,wi(m+n)], i = 1, ...,n. ai and bi are constants. wi j is

the weight connecting the jth input to the ith neuron where i = 1, ...,n and j = 1, ...,(m + n).
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Additionally, ai is assumed to be positive such that each state x̂i is bounded-input bounded-state

stable. Throughout this chapter, we use x to represent the state of the nonlinear system of Eq. 2.1

and use x̂ for the state of the RNN model Eq. 2.4. To simplify the discussion, the bias term is not

included in the notation as it can be considered an additional constant input, and thus, does not

affect the formulation of RNN of Eq. 2.4. Additionally, it is noted that the RNN model of Eq. 2.4

is an input-affine system, and therefore, it can be written in the form that is similar to Eq. 2.1:

˙̂x = f̂ (x̂)+ ĝ(x̂)u (2.5)

where f̂ (·) and ĝ(·) can be derived from the coefficient matrices A and Θ in Eq. 2.4 and are

assumed to be sufficiently smooth. Unlike the one-way connectivity between units in feedforward

neural networks (FNN), RNNs have signals traveling in both directions by introducing loops in the

network. As shown in Fig. 2.1, the states information derived from earlier inputs are fed back into

the network, which exhibits a dynamic behavior. Consider the problem of approximating a class of

continuous-time nonlinear systems of Eq. 2.1 by an RNN model of Eq. 2.4. Based on the universal

approximation theorem for FNNs, it is shown in, e.g., [80,141] that the RNN model with sufficient

number of neurons is able to approximate any dynamic nonlinear system on compact subsets of

the state-space for finite time. The following proposition demonstrates the approximation property

of the RNN model:

Proposition 2.1 (Universal Approximation Theorem, c.f. [141]). Consider the nonlinear system

of Eq. 2.1 and the RNN model of Eq. 2.4 with the same initial condition x(0) = x̂(0) = x0 ∈ Ωρ .

For any ε > 0 and T > 0, there exists an optimal weight matrix Θ∗ such that the state x̂ of the RNN

model of Eq. 2.4 with Θ = Θ∗ satisfies the following equation:

sup
t∈[0,T ]

|x(t)− x̂(t)| ≤ ε (2.6)

Remark 2.1. The RNN model of Eq. 2.4 is developed as a continuous-time network since it

is utilized to approximate the input-output behavior of the continuous-time nonlinear system of
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Figure 2.1: A recurrent neural network and its unfolded structure, where Θ is the weight matrix, x
is the state vector, u is the input vector and o is the output vector (for the nonlinear system in the
form of Eq. 2.1, the output vector is equal to the state vector).

Eq. 2.1. As discussed in [117], continuous-time RNNs have many advantages, for example, the

well-defined derivative of the internal state with respect to time. However, it should be noted that

the discrete-time RNNs can be equally well applied to model the nonlinear system of Eq. 2.1,

where similar learning procedures and stability analysis can also be derived. Additionally, in this

chapter, the RNN model of Eq. 2.4 and the controller that will be developed are both simulated in

a sample-and-hold fashion with a sufficiently small sampling period ∆.

Remark 2.2. To simplify the discussion, the RNN model of Eq. 2.4 is formulated as a

one-hidden-layer RNN with n states to approximate the nonlinear system of n first-order ODEs

of Eq. 2.1. However, the development of RNN models for approximation of the nonlinear system

of Eq. 2.1 is not restricted to n-state, one-hidden-layer RNN model. Instead, to achieve a desired

approximation performance of the nonlinear system of Eq. 2.1, a multi-layer RNN with a sufficient

number of neurons is generally utilized. In that case, the RNN states x̂ ∈ Rn in Eq. 2.4 will be the

last hidden layer or the output layer of an RNN.
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2.2.1 RNN Learning Algorithm

In this section, the RNN learning algorithm is developed to obtain the optimal weight matrix Θ∗,

under which the error between the actual state x(t) of the nominal system of Eq. 2.1 (i.e., w(t)≡ 0)

and the modeled states x̂(t) of the RNN of Eq. 2.4 is minimized. Although it is demonstrated

in Proposition 2.1 that RNNs can approximate a broad class of nonlinear systems to any degree

of accuracy, it is acknowledged that RNN modeling may not be perfect in many cases due to

insufficient number of nodes or layers. Therefore, we assume that there exists a modeling error

ν := F(x,u,0)−Fnn(x̂,u) between the nominal system of Eq. 2.1 and the RNN model of Eq. 2.4

with Θ = Θ∗. Since we focus on the system dynamics of Eq. 2.1 in a compact set Ωρ , from which

the origin can be rendered exponentially stable using the controller u = Φ(x) ∈U , the RNN model

is developed to capture the system dynamics for all x ∈Ωρ and u∈U . It is noted that the modeling

error ν(t) is bounded (i.e., |ν(t)| ≤ νm, νm > 0) since x(t) and u(t) are bounded. Additionally, to

avoid the weight drift problem (i.e., the weights go to infinity during training), the weight vector

θi is bounded by |θi| ≤ θm, where θm > 0. Following the methods in [80, 119], the RNN learning

algorithm is developed to demonstrate that the state error |e| = |x̂− x| is bounded in the presence

of the modeling error ν . Specifically, the RNN model is identified in the form of Eq. 2.4 and the

nominal system of Eq. 2.1 (i.e., w(t)≡ 0) can be expressed by the following equation:

ẋi =−aixi +θ
∗T
i y+νi, i = 1, ...,n (2.7)

The optimal weight vector θ ∗i is defined as follows:

θ
∗
i := arg min

|θi|≤θm
{

Nd

∑
k=1
|Fi(xk,uk,0)+aixk−θ

T
i yk|} (2.8)

where Nd is the number of data samples used for training. The state error is defined as e = x̂− x ∈

Rn. Based on Eq. 2.4 and Eq. 2.7, the time-derivative of state error is derived as follows:

ėi = ˙̂xi− ẋi =−aiei +ζ
T
i y−νi, i = 1, ...,n (2.9)

26



where ζi = θi− θ ∗i is the error between the current weight vector θi and the unknown optimal

weight vector θ ∗i . ν is the modeling error given by ν = F(x,u,0)−Ax−Θ∗y. The weight vector

θ is updated during the training process as follows:

θ̇i =−ηiyei, i = 1, ...,n (2.10)

where the learning rate η is a positive definite matrix. Based on the learning law of Eq. 2.10,

the following theorem is established to demonstrate that the state error e remains bounded and is

constrained by the modeling error ν .

Theorem 2.1 (c.f. [80, Theorem 4.1]). Consider the RNN model of Eq. 2.4 of which the weights

are updated according to Eq. 2.10. Then, the state error ei and the weight error ζi are bounded,

and there exist λ ∈ R and µ > 0 such that the following inequality holds:

∫ t

0
|e(τ)|2dτ ≤ λ +µ

∫ t

0
|ν(τ)|2dτ (2.11)

Proof. We first define a Lyapunov function Ṽ = 1
2 ∑

n
i=1(e

2
i +ζ T

i η
−1
i ζi). Based on Eq. 2.9, Eq. 2.10

and ζ̇i = θ̇i, the time-derivative of Ṽ is derived as follows:

˙̃V =
n

∑
i=1

(eiėi +η
−1
i ζiζ̇i)

=
n

∑
i=1

(−aie2
i − eiνi)

(2.12)

It is noted that in the absence of modeling error (i.e., νi = 0), it holds that ˙̃V ≤ 0. Following the

proof in [80], it is shown that the state error ei and its time-derivative ėi are bounded for all times.

Additionally, since Ṽ is bounded from below and ˙̃V is uniformly continuous implied by the fact that

the second order derivative ¨̃V is bounded, it follows that ˙̃V → 0 as t → ∞ according to Barbalat’s

lemma∗ [106]. This implies that ei ultimately converges to zero if there is no modeling error term

∗Assume f is a function of time. Barbalat’s lemma says: if f (t) has a finite limit as t → ∞, and if ḟ is uniformly
continuous, then ḟ (t)→ 0 as t→ ∞.
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−eiνi in Eq. 2.12. However, in the presence of modeling error νi 6= 0, ˙̃V ≤ 0 does not hold for all

times. Therefore, based on Eq. 2.12, the following equation is further derived:

˙̃V =
n

∑
i=1

(−ai

2
e2

i −
1
2
|ζi|2)+(

1
2
|ζi|2−

ai

2
e2

i − eiνi)

≤−αṼ +
n

∑
i=1

(
1
2
|ζi|2− (

ai

2
e2

i + eiνi +
1

2ai
ν

2
i )+

1
2ai

ν
2
i )

≤−αṼ +
n

∑
i=1

(
1
2
|ζi|2 +

1
2ai

ν
2
i )

(2.13)

where α :=min{ai,1/(λm), i= 1, ...,n} and λm represents the maximum eigenvalue of η
−1
i . Since

the weight vector is bounded by |θi| ≤ θm, it is derived that 1
2 |ζi|2 ≤ 2θ 2

m, and it follows that

˙̃V ≤ −αṼ +β , where β := ∑
n
i=1(2θ 2

m +ν2
m/2ai). Therefore, ˙̃V ≤ 0 holds for all Ṽ ≥ V0 = β/α ,

which implies that Ṽ is bounded. From the definition of Ṽ , it is readily shown that ei and ζi are

bounded as well. Moreover, based on the fact that ˙̃V ≤∑
n
i=1(−ai

2 e2
i +

1
2ai

ν2
i ) derived from Eq. 2.13,

we can also derive Ṽ (t) as follows:

Ṽ (t)≤ Ṽ (0)+
n

∑
i=1

(−ai

2

∫ t

0
ei(τ)

2dτ +
1

2ai

∫ t

0
νi(τ)

2dτ)

≤ Ṽ (0)− amin

2

∫ t

0
|e(τ)|2dτ +

1
2amin

∫ t

0
|ν(τ)|2dτ

(2.14)

where amin is the minimum value of ai, i = 1, ...,n. Let λ = 2
amin

supt≥0(Ṽ (0)− Ṽ (t)) and µ =

1/a2
min. The relationship between |e| and |µ| shown in Eq. 2.11 is derived as follows:

∫ t

0
|e(τ)|2dτ ≤ 2

amin
(Ṽ (0)−Ṽ (t))+

1
a2

min

∫ t

0
|ν(τ)|2dτ

≤ λ +µ

∫ t

0
|ν(τ)|2dτ

(2.15)

Therefore, it is guaranteed that the state error |e| is bounded and is proportional to the modeling

error |ν |. Furthermore, it is noted that if there exists a positive real number C > 0 such that
∫

∞

0 |ν(t)|2dt = C < ∞, then it follows that
∫

∞

0 |e(t)|2dt ≤ λ + µC < ∞. Since e(t) is uniformly

continuous (i.e., ė is bounded), it implies that e(t) converges to zero asymptotically.
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Remark 2.3. Since the weights may drift to infinity in the presence of modeling error, a robust

learning algorithm named switching σ -modification approach was proposed in [80,119] to adjust

the weight such that the assumption that the weight vector θi is bounded by |θi| ≤ θm holds for

all times. The switching σ -modification approach was then improved to be continuous in the

considered compact set to overcome the problem of existence and uniqueness of solutions. The

interested reader may refer to [80, 119] for further information.

2.2.2 Development of RNN Model

In this section, we discuss how to develop an RNN model from scratch for a general class of

nonlinear system of Eq. 2.1 within an operating region. Specifically, the development of a neural

network model includes the generation of dataset and the training process.

2.2.2.1 Data generation

Open-loop simulations are first conducted to generate the dataset that captures the system dynamics

for x ∈ Ωρ and u ∈ U since we focus on the system dynamics of Eq. 2.1 in a compact set Ωρ

with the constrained input vector u ∈ U . Given various x0 ∈ Ωρ , the open-loop simulations of

the nominal system of Eq. 2.1 are carried out under various inputs u to obtain a large number of

trajectories for finite time to sweep over all the values that (x,u) can take. However, it is noted

that due to the limitation of computational resources, we may have to discretize the targeted region

in state-space and the range of inputs with sufficiently small intervals in practice as shown in

Fig. 2.2. Subsequently, time-series data from open-loop simulations can be separated into a large

number of time-series samples with a shorter period Pnn, which represents the prediction period of

RNNs. Lastly, the dataset is partitioned into training, validation and testing datasets. Additionally,

it should be noted that we simulate the continuous system of Eq. 2.1 under a sequence of inputs

u∈U in a sample-and-hold fashion (i.e., the inputs are fed into the system of Eq. 2.1 as a piecewise

constant function, u(t) = u(tk), ∀t ∈ [tk, tk+1), where tk+1 := tk +∆ and ∆ is the sampling period).

Then, the nominal system of Eq. 2.1 is integrated via explicit Euler method with a sufficiently
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small integration time step hc < ∆.
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Figure 2.2: The schematic of discretization of the operating region Ωρ and the generation of
training data for RNNs with a prediction period Pnn for all initial conditions x0 ∈ Ωρ , where hc
is the time interval between RNN internal states, Ωρ is the closed-loop stability region for the
actual nonlinear system of Eq. 2.1 and Ωρ̂ is the closed-loop stability region characterized for the
obtained RNN model.

2.2.2.2 Training process

Next, the RNN model is developed using a state-of-the-art application program interface (API), i.e.,

Keras [33]. The prediction period of RNN, Pnn, is chosen to be an integer multiple of the sampling

period ∆ such that the RNN model Fnn(x̂,u) can be utilized to predict future states for at least one

sampling period by taking state measurement x(tk) and manipulated inputs u(tk) at time t = tk.

As shown in Fig. 2.2, the time interval between two consecutive internal states xt−1 and xt within

the prediction period Pnn for the unfolded RNN shown in Fig. 2.1 is chosen to be the integration
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time step hc used in open-loop simulations. Therefore, all the states between t = 0 and t = Pnn

with a step size of hc are treated as the internal states and can be predicted by the RNN model.

Based on the dataset generated from open-loop simulations, the RNN model of Eq. 2.4 is trained

to calculate the optimal weight Θ∗ of Eq. 2.8 by minimizing the modeling error between F(x,u,0)

and Fnn(x̂,u). Furthermore, to guarantee that the RNN model of Eq. 2.4 achieves good performance

in a neighborhood around the origin and has the same equilibrium point as the nonlinear system

of Eq. 2.1, the modeling error is required to satisfy |ν | ≤ γ|x| ≤ νm when the training process is

completed.

Specifically, when we train an RNN using open-source neural-network libraries, for example,

Keras, the optimization problem of minimizing the modeling error ν is solved using adaptive

moment estimation method (i.e., Adam in Keras) with the loss function calculated by the mean

squared error or the mean absolute percentage error between predicted states x̂ and actual states x

from training data. The optimal number of layers and neurons are determined through a grid search.

Additionally, to avoid over-fitting of the RNN model, the training process is terminated once the

modeling error falls below the desired threshold and the early-stopping condition is satisfied (i.e.,

the error on the validation set stops decreasing).

Remark 2.4. In some cases training datasets may consist of noisy data or corrupt data, which

could affect the training performance of RNNs in the following manners. On the one hand, noise

makes it more challenging for RNNs to fit data points precisely. On the other hand, it is shown in

literature, e.g., [21], that the addition of noise can also improve generalization performance and

robustness of RNNs, and sometimes even lead to faster learning. Therefore, the neural network

training with noise remains an important issue that needs further investigation. However, in this

chapter, we perform open-loop simulations for the nominal system of Eq. 2.1 (i.e., w(t) ≡ 0), and

thus, the RNN models are trained to approximate the dynamics of the nominal system of Eq. 2.1

within the closed-loop stability region Ωρ̂ based on the noise-free dataset.

Remark 2.5. The neural network modeling approach discussed in this chapter is a data-driven,

black-box modeling approach that develops a nonlinear model of Eq. 2.4 to approximate the actual
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nonlinear system of Eq. 2.1 using massive amounts of process operating data. It is noted that

neural network modeling is generally treated as a black-box modeling approach where no physical

knowledge is utilized. However, in recent years, many researchers have also started to incorporate

physical knowledge of systems into neural network formulations, trying to improve interpretability

and optimality of neural network modeling. For example, it has been demonstrated in [87, 177]

that the physics-based neural networks were able to improve the prediction performance when

compared with a black-box neural network. For neural networks with incorporation of process

knowledge, the interest reader is referred to [15, 70, 71, 86, 87, 138, 177]

2.2.3 Ensemble Regression Modeling

Since a single RNN may not perform perfectly over the entire operating region due to insufficient

data and inappropriate ratio between the training dataset and validation dataset, the ensemble

learning method, which is a machine learning process that combines multiple learning algorithms

to obtain better prediction performance [96], is utilized to construct homogeneous ensemble

regression models based on k-fold cross validation and the recurrent neural network (RNN)

learning algorithm discussed in the previous section. Specifically, homogeneous ensemble

regression models are derived from the ensemble learning method if a single base learning

algorithm is used, while heterogeneous models are produced in the case of multiple learning

algorithms. The reasons that ensemble regression models are able to improve the prediction

performance are summarized in [96, 180] and are briefly stated as follows. First, a single RNN

model that achieves a desired training accuracy may perform poorly in the region that lacks

sufficient training data, while ensemble methods can reduce the risk of relying on a single flawed

model by aggregating all candidate models. Second, the RNN learning algorithm is known to

be a non-convex, NP-hard problem that can result in locally optimal solutions. Therefore, by

using different starting initial weight matrices, ensemble learning methods might be able to avoid

getting trapped in a local minimum and obtain a better set of weights for RNN to accurately predict

output sequences. Third, in the case that the single regression model being trained cannot represent
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the true target function, the ensemble learning methods might be able to provide some good

approximation. Therefore, by introducing ensemble learning into the development of an empirical

model for the nonlinear system of Eq. 2.1, the performance of ensemble regression models is

expected to outperform that of a single RNN model in terms of reduced variability and improved

generalization performance.

A rich collection of ensemble-based algorithms, e.g., Boosting, Bagging and Stacking, have

been developed over the past few years [189]. In this chapter, the stacking method is used to

combine the predictions of multiple regression models developed based on the RNN learning

algorithm. It is noted that all the RNN models are developed to approximate the process dynamics

for the entire operating region in this study. Specifically, following the approach of k-fold cross

validation, the dataset generated from open-loop simulations is first split into k parts as shown in

the dotted box in Fig. 2.3. Then, the RNN model with the general structure shown in Fig. 2.1 is

trained using k−1 parts as training dataset and the remaining one as validation dataset to predict

the nonlinear dynamics of the system of Eq. 2.1. Based on the training dataset, the detailed RNN

structure is shown at the bottom of Fig. 2.3. In the input layer, the dimension of input nodes

is m + n, where xi, i = 1, ...,n represents the real-time state measurements and ui, i = 1, ...,m

represents the manipulated inputs at tk. In the output layer, yi, i = 1, ...,n report the estimation of

the states after the prediction period Pnn. The output vector and the internal states can be used as

the predicted states in the optimization problem of MPC that will be discussed in the next section.

Additionally, two hidden layers are used in the RNN model with the optimal number of neurons

determined through a grid search.

As shown in Fig. 2.3, the above training process is repeated to produce multiple RNN models

using different k−1 sets as training dataset, and therefore, a total of k RNN models are developed

based on k-fold cross validation. Subsequently, the final predicted states at t = tk + Pnn are

calculated by a combiner algorithm that takes all the predictions generated by its constituent

RNNs. In this study, we calculate the average of all prediction results from multiple RNNs as

the final prediction results. Additionally, in Fig. 2.3, it is shown that normalizing and re-scaling
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Figure 2.3: The structure of the ensemble regression models based on RNN learning algorithm and
k-fold cross validation, where x ∈ Rn is the state vector, u ∈ Rm is the input vector, and H1, H2 are
the number of neurons in hidden layers.

functions are employed before and after the ensemble of k RNN models. Specifically, the input

vector, consisting of state measurements x(tk) ∈ Rn and manipulated inputs u(tk) ∈ Rm at t = tk,

is first normalized using the input statistics of the training dataset and fed into the cross-validated

committee of RNNs. Subsequently, the output vector, which is the estimated states at t = tk +Pnn,

is generated by rescaling the average of the normalized predicted states using the output statistics

of the training dataset.

Remark 2.6. While ensemble regression models are utilized to improve prediction accuracy via

the stacking method in this section, it is noted that averaging through the stacking method is not
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the only approach that can be applied here. For example, the bagging method that trains multiple

models based on different subsets of the training dataset and calculates final predictive results

through averaging or majority voting can be utilized to reduce the variance error [189]. The

boosting method can also improve final predictive accuracy by adding more weights to incorrect

prediction during the iterative training process. Additionally, further improvements may be

achieved by combining results of multiple models that are derived using different machine learning

methods through Bayesian model averaging, e.g., [22, 60].

2.3 Lyapunov-based MPC using Ensemble RNN Models

This section presents the formulation of Lyapunov-based MPC (LMPC) that incorporates the

RNN model to predict future states with a stability analysis of the closed-loop system of Eq. 2.1.

Specifically, the stability of the nonlinear system of Eq. 2.1 under a Lyapunov-based controller

derived from the RNN model of Eq. 2.4 is first developed. Based on that, the RNN model of

Eq. 2.4 is incorporated into the design of LMPC under sample-and-hold implementation of control

actions to drive the closed-loop state to a small neighborhood around the origin.

2.3.1 Brief Overview of Model Predictive Control Methods

Before we present the formulation of RNN-based LMPC, a brief overview of model predictive

control (MPC) is provided, followed by the design of Lyapunov-based MPC that ensures

closed-loop stability only. The motivation for the use of MPC is due to the fact that the explicit

feedback controller such as the Sontag control law of Eq. 2.3 may not be the optimal controller

in general since process performance and system constraints are not explicitly taken into account.

To overcome the shortcomings of explicit feedback controllers, MPC, also referred to as receding

horizon control, has been proposed to control nonlinear processes and take process performance

and constraints into considerations [26, 46, 94, 101, 125, 129]. MPC is essentially an on-line

optimization-based control technique that optimizes a performance index or cost function over
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Figure 2.4: General concept for model predictive control (MPC).

a prediction horizon by taking advantage of a dynamic nominal process model, i.e., Eq. 2.1 with

w ≡ 0, while accounting for system/process constraints. A brief overview of MPC is presented

below.

2.3.1.1 Main components of MPC

As shown in Fig. 2.4, MPC typically optimizes the input trajectory (i.e., control actions) over the

prediction horizon to track a set-point or a reference trajectory. The main components of MPC are

listed as follows [43]:

1. A mathematical model of the process/system to predict the future evolution of the

process/system over a time interval termed the prediction horizon.

2. A performance index or cost functional that maps the process/system (state, output and

input) trajectories over the prediction horizon to a real number that is a measure of process

performance. The cost functional is the objective function of the optimization problem.
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3. Constraints on the process/system including restrictions on the control inputs, e.g., physical

constraints on control actuators, and on system states/outputs, e.g., stability and safety

constraints.

4. A receding horizon control approach to sampled-data implementation of controllers for

continuous-time systems.

Compared to a proportional-integral-derivative (PID) controller, MPC has a number of advantages,

which are summarized as follows. 1) As MPC allows the current timeslot (i.e., from tk to tk+1 in

Fig. 2.4) to be optimized, while taking future timeslots (i.e., the remaining part of the prediction

horizon) into account, performance of closed-loop system such as energy consumption and speed

of convergence to the set-point in chemical processes is improved under MPC compared to the PID

controller that does not have predictive ability. 2) MPC has superior performance for processes

with a large number of process variables (e.g., manipulated and controlled variables). 3) MPC

allows constraints to be imposed on both manipulated and controlled variables while an integral

windup often occurs in PID controllers as a limitation of physical systems. 4) Moreover, as the

model accounts for inherent process characteristics (e.g., nonlinear behavior and multivariable

interactions), MPC can accommodate a variety of process dynamics such as time delays, inverse

response and inherent nonlinearities.

2.3.1.2 Process model

The mathematical model of the process/system is an essential element of an MPC controller as

the prediction of process/system behavior is used in both MPC constraints and objective function.

Traditionally, industrial MPCs utilized linear (empirical) process models, e.g., input-output model,

state-space model, step, and impulse response models [129], because linear models can be

considered good representations for many real processes over a small operating range, and are

computationally cheap to solve. However, considering that chemical process are inherently

nonlinear where nonlinearity comes from, for example, conservation of mass, momentum,

and energy, nonlinear process models are preferred in MPCs to improve closed-loop control
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performance when the processes are operated over a wide operating region. Additionally, MPC

takes feedback information every sampling step to improve the poor performance due to linear

models or imperfect nonlinear models used in the prediction.

2.3.1.3 Receding horizon implementation

MPC is implemented in a receding horizon manner in a way that the optimization problem is

repeatedly solved on-line to compute the control actions. Specifically, real-time (continuous-time)

is partitioned into discrete time steps called sampling times where the time between two

consecutive sampling times, e.g., between tk and tk+1 in Fig. 2.4, is called the sampling period.

Process states/outputs are measured or estimated every sampling time to provide feedback

information to MPC. At each sampling time, the MPC optimization problem is initialized with

the state measurement or estimate, and is solved to compute the optimal control action(s) over

the prediction horizon, from which, the first control action (i.e., for the first sampling period

in the prediction horizon) will be applied to the closed-loop process/system. The horizon is

moving one sampling period forward, and at the next sampling time, the MPC problem will be

resolved with a new state measurement/estimate. The aforementioned steps are repeated until

the end of operation. By adopting receding horizon implementation, the MPC is able to use

process feedback information to improve closed-loop performance and compensate for process

disturbances, modeling errors, and other forms of uncertainty. Additionally, it is noted that

the solution to the infinite-horizon MPC (i.e., the MPC formulated with an infinite prediction

horizon), assuming the solution exists, arguably gives the best solution as chemical processes

are typically operated over long periods of time without a natural termination or shutdown time.

However, to make the optimization problem of MPC more computationally tractable, the MPC is

generally designed to be a finite-dimensional optimization problem with finite prediction horizon

and optimized variables (i.e., control actions). Therefore, the receding horizon implementation

also allows for a better approximation of the solution to the corresponding infinite-horizon MPC

optimization problem.
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2.3.1.4 Sample-and-hold implementation of controllers

Sample-and-hold implementation has been widely used in analog-to-digital converters that sample

the voltage of a continuously varying analog signal and hold its value at a constant level for a period

of time. As digital computers are commonly used in industrial control systems, sample-and-hold

has also been utilized to integrate continuous-time physical systems with digital controllers.

Specifically, given the continuous-time nonlinear system of Eq. 2.1, the following sampled time

system is obtained:

x(tk+1)≈ x(tk)+∆ f (x(tk),u(tk),w(tk)) (2.16)

where tk = k∆, k = 0, 1, ..., and ∆ > 0 is the sampling period. u is a piecewise function of ∆,

which means u holds constant within every sampling period, i.e., u(t) = u(tk), ∀t ∈ [tk, tk+1).

Additionally, the explicit Euler method is utilized to integrate the continuous-time system of

Eq. 2.1 with a sufficiently small integration time step hc (0 < hc � ∆) to provide a better

approximation for the sampled time system of Eq. 2.16 by iteratively performing the following

calculation within one sampling period:

x(tk +hc)≈ x(tk)+hc f (x(tk),u(tk),w(tk)) (2.17)

where ∆ is an integer multiple of hc. The state x, input u and disturbance w vectors in the function

f (x,u,w) are updated every hc step, and thus, it takes ∆

hc
iterations of Eq. 2.17 to derive x(tk+1) :=

x(tk +∆). Moreover, it should be noted that for the explicit Euler method, there exists an upper

bound for the integration time step hc to ensure numerical stability. Therefore, hc is chosen to be a

sufficiently small positive number in all the simulation studies throughout this dissertation.
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2.3.1.5 MPC formulation

The MPC problem can be formulated as the following dynamic optimization problem:

min
u∈S(∆)

∫ tk+N

tk
l(x̃(τ),u(τ)) dτ (2.18a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.18b)

x̃(tk) = x(tk) (2.18c)

(x(t),u(t)) ∈ Z, ∀ t ∈ [tk, tk+N) (2.18d)

where x̃(t) is the predicted state trajectory, S(∆) is the set of piecewise constant functions with

period ∆, and N is the number of sampling periods in the prediction horizon. l(x,u) is the cost

function of MPC that represents process performance index; in tracking MPC that steers the system

to the economically optimal steady-state or the economically optimal trajectory, the cost function

is typically designed with a quadratic form that penalizes the deviations of the state and inputs

from their corresponding optimal steady-state or reference values over the prediction horizon,

i.e., l(x,u) = |x|2Q1
+ |u|2Q2

, where Q1, Q2 are positive definite matrices that manage the trade-off

between the speed of state convergence to the steady-state and the cost of control action. By

designing the cost function in a quadratic form, the minimum value of the cost function is attained

at the steady-state. The predicted state trajectory x̃ of Eq. 2.18b is obtained using the nominal

dynamic model of Eq. 2.1 (i.e., w≡ 0) under the piecewise constant input profile computed by the

MPC. Eq. 2.18c defines the initial conditions for the nominal process system of Eq. 2.18b, which

are obtained at each sampling period through a measurement. The constraints of Eq. 2.18d are

the system/process constraints, where Z is assumed to be compact, which accounts, for example,

state, input, and other process constraints. Throughout this dissertation, the term MPC will refer

to tracking MPC that forces a system to steady-state, unless stated otherwise.

MPC is implemented in a receding horizon fashion to compute optimal control actions by

solving the optimization problem of Eq. 2.18. Let u∗(t) be the optimal solution of the optimization
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problem of Eq. 2.18 over the prediction horizon t ∈ [tk, tk+N). We assume that the states of the

closed-loop system are measured at each sampling time. Specifically, at the sampling time tk,

the problem of Eq. 2.18 is initialized with a state feedback measurement x(tk) and the problem is

solved. After u∗(t), where t ∈ [tk, tk+N), is obtained from the MPC optimization problem, only the

first control action of u∗(t), i.e., u∗(t|tk) defined for t ∈ [tk, tk+1), is sent to the control actuators

to be applied over the next sampling period. Then, at the next instance of time tk+1 := tk +∆,

the problem is re-initialized with an updated state measurement and the optimization problem is

solved again by rolling the horizon one sampling period forward.

However, since the MPC scheme of Eq. 2.18 is formulated with a finite prediction horizon,

i.e., N 6= ∞, it should be noted that the MPC scheme of Eq. 2.18 may not be stabilizing, e.g., [94].

Therefore, to ensure stabilization of the closed-loop system with a finite N, additional constraints

or variations to the cost function can be employed. For example, we can design an MPC with

a sufficiently long prediction horizon, by incorporating terminal constraints, or using contractive

constraints that will be discussed in more detail in the next section.

2.3.2 Lyapunov-based MPC

As previously mentioned, despite the well-characterized stability properties, the Lyapunov-based

controllers are not guaranteed to be optimal as performance considerations are not accounted for

in the calculation of control actions. Therefore, to improve process performance while ensuring

stability of the closed-loop system, Lyapunov-based controller, i.e., a control law Φ(x) that satisfies

asymptotic (exponential) stabilizability assumption, is utilized to design a contractive constraint in

the formulation of MPC [36, 98, 99, 103]. The resulting tracking MPC is termed Lyapunov-based
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MPC (LMPC) and is represented by the following optimization problem:

min
u∈S(∆)

∫ tk+N

tk
lt(x̃(τ),u(τ)) dτ (2.19a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.19b)

x̃(tk) = x(tk) (2.19c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (2.19d)

∂V (x(tk))
∂x

f (x(tk),u(tk),0)≤
∂V (x(tk))

∂x
f (x(tk),Φ(x(tk)),0),

if x(tk) ∈Ωρ\Ωρmin (2.19e)

V (x̃(t))≤ ρmin, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρmin (2.19f)

where the notations follow those in Eq. 2.18. The objective function of Eq. 2.19 is the time-integral

of lt(x̃(t),u(t)) over the prediction horizon. The constraint of Eq. 2.19b is the nominal process

model of Eq. 2.1 with w(t)≡ 0 that is used to predict the states of the closed-loop system. Eq. 2.19c

defines the input constraints applied over the entire prediction horizon. The constraint of Eq. 2.19e

forces the closed-loop state to move towards the origin by decreasing the Lyapunov function value

at least at the rate achieved by the Lyapunov-based controller Φ(x(tk)) at t = tk, if x(tk)∈Ωρ\Ωρmin .

However, if x(tk) enters Ωρmin , which is a small neighborhood around the origin, the states predicted

by the nonlinear model of Eq. 2.19b will be maintained in Ωρmin for the entire prediction horizon

under the constraint of Eq. 2.19f.

An illustration of the closed-loop state trajectory under LMPC is shown in Fig. 2.5, where

xs is the steady-state, Ωρ is the closed-loop stability region, Ωρs is a small level set close to the

origin in which the Lyapunov function is not guaranteed to decay due to the sample-and-hold

implementation of control actions and the effect of sufficiently small disturbances, and Ωρmin is a

small forward invariant set around the origin that ensures ultimate boundedness of the closed-loop

state under LMPC. Closed-loop stability of the nonlinear system of Eq. 2.1 is guaranteed under

the LMPC of Eq. 2.19 in the sense that for any initial condition x0 ∈ Ωρ , the closed-loop state is
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Figure 2.5: A state-space illustration of a closed-loop state trajectory under LMPC.

guaranteed to be bounded in Ωρ for all times and converge to a small neighborhood Ωρmin of the

origin and remains in it afterwards.

Since the LMPC of Eq. 2.19 needs a process model for predicting future states, in the following

sections, we will incorporate RNN models in the formulation of LMPC and provide a rigorous a

rigorous stability analysis for the closed-loop system under machine-learning-based MPC.

2.3.3 Lyapunov-based control using RNN models

A stabilizing feedback controller u = Φnn(x) ∈U that can render the origin of the RNN model of

Eq. 2.4 exponentially stable in an open neighborhood D̂ around the origin is assumed to exist for

the RNN model of Eq. 2.4 in the sense that there exists a C 1 Control Lyapunov function V̂ (x) such

that the following inequalities hold for all x in D̂:

ĉ1|x|2 ≤ V̂ (x)≤ ĉ2|x|2, (2.20a)
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∂V̂ (x)
∂x

Fnn(x,Φnn(x))≤−ĉ3|x|2, (2.20b)

∣∣∣∣
∂V̂ (x)

∂x

∣∣∣∣≤ ĉ4|x| (2.20c)

where ĉ1, ĉ2, ĉ3, ĉ4 are positive constants, and Fnn(x,u) represents the RNN model of Eq. 2.4.

Similar to the characterization method of the closed-loop stability region Ωρ for the nonlinear

system of Eq. 2.1, we first search the entire state-space to characterize a set of states φ̂u where

the following inequality holds: ˙̂V (x) = ∂V̂ (x)
∂x Fnn(x,u)<−kV̂ (x), u = Φnn(x) ∈U , k > 0. Starting

from φ̂u, the origin of the RNN model of Eq. 2.4 can be rendered exponentially stable under the

controller u = Φnn(x) ∈ U . The closed-loop stability region for the RNN model of Eq. 2.4 is

defined as a level set of Lyapunov function inside φ̂u: Ωρ̂ := {x ∈ φ̂u | V̂ (x) ≤ ρ̂}, where ρ̂ > 0.

It is noted that the above assumption of Eq. 2.20 is the same as the assumption of Eq. 2.2 for the

general class of nonlinear systems of Eq. 2.1 since the RNN model of Eq. 2.4 can be written in the

form of Eq. 2.1 (i.e., ˙̂x = f̂ (x̂)+ ĝ(x̂)u, where f̂ (·) and ĝ(·) are obtained from coefficient matrices

A and Θ in Eq. 2.4). The assumptions of Eq. 2.2 and Eq. 2.20 are essentially the stabilizability

requirements of the first-principles model of Eq. 2.1 and the RNN model of Eq. 2.4, respectively.

It is noted that Ωρ̂ ⊆Ωρ since the dataset for developing the RNN model of Eq. 2.4 is generated

from open-loop simulations for x ∈Ωρ and u ∈U . Additionally, there exist positive constants Mnn

and Lnn such that the following inequalities hold for all x,x′ ∈Ωρ̂ and u ∈U :

|Fnn(x,u)| ≤Mnn (2.21a)
∣∣∣∣
∂V̂ (x)

∂x
Fnn(x,u)−

∂V̂ (x′)
∂x

Fnn(x′,u)
∣∣∣∣≤ Lnn|x− x′| (2.21b)

Due to the model mismatch between the nominal system of Eq. 2.1 and the RNN model of Eq. 2.4,

the following proposition is developed to demonstrate that the feedback controller u = Φnn(x) ∈U

is able to stabilize the nominal system of Eq. 2.1 if the modeling error is sufficiently small.

Proposition 2.2. Under the assumption that the origin of the closed-loop RNN system of Eq. 2.4 is

rendered exponentially stable under the controller u = Φnn(x) ∈U for all x ∈Ωρ̂ , if there exists a
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positive real number γ < ĉ3/ĉ4 that constrains the modeling error |ν | = |F(x,u,0)−Fnn(x,u)| ≤

γ|x| for all x ∈ Ωρ̂ and u ∈U, then the origin of the nominal closed-loop system of Eq. 2.1 under

u = Φnn(x) ∈U is also exponentially stable for all x ∈Ωρ̂ .

Proof. To demonstrate that the origin of the nominal system of Eq. 2.1 can be rendered

exponentially stable ∀x ∈ Ωρ̂ under the controller for the RNN model of Eq. 2.4, we prove that

˙̂V for the nominal system of Eq. 2.1 can still be rendered negative under u = Φnn(x) ∈U . Based

on Eq. 2.20b and Eq. 2.20c, the time-derivative of V̂ is derived as follows:

˙̂V =
∂V̂ (x)

∂x
F(x,Φnn(x),0)

=
∂V̂ (x)

∂x
(Fnn(x,Φnn(x))+F(x,Φnn(x),0)−Fnn(x,Φnn(x)))

≤− ĉ3|x|2 + ĉ4|x|(F(x,Φnn(x),0)−Fnn(x,Φnn(x)))

≤− ĉ3|x|2 + ĉ4γ|x|2

(2.22)

If γ is chosen to satisfy γ < ĉ3/ĉ4, then it holds that ˙̂V ≤ −c̃3|x|2 ≤ 0 where c̃3 = −ĉ3 + ĉ4γ > 0.

Therefore, the closed-loop state of the nominal system of Eq. 2.1 converges to the origin under

u = Φnn(x) ∈U for all x0 ∈Ωρ̂ .

Remark 2.7. It should be noted that the RNN model of Eq. 2.4 that is trained on the dataset

within the operating region Ωρ may not be stabilizable at the origin for all x ∈ Ωρ under u =

Φnn(x) ∈U due to model mismatch. Therefore, in this section, a new closed-loop stability region

Ωρ̂ is characterized for the RNN model of Eq. 2.4 using the controller Φnn(x) in the form of

Eq. 2.3. Subsequently, it is shown in Proposition 2.2 that the controller Φnn(x) also stabilizes the

actual nonlinear system of Eq. 2.1 at the origin for all x ∈ Ωρ̂ provided that the modeling error

is sufficiently small (i.e., |ν | ≤ γ|x| < ĉ3|x|/ĉ4). Since the closed-loop stability region Ωρ̂ for the

RNN model of Eq. 2.4 guarantees the asymptotic stability of the origin for the nonlinear system of

Eq. 2.1 under u = Φnn(x) ∈U, Ωρ̂ will be taken as the new operating region for the operation of

model predictive control in the following sections.
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2.3.4 Sample-and-hold Implementation of Lyapunov-based Controller

Since the RNN model of Eq. 2.4 will be incorporated in Lyapunov-based MPC design, for

which the control actions are implemented in sample-and-hold, in this section, we first derive

the following propositions demonstrating the sample-and-hold properties of the Lyapunov-based

controller u = Φnn(x) in the presence of bounded disturbances (i.e., |w(t)| ≤ wm). Specifically, the

next proposition demonstrates that there exists an upper bound for the error between the state of

the actual process of Eq. 2.1 in the presence of bounded disturbances (i.e., |w(t)| ≤ wm) and the

state predicted by the RNN model of Eq. 2.4.

Proposition 2.3. Consider the nonlinear system ẋ = F(x,u,w) of Eq. 2.1 in the presence of

bounded disturbances |w(t)| ≤ wm and the RNN model ˙̂x = Fnn(x̂,u) of Eq. 2.4 with the same

initial condition x0 = x̂0 ∈ Ωρ̂ . There exists a class K function fw(·) and a positive constant κ

such that the following inequalities hold ∀x, x̂ ∈Ωρ̂ and w(t) ∈W:

|x(t)− x̂(t)| ≤ fw(t) :=
Lwwm +νm

Lx
(eLxt−1) (2.23a)

V̂ (x)≤ V̂ (x̂)+
ĉ4
√

ρ̂√
ĉ1
|x− x̂|+κ|x− x̂|2 (2.23b)

Proof. Let e(t) = x(t)− x̂(t) denote the error vector between the solutions of the system ẋ =

F(x,u,w) and the RNN model ˙̂x = Fnn(x̂,u). The time-derivative of e(t) is obtained as follows:

|ė|= |F(x,u,w)−Fnn(x̂,u)|

≤ |F(x,u,w)−F(x̂,u,0)|+ |F(x̂,u,0)−Fnn(x̂,u)|
(2.24)

Following Eq. 2.21a, for all ∀x, x̂ ∈Ωρ̂ and w(t) ∈W , it is obtained that

|F(x,u,w)−F(x̂,u,0)| ≤ Lx|x(t)− x̂(t)|+Lw|w(t)|

≤ Lx|x(t)− x̂(t)|+Lwwm

(2.25)

Additionally, the second term |F(x̂,u,0)− Fnn(x̂,u)| in Eq. 2.24 represents the modeling error,
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which is bounded by |ν | ≤ νm for all x̂ ∈ Ωρ̂ . Therefore, based on Eq. 2.25 and the fact that

|F(x̂,u,0)−Fnn(x̂,u)| ≤ νm, ė(t) is bounded as follows:

|ė(t)| ≤ Lx|x(t)− x̂(t)|+Lw|wm|+νm

≤ Lx|e(t)|+Lw|wm|+νm

(2.26)

Therefore, given the zero initial condition (i.e., e(0) = 0), the upper bound for the norm of the error

vector is derived for all x(t), x̂(t) ∈Ωρ̂ and |w(t)| ≤ wm as follows:

|e(t)|= |x(t)− x̂(t)| ≤ Lwwm +νm

Lx
(eLxt−1) (2.27)

Subsequently, ∀x, x̂∈Ωρ , Eq. 2.23b is derived based on the Taylor series expansion of V̂ (x) around

x̂ as follows:

V̂ (x)≤ V̂ (x̂)+
∂V̂ (x̂)

∂x
|x− x̂|+κ|x− x̂|2 (2.28)

where κ is a positive real number. Using Eq. 2.20a and Eq. 2.20c, it follows that

V̂ (x)≤ V̂ (x̂)+
ĉ4
√

ρ̂√
ĉ1
|x− x̂|+κ|x− x̂|2 (2.29)

This completes the proof of Proposition 2.3.

Subsequently, the following proposition is developed to demonstrate that the closed-loop state

x(t) of the actual process of Eq. 2.1 is bounded in Ωρ̂ for all times, and ultimately can be driven to

a small neighborhood Ωρmin around the origin under the controller u = Φnn(x) ∈U implemented in

a sample-and-hold fashion.

Proposition 2.4. Consider the system of Eq. 2.1 under the controller u = Φnn(x̂) ∈ U that is

designed to stabilize the RNN system of Eq. 2.4 and meets the conditions of Eq. 2.20. The

controller is implemented in a sample-and-hold fashion, i.e., u(t) = Φnn(x̂(tk)), ∀t ∈ [tk, tk+1),
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where tk+1 := tk +∆. Let εs, εw > 0, ∆ > 0 and ρ̂ > ρmin > ρnn > ρs satisfy

− ĉ3

ĉ2
ρs +LnnMnn∆≤−εs (2.30a)

− c̃3

ĉ2
ρs +L

′
xM∆+L

′
wwm ≤−εw (2.30b)

and

ρnn := max{V̂ (x̂(t +∆)) | x̂(t) ∈Ωρs,u ∈U} (2.31a)

ρmin ≥ ρnn +
ĉ4
√

ρ̂√
ĉ1

fw(∆)+κ( fw(∆))
2 (2.31b)

Then, for any x(tk) ∈Ωρ̂\Ωρs , the following inequality holds:

V̂ (x(t))≤ V̂ (x(tk)), ∀t ∈ [tk, tk+1) (2.32)

and the state x(t) of the nonlinear system of Eq. 2.1 is bounded in Ωρ̂ for all times and ultimately

bounded in Ωρmin .

Proof. Part 1 : Assuming x(tk) = x̂(tk) ∈ Ωρ̂\Ωρs , we first prove that the value of V̂ (x̂) is

decreasing under the controller u(t) = Φnn(x(tk)) ∈U for t ∈ [tk, tk+1), where x(t) and x̂(t) denote

the solutions of the nonlinear system of Eq. 2.1 in the presence of bounded disturbances and the

RNN system of Eq. 2.4, respectively. The time-derivative of the V̂ (x̂) along the trajectory x̂(t) of

the RNN model of Eq. 2.4 in t ∈ [tk, tk+1) is obtained as follows:

˙̂V (x̂(t)) =
∂V̂ (x̂(t))

∂ x̂
Fnn(x̂(t),Φnn(x̂(tk)))

=
∂V̂ (x̂(tk))

∂ x̂
Fnn(x̂(tk),Φnn(x̂(tk)))+

∂V̂ (x̂(t))
∂ x̂

Fnn(x̂(t),Φnn(x̂(tk)))

− ∂V̂ (x̂(tk))
∂ x̂

Fnn(x̂(tk),Φnn(x̂(tk)))

(2.33)
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Using Eq. 2.20a and Eq. 2.20b, the following inequality is obtained:

˙̂V (x̂(t))≤− ĉ3

ĉ2
ρs +

∂V̂ (x̂(t))
∂ x̂

Fnn(x̂(t),Φnn(x̂(tk)))−
∂V̂ (x̂(tk))

∂ x̂
Fnn(x̂(tk),Φnn(x̂(tk))) (2.34)

Based on the Lipschitz condition of Eq. 2.21 and the fact that x̂ ∈ Ωρ̂ , u ∈U , the upper bound of

˙̂V (x̂(t)) is derived ∀t ∈ [tk, tk+1):

˙̂V (x̂(t))≤− ĉ3

ĉ2
ρs +Lnn|x̂(t)− x̂(tk)|

≤− ĉ3

ĉ2
ρs +LnnMnn∆

(2.35)

Therefore, if Eq. 2.30a is satisfied, the following inequality holds ∀x̂(tk)∈Ωρ̂\Ωρs and t ∈ [tk, tk+1):

˙̂V (x̂(t))≤− εs (2.36)

By integrating the above equation over t ∈ [tk, tk+1), it is obtained that V (x̂(tk+1))≤V (x̂(tk))−εs∆.

So far we have proved that for all x̂(tk) ∈ Ωρ̂\Ωρs , the state of the closed-loop RNN system of

Eq. 2.4 is bounded in the closed-loop stability region Ωρ̂ for all times and moves towards the

origin under u = Φnn(x̂) ∈U implemented in a sample-and-hold fashion.

However, Eq. 2.36 may not hold when x(tk) = x̂(tk) ∈ Ωρs , which implies that the state may

leave Ωρs within one sampling period. Therefore, according to Eq. 2.31a, Ωρnn is designed to

ensure that the closed-loop state x̂(t) of the RNN model does not leave Ωρnn for all t ∈ [tk, tk+1),

u ∈U and x̂(tk) ∈ Ωρs within one sampling period. If the state x̂(tk+1) leaves Ωρs , the controller

u = Φnn(x(tk+1)) will drive the state towards Ωρs over the next sampling period since Eq. 2.36 is

satisfied again at t = tk+1. Therefore, the convergence of the state to Ωρnn for the closed-loop RNN

system of Eq. 2.4 is proved for all x̂0 ∈ Ωρ̂ . It remains to show that the closed-loop state of the

actual nonlinear system of Eq. 2.1 can be bounded in Ωρ̂ for all times and ultimately bounded in a

small neighborhood around the origin under the sample-and-hold implementation of the controller

u = Φnn(x) ∈U .
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Part 2 : Following the analysis performed for the RNN system of Eq. 2.4, we first assume

x(tk) = x̂(tk) ∈ Ωρ̂\Ωρs and derive the time-derivative of V̂ (x) for the nonlinear system of Eq. 2.1

(i.e., ẋ = F(x,u,w)) in the presence of bounded disturbances (i.e., |w| ≤ wm) as follows:

˙̂V (x(t)) =
∂V̂ (x(t))

∂x
F(x(t),Φnn(x(tk)),w)

=
∂V̂ (x(tk))

∂x
F(x(tk),Φnn(x(tk)),0)+

∂V̂ (x(t))
∂x

F(x(t),Φnn(x(tk)),w)

− ∂V̂ (x(tk))
∂x

F(x(tk),Φnn(x(tk)),0)

(2.37)

From Eq. 2.22, ∂V̂ (x(tk))
∂x F(x(tk),Φnn(x(tk)),0) ≤ −c̃3|x(tk)|2 holds for all x ∈ Ωρ̂\Ωρs . Based on

Eq. 2.20a and the Lipschitz condition in Eq. 2.21, the following inequality is obtained for ˙̂V (x(t))

for all t ∈ [tk, tk+1) and x(tk) ∈Ωρ̂\Ωρs:

˙̂V (x(t))≤− c̃3

ĉ2
ρs +

∂V̂ (x(t))
∂x

F(x(t),Φnn(x(tk)),w)−
∂V̂ (x(tk))

∂x
F(x(tk),Φnn(x(tk)),0)

≤− c̃3

ĉ2
ρs +L

′
x|x(t)− x(tk)|+L

′
w|w|

≤− c̃3

ĉ2
ρs +L

′
xM∆+L

′
wwm

(2.38)

Therefore, if Eq. 2.30b is satisfied, the following inequality holds ∀x(tk) ∈ Ωρ̂\Ωρs and t ∈

[tk, tk+1):

˙̂V (x(t))≤− εw (2.39)

From Eq. 2.39, it is readily shown that Eq. 2.32 holds and the state of the closed-loop system

of Eq. 2.1 is maintained in Ωρ̂ for all times. Also, it follows that the controller u = Φnn(x) is

still able to drive the state of the actual nonlinear system of Eq. 2.1 towards the origin in every

sampling period. Additionally, if x(tk) ∈ Ωρs , it is shown in Part 1 that the state of the RNN

model of Eq. 2.4 is maintained in Ωρnn within one sampling period. Considering the bounded error

between the state of the RNN of Eq. 2.4 model and the state of the nonlinear system of Eq. 2.1

50



given by Eq. 2.23a, there exists a compact set Ωρmin ⊃ Ωρnn that satisfies Eq. 2.31b such that the

state of the actual nonlinear system of Eq. 2.1 does not leave Ωρmin during one sampling period

if the state of the RNN model of Eq. 2.4 is bounded in Ωρnn . If the state x(t) enters Ωρmin\Ωρs ,

we have shown that Eq. 2.39 holds, and thus, the state will be driven towards the origin again

under u = Φnn(x) during the next sampling period. This completes the proof of Proposition 2.4

by showing that for any x0 = x̂0 ∈Ωρ̂ , the closed-loop state trajectories of the nonlinear system of

Eq. 2.1 are maintained in Ωρ̂ , and ultimately bounded in Ωρmin provided that the assumptions of

Proposition 2.4 are met.

2.3.5 Lyapunov-based MPC Using Ensemble RNN Models

In this section, we first present the formulation of Lyapunov-based model predictive control

(LMPC) using a single RNN model, followed by a rigorous stability analysis for the closed-loop

system. Then the LMPC using an ensemble of RNN models is presented to improve the overall

predictive performance and guarantee closed-loop stability.

2.3.5.1 LMPC using a single RNN model

The design of LMPC that uses a single RNN model for prediction is given by the following

optimization problem:

min
u∈S(∆)

∫ tk+N

tk
L(x̃(t),u(t))dt (2.40a)

s.t. ˙̃x(t) = Fnn(x̃(t),u(t)) (2.40b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (2.40c)

x̃(tk) = x(tk) (2.40d)

˙̂V (x(tk),u)≤ ˙̂V (x(tk),Φnn(x(tk)), if x(tk) ∈Ωρ̂\Ωρnn (2.40e)

V̂ (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρnn (2.40f)
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Figure 2.6: A schematic representing the set φ̂u, the closed-loop stability region Ωρ̂ , and the sets
Ωρmin , Ωρnn , Ωρs (going from outside to inside). Under the LMPC of Eq. 2.40, the closed-loop state
is driven towards the origin and ultimately bounded in Ωρmin for any x0 ∈Ωρ̂ .

where x̃ is the predicted state trajectory, S(∆) is the set of piecewise constant functions with period

∆, and N is the number of sampling periods in the prediction horizon. ˙̂V (x,u) is used to represent
∂V̂ (x)

∂x (Fnn(x,u)). The optimal input trajectory computed by the LMPC is denoted by u∗(t), which

is calculated over the entire prediction horizon t ∈ [tk, tk+N). The control action computed for the

first sampling period of the prediction horizon u∗(tk) is sent by the LMPC to be applied over the

first sampling period and the LMPC is resolved at the next sampling time.

In the optimization problem of Eq. 2.40, the objective function of Eq. 2.40a is the integral of

L(x̃(t),u(t)) over the prediction horizon. The constraint of Eq. 2.40b is the RNN model of Eq. 2.4

that is used to predict the states of the closed-loop system. Eq. 2.40c defines the input constraints

applied over the entire prediction horizon. Eq. 2.40d defines the initial condition x̃(tk) of Eq. 2.40b,

which is the state measurement at t = tk. The constraint of Eq. 2.40e forces the closed-loop state

to move towards the origin if x(tk) ∈ Ωρ̂\Ωρnn . However, if x(tk) enters Ωρnn , the states predicted

by the RNN model of Eq. 2.40b will be maintained in Ωρnn for the entire prediction horizon.

A schematic of the stability region and a closed-loop state trajectory under LMPC is shown in

Fig. 2.6.
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Based on the LMPC of Eq. 2.40, the following theorem is established to demonstrate that the

LMPC optimization problem can be solved with recursive feasibility, and closed-loop stability of

the nonlinear system of Eq. 2.1 is guaranteed under the sample-and-hold implementation of the

optimal control actions calculated by LMPC.

Theorem 2.2. Consider the closed-loop system of Eq. 2.1 under the LMPC of Eq. 2.40 based on

the controller Φnn(x) that satisfies Eq. 2.20. Let ∆ > 0, εs > 0 and ρ̂ > ρmin > ρnn > ρs satisfy

Eq. 2.30 and 2.31. Then, given any initial state x0 ∈ Ωρ̂ , if the conditions of Proposition 2.3 and

Proposition 2.4 are satisfied, there always exists a feasible solution for the optimization problem

of Eq. 2.40. Additionally, it is guaranteed that under the LMPC of Eq. 2.40, x(t) ∈ Ωρ̂ , ∀t ≥ 0,

and x(t) ultimately converges to Ωρmin for the closed-loop system of Eq. 2.1.

Proof. We first prove that the optimization problem of Eq. 2.40 is recursively feasible for all x ∈

Ωρ̂ . Specifically, if x(tk)∈Ωρ̂\Ωρnn at t = tk, the control action u(t) =Φnn(x(tk))∈U , t = [tk, tk+1)

calculated based on the state measurement x(tk) satisfies the input constraint of Eq. 2.40c and the

Lyapunov-based constraint of Eq. 2.40e. Additionally, if x(tk) ∈Ωρnn , the control actions given by

Φnn(x(tk+i)), i = 0,1, ...,N−1 satisfies the input constraint of Eq. 2.40c and the Lyapunov-based

constraint of Eq. 2.40f since it is shown in Proposition 2.4 that the states predicted by the RNN

model of Eq. 2.40b remain inside Ωρnn under the controller Φnn(x). Therefore, for all x0 ∈Ωρ̂ , the

LMPC optimization problem of Eq. 2.40 can be solved with recursive feasibility if x(t) ∈ Ωρ̂ for

all times.

Next, we prove that given any x0 ∈Ωρ̂ , the state of the closed-loop system of Eq. 2.1 is bounded

in Ωρ̂ for all times and ultimately converges to a small neighborhood around the origin Ωρmin

defined by Eq. 2.31b under the LMPC of Eq. 2.40. Consider x(tk) ∈ Ωρ̂\Ωρnn at t = tk. The

constraint of Eq. 2.40e is activated such that the control action u is calculated to decrease the value

of V̂ (x̂) based on the states predicted by the RNN model of Eq. 2.40b over the next sampling period.

Additionally, it is shown in Eq. 2.39 that if the constraint of Eq. 2.40e is satisfied, ˙̂V (x) ≤ −εw

holds for t ∈ [tk, tk+1) after the control action u∗(tk) is applied to the nonlinear system of Eq. 2.1.

Therefore, the value of V̂ (x) based on the state of the actual nonlinear system of Eq. 2.1 decreases
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within the next sampling period, which implies that the closed-loop state can be driven into Ωρnn

within finite sampling steps. After the state enters Ωρnn , the constraint of Eq. 2.40f is activated

to maintain the predicted states of the RNN model of Eq. 2.40b in Ωρnn over the entire prediction

horizon. Since there exists mismatch between the RNN system of Eq. 2.40b and the nonlinear

system of Eq. 2.1, the state of the nonlinear system of Eq. 2.1 may leave Ωρnn under the constraint

of Eq. 2.40f. However, if we characterize a region Ωρmin that satisfies Eq. 2.31b, it is shown in

Proposition 2.4 that the state x(t) of the nonlinear system of Eq. 2.1, ∀t ∈ [tk, tk+1) is guaranteed

to be bounded in Ωρmin if the predicted state by the RNN model of Eq. 2.40b remains in Ωρnn .

Therefore, at the next sampling step t = tk+1, if the state x(tk+1) is still bounded in Ωρnn , the

constraint of Eq. 2.40f maintains the predicted state x̂ of the RNN model of Eq. 2.40b in Ωρnn

such that the actual state x of the nonlinear system of Eq. 2.1 stays inside Ωρmin . However, if

x(tk+1) ∈ Ωρmin\Ωρnn , following the proof we have shown for the case that x(tk) ∈ Ωρ̂\Ωρnn , the

constraint of Eq. 2.40e will be activated instead to drive it towards the origin. This completes the

proof of boundedness of the states of the closed-loop system of Eq. 2.1 in Ωρ̂ and convergence to

Ωρmin for any x0 ∈Ωρ̂ .

Remark 2.8. Theorem 2.2 shows that closed-loop stability of the nonlinear system of Eq. 2.1 is

achieved under the LMPC of Eq. 2.40 that is designed based on the RNN model of Eq. 2.4 and

RNN-based constraints. It is noted that the closed-loop state of the nonlinear system of Eq. 2.1

can be driven to a small neighborhood around the origin because the constraints of the LMPC of

Eq. 2.40 guarantee the decrease of V̂ in each sampling period accounting for the effect of model

mismatch including the modeling error ν between the system of Eq. 2.1 and the RNN model of

Eq. 2.4, the sample-and-hold implementation of control actions, and the bounded disturbances

w(t) in Eq. 2.1. In other words, closed-loop stability can be maintained under the LMPC of

Eq. 2.40 if the modeling error ν , the sampling period ∆ and the bound of disturbances wm are

sufficiently small such that Proposition 2.3 and Proposition 2.4 are satisfied.
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2.3.5.2 LMPC using an ensemble of RNN models

Since the RNN model accuracy plays an important role in the optimization problem of LMPC

of Eq. 2.40, ensemble regression models introduced in previous section are employed to improve

the performance of the closed-loop system of Eq. 2.1 under LMPC. Based on the formulation of

LMPC given by Eq. 2.40, the LMPC that incorporates ensemble regression models are developed

as follows:

min
u∈S(∆)

∫ tk+N

tk
L(x̃(t),u(t))dt (2.41a)

s.t. ˙̃x(t) =
1

Ne

Ne

∑
j=1

F j
nn(x̃(t),u(t)) (2.41b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (2.41c)

x̃(tk) = x(tk) (2.41d)

˙̂V (x(tk),u)≤ ˙̂V (x(tk),Φnn(x(tk)), if x(tk) ∈Ωρ̂\Ωρnn (2.41e)

V̂ (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρnn (2.41f)

where the notation follows that in Eq. 2.40 and Ne is the number of regression models used for

prediction. Ne can be the number of all available RNN models, or can be determined off-line

through trial-and-error to account for computational efficiency. It is shown in Eq. 2.41b that the

states x̃(t), t ∈ [tk, tk+N) are now predicted by taking the average of RNN models F j
nn, j = 1, ...,Ne.

Since the objective function of Eq. 2.41a and the Lyapunov-based constraints of Eq. 2.41e-2.41e

are computed based on predicted states from Eq. 2.41b, the application of ensemble regression

models in Eq. 2.41b significantly improves the solution of the optimization problem and thus leads

to a better closed-loop performance. Additionally, it is readily shown that closed-loop stability

established in Theorem 2.2 is still guaranteed for the LMPC of Eq. 2.41 because each regression

model F j
nn, j = 1, ...,Ne is trained to satisfy all the conditions and assumptions in Theorem 2.2.

The LMPC based on ensemble regression models is implemented in the same way as the LMPC

of Eq. 2.40, i.e., the optimal input trajectory u∗(t) is calculated over the entire prediction horizon
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t ∈ [tk, tk+N) but only the first control action u∗(tk) is applied to the system of Eq. 2.1 over the first

sampling period. However, since the optimization problem of the LMPC of Eq. 2.41 is now based

on prediction results from multiple RNN models, the computation time for training multiple RNN

models and solving the LMPC of Eq. 2.41 both increase rapidly as the number of RNN models

being used increases, which suggests the further investigation on computational efficiency for the

real-time implementation of LMPC using an ensemble regression models.

2.3.6 Parallel Computing

An ensemble of RNN models has been utilized in LMPC to provide more accurate prediction of

future states through the average of multiple RNN prediction results. As a result, the closed-loop

performance can be improved in the sense that the closed-loop state of the system of Eq. 2.1 is

able to converge to the origin quickly and smoothly. While ensemble learning improves model

prediction accuracy by using multiple RNN models, computation time for running LMPC is

inevitably increased. Therefore, considering the significant increase of computation time arising

from the use of multiple RNN models, parallel computing is employed to reduce real-time

computation time. Parallel computing is a type of computation in which the execution of multiple

processes is carried out simultaneously [10]. Generally, it takes advantage of multiple compute

resources (e.g., a single computer with multiple processors/cores or many computers connected by

a network) to solve a computationally heavy task, in which a complex problem can be broken into

discrete parts that can be solved concurrently. Additionally, parallel computing can be categorized

into two types based on whether there exists communication between processors/networked

computers: 1) In parallel computing without communication, multiple processors execute multiple

tasks simultaneously and generate the results independently. 2) In parallel computing with

communication (sometimes it is also called distributed computing), networked computers or

multiple processors communicate and coordinate the work through message passing interface

(MPI) to obtain final results. Based on the computation tasks for training multiple RNN models and

calculating the average of multiple RNN prediction results in LMPC, the first type and the second
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type of parallel computing are applied to these two tasks, respectively, to enhance computational

efficiency in both cases.

2.3.6.1 Training multiple RNNs in parallel

Multiple RNN models are constructed via a k-fold cross validation method discussed in

Section 2.2.3. Specifically, if k RNN models are utilized in the LMPC of Eq. 2.41, the computation

time for training all RNN models in series is approximately k times longer than that for a single

RNN model. It is noted that the resulting increase of computation time is unnecessary since

the training processes for k RNN models are independent from each other. Therefore, parallel

computing is utilized to distribute the training processes to multiple processors such that k RNN

models can be trained simultaneously. The training processes of k RNN models are implemented

in parallel with the following steps: 1) k processors are first reserved with sufficient memory. 2)

Based on k-fold cross validation, the entire dataset is partitioned into k folds with the same size,

which are then distributed to all reserved processors. 3) For the kth processor, the RNN model is

trained with k−1 subsets (i.e., the kth subset is excluded) as the training dataset and the remaining

kth subset as the validation dataset. 4) A bash script is created to run all k processors together such

that the training processes for the k RNN models can be executed concurrently. Since the stopping

criteria might not be satisfied by the k training processes simultaneously due to different training

datasets, the total computation time is determined by the slowest training process.

2.3.6.2 Parallel operation of LMPC using an ensemble of RNNs

An ensemble of RNN models is utilized in the LMPC of Eq. 2.41, under which prediction accuracy

is improved and closed-loop stability of the nonlinear system remains valid. Since the optimal

solution u∗(t) is now computed based on the states predicted by multiple RNN models, the

computation time for an ensemble of Ne RNN models increases rapidly (at least Ne times the

original computation time for the LMPC based on a single RNN model) under serial computation

of Eq. 2.41b, which greatly limits the application of ensemble regression model-based LMPC in
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industry. Therefore, in this subsection, parallel computing is utilized to reduce the computation

time of calculating multiple RNN models of Eq. 2.41b.

Specifically, in the LMPC optimization problem of Eq. 2.41, the state prediction given by

Eq. 2.41b can be broken apart into Ne similar sub-tasks that can be processed independently

and simultaneously. Consider using Ne (Ne ≤ k) RNN models for prediction of Eq. 2.41b. The

calculation of Eq. 2.41b through parallel computing consists of the following steps: 1) As shown

in Fig. 2.7, we first reserve Ne + 1 nodes, in which node 0 is the host node and the rest are

worker nodes. The host node is used to receive and send information while the worker nodes

are mainly used for computation. 2) The optimization problem is running on the host node while

the computation of multiple RNN models is assigned to worker nodes. Specifically, when it comes

to state prediction using Eq. 2.41b, the host node is executed first to broadcast x(tk) and u(t) to all

nodes since ensemble regression models in Eq. 2.41b share the same initial condition x(tk) and the

same guess of control actions u(t) at t = tk. 3) Each worker node is assigned with an RNN model

for prediction and the host node gathers the results from worker nodes and compute the average as

the final result. 4) The optimal control action u∗(tk) is sent to the real system to be applied for the

next sampling period by the host node. The above process is repeated every sampling step (i.e.,

at the next sampling time tk+1, the LMPC of Eq. 2.41 receives the state measurement x(tk+1) and

sends it to the host node. Then, steps 1-4 are repeated to parallelize the computation of Eq. 2.41b.)

Remark 2.9. Computational efficiency of the LMPC optimization problem of Eq. 2.41 is

significantly improved through the parallel operation of Ne independent ensemble regression

models. However, it is noted that the computation time may not be reduced exactly by Ne times

under parallel operation due to the communication and waiting time between the host node and

the worker nodes. It is also important to mention that the communication between the LMPC and

the process model, and the main program of the optimization problem itself are running on the host

node only. Additionally, as shown in Fig. 2.7, synchronization operation should be employed when

the host node combines all the results from worker nodes to ensure that each task in worker node

blocks until all tasks in the computing group reach the host node.
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Figure 2.7: Parallel computation of the ensemble of RNN models in LMPC, where ug(tk)
represents the guess of control action sent to the RNN models.
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2.3.7 Computational Implementation Issues of RNN Models

In this section, we address computational implementation issues for the RNN models obtained

following the training algorithm in Section 2.2. Specifically, the implementation of RNN models

for long prediction horizon is first discussed. Then, numerical methods are employed to evaluate

modeling error and approximate the Lyapunov-based constraints in LMPC, respectively.

2.3.7.1 Long prediction horizon

Although the ensemble of RNN models developed in Section 2.2 is to predict future states over

t ∈ [tk, tk+Pnn] given the states and inputs at t = tk, where PNN is an integer multiple of the sampling

period ∆, it is noted that ensemble regression models can be applied to predict states for longer

period of time (i.e., t ∈ [tk, tk + NPnn], N > 1) in practical applications, e.g., model predictive

control. Specifically, the obtained RNN models will be utilized successively at every prediction

step t = tk + iPnn, i = 0,1, ...,N− 1, to predict all the states within the entire prediction horizon

t ∈ [tk, tk + NPnn], in which the prediction results (i.e., the output vector x(tk + iPnn)) from the

previous RNN models will be used as the initial states for the current prediction to predict states

over [tk + iPnn, tk +(i+ 1)Pnn], i = 0,1, ...,N− 1. Additionally, since the means and the standard

deviations for normalizing inputs and re-scaling outputs could be slightly different, intermediate

re-scaling and normalizing steps should be performed between two successive ensemble prediction

steps during the entire prediction horizon.

Before we apply the obtained RNN models within LMPC, the testing dataset that has not

been used in the training process is utilized to test the prediction performance of RNNs. In

this case, the normalizing and re-scaling functions before and after the ensemble of RNN models

(Fig. 2.3) should be updated with the statistics of the testing dataset. Specifically, the normalizing

and re-scaling functions during the training process are constructed based on the statistics of the

training dataset only instead of the entire dataset due to the following reasons. First, the training

and testing datasets may not be equally representative of the operating region considered, and

thus, the training and testing datasets should be normalized separately. Second, data leakage that
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introduces information from outside, e.g., testing dataset, into RNN model should be prevented

during the training process to avoid creating an overly optimistic but potentially invalid predictive

model. Therefore, based on the normalizing and re-scaling functions designed for the testing

dataset, the prediction performance of RNN models is evaluated by the mean absolute percentage

error between the predicted states of the RNN models and the actual states derived from the

nominal nonlinear system ẋ = f (x)+g(x)u.

Remark 2.10. While the use a longer prediction horizon by recursively performing RNN

predictions in LMPC can improve the closed-loop performance, a short horizon may be

computationally advantageous for real-time application. Also, it should be noted that closed-loop

stability properties derived in the previous sections hold for any prediction horizon size. Therefore,

the length of the prediction horizon should be determined via closed-loop simulations to balance

optimality of the LMPC solutions and its computational complexity.

2.3.7.2 Approximation via numerical methods

Since we mainly discuss the continuous RNN models in Section 2.2, while in practice, the

datasets for training RNN models are mostly generated by a sample-data collection from

industrial processes, lab experiments or numerical simulation, necessary approximations should

be performed to incorporate the RNN model trained on sample data within LMPC. Specifically,

numerical methods are utilized to compute modeling error, characterize the closed-loop stability

region Ωρ for the RNN model and calculate V̇ (x(tk),u(tk)) in the LMPC constraint of Eq. 2.41e,

respectively.

a) Approximation of modeling error

Since the RNN is trained to predict future states over t ∈ [tk, tk +Pnn), in which the RNN output

is the state at tk +Pnn and the time interval between internal states is chosen as the integration

time step hc, the modeling error ν = ẋ(tk)− ˙̂x(tk) at the state x(tk) = x̂(tk) is approximated using a
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forward finite difference method during the training process as follows:

|ν |=
∣∣∣∣
x(tk +hc)− x(tk)

hc
− x̂(tk +hc)− x̂(tk)

hc

∣∣∣∣

=

∣∣∣∣
x(tk +hc)− x̂(tk +hc)

hc

∣∣∣∣
(2.42)

where hc is a sufficiently small time interval. x(tk +hc) is obtained via explicit Euler method with

an integration time step hc, and x̂(tk + hc) is the first internal state of the RNN model. Then, the

constraint |ν | ≤ γ|x| is satisfied if the following equation holds:

∣∣∣∣
x(tk +hc)− x̂(tk +hc)

x(tk +hc)

∣∣∣∣≤ γhc (2.43)

According to Eq. 2.43, the mean absolute percentage error between predicted states x̂ and targeted

states x in training data can be utilized as a metric to indicate the modeling error of RNNs.

b) Characterization of closed-loop operating region

The stabilizing controller u = Φnn(x) ∈ U is initially utilized to characterize the set φu and the

closed-loop stability region Ωρ based on the RNN model written in the form of ˙̂x = f̂ (x̂)+ ĝ(x̂)u.

However, since it is difficult to derive the explicit forms of f̂ (·) and ĝ(·) for an RNN with a complex

structure, numerical methods are utilized to approximate f̂ (·) and ĝ(·). For example, f̂ (·) can be

approximated by the predicted ˙̂x with u = 0, where ˙̂x is obtained using the forward finite difference

method as shown in the previous section. Then, ĝ(·) is approximated by ĝ(x̂) = ( ˙̂x− f̂ (x̂))/u with

a nonzero u. Since the minimum prediction step in RNNs is the sufficiently small integration time

step hc, the approximation results via numerical methods can be regarded as a good representation

of the actual f̂ (·) and ĝ(·) of an RNN model. After f̂ (·) and ĝ(·) are obtained, a simulation

with a full sweep over the entire state-space based on the stabilizing controller u = Φnn(x) ∈U is

performed to characterize the region φu and V̇ (x) = ∂V (x)
∂x (Fnn(x,u)) is approximated via forward

finite difference method. Subsequently, the closed-loop stability region Ωρ is characterized as a

level set of V (x).
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c) Approximation of Lyapunov-based constraints

Additionally, V̇ (x(tk),u(tk)) in the Lyapunov-based constraint of Eq. 2.41e is approximated via the

same numerical method (i.e., forward finite difference method). It is noted that the approximation

of V̇ (x(tk),u(tk)) does not affect closed-loop stability of the actual nonlinear system (i.e., ẋ =

F(x,u,w) := f (x)+ g(x)u+ h(x)w) under the constraint of Eq. 2.41e since the same numerical

method is used to approximate both V̇ (x(tk),u(tk)) and V̇ (x(tk),Φnn(x)). Specifically, it has been

shown that the controller u = Φnn(x) ∈ U is able to stabilize the actual nonlinear system at the

origin for all x in Ωρ since Eq. 2.2 is satisfied in Ωρ ⊂ φu that is characterized via the numerical

computation of V̇ (x(tk),Φnn(x)).

2.3.8 Application to a Chemical Process Example

A chemical process example is used to illustrate the application of LMPC using RNN models

to maintain the closed-loop state within the stability region. Specifically, a well-mixed,

non-isothermal continuous stirred tank reactor (CSTR) where an irreversible second-order

exothermic reaction takes place is considered. The reaction transforms a reactant A to a product

B (A→ B). The inlet concentration of A, the inlet temperature and feed volumetric flow rate

of the reactor are CA0, T0 and F , respectively. The CSTR is equipped with a heating jacket that

supplies/removes heat at a rate Q. The CSTR dynamic model is described by the following material

and energy balance equations:

dCA

dt
=

F
V
(CA0−CA)− k0e

−E
RT C2

A (2.44a)

dT
dt

=
F
V
(T0−T )+

−∆H
ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV
(2.44b)

where CA is the concentration of reactant A in the reactor, V is the volume of the reacting liquid in

the reactor, T is the temperature of the reactor and Q denotes the heat input rate. The concentration

of reactant A in the feed is CA0. The feed temperature and volumetric flow rate are T0 and F ,

respectively. The reacting liquid has a constant density of ρL and a heat capacity of Cp. ∆H, k0, E,
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and R represent the enthalpy of reaction, pre-exponential constant, activation energy, and ideal gas

constant, respectively. Process parameter values are listed in Table 2.1.

Table 2.1: Parameter values of the chemical reactor example.

T0 = 300 K F = 5 m3/hr

V = 1 m3 E = 5×104 kJ/kmol

k0 = 8.46×106 m3/kmol hr ∆H =−1.15×104 kJ/kmol

Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K

ρL = 1000 kg/m3 CA0s = 4 kmol/m3

Qs = 0.0 kJ/hr CAs = 1.22 kmol/m3

Ts = 438 K

The CSTR is initially operated at the unstable steady-state (CAs, Ts) = (1.95 kmol/m3, 402 K),

and (CA0s Qs) = (4 kmol/m3, 0 kJ/hr). The manipulated inputs are the inlet concentration

of species A and the heat input rate, which are represented by the deviation variables ∆CA0 =

CA0−CA0s , ∆Q = Q−Qs, respectively. The manipulated inputs are bounded as follows: |∆CA0| ≤

3.5 kmol/m3 and |∆Q| ≤ 5× 105 kJ/hr. Therefore, the states and the inputs of the closed-loop

system are xT = [CA−CAs T − Ts] and uT = [∆CA0 ∆Q], respectively, such that the equilibrium

point of the system is at the origin of the state-space, (i.e., (x∗s ,u
∗
s ) = (0,0)). The control objective

is to operate the CSTR at the unstable equilibrium point (CAs, Ts) by manipulating the heat input

rate ∆Q and the inlet concentration ∆CA0 under the LMPC using RNN models. The explicit

Euler method with an integration time step of hc = 10−4 hr is applied to numerically simulate

the dynamic model of Eq. 2.44. The nonlinear optimization problem of the LMPC of Eq. 2.41 is

solved using the python module of the IPOPT software package [158], named PyIpopt with the

sampling period ∆ = 10−2 hr.

2.3.8.1 Data generation

To apply the LMPC of Eq. 2.41 to the CSTR of Eq. 2.44, extensive open-loop simulations are first

conducted in the closed-loop stability region Ωρ for the CSTR of Eq. 2.44 to generate the dataset
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for RNN models, and subsequently, RNN models are developed to capture the system dynamics

in Ωρ with a desired degree of accuracy. The control Lyapunov function V (x) = xT Px is designed

with P =




1060 22

22 0.52


. Then, the closed-loop stability region Ωρ for the CSTR with ρ = 372

is characterized as a level set of Lyapunov function inside the region φu, from which the origin

can be rendered exponentially stable under the controller u = Φ(x) ∈U . Open-loop simulations

are performed with a full sweep through all of the feasible initial conditions x0 ∈ Ωρ and inputs

u∈U for finite sampling steps, from which the state trajectories represented by sampled data points

are collected with a minimum time step as the integration time step hc. Subsequently, the RNN is

developed based on the dataset generated from open-loop simulations in Ωρ to predict future states

over one sampling period ∆ with the minimum prediction period hc using the state-of-the-art API,

Keras. Specifically, the RNN model is designed to have two hidden recurrent layers consisting

of 96 and 64 recurrent units, respectively and use the sigmoid function as the activation function.

The stopping criteria for the training process includes the modeling error less than a threshold

and early stopping being triggered. Additionally, a 10-fold cross validation are used to construct

homogeneous ensemble regression models for the LMPC of Eq. 2.41 using multiple RNN models.

After the RNN model is obtained, the Lyapunov function V̂ (x) for the RNN model is chosen to

be the same as V (x), and the set φ̂u, in which ˙̂V ≤ kV̂ holds, is characterized in Fig. 2.8 using the

controller u = Φnn(x) ∈ U with the approximation approach discussed before. The closed-loop

stability region Ωρ̂ for the CSTR system described by the RNN model is characterized as the

largest level set of V̂ in φ̂u and also a subset of Ωρ (i.e., Ωρ̂ ⊂ Ωρ ) with ρ̂ = 368. Additionally,

ρnn = 1.6 and ρmin = 2 are determined through extensive simulations for u ∈U . The LMPC cost

function of Eq. 2.41a is designed to be L(x,u) = |x|2Q1
+ |u|2Q2

, where Q1 = [500 0; 0 0.5] and

Q2 = [1 0; 0 8× 10−11], such that the minimum value of L is achieved at the origin. It is noted

that since the steady-state (CAs, Ts) = (1.95 kmol/m3, 402 K) is an unstable equilibrium point of

the system of Eq. 2.44, open-loop simulations are performed for a few sampling periods only to

guarantee that state trajectories starting from Ωρ do not diverge quickly and can be bounded in a
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Figure 2.8: The set φ̂u represented by the blue region and the stability region Ωρ̂ (black ellipse) for
the closed-loop CSTR under the controller u = Φnn(x) ∈U .

slightly larger region.

2.3.8.2 Linear state-space model

To illustrate the effectiveness of the proposed LMPC of Eq. 2.41 using RNN models, we also

compare it with the LMPC using a linear state-space model and the first-principles model of

Eq. 2.44, respectively. The linear state-space model for the CSTR system of Eq. 2.44 is identified

with the following form:

ẋ = Asx+Bsu (2.45)

where x and u are the state vector and the manipulated input vector, As and Bs are coefficient

matrices for the state-space model. Following the system identification method in [74], the

numerical algorithms for subspace state space system identification is utilized to obtain As and

Bs as As = 100×



−0.154 −0.003

5.19 0.138


 and Bs =




4.03 0

1.23 0.004


. The eigenvalues of matrix As

is calculated to be λ1 = −5 and λ2 = 3.14, which is consistent with the fact that the steady-state

(CAs, Ts) = (1.95 kmol/m3, 402 K) is an unstable equilibrium point of CSTR.
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Figure 2.9: The state-space profiles for the open-loop simulation using the first-principles model of
Eq. 2.44 and the RNN model, respectively, for various sets of inputs and initial conditions (marked
as blue stars) x0 in the closed-loop stability region Ωρ̂ .

2.3.8.3 Simulation results

We first carry out simulation results under the LMPC using the RNN model and the first-principles

model of Eq. 2.44, respectively. It should be noted that the machine learning approach is used

when only data are available. The first-principles model in the following simulations substitutes

for the role of the experimental/industrial process. In other words, the MPC using first-principles

model only serves as a benchmark to determine the best performance that any data-driven modeling

method can achieve. In Fig. 2.9, it is demonstrated that starting from the same initial condition

x0 ∈ Ωρ̂ with the same input sequences, the state trajectories for a fixed finite interval of time

under the RNN model are close to those under the first-principles model of the nonlinear CSTR of

Eq. 2.44. This implies that the well-trained RNN model can be regarded as a good representation

for the CSTR first-principles model of Eq. 2.44. Next, the RNN model is incorporated in the

LMPC of Eq. 2.41 using a single RNN model, under which the closed-loop state trajectories, state

and manipulated input profiles of the system of Eq. 2.44 are shown in Figs. 2.10-2.13.

Fig. 2.10 demonstrates that for initial conditions x0 ∈ Ωρ̂ , the closed-loop state is bounded in

the closed-loop stability region Ωρ̂ for all times and ultimately converges to a small neighborhood
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Figure 2.10: The state-space profiles for the closed-loop CSTR under the LMPC of Eq. 2.41 using
RNN models for various initial conditions (marked as red stars) in the closed-loop stability region
Ωρ̂ .
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Figure 2.11: The state-space profiles for the closed-loop CSTR under the LMPC using the
following models: the first-principles model (blue trajectory), the RNN model (red trajectory)
and the linear state-space model (yellow trajectory) for an initial condition (-1, 63.6).
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Figure 2.13: Manipulated input profiles (u1 =∆CA0 and u2 =∆Q) for the initial condition (-1, 63.6)
under the LMPC using the following models: the first-principles model (blue trajectory), the RNN
model (red trajectory) and the linear state-space model (yellow trajectory), where the black dotted
lines represent the upper and lower bound for u1 and u2, respectively.
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around the origin (Ωρmin) under the LMPC of Eq. 2.41 using a single RNN model. Additionally,

Fig. 2.11 shows the comparison of state trajectories for the closed-loop system under the LMPC

using a single RNN model, the state-space model of Eq. 2.45 and the first-principles model of

Eq. 2.44, respectively. It is demonstrated that in all cases, the state of the closed-loop system

of Eq. 2.44 is maintained within Ωρ̂ for all times and driven to Ωρmin under LMPC for an initial

condition x0 = (−1,63.6). However, through the comparison of state profiles under the LMPC

using three different models in Figs. 2.12, it is shown that the state trajectory under the RNN model

stays closer to the one under the actual nonlinear model of Eq. 2.44, and thus, takes less time to

settle to the steady-state compared to the LMPC using the state-space model. It is also noted

that although the LMPC using the state-space model performs well for some initial conditions

close to the origin, it shows oscillation for initial conditions near the boundary of the closed-loop

stability region Ωρ̂ because the linear state-space model of Eq. 2.45 is not able to capture the

nonlinearities of the CSTR in this region. Therefore, the LMPC using RNN model outperforms

the one using state-space model in terms of faster convergence speed and improved closed-loop

stability. Fig. 2.13 depicts the manipulated input profiles in deviation from the steady-state values,

where the dashed horizontal lines are the upper and lower bounds for the manipulated inputs. It is

shown that the input constraints are met for all times under the LMPC of Eq. 2.41 using all three

models.

2.3.8.4 Parallel computation of ensemble regression models

So far, we have demonstrated that the LMPC with a single RNN model is able to drive the

closed-loop state to Ωρmin , and compared the closed-loop performance of the system of Eq. 2.44

under the LMPC with the RNN models based on a large dataset, and a dataset with a lower amount

of data, respectively. In this section, we apply the LMPC using ensemble regression models

to the CSTR of Eq. 2.44 and perform parallel computing to improve computational efficiency.

Since it is common that the RNN model may not perform perfectly for some initial conditions

due to insufficient data, the utilization of ensemble regression models may improve the overall
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Figure 2.14: The state-space profiles for the closed-loop CSTR under the LMPC using the
following models: the first-principles model (blue trajectory), the RNN model (red trajectory)
and the linear state-space model (yellow trajectory) for an initial condition (-1, 63.6).

performance of RNN models within the entire operating region.

Figs. 2.14 shows the state trajectories under the LMPC using various numbers of regression

models (i.e., Ne = 1, ...,8). It is observed that starting from the initial condition (-1, 63.6), the

closed-loop system of Eq. 2.44 does not converge to the origin smoothly using a single RNN

model that is trained poorly around the origin. Additionally, it is shown that as the number of

regression models used in LMPC increases, the closed-loop performance is improved in terms of

less oscillation and faster convergence. Therefore, in this case, the optimal number of regression

models is determined to be five as no further improvement is noticed for the increase of regression

models being used.

However, as more regression models are utilized in the LMPC of Eq. 2.41, the computation

time under serial operation increases significantly, which makes it challenging for the controller

to be implemented in practice. Therefore, to address the computational efficiency issue, we run

the LMPC of Eq. 2.41 in the parallel mode. Specifically, a Message Passing Interface (MPI) for

the Python programming language, named MPI4Py [40], is incorporated in the program of the

LMPC optimization problem to break the prediction models of Eq. 2.41b into five independent

computing processes. Additionally, since the main program of the LMPC optimization problem
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is executed on the host node only, we use a while-loop and synchronization mechanism to ensure

that all worker nodes work with the host node simultaneously throughout the optimization process.

The parallel computing of the LMPC optimization problem of Eq. 2.41 is solved on the UCLA

Hoffman2 Distributed Cluster.

The averaged computation time for solving the LMPC optimization problem per sampling step

using the first-principles model of Eq. 2.44, the linear state-space model of Eq. 2.45, a single RNN

model, five ensemble regression models in serial mode, and five ensemble regression models in

parallel mode are reported in Table 2.2. In Table 2.2, it is shown that the LMPC optimization

problem using state-space model is solved with the shortest computation time. The optimization

problem of LMPC using RNN models is time-consuming compared to the state-space model or

the first-principles model due to the large number of internal states, the essential normalization

and data reshaping steps, and the communication between host and worker nodes. However, it

is shown that under parallel operation, the computation time for solving the LMPC optimization

problem using five ensemble regression models at each sampling step is around 11 s, which is

significantly reduced (approximately 5 times less than the serial computing), and becomes less

than the sampling period (i.e., ∆ = 0.01 hr = 36 s). This implies that the LMPC using an ensemble

of RNN models can be implemented in real-time if parallel computing is employed. Additionally,

the computation time for solving LMPC under RNN models may be further reduced if TensorFlow

is employed, which is more computationally efficient than Keras.

Table 2.2: Computation time for solving the LMPC using different models.

Models Computation time

First-principles model < 1 second

Linear state-space model < 0.1 second

Single RNN model ∼ 8 second

Ensemble regression models in serial mode > 50 second

Ensemble regression models in parallel mode ∼ 11 second
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2.3.8.5 RNN model performance evaluation

To illustrate the advantages of the ensemble of RNN models, in this section, we characterize

the region of initial conditions x0 ∈ Ωρ̂ for which the performance of the LMPC using the

data-driven model (i.e., the state-space model of Eq. 2.45 and the ensemble of RNN models,

respectively) is close to that of the LMPC using the first-principles model of Eq. 2.44. Specifically,

extensive closed-loop simulations that sweep over all the initial conditions x0 in the closed-loop

stability region Ωρ̂ are conducted under the LMPC of Eq. 2.41 using the following models: the

first-principles model of Eq. 2.44, the ensemble of RNN models and the state-space model of

Eq. 2.45. It should be mentioned that methods that may improve the performance of linear

state-space model, e.g., the ensemble of linear state-space models and multiple linear state-space

models for different portions of the closed-loop stability region Ωρ̂ , are not investigated in this

work since the aim of this study is to develop a computationally efficient LMPC scheme using an

ensemble of RNN models.

All the closed-loop simulations are run with a fixed time length that is sufficiently long for the

closed-loop state to converge to Ωρmin for any initial condition x0 ∈ Ωρ̂ . Extensive closed-loop

simulations demonstrate that the LMPC using the ensemble of RNN models and the LMPC using

the state-space model of Eq. 2.45 both drive the closed-loop state to Ωρmin for any initial condition

x0 ∈Ωρ̂ . Therefore, to compare the performance of closed-loop system under different data-driven

models, a performance index S is introduced to calculate the relative error between the closed-loop

states under the data-driven model and the first-principles model as follows:

S =
∑

L
i=1 |V̂ (xd

i )−V̂ (x f
i )|

∑
L
i=1 V̂ (x f

i )
(2.46)

where L is number of sampling steps in simulation, x f
i represents the ith closed-loop state for the

first-principles model of Eq. 2.44, and xd
i represents the ith closed-loop state for the data-driven

models, which are the ensemble of RNN models and the linear state-space model of Eq. 2.45,

respectively. Since the value of V̂ (x) decreases as the state moves towards the origin under
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Figure 2.15: The set of initial conditions x0 ∈Ωρ̂ (marked as blue points) in which the closed-loop
CSTR under the LMPC using the linear state-space of Eq. 2.45 behaves similarly to the LMPC
using the first-principles model of Eq. 2.44 (i.e., S ≤ ST H in the blue region and S > ST H in the
white regions).

LMPC, the performance index S of Eq. 2.46 indicates the closeness of the convergence speed

of closed-loop states between the LMPC using the data-driven model and the LMPC using the

first-principles model.

By setting the threshold ST H of the performance index to be 0.65, the region of initial conditions

for which the performance of the ensemble of RNN models is close to that of the first-principles

model (i.e., S≤ ST H) covers the entire closed-loop stability region, while the corresponding region

for the linear state-space model is characterized as the blue region in Fig. 2.15. It is shown in

Fig. 2.15 that the closed-loop performance of the CSTR of Eq. 2.44 under the LMPC using the

state-space model of Eq. 2.45 is undesired in the top and bottom of the closed-loop stability region

due to poor approximation of nonlinearities in these regions. Therefore, based on the performance

index of Eq. 2.46, the overall closed-loop performance of the ensemble of RNN models within the

closed-loop stability region Ωρ̂ outperforms that of the state-space model in terms of the rate of

convergence to the origin and the closeness to the closed-loop performance under the LMPC using

the first-principles model.
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2.4 Conclusions

This chapter presented a new class of model predictive controllers that utilize an ensemble of

recurrent neural network models as the prediction model for nonlinear systems. Specifically,

an RNN ensemble was first developed based on the dataset of extensive open-loop simulations

within the operating region. Parallel computing was utilized to reduce the computation time of

prediction by multiple RNN models. Then, the LMPC scheme that incorporate RNN models

and Lyapunov-based stability constraints was formulated to stabilize a nonlinear process within

the closed-loop stability region while optimizing process economic benefits simultaneously. The

proposed LMPC using an RNN ensemble was applied to a nonlinear chemical process example to

demonstrate its effectiveness.
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Chapter 3

Machine-Learning-based Economic MPC

Since operational efficiency and increasing energy consumption are becoming crucially important

issues in the chemical and petrochemical industry, a model-based feedback control strategy,

economic model predictive control (EMPC), has been proposed as an efficient method to address

process control problems integrated with dynamic economic optimization of the process, e.g.,

[14, 43, 57]. EMPC allows the chemical process to be operated in a time-varying fashion (off

steady-state) to dynamically optimize process economic performance, and incorporates constraints

that guarantee closed-loop stability and feasibility within an explicitly-defined estimate of the

closed-loop stability region under an appropriate control law (e.g., a Lyapunov-based feedback

control law).

In this chapter, we continue the discussion of the use of machine learning techniques in MPC,

and develop the Lyapunov-based economic MPC (LEMPC) that incorporates an ensemble of RNN

models to predict future states for the nonlinear system of Eq. 2.1. In the following subsections,

a Lyapunov-based controller using the RNN model of Eq. 2.4 is first utilized to characterize the

closed-loop stability region in which the origin of the nonlinear system of Eq. 2.1 can be rendered

exponentially stable. Then, the formulation of the LEMPC using an ensemble of RNN models is

given and Theorem 3.1 is established to demonstrate closed-loop stability for all initial conditions

in the closed-loop stability region.
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Figure 3.1: A two-layer paradigm for optimizing process economics within process control.

3.1 Economic Model Predictive Control

The economic success of the chemical and petrochemical industry relies on optimal process

operation which has led to the emergence of an overall process control goal of incorporating

process/system economic considerations into feedback control objectives. A traditional paradigm

for optimizing process economics is to employ a two-layer control architecture as shown in

Fig. 3.1, where in the upper layer, a real-time optimization (RTO) is solved to compute

economically optimal steady-states that are sent to the lower layer, while in the lower layer,

tracking MPC or traditional proportional-integral-derivative (PID) control is used to drive the

process state to the optimal steady-state by computing optimal control actions u∗.

Another approach to addressing process control problems integrated with dynamic economic

optimization of the process is to use economic model predictive control (EMPC). EMPC is a

model-based feedback control technique that operates processes in a time-varying fashion (off

steady-state) to dynamically optimize process economic performance, and incorporates constraints

that guarantee closed-loop stability and feasibility within an explicitly-defined estimate of the

closed-loop stability region under an appropriate control law (e.g., a Lyapunov-based feedback

control law Φ(x)). The EMPC that incorporates Lyapunov-based constraints in the design is termed

Lyapunov-based economic MPC (LEMPC) and is represented by the following optimization
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problem:

max
u∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ)) dτ (3.1a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (3.1b)

x̃(tk) = x(tk) (3.1c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (3.1d)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρe (3.1e)

∂V (x(tk))
∂x

f (x(tk),u(tk),0)≤
∂V (x(tk))

∂x
f (x(tk),Φ(x(tk)),0),

if x(tk) ∈Ωρ\Ωρe (3.1f)

where the notations follow those in Eq. 2.18 and Eq. 2.19. The LEMPC optimization problem

maximizes the time-integral of the objective function le(x,u) that represents the process economic

performance over the prediction horizon subject to the constraints of Eqs. 3.1b-3.1f. Specifically,

the constraints of Eqs. 3.1b-3.1d are the same as Eqs. 2.19b-2.19d for LMPC. The constraint of

Eq. 3.1e (Mode 1 constraint) maintains the predicted states x̃ within Ωρe that is designed to ensure

forward invariance of the closed-loop stability region Ωρ accounting for the sample-and-hold

implementation of control actions and the impact of sufficiently small disturbances w, if the current

state x(tk) at time t = tk is within Ωρe . However, if the current state leaves Ωρe due to disturbances,

the constraint of Eq. 3.1f (Mode 2 constraint) is activated to drive the state towards the origin at

least at the speed under the Lyapunov-based controller Φ(x(tk)) at t = tk such that it can enter Ωρe

within finite sampling steps. An illustration of the closed-loop state trajectory under LEMPC is

shown in Fig. 3.2.
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Figure 3.2: A state-space illustration of a closed-loop state trajectory under LEMPC, where the red
and the blue trajectories are under Mode 1 and Mode 2 constraints, respectively.

3.2 Lyapunov-based EMPC using Ensemble RNN models

3.2.1 LEMPC Using an Ensemble of RNN Models

The Lyapunov-based economic MPC (LEMPC) design using an ensemble of RNN models is

represented by the following optimization problem:

J = max
u∈S(∆)

∫ tk+N

tk
le(x̃(t),u(t))dt (3.2a)

s.t. ˙̃x(t) =
1

Ne

Ne

∑
j=1

F j
nn(x̃(t),u(t)) (3.2b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (3.2c)

x̃(tk) = x(tk) (3.2d)

V̂ (x̃(t))≤ ρ̂e, ∀ t ∈ [tk, tk+N),

if x(tk) ∈Ωρ̂e (3.2e)

˙̂V (x(tk),u)≤ ˙̂V (x(tk),Φnn(x(tk)),

if x(tk) ∈Ωρ̂\Ωρ̂e (3.2f)
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where S(∆) is the set of piecewise constant functions with period ∆, x̃ is the predicted state

trajectory, Ne is the number of RNN models used in predicting future states, and N is the number

of sampling periods in the prediction horizon. We use ˙̂V (x,u) to represent the time-derivative of

V̂ , i.e., ˙̂V (x,u) = ∂V̂ (x)
∂x (Fnn(x,u)). The optimization problem of Eq. 3.2 is solved by optimizing

the time integral of the stage cost function le(x̃(t),u(t)) of Eq. 3.2a over the prediction horizon

accounting for the constraints of Eqs. 3.2b-3.2f. The constraint of Eq. 3.2b is the ensemble of

RNN models of Eq. 2.4 that is used as the prediction model. Eq. 3.2c defines the input constraints

that are applied over the entire prediction horizon. Eq. 3.2d defines the initial condition x̃(tk) of

Eq. 3.2b. The constraint of Eq. 3.2e maintains the closed-loop state predicted by Eq. 3.2b in Ωρ̂e

over the prediction horizon if the state x(tk) is inside Ωρ̂e . However, if x(tk) leaves Ωρ̂e but still

remains in Ωρ̂ , the contractive constraint of Eq. 3.2f drives the state towards the origin for the next

sampling period such that the state will eventually enter Ωρ̂e within finite sampling periods. By

introducing a conservative region Ωρ̂e with ρ̂e < ρ̂ and the stability constraints of Eq. 3.2e and

Eq. 3.2f, it will be proved in Theorem 3.1 that for any initial condition x0 ∈ Ωρ̂ , the closed-loop

state of the nonlinear system of Eq. 2.1 is bounded in Ωρ̂ for all times. A schematic of Ωρ̂ and Ωρ̂e

is given by Fig. 3.3, in which it is shown that the state trajectory starting inside Ωρ̂ is bounded in

Ωρ̂ under LEMPC.

The optimal input trajectory is calculated over the entire prediction horizon t ∈ [tk, tk+N) and

is denoted by u∗(t). However, only the control action u∗(tk) for the first sampling period in t ∈

[tk, tk+N) is sent to the nonlinear system of Eq. 2.1 to be applied over the next sampling period.

Before we demonstrate closed-loop stability for the nonlinear system of Eq. 2.1 under the LEMPC

of Eq. 3.2, the next two propositions are first derived to provide useful tools for proving closed-loop

stability in Theorem 3.1. Specifically, the following proposition provides an upper bound for the

state error in the presence of sufficiently small modeling error and bounded disturbances.

Proposition 3.1. Consider the solution x(t) of the nonlinear system ẋ = F(x,u,w) of Eq. 2.1 in the

presence of bounded disturbances |w(t)| ≤wm, and the solution x̂(t) of the RNN model ˙̂x=Fnn(x̂,u)

of Eq. 2.4 with the same initial condition x0 = x̂0 ∈Ωρ̂ . If x(t), x̂(t) ∈Ωρ̂ , and the modeling error
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Figure 3.3: A schematic representing the set φ̂u, the closed-loop stability region Ωρ̂ , and the set
Ωρ̂e . Under the LEMPC of Eq. 3.2, the closed-loop state trajectory is bounded in Ωρ̂ for all times
for any x0 ∈Ωρ̂ .
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is bounded (i.e., |ν(t)| = |ẋ− ˙̂x| ≤ νm) for all times, then there exists a positive constant κ and a

class K function fw(·) such that the following inequalities hold ∀x, x̂ ∈Ωρ̂ and w(t) ∈W:

|x(t)−x̂(t)| ≤ fw(t) :=
Lwwm +νm

Lx
(eLxt−1) (3.3a)

V̂ (x)≤ V̂ (x̂)+
ĉ4
√

ρ̂√
ĉ1
|x− x̂|+κ|x− x̂|2 (3.3b)

Proof. Following the proof in [6, 175], we define the state error vector by e(t) = x(t)− x̂(t). The

time-derivative of e(t) is obtained ∀x, x̂ ∈Ωρ̂ , u ∈U and w(t) ∈W as follows:

|ė|= |F(x,u,w)−Fnn(x̂,u)|

≤ |F(x,u,w)−F(x̂,u,0)|+ |F(x̂,u,0)−Fnn(x̂,u)|

≤ Lx|e(t)|+Lwwm +νm

(3.4)

where the last inequality is derived from Eq. 2.21a and the fact that |ν | ≤ νm. Since x(t) and

x̂(t) share the same initial condition, (i.e., e(0) = 0), the upper bound for |e(t)| is derived for all

x(t), x̂(t) ∈Ωρ̂ and |w(t)| ≤ wm as follows:

|e(t)|= |x(t)− x̂(t)| ≤ Lwwm +νm

Lx
(eLxt−1) (3.5)

Subsequently, ∀x, x̂ ∈ Ωρ , Eq. 3.3b is derived based on the Taylor series expansion of V̂ (x)

around x̂ as follows:

V̂ (x)≤ V̂ (x̂)+
∂V̂ (x̂)

∂x
|x− x̂|+κ|x− x̂|2

≤ V̂ (x̂)+
ĉ4
√

ρ̂√
ĉ1
|x− x̂|+κ|x− x̂|2

(3.6)

where κ is a positive real number, and the last inequality is derived using Eq. 2.20a and Eq. 2.20c.

The above proposition demonstrates that the error of state trajectories of the nonlinear system

of Eq. 2.1 and the RNN model of Eq. 2.4, starting from the same initial condition, is bounded for
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finite time. The next proposition is developed to demonstrate that if x ∈ Ωρ̂\Ωρs , the stabilizing

controller u = Φnn(x) ∈ U implemented in a sample-and-hold fashion is able to maintain ˙̂V (x)

negative such that the state will be driven towards the origin and ultimately enters a small

neighborhood around the origin (i.e., Ωρs) in finite sampling steps.

Proposition 3.2. Consider the system of Eq. 2.1 under the controller u = Φnn(x̂) ∈U that meets

the conditions of Eq. 2.20 and is implemented in a sample-and-hold fashion, i.e., u(t) =Φnn(x̂(tk)),

∀t ∈ [tk, tk+1), where tk+1 := tk +∆. Let εw,εs > 0, ∆ > 0 and ρ̂ > ρ̂e > ρs > 0 satisfy

− ĉ3

ĉ2
ρs +LnnMnn∆≤−εs (3.7a)

− c̃3

ĉ2
ρs +L

′
xM∆+L

′
wwm ≤−εw (3.7b)

ρ̂e > max{V̂ (x̂(tk +∆)) | x̂(tk) ∈Ωρs,u ∈U,w ∈W} (3.7c)

Then, for any x(tk) ∈Ωρ̂\Ωρs , the following inequalities holds:

V̂ (x̂(t))≤ V̂ (x̂(tk)), ∀t ∈ [tk, tk+1) (3.8a)

V̂ (x(t))≤ V̂ (x(tk)), ∀t ∈ [tk, tk+1) (3.8b)

Proof. To show that the value of V̂ decreases along the trajectory x̂(t) of the RNN model of Eq. 2.4

over t ∈ [tk, tk+1), we calculate the time-derivative of V̂ (x̂) based on x̂(t) as follows:

˙̂V (x̂(t)) =
∂V̂ (x̂(t))

∂ x̂
Fnn(x̂(t),Φnn(x̂(tk)))

=
∂V̂ (x̂(tk))

∂ x̂
Fnn(x̂(tk),Φnn(x̂(tk)))

+
∂V̂ (x̂(t))

∂ x̂
Fnn(x̂(t),Φnn(x̂(tk)))

− ∂V̂ (x̂(tk))
∂ x̂

Fnn(x̂(tk),Φnn(x̂(tk)))

(3.9)

Using Eq. 2.20a, 2.20b and the Lipschitz condition of Eq. 2.21, the following inequalities are
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obtained:

˙̂V (x̂(t))≤− ĉ3

ĉ2
ρs +

∂V̂ (x̂(t))
∂ x̂

Fnn(x̂(t),Φnn(x̂(tk)))

− ∂V̂ (x̂(tk))
∂ x̂

Fnn(x̂(tk),Φnn(x̂(tk)))

≤− ĉ3

ĉ2
ρs +LnnMnn∆

(3.10)

Therefore, ˙̂V (x̂(t)) ≤ −εs holds ∀x̂(tk) ∈ Ωρ̂\Ωρs and t ∈ [tk, tk+1) if Eq. 3.7a is satisfied. By

integrating the above inequality, it follows that V̂ (x̂(t)) ≤ V̂ (x̂(tk))−∆εs, ∀x̂(tk) ∈ Ωρ̂\Ωρs , t ∈

[tk, tk+1) (i.e., Eq. 3.8a).

Next, to show that V̂ (x(t))≤ V̂ (x(tk)) holds for all t ∈ [tk, tk+1), the time-derivative of V̂ (x) for

the nonlinear system of Eq. 2.1 (i.e., ẋ = F(x,u,w)) in the presence of bounded disturbances (i.e.,

|w(t)| ≤ wm) is derived as follows:

˙̂V (x(t)) =
∂V̂ (x(t))

∂x
F(x(t),Φnn(x(tk)),w)

=
∂V̂ (x(tk))

∂x
F(x(tk),Φnn(x(tk)),0)

+
∂V̂ (x(t))

∂x
F(x(t),Φnn(x(tk)),w)

− ∂V̂ (x(tk))
∂x

F(x(tk),Φnn(x(tk)),0)

(3.11)

Since Eq. 2.22 shows that ∂V̂ (x(tk))
∂x F(x(tk),Φnn(x(tk)),0) ≤ −c̃3|x(tk)|2 holds for all x ∈ Ωρ̂ , the

following inequality is obtained for all x(tk) ∈ Ωρ̂\Ωρs , t ∈ [tk, tk+1) using Eq. 2.2a and the

Lipschitz condition in Eq. 2.21:

˙̂V (x(t))≤− c̃3

ĉ2
ρs +L

′
x|x(t)− x(tk)|+L

′
w|w|

≤− c̃3

ĉ2
ρs +L

′
xM∆+L

′
wwm

(3.12)

Therefore, the following inequality is further derived for all x(tk) ∈Ωρ̂\Ωρs and t ∈ [tk, tk+1) if the
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condition of Eq. 3.7b is satisfied:

˙̂V (x(t))≤− εw (3.13)

Similarly, this implies that V̂ (x(t))≤ V̂ (x(tk))−∆εw, ∀x(tk)∈Ωρ̂\Ωρs , t ∈ [tk, tk+1). Therefore, the

state of the nonlinear system of Eq. 2.1 will enter Ωρs in finite sampling periods if x(tk) ∈Ωρ̂\Ωρs .

Additionally, if x(tk) ∈ Ωρs , in which Eq. 3.12 and Eq. 3.13 do not hold, Eq. 3.7c guarantees that

the state will not leave Ωρ̂e in one sampling period for all u ∈U and w ∈W . If the state x(tk+1)

leaves Ωρs but remains in Ωρ̂e , at the next sampling period t ∈ [tk+1, tk+2), Eq. 3.13 is satisfied

again and the state will be driven towards the origin. Therefore, the state of the nonlinear system

of Eq. 2.1 is bounded in Ωρ̂ for all times.

Based on Propositions 3.1 and 2.4, the following theorem is established to show recursive

feasibility of the LEMPC optimization problem of Eq. 3.2, and the boundedness of the closed-loop

state within Ωρ̂ under the sample-and-hold implementation of the LEMPC.

Theorem 3.1. Consider the closed-loop system of Eq. 2.1 under the sample-and-hold

implementation of the LEMPC of Eq. 3.2 with the stabilizing controller Φnn(x) that satisfies

Eq. 2.20. Let ∆ > 0, εw > 0 and ρ̂ > ρ̂e > 0 satisfy Eq. 3.7 and the following inequality:

ρ̂e ≤ ρ̂− ĉ4
√

ρ̂√
ĉ1

fw(∆)−κ( fw(∆))
2 (3.14)

If x0 ∈Ωρ̂ and the conditions of Proposition 3.1 and Proposition 3.2 are satisfied, then there always

exists a feasible solution for the optimization problem of Eq. 3.2, and the closed-loop state x(t) is

bounded in the closed-loop stability region Ωρ̂ , ∀t ≥ 0.

Proof. The LEMPC of Eq. 3.2 predicts future states by averaging the results of an ensemble of

RNN models in Eq. 3.2b. Since each RNN model is trained to satisfy the modeling error constraint

and Eq. 2.21, it is readily shown that the averaged results of an ensemble of multiple RNN models

also satisfy the above conditions, and thus, the results derived in Propositions 2.2-3.2 for a single
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RNN model can be generalized to an RNN ensemble.

We first prove that the optimization problem of Eq. 3.2 can be solved with recursive feasibility

for all x ∈ Ωρ̂ . Specifically, if x(tk) ∈ Ωρ̂e , the control actions Φnn(x(tk+i)), i = 0,1, ...,N − 1

satisfy the input constraint of Eq. 3.2c and the Lyapunov-based constraint of Eq. 3.2e since it is

shown in Eq. 3.8a that the states predicted by the RNN model of Eq. 3.2b remain inside Ωρ̂e under

the controller Φnn(x). Additionally, if x(tk) ∈ Ωρ̂\Ωρ̂e , the control action u(t) = Φnn(x(tk)) ∈U ,

t ∈ [tk, tk+1) satisfies the input constraint of Eq. 3.2c and the Lyapunov-based constraint of Eq. 3.2f

such that the state can be driven towards the origin during the next sampling period. Therefore, the

stabilizing controller u = Φnn(x) ∈U provides a feasible solution that satisfies all the constraints

of the LEMPC optimization problem of Eq. 3.2 if x(t) ∈Ωρ̂ for all times.

Next, we prove that for x0 ∈ Ωρ̂ , the state of the closed-loop system of Eq. 2.1 is bounded in

Ωρ̂ for all times. Specifically, if x(tk)∈Ωρ̂e , the predicted states x̂(t) of the RNN model of Eq. 3.2b

are maintained in Ωρ̂e under the constraint of Eq. 3.2e. According to Proposition 3.1, the actual

state x(t), t ∈ [tk, tk+1) of the nonlinear system of Eq. 2.1 is bounded by the following inequality:

V̂ (x)≤ V̂ (x̂)+
ĉ4
√

ρ̂√
ĉ1
|x− x̂|+κ|x− x̂|2

≤ V̂ (x̂)+
ĉ4
√

ρ̂√
ĉ1

fw(∆)+κ( fw(∆))
2

(3.15)

Therefore, if Ωρ̂e is chosen as a level set of V̂ that satisfies Eq. 3.14, V (x) based on the actual state

x(t) is bounded in Ωρ̂ for all t ∈ [tk, tk+1). However, if x(tk) ∈Ωρ̂\Ωρ̂e , the constraint of Eq. 3.2f is

activated such that the control action u decreases the value of V̂ (x̂) based on the states predicted by

the RNN model of Eq. 3.2b within the next sampling period. According to Eq. 3.8b in Proposition

3.2, the value of V̂ also decreases along the state trajectory of the actual nonlinear system of Eq. 2.1

over t ∈ [tk, tk+1). Therefore, it is concluded that for any initial condition in Ωρ̂ , the closed-loop

state of the system of Eq. 2.1 is bounded in Ωρ̂ for all times under the LEMPC of Eq. 3.2.
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3.2.2 Application to a Chemical Process Example

We consider the same chemical reactor example as in Section 2.3.8 to illustrate the application of

LEMPC using an ensemble of RNN models, under which the state of the closed-loop system

is maintained within the stability region in state-space for all times. The CSTR is initially

operated at the unstable steady-state (CAs, Ts) = (1.95 kmol/m3, 402 K), and (CA0s Qs) =

(4 kmol/m3, 0 kJ/hr). In this example, the two manipulated inputs are the heat input rate, ∆Q =

Q−Qs, and the inlet concentration of species A, ∆CA0 = CA0−CA0s , respectively. Additionally,

the manipulated inputs are subject to the following constraints: |∆Q| ≤ 5× 105 kJ/hr and

|∆CA0| ≤ 3.5 kmol/m3. The states and the inputs of the system of Eq. 2.44 are represented by

xT = [CA−CAs T −Ts] and uT = [∆CA0 ∆Q], respectively. Therefore, the unstable steady-state of

the system of Eq. 2.44 is at the origin of the state-space, (i.e., (x∗s ,u
∗
s ) = (0,0)).

The control objective of the LEMPC of Eq. 3.2 is to maximize the production rate of B in the

CSTR by manipulating the inlet concentration ∆CA0 and the heat input rate ∆Q, while maintaining

the closed-loop state trajectories in the stability region Ωρ̂ for all times under LEMPC. The

objective function of the LEMPC optimizes the production rate of B as follows:

le(x̃,u) = k0e−E/RTC2
A (3.16)

To simulate the dynamic model of Eq. 2.44 numerically, the explicit Euler method is utilized with

an integration time step of hc = 10−4 hr. The python module of the IPOPT software package [158],

named PyIpopt, is utilized to solve the nonlinear optimization problem of the LEMPC of Eq. 3.2

with a sampling period ∆ = 10−2 hr. Additionally, a Message Passing Interface (MPI) for the

Python programming language, named MPI4Py [40], is incorporated in the LEMPC optimization

problem to execute multiple RNN predictions of Eq. 3.2b concurrently in independent computing

processes.

Extensive open-loop simulations for the CSTR system of Eq. 2.44 are initially conducted to

generate the dataset for RNN models. The control Lyapunov function V̂ (x) = xT Px is designed
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with the following positive definite P matrix:

P =




1060 22

22 0.52


 (3.17)

Two hidden recurrent layers consisting of 96 and 64 recurrent units, respectively, are used in the

RNN model. Additionally, a 10-fold cross validation are utilized to construct an ensemble of

RNN models for the LEMPC of Eq. 3.2. The closed-loop stability region Ωρ̂ with ρ̂ = 368

and a subset Ωρ̂e with ρ̂e = 320 for the CSTR system are characterized based on the obtained

RNN models and the stabilizing controller u = Φnn(x) ∈ U . To demonstrate the effectiveness

of the proposed LEMPC of Eq. 3.2, a linear state-space model (i.e., ẋ = Ax + Bu with A =

100× [−0.154 −0.003; 5.19 0.138] and B = [4.03 0; 1.23 0.004]) is also identified following

the system identification method in [74], and is added into the following performance comparison

under the ensemble of RNN models and the first-principles model of Eq. 2.44.

The closed-loop simulation of the nominal CSTR system (i.e., w(t) ≡ 0) under the

first-principles model of Eq. 2.44, the ensemble of RNN models, and the linear state-space model,

respectively, are shown in Fig. 3.4. The following material constraint is utilized in the LEMPC of

Eq. 3.2 to make the averaged reactant material available within the entire operating period tp to be

its steady-state value, CA0s (i.e., the averaged reactant material in deviation form, u1, is equal to 0).

1
tp

∫ tp

0
u1(τ)dτ = 0 kmol/m3 (3.18)

In Fig. 3.4, it is shown that for the initial condition (0,0), the state trajectory under the ensemble

of RNN models is close to that under the first-principles model, and both state trajectories are

bounded in Ωρ̂e in the absence of disturbances. However, it is observed that the state trajectory

under the linear state-space model ultimately leaves Ωρ̂ due to its large model mismatch. This

implies that a more conservative set Ωρ̂e needs to be characterized for the state spaced model to

guarantee the boundedness of state in the stability region Ωρ̂ .
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Figure 3.4: The state-space profiles for the closed-loop CSTR under the LEMPC using the
following models: the first-principles model (blue trajectory), the RNN model ensemble (red
trajectory) and the linear state-space model (yellow trajectory) for an initial condition (0, 0).

Additionally, Fig. 3.5 and Fig. 3.6 show the manipulated inputs profiles in deviation from

the steady-state values. It is shown that the manipulated inputs are bounded within the input

constraints for all times. Moreover, the material constraint of Eq. 3.18 is satisfied as it is shown

in Fig. 3.5 that the LEMPC using the first-principles model and the RNN model ensemble both

consume the maximum allowable ∆CA0 at the first few sampling steps, and thus have to lower the

consumption of ∆CA0 near the end of operating period. The LEMPC using the linear state-space

model also satisfies the material constraint, but shows persistent oscillation due to model mismatch.

Additionally, in Fig 3.6, it is shown that the consumption of ∆Q under the RNN ensemble is close

to that under the first-principles model (both correspond to left y− axis) since their closed-loop

trajectories shown in Fig. 3.4 are similar. However, ∆Q shows large oscillation under the LEMPC

using the linear state-space model (right y−axis) since the closed-loop trajectory in Fig. 3.4 leaves

Ωρ̂e , and thus, the contractive constraint of Eq. 3.2f is activated frequently.

To demonstrate that the closed-loop system under LEMPC achieves high process economics

than the steady-state operation using the same amount reactant CA0, we calculate the accumulated

economic benefits LE =
∫ tp

0 le(x,u)dt over the entire operating period tp = 0.2 hr, which are 2.04,
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4.14, and 4.22 for the steady-state operation, the LEMPC under an ensemble of RNN models, and

the LEMPC under the first-principles model, respectively. Therefore, it is demonstrated that both

closed-loop stability and economic optimality are achieved under the proposed LEMPC using an

ensemble of RNN models.
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Figure 3.5: Manipulated input profiles (u1 = ∆CA0) for the initial condition (0, 0) under the
LEMPC using the following models: the first-principles model (blue trajectory), the RNN model
ensemble (red trajectory) and the linear state-space model (yellow trajectory), where the dashed
black horizontal lines represent the upper and lower bounds for ∆CA0.

3.3 Conclusions

This chapter presented a new class of economic model predictive controllers that use an ensemble

of recurrent neural network models as the prediction model for nonlinear systems. Using the RNN

models developed in Chapter 2, the LEMPC that incorporates RNN models and Lyapunov-based

stability constraints was formulated to stabilize a nonlinear process within the closed-loop stability

region while optimizing process economic benefits simultaneously. The proposed LEMPC using

an RNN ensemble was applied to a nonlinear chemical process example to demonstrate its

economic optimality and closed-loop stability.

90



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-50

0

50

-2

-1

0

1

2

105

First-principles model
RNN ensemble
Linear state-space model

Figure 3.6: Manipulated input profiles (u2 = ∆Q) for the initial condition (0, 0) under the LEMPC
using the following models: the first-principles model (blue trajectory corresponding to left
y− axis), the RNN model ensemble (red trajectory corresponding to left y− axis) and the linear
state-space model (yellow trajectory corresponding to right y−axis).
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Chapter 4

Real-Time Machine-Learning-Based MPC

4.1 Introduction

Modeling large-scale, complex nonlinear processes has been a long-lasting challenge in process

systems engineering. Model quality depends on many factors, including, but not limited to

parameter estimation, model uncertainty, number of assumptions made in model development,

dimensionality, model structure, and computational burden of solving the model in real-time

operations ( [47,48]). Machine learning techniques such as recurrent neural networks (RNN) have

been successfully applied to solve regression/modeling problems based on datasets from industrial

process operation or numerical simulations in process engineering, when a first-principles model

is difficult to obtain. Although pre-trained machine learning models have demonstrated to be good

replacements for first-principles models in model-based controllers, a potential problem for the

real-time implementation of controllers in practice is model uncertainty, which includes intrinsic

and exogenous uncertainty( [93, 151]).

Since in real life, processes models change in time due to varying process parameters from

external (e.g., aging equipment, disturbance, and new implemented technology in the process) and

internal factors (e.g., fouling in the equipment), the machine learning model that has been trained

using the information from past normal operations may not be able to correctly predict process
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states after disturbances appear.

Considering the need to update process models as time evolves, on-line learning of process

models using most recent process data may provide a solution to deal with model uncertainty. It

is noted that the event-triggered mechanism is able to reduce the frequency of on-line update and

adjustment of process models and control actions ( [144, 161]), and thus, improve applicability

and efficiency of real-time control. For example, in [176], an event-based control was proposed

to update the actuators only when a certain threshold is violated. In [161], an event-triggered

mechanism was proposed to stabilize the system with control actions being updated when a

violation of a stability event is triggered. Additionally, the event-triggered concept has also been

adopted in neural network-based control to reduce the network source utilization [84, 134].

Motivated by the above, in this chapter, we propose real-time machine learning-based MPC

and EMPC schemes that trigger an on-line learning of RNN models when a threshold is violated

due to unknown disturbances. Specifically, an ensemble of RNN models is initially obtained

for the Lyapunov-based MPC and EMPC to stabilize the system under normal operation (i.e.,

without disturbances). In the presence of time-varying disturbances, an event-triggered mechanism

based on the decreasing rate of Lyapunov function and an error-triggered mechanism based on the

prediction errors are developed to update RNN models during the operation using the most recent

process data. Closed-loop stability analysis is provided for both LMPC and LEMPC with on-line

RNN model update.

4.1.1 Notation

The notation |·| is used to denote the Euclidean norm of a vector. xT denotes the transpose of

x. The notation L fV (x) denotes the standard Lie derivative L fV (x) := ∂V (x)
∂x f (x). Set subtraction

is denoted by “\”, i.e., A\B := {x ∈ Rn | x ∈ A,x /∈ B}. Z+ denotes the set of positive integers.

/0 signifies the null set. The function f (·) is of class C 1 if it is continuously differentiable in its

domain. A continuous function α : [0,a)→ [0,∞) is said to belong to class K if it is strictly

increasing and is zero only when evaluated at zero.
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4.1.2 Class of Systems

The class of continuous-time nonlinear systems considered is described by the following system

of first-order nonlinear ordinary differential equations:

ẋ = F(x,u,w) := f (x)+g(x)u+h(x)w, x(t0) = x0 (4.1)

where x ∈ Rn is the state vector, u ∈ Rm is the manipulated input vector, and w ∈ W is the

disturbance vector with W := {w∈Rq | |w| ≤wm, wm≥ 0}. The control actions are constrained by

u ∈U := {umin
i ≤ ui ≤ umax

i , i = 1, ...,m} ⊂ Rm. f (·), g(·), and h(·) are sufficiently smooth vector

and matrix functions of dimensions n×1, n×m, and n×q, respectively. Throughout this chapter,

we assume that the initial time t0 is zero (t0 = 0), and f (0) = 0 such that the origin is a steady-state

of the nominal (i.e., w(t) ≡ 0) system of Eq. 4.1 (i.e., (x∗s ,u
∗
s ) = (0,0), where x∗s and u∗s represent

the steady-state state and input vectors, respectively).

To guarantee that the closed-loop system is stabilizable, a stabilizing control law u = Φ(x) ∈U

that renders the origin of the nominal system of Eq. 4.1 (i.e., w(t) ≡ 0) exponentially stable is

assumed to exist. Following converse theorems, there exists a C 1 Control Lyapunov function V (x)

such that the following inequalities hold for all x in an open neighborhood D around the origin:

c1|x|2 ≤V (x)≤ c2|x|2, (4.2a)

∂V (x)
∂x

F(x,Φ(x),0)≤−c3|x|2, (4.2b)

∣∣∣∣
∂V (x)

∂x

∣∣∣∣≤ c4|x| (4.2c)

where c1, c2, c3 and c4 are positive constants. F(x,u,w) represents the nonlinear system of Eq. 4.1.

The universal Sontag control law ( [83]) is a candidate controller for u = Φ(x).

We first characterize a region where the time-derivative of V is rendered negative under the
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controller u = Φ(x) ∈U as follows:

φu = {x ∈ Rn | V̇ (x) = L fV +LgVu <−k|x|2,u = Φ(x) ∈U}∪{0} (4.3)

where k is a positive real number. Then a level set of the Lyapunov function inside φu is used as

the closed-loop stability region Ωρ for the nonlinear system of Eq. 4.1 as follows: Ωρ := {x ∈

φu | V (x) ≤ ρ}, where ρ > 0 and Ωρ ⊂ φu. From the Lipschitz property of F(x,u,w) and the

bounds on u and w, it follows that there exist positive constants M, Lx,Lw,L
′
x,L

′
w such that the

following inequalities hold for all x,x′ ∈ D,u ∈U , and w ∈W :

|F(x,u,w)| ≤M (4.4a)

|F(x,u,w)−F(x′,u,0)| ≤ Lx|x− x′|+Lw|w| (4.4b)
∣∣∣∣
∂V (x)

∂x
F(x,u,w)− ∂V (x′)

∂x
F(x′,u,0)

∣∣∣∣≤ L
′
x|x− x′|+L

′
w|w| (4.4c)

4.1.3 Preliminary Results of RNN-based MPC

We first present some preliminary results of Lyapunov-based MPC (LMPC) and Lyapunov-based

economic MPC (LEMPC) using RNN models. The recurrent neural network model is developed

with the following form:

˙̂x = Fnn(x̂,u) := Ax̂+Θ
T y (4.5)

where the notations follow those in Eq. 2.4, and the training process follows the same learning

algorithm as in Chapter 2.

In this chapter, the RNN model of Eq. 4.5 is updated to capture nonlinear dynamics of the

nonlinear system of Eq. 4.1 subject to time-varying bounded disturbances (i.e., |w(t)| ≤ wm).

F i
nn(x,u) is used to denote the ith RNN model (i = 1,2, ...,NT ) that is updated using the real-time

data of closed-loop state trajectories and control actions, where NT is the total number of RNN

models obtained. We assume that a set of stabilizing feedback controllers u = Φi
nn(x) ∈U that can
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render the origin of the RNN models F i
nn(x,u), i = 1,2, ...,NT of Eq. 4.5 exponentially stable in

an open neighborhood D̂ around the origin exists. Therefore, there exists a C 1 Control Lyapunov

function V̂ (x) such that the following inequalities hold for all x in D̂:

ĉi
1|x|2 ≤ V̂ (x)≤ ĉi

2|x|2, (4.6a)

∂V̂ (x)
∂x

F i
nn(x,Φ

i
nn(x))≤−ĉi

3|x|2, (4.6b)

∣∣∣∣
∂V̂ (x)

∂x

∣∣∣∣≤ ĉi
4|x| (4.6c)

where ĉi
1, ĉi

2, ĉi
3, ĉi

4 are positive constants, i = 1,2, ...,NT . For the sake of simplicity, we will use

symbols without the superscript of i for all the RNN models and controllers that satisfy Eq. 4.6

in the following texts. Similar to the characterization method of the closed-loop stability region

Ωρ for the nonlinear system of Eq. 4.1, we first characterize a region φ̂u = {x ∈ Rn | ˙̂V (x) <

−ĉ3|x|2,u = Φnn(x) ∈ U} ∪ {0}, from which the origin of the RNN model of Eq. 4.5 can be

rendered exponentially stable under the controller u = Φnn(x) ∈U .

The closed-loop stability region for the RNN model of Eq. 4.5 is defined as a level set of

Lyapunov function inside φ̂u: Ωρ̂ := {x ∈ φ̂u | V̂ (x)≤ ρ̂}, where ρ̂ > 0. It is noted that Ωρ̂ ⊆ Ωρ

since the dataset for developing the RNN model of Eq. 4.5 is generated from open-loop simulations

for x ∈ Ωρ and u ∈ U . Additionally, there exist positive constants Mnn and Lnn such that the

following inequalities hold for all x,x′ ∈Ωρ̂ and u ∈U :

|Fnn(x,u)| ≤Mnn (4.7a)
∣∣∣∣
∂V̂ (x)

∂x
Fnn(x,u)−

∂V̂ (x′)
∂x

Fnn(x′,u)
∣∣∣∣≤ Lnn|x− x′| (4.7b)

Consider that there exists a bounded modeling error between the nominal system of Eq. 4.1

and the RNN model of Eq. 4.5 (i.e., |ν | = |F(x,u,0)−Fnn(x,u)| ≤ νm, νm > 0), the following

proposition demonstrates that the feedback controller u = Φnn(x) ∈ U is able to stabilize the
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nominal system of Eq. 4.1 if the modeling error is sufficiently small.

Proposition 4.1. Under the assumption that the origin of the closed-loop RNN system of Eq. 4.5 is

rendered exponentially stable under the controller u = Φnn(x) ∈U for all x ∈Ωρ̂ , if there exists a

positive real number γ < ĉ3/ĉ4 that constrains the modeling error |ν | = |F(x,u,0)−Fnn(x,u)| ≤

γ|x| ≤ νm for all x ∈ Ωρ̂ and u ∈U, then the origin of the nominal closed-loop system of Eq. 4.1

under u = Φnn(x) ∈U is also exponentially stable for all x ∈Ωρ̂ .

The formulation of the LMPC using an ensemble of RNN models is given as follows:

J = min
u∈S(∆)

∫ tk+N

tk
L(x̃(t),u(t))dt (4.8a)

s.t. ˙̃x(t) =
1

Ne

Ne

∑
j=1

Fnn, j(x̃(t),u(t)) (4.8b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (4.8c)

x̃(tk) = x(tk) (4.8d)

˙̂V (x(tk),u)≤ ˙̂V (x(tk),Φnn(x(tk)), if x(tk) ∈Ωρ̂\Ωρnn (4.8e)

V̂ (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρnn (4.8f)

where the notation follows that in Eq. 2.41.

The Lyapunov-based economic MPC (LEMPC) using an ensemble of RNN models is developed

to dynamically optimize process economic benefits while maintaining closed-loop state in the
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stability region for all times. The LEMPC is represented by the following optimization problem:

J = max
u∈S(∆)

∫ tk+N

tk
le(x̃(t),u(t))dt (4.9a)

s.t. ˙̃x(t) =
1

Ne

Ne

∑
j=1

Fnn, j(x̃(t),u(t)) (4.9b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (4.9c)

x̃(tk) = x(tk) (4.9d)

V̂ (x̃(t))≤ ρ̂e, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρ̂e (4.9e)

˙̂V (x(tk),u)≤ ˙̂V (x(tk),Φnn(x(tk)), if x(tk) ∈Ωρ̂\Ωρ̂e (4.9f)

where the notation follows that in Eq. 3.2.

4.2 Event-triggered On-line Learning of RNNs

In this section, the LMPC of Eq. 4.8 and the LEMPC of Eq. 4.9 are applied to the nonlinear

system of Eq. 4.1 subject to bounded disturbances (i.e.,|w(t)| ≤ wm). Unlike the stability analysis

performed for sufficiently small bounded disturbances in [171, 181], in this chapter, we consider

the case in which disturbances cannot be fully eliminated by the sample-and-hold implementation

of LMPC and therefore, may render the closed-loop system unstable. To mitigate the impact of

disturbances, RNN models are updated via on-line learning to capture the nonlinear dynamics of

the system of Eq. 4.1 accounting for disturbances w(t). In the following subsections, the triggering

mechanisms for updating RNN models are introduced.

4.2.1 Event-triggering Mechanism

In [56], event-triggered and self-triggered control systems were introduced to derive closed-loop

stability for the system under the sample-and-hold implementation of a controller. Specifically, the

event-triggered control system triggers an update of control actions if a triggering condition based
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on state measurements is violated, while in self-triggered control system, the next update time can

be obtained via predictions. In our work, an event-triggered on-line RNN learning is incorporated

in the LMPC of Eq. 4.8 and the LEMPC of Eq. 4.9 to improve RNN prediction accuracy using

previously received data of closed-loop states in the presence of bounded disturbances. The

following theorem is established to demonstrate that if the on-line update of RNN is triggered

by the violation of Eq. 4.10, the minimal inter-event time Tk = rk+1− rk is bounded from below,

where rk represents the kth violation of Eq. 4.10, k ∈ Z+.

Theorem 4.1. Consider the nonlinear system ẋ = F(x,u,w) of Eq. 4.1 in the presence of bounded

disturbances |w(t)| ≤ wm, and the RNN model ˙̂x = Fnn(x̂,u) of Eq. 4.5 that has been updated

at t = tk = rk to approximate dynamic behavior of the system of Eq. 4.1 before t = tk with a

sufficiently small modeling error |ν | ≤ γ|x|, γ < ĉ3/ĉ4. If the stabilizing controller u = Φnn(x) ∈U

is implemented in a sample-and-hold fashion (i.e., u(t) = Φnn(x̂(tk)), ∀t ∈ [tk, tk+1), where tk+1 :=

tk +∆ and ∆ is the sampling period), and the k+1th update of RNN model is triggered at t = rk+1

by the violation of the following inequality for all x ∈Ωρ̂\Ωρs:

V (x(t))≤V (x(tk))− εw(t− tk), t ∈ [tk, tk+1) (4.10)

where εw > 0 and ρs satisfy Eq. 2.30 and Eq. 2.31 in Theorem 2.1, then there exists a positive

constant τ∗ such that the minimal inter-event time Tk = rk+1− rk ≥ τ∗.

Proof. Since the controller u = Φnn(x) ∈ U is implemented in sample-and-hold fashion, given

x(tk) = x̂(tk) ∈ Ωρ̂\Ωρs , we first derive the time-derivative of V̂ (x) for the nonlinear system of

Eq. 4.1 (i.e., ẋ = F(x,u,w)) in the presence of bounded disturbances (i.e., |w| ≤ wm) over t ∈
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[tk, tk+1) as follows:

˙̂V (x(t)) =
∂V̂ (x(t))

∂x
F(x(t),Φnn(x(tk)),w(t))

=
∂V̂ (x(tk))

∂x
F(x(tk),Φnn(x(tk)),w(tk))

+
∂V̂ (x(t))

∂x
F(x(t),Φnn(x(tk)),w(t))

− ∂V̂ (x(tk))
∂x

F(x(tk),Φnn(x(tk)),w(tk))

(4.11)

The first term ∂V̂ (x(tk))
∂x F(x(tk),Φnn(x(tk)),w(tk)) in the above equation can be further expanded as

follows:
∂V̂ (x(tk))

∂x
F(x(tk),Φnn(x(tk)),w(tk))

=
∂V̂ (x(tk))

∂x
(Fnn(x,Φnn(x(tk)))

+F(x,Φnn(x(tk)),w(tk))−Fnn(x,Φnn(x(tk))))

≤−ĉ3|x(tk)|2 + ĉ4|x(tk)|(F(x(tk),Φnn(x(tk)),w(tk))

−Fnn(x(tk),Φnn(x(tk))))

≤−ĉ3|x(tk)|2 + ĉ4γ|x(tk)|2

≤−c̃3|x(tk)|2

(4.12)

where c̃3 = −ĉ3 + ĉ4γ > 0 is a positive real number that has been defined in Theorem 2.1.

Specifically, the inequalities in Eq. 4.12 are derived from the fact that ∂V̂ (x(t))
∂x Fnn(x(t),Φnn(x)) ≤

−ĉ3|x(t)|2 holds for all x ∈Ωρ̂\Ωρs , and the RNN model ˙̂x = Fnn(x̂,u) is well-trained at t = tk such

that the modeling error |ν |= |F(x,u,w)−Fnn(x̂,u)|, ∀t ∈ [0, tk] is constrained by |ν | ≤ γ|x|. Based

on Eq. 4.12 and Eq. 4.4, the time-derivative of V̂ in Eq. 4.11 can be simplified as follows:

˙̂V (x(t))≤− c̃3|x(tk)|2 +
∂V̂ (x(t))

∂x
F(x(t),Φnn(x(tk)),w(t))

− ∂V̂ (x(tk))
∂x

F(x(tk),Φnn(x(tk)),w(tk))

≤− c̃3|x(tk)|2 +L
′
x|x(t)− x(tk)|+L

′
w|w(t)−w(tk)|

(4.13)
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Let p(t) = V̂ (x(t)) and q(t) = Ṽ (x(t)) = V̂ (x(tk))−εw(t− tk). It is readily shown that p(t) and

q(t) are C 1 functions and p(tk) = q(tk) = V̂ (x(tk)) holds. It follows that q̇(tk) = ˙̃V (x(tk)) = −εw.

Additionally, using Eq. 4.2 and Eq. 4.13, ṗ(tk) is bounded by the following inequality:

ṗ(tk) = ˙̂V (x(tk))≤− c̃3|x(tk)|2 +L
′
x|x(tk)− x(tk)|+L

′
w|w(tk)−w(tk)|

≤− c̃3

ĉ2
V̂ (x(tk))

(4.14)

Therefore, it is derived that ṗ(tk) < q̇(tk) for all x(tk) ∈ Ωρ̂\Ωρs since εw is chosen to satisfy

Eq. 2.30 (i.e., − c̃3
ĉ2

ρs+L
′
xM∆≤−εw). Following the Lemma in [161], it is shown that the minimal

inter-event time Tk satisfies Tk≥ τ∗, where τ∗ is the smallest positive solution to the equation p(t)=

q(t), due to the continuity properties of p,q, ṗ, q̇. This completes the proof of Theorem 4.1.

Remark 4.1. Theorem 4.1 demonstrates that the existence of a nonzero minimal inter-event time

Tk is guaranteed for the nonlinear system of Eq. 4.1 subject to the triggering condition of Eq. 4.10.

This implies that the above sample-and-hold implementation of the controller u = Φnn(x)∈U with

the triggering condition of Eq. 4.10 can be applied in practice in which the update of RNN models

cannot be triggered in a continuous-time manner.

Remark 4.2. Since the upper bound of the evolution of V (x) given in Eq. 4.10 guarantees

the decrease of V (x) over time, the closed-loop state can be ultimately driven into a small

neighborhood around the origin (i.e., Ωρs) under the controller u = Φnn(x) ∈ U provided that

the RNN models of Eq. 4.5 and control actions are updated every time the condition of Eq. 4.10

is violated (i.e., at t = rk, k = 1,2, ...). However, considering the fixed sampling period ∆ in the

sample-and-hold implementation of the LMPC of Eq 4.8 and the LEMPC of Eq 4.9, control actions

based on the updated RNN models will not be calculated immediately after the violation of Eq. 4.10

since the control actions remain the same during the current sampling period. For example, if

the (k+ 1)th RNN update is triggered at t = rk+1, where rk+1 ∈ (tk, tk+1), the control actions are

calculated based on the new RNN models at the next sampling time t = tk+1 instead of t = rk+1. Due

to the asynchronization between updating RNN models and re-calculating control actions, Eq. 4.10
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may not hold for all times, and thus, the closed-loop state is no longer guaranteed to move towards

the origin within each sampling period. To address the above issue, an additional constraint

is proposed for the sampling period in the following subsection to ensure that the closed-loop

state can still be driven to a neighborhood around the origin under asynchronous updates of RNN

models and control actions.

4.2.2 Stability Analysis of Event-triggered Feedback Systems

Since model uncertainty (i.e., bounded disturbances |w(t)| ≤ wm) is introduced into the nonlinear

system of Eq. 4.1 under the sample-and-hold implementation of the controller u = Φnn(x) ∈ U

that incorporates the event-triggered mechanism of Eq. 4.10, closed-loop stability derived for the

nominal system of Eq. 4.1 does not hold for all x in Ωρ̂ . In this section, we show that the controller

u = Φnn(x) ∈U can maintain the state inside the stability region Ωρ̂ for all times and ultimately

drive the state into a region around the origin for the closed-loop system of Eq. 4.1 subject to

bounded disturbances.

The following proposition is developed to demonstrate that if the RNN model update is

triggered within a certain sampling period, yet the control actions remain unchanged till the end

of this sampling period, closed-loop stability is still guaranteed in the sense that the closed-loop

state moves towards the origin within one sampling period for all x ∈ Ωρ̂\Ωρw , where ρw ≥

maxx∈Ωρ̂
{V̂ (x) | ˙̂V (x) ≥ −ĉ3|x|2− 2L

′
wwm,u = Φ(x) ∈ U}. Additionally, ρw is designed such

that if the current state is inside Ωρw , it will not leave Ωρ̂ within one sampling period.

Proposition 4.2. Consider the system of Eq. 4.1 with bounded disturbances (i.e., |w(t)| ≤ wm)

under the sample-and-hold implementation of the controller u = Φnn(x) ∈U. Let ρ̂ > ρw > 0 and

∆ satisfy Eq. 2.30 and the following inequality:

∆ <
2( c̃3

ĉ2
ρw−2L

′
wwm)

L′xM
(4.15)
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Then, for any x(tk) ∈Ωρ̂\Ωρw , it holds that

V̂ (x(t))< V̂ (x(tk)), ∀t ∈ (tk, tk+1] (4.16)

Proof. Assuming x(tk) ∈Ωρ̂\Ωρw , we prove that within one sampling period, the value of V̂ (x(t))

does not exceed that of V̂ (x(tk)) for all t ∈ [tk, tk+1] in the case that the RNN model updated at t =

rk < tk does not account for current disturbances w(t) at all. Based on Eq. 4.11, the time-derivative

of V̂ (x) in the presence of disturbances is derived as follows:

˙̂V (x(t)) =
∂V̂ (x(t))

∂x
F(x(t),Φnn(x(tk)),w(t))

=
∂V̂ (x(tk))

∂x
F(x(tk),Φnn(x(tk)),w(rk))

+
∂V̂ (x(t))

∂x
F(x(t),Φnn(x(tk)),w(t))

− ∂V̂ (x(tk))
∂x

F(x(tk),Φnn(x(tk)),w(rk))

(4.17)

Using the similar expansion that has been performed in Eq. 4.12, we derive the following equation:

∂V̂ (x(tk))
∂x

F(x(tk),Φnn(x(tk)),w(rk))

=
∂V̂ (x(tk))

∂x
(Fnn(x,Φnn(x(tk)))

+F(x,Φnn(x(tk)),w(rk))−Fnn(x,Φnn(x(tk))))

(4.18)

Since the RNN model obtained at t = rk guarantees that the modeling error between the kth RNN

model and the uncertain nonlinear system of Eq. 4.1 subject to disturbances w(t), ∀t ∈ [rk−1,rk],

is sufficiently small (i.e., |F(x,Φnn(x),w(rk))−Fnn(x,Φnn(x))| ≤ γ|x|), the following inequalities
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can be obtained using Eq. 4.4:

˙̂V (x(t))≤− ĉ3|x(tk)|2 + ĉ4γ|x(tk)|2 +L
′
x|x(t)− x(tk)|

+L
′
w|w(t)−w(rk)|

≤− c̃3|x(tk)|2 +L
′
x|x(t)− x(tk)|+L

′
w|w(t)−w(rk)|

(4.19)

From the above inequality, it is noted that the disturbance term |w(t)−w(rk)| could be nonzero

for all t ∈ [tk, tk+1] because the last updated RNN model (i.e., the kth RNN model obtained at

t = rk < tk) does not account for time-varying disturbances over t ∈ (rk, tk]. Therefore, we show that

Eq. 4.16 holds for all x ∈ Ωρ̂\Ωρw under the worst-case scenario that |w(t)−w(rk)| = 2wm, ∀t ∈

[tk, tk+1]. Specifically, based on Eq. 4.17, Eq. 4.18 and the fact that ∂V̂ (x(tk))
∂x Fnn(x,Φnn(x(tk))) <

−ĉ3|x(tk)|2−2L
′
wwm for all x(tk) ∈Ωρ̂\Ωρw , it is obtained that

˙̂V (x(tk))≤− ĉ3|x(tk)|2−2L
′
wwm + ĉ4γ|x(tk)|2

+L
′
x|x(tk)− x(tk)|+L

′
w|w(tk)−w(rk)|

≤− c̃3

ĉ2
ρw

(4.20)

It follows that x(t) initially moves towards the origin during t ∈ [tk, tk+1] due to ˙̂V (x(tk)) < 0

at t = tk. Next, we show that V̂ (x(t)) < V̂ (x(tk)) holds for all t ∈ (tk, tk+1] provided that

the sampling period ∆ is sufficiently small. From Eq. 4.4a and Eq. 4.19, it is obtained that

˙̂V (x(t)) ≤ − c̃3
ĉ2

V̂ (x(tk)) + L
′
xM|t − tk|+ 2L

′
wwm, ∀t ∈ [tk, tk+1]. Thus, the evolution of V̂ (x(t)),

t ∈ [tk, tk+1] is calculated as follows by letting τ = t− tk:

V̂ (x(t))≤V (x(tk))+(2L
′
wwm−

c̃3

ĉ2
ρw)τ +

L
′
xM
2

τ
2 (4.21)

Therefore, if the sampling period satisfies Eq. 4.15, it is guaranteed that V̂ (x(t))< V̂ (x(tk)) for all

t ∈ (tk, tk+1], where tk+1 := tk +∆. This implies that for all x(tk) ∈Ωρ̂\Ωρw , the state is bounded in
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Ωρ̂ for all times, and can be ultimately driven into Ωρw under u = Φnn(x) ∈U .

Remark 4.3. Although the controller u = Φnn(x) ∈U is able to drive the state towards the origin

for all x ∈ Ωρ̂\Ωρw , the rate of convergence could be slow due to the large model mismatch if the

RNN models are not updated following the event-triggering mechanism of Eq. 4.10. Therefore,

to accelerate convergence, it is necessary for the RNN models to be updated on-line to improve

approximation performance. For example, the on-line update of the k+1th RNN model is triggered

at t = rk+1 to capture the dynamics of the nonlinear system of Eq.4.1 accounting for time-varying

disturbances since the last update invocation (i.e., t ∈ [rk,rk+1]). As a result, the new RNN models

work compatibly with the controller to stabilize the nonlinear system of Eq. 4.1 until the model

mismatch increases to an undesired level and eventually leads to the next violation of Eq. 4.10.

Remark 4.4. Suppose that an on-line update of RNN models is triggered at some point within

one sampling period (e.g., rk ∈ (tk, tk+1)). Since the control actions remain unchanged till the next

sampling step tk+1 due to the sample-and-hold implementation of the controller, Proposition 4.2

demonstrates that for any x(tk) ∈ Ωρ̂\Ωρw , the state x(t), ∀(tk, tk+1] can still move towards a

smaller level set of V̂ (x) if the sampling period ∆ satisfies Eq. 4.15. The above stability property

facilitates and eases the incorporation of the event-triggered update of RNN models into the LMPC

of Eq. 4.8 and the LEMPC of Eq 4.9 where a fixed sampling period ∆ is used.

4.2.3 Error-triggered On-line RNN Update

The above sections have demonstrated that the closed-loop state of the system of Eq. 4.1 subject

to bounded disturbances can be driven into Ωρw under u = Φnn(x) ∈ U with on-line update of

RNN models. Since ˙̂V (x(t)) is no longer guaranteed to be rendered negative within one sampling

period under the sample-and-hold implementation of u = Φnn(x) ∈ U , in this section, another

event-triggering mechanism based on errors between predicted states and measured states is

developed to update the RNN models for all x ∈ Ωρw . To differentiate it with the event-triggered

mechanism developed for x ∈ Ωρ̂\Ωρw in Eq. 4.10, it will be termed the error-triggered on-line
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RNN update throughout the chapter. Specifically, following the error-triggering mechanism in [5],

a moving horizon error metric Ernn(tk) is proposed to indicate the prediction accuracy of RNN

models at t = tk as follows:

Ernn(tk) =
Nb

∑
i=0

|xp(tk−i)− x(tk−i)|
|x(tk−i)|+δ

(4.22)

where Nb is the number of sampling periods before tk that contribute to the quantification of the

prediction error. xp(tk−i), i = 0, ...,Nb are the predictions of the past states using RNN models,

while x(tk−i) are the past state measurements from the actual nonlinear system of Eq. 4.1 under the

same control actions. A small positive real number δ is added in the denominator of Eq. 4.22 to

avoid the division by small numbers when x(tk−i) approaches zero. The RNN models are updated

if the following inequality is satisfied (i.e., the accumulated error Ernn(tk) exceeds the threshold

ET ):

Ernn(tk)> ET (4.23)

where ET is determined via extensive closed-loop simulations. Specifically, we first choose an

appropriate length Nb for the moving horizon such that it is not too short to frequently trigger

the update of RNN models, nor too long to cause data-storage burden. Subsequently, based on

extensive closed-loop simulations, the threshold ET is determined off-line to trigger an RNN model

update if the state error has accumulated to an undesired level. Additionally, common measurement

noise (sufficiently small compared to time-varying disturbances from model uncertainty) and

nonzero modeling error of RNN models should be accounted for in determining the value of ET

such that they do not trigger an update of RNN models in most times. Lastly, after the RNN model

is updated, for example, at t = rk, all the errors before t = rk are reset to zero.

Remark 4.5. To ensure that an on-line update of RNN models can be accomplished within one

sampling period, a new ensemble of RNN models is obtained based on previous RNN models

and most recent process data. Specifically, instead of training a new ensemble of RNN models

from randomly initialized weights, the weights in previous RNN models are imported as the initial

weight values for the updated ensemble of RNN models. Additionally, it should be noted that only
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the initial ensemble of RNN models (i.e., pre-trained models for the nominal system of Eq. 4.1) is

trained based on the entire dataset from extensive open-loop simulations. All the following updated

RNN models (i.e., fine-tuning of RNN models) are developed using new collected process data.

Remark 4.6. On-line update of RNN models via fine-tuning method (i.e., using most recent

dataset only) has many advantages. First, since we initialize RNN weights which are obtained

from previous RNN models, some of the underlying knowledge obtained from old datasets is

transferred to the new RNN models. Additionally, by training new RNN models with the most

recent dataset, the loss function in RNN learning algorithm is calculated based on the new data

that captures nonlinear dynamics subject to recent disturbances only. Therefore, the updated

RNN models are more capable of making accurate predictions accounting for recent disturbances.

Moreover, the computation time for updating an RNN model is significantly reduced due to the

small size of the newly collected dataset compared to the original training dataset. However,

because of insufficient data in new training dataset, the updated RNN models are not guaranteed to

approximate nonlinear dynamics subject to disturbances in the entire operating region. Therefore,

RNN models will keep adapting to disturbances via the implementation of event-triggered and

error-triggered mechanisms in this section, until they are accurate enough for LMPC and LEMPC

to achieve closed-loop stability.

4.3 Integration of On-line Update of RNNs with MPC

In this section, we demonstrate the implementation strategies for on-line updating RNN

models in LMPC and LEMPC, respectively, following the event-triggering and error-triggering

mechanisms introduced in the previous section. Subsequently, closed-loop stability is established

for the nonlinear system of Eq. 4.1 subject to time-varying bounded disturbances under the

sample-and-hold implementation of the LMPC of Eq. 4.8 and the LEMPC of Eq. 4.9, respectively.
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4.3.1 Implementation Strategy for On-line RNN Learning Within LMPC

Based on the event-triggered and error-triggered control schemes proposed in the previous sections,

the implementation strategy of the on-line RNN learning is integrated with the LMPC of Eq. 4.8

as follows:

Step 1 : An initial RNN model ensemble that is utilized in the LMPC of Eq. 4.8 is derived from

extensive open-loop simulations for the nominal system of Eq. 4.1 (i.e., w(t) ≡ 0) following the

construction method in [181].

Step 2 : Starting from an initial condition x0 ∈ Ωρ̂\Ωρw , the nonlinear system of Eq. 4.1 is

operated under LMPC in a sample-and-hold fashion with states being continuously monitored and

collected. The update of RNN models is triggered the moment that Eq. 4.10 is violated and the

optimal control actions u∗(t) will be calculated by the LMPC using the new RNN model ensemble

at the next sampling time.

Step 3 : Within finite sampling periods, the closed-loop state is driven into Ωρw under LMPC,

after which we switch to the error-triggering mechanism as discussed in the previous section.

Specifically, if the current state stays in Ωρw , the moving horizon error detector of Eq. 4.22 and its

threshold ET are utilized to determine whether an update of RNN models is in demand. However,

if the current state leaves Ωρw due to disturbances, the event-triggering mechanism in Step 2 will

be re-activated to trigger an RNN model update.

Step 4 : If the closed-loop state eventually enters a small neighborhood around the origin (i.e.,

Ωρmin defined in Eq. 2.31), which is considered to be practically stable for the nominal system of

Eq. 4.1, then both the event-triggering and the error-triggering mechanisms are taken off-line until

the state leaves Ωρmin again. Fig. 4.1 shows a trajectory of a Lyapunov function under the LMPC

with the above implementation strategy of on-line update of RNN models.

The following theorem is established to show that under the LMPC that incorporates the above

implementation strategy of event-triggered on-line update of RNN models, the closed-loop state of

the nonlinear system of Eq. 4.1 is bounded in the stability region Ωρ̂ for all times, and ultimately

enters Ωρw . Additionally, if the disturbances in the nonlinear system of Eq. 4.1 remain unchanged
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Figure 4.1: Evolution of Lyapunov function (blue trajectory) under the LMPC with event-triggered
condition of Eq. 4.10 and error-triggered condition of Eq. 4.23, where the dashed lines with the
slope −εw represent the threshold lines in Eq. 4.10.
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after some time, the closed-loop state can be ultimately bounded in a small neighborhood Ωρmin

around the origin.

Theorem 4.2. Consider the closed-loop system of Eq. 4.1 under the LMPC of Eq. 4.8 with on-line

update of RNN models. Let ∆ > 0, εw > 0 and ρ̂ > ρmin > ρs satisfy Eq. 2.30, Eq. 2.31 and

Eq. 4.15. Then, given any initial state x0 ∈Ωρ̂ , if the ensemble of RNN models is updated following

the implementation strategy in this section with the triggering events of Eq. 4.10 and Eq. 4.23,

then it is guaranteed that under the LMPC of Eq. 4.8, x(t) ∈ Ωρ̂ , ∀t ≥ 0, and x(t) ultimately

enters Ωρw . Additionally, if the disturbances w(t) remain unchanged after t = Ts > 0, it holds that

limt→∞ V̂ (x(t))≤ ρmin for the closed-loop system of Eq. 4.1.

Proof. We first prove that the state of the closed-loop system of Eq. 4.1 can be driven into Ωρw

for any initial condition x0 ∈ Ωρ̂\Ωρw . Since the RNN model is updated on-line following the

condition in Eq. 4.10, the value of V̂ (x(t)) decreases at least at the rate of −εw with respect to

time if Eq. 4.10 is satisfied. However, in the case that an update of RNN models is triggered by

the violation of Eq. 4.10 and the control actions remain unchanged until the next sampling step, it

is shown in Proposition 4.2 that the state can still be driven to a smaller level set of V̂ (x) within

one sampling period. Therefore, it is guaranteed that the state ultimately converges to Ωρw . On

the other hand, if x(tk) ∈Ωρw , the on-line update of RNN models is subject to the error-triggering

mechanism of Eq. 4.23. It is noted that the closed-loop state is not guaranteed to remain inside

Ωρw for all times in the presence of bounded disturbances. However, once the state leaves Ωρw , it is

shown by the characterization method of Ωρw that the state will not leave the closed-loop stability

region Ωρ̂ within one sampling period, such that the state can be driven into Ωρw again under the

LMPC of Eq. 4.8 with the event-triggering system of Eq. 4.10.

Next, we prove that after the disturbances w(t) remain unchanged for all t ≥ Ts > 0, the

state of the closed-loop system of Eq. 4.1 is ultimately unbounded in ρmin. Specifically, since

w(t) =w(Ts),∀t ≥ Ts, the last updated RNN models satisfy |ν |= |F(x,u,w(Ts))−Fnn(x,u)| ≤ γ|x|.

Therefore, based on Eq. 2.30, Eq. 2.31 and Eq. 4.19, the time-derivative of V̂ (x), ∀t ∈ [tk, tk+1),
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where tk ≥ Ts, is bounded for all x(tk) ∈Ωρ̂\Ωρs as follows:

˙̂V (x(t))≤− ĉ3|x(tk)|2 + ĉ4γ|x(tk)|2 +L
′
x|x(t)− x(tk)|+L

′
w|w(t)−w(Ts)|

≤− c̃3|x(tk)|2 +L
′
xM∆

≤− εw

(4.24)

This implies that well-conditioned RNN models are derived to successfully capture the dynamics

of nonlinear system of Eq. 4.1 in the presence of constant disturbances w(t) after t = Ts, and

therefore, the closed-loop state can be ultimately driven into Ωρs . Following the definitions of

Ωρnn , Ωρmin and the proof in [181], it is demonstrated that the closed-loop state is maintained in a

small neighborhood Ωρmin around the origin in the presence of sufficiently small modeling error |ν |.

This completes the proof of convergence of the state to Ωρw within finite time, and boundedness of

the state in Ωρ̂ , ∀t ≥ 0 for the closed-loop system of Eq. 4.1 with x0 ∈ Ωρ̂ under the LMPC with

on-line update of RNN models.

4.3.2 Implementation Strategy for On-line RNN Learning Within LEMPC

The integrated framework of implementing on-line RNN learning within the LEMPC of Eq. 4.9 is

presented as follows:

Step 1 : Similar to the implementation strategy for LMPC, an initial RNN model ensemble

that is utilized in the LEMPC of Eq. 4.8 is derived from extensive open-loop simulations for the

nominal system of Eq. 4.1 (i.e., w(t)≡ 0) following the construction method in [171].

Step 2 : Starting from an initial condition x0 ∈Ωρ̂ , the nonlinear system of Eq. 4.1 is operated

under LEMPC in a sample-and-hold fashion with states being continuously monitored and

collected. Specifically, if x(tk) ∈ Ωρ̂e , the RNN models are updated following the error-triggered

mechanism of Eq. 4.23. However, if x(tk) ∈ Ωρ̂\Ωρ̂e , both the event-triggered mechanism of

Eq. 4.10 and the error-triggered mechanism of Eq. 4.23 are activated, where the update of RNN

models is triggered by the one that violates the constraint first.
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Step 3 : Since the event-triggered mechanism of Eq. 4.10 is activated for all x ∈ Ωρ̂\Ωρ̂e , the

closed-loop state is guaranteed to move into Ωρ̂e within finite sampling steps. Therefore, under the

time-varying operation of LEMPC with on-line updating RNNs, optimal process economic benefits

and closed-loop stability are achieved simultaneously for the closed-loop system of Eq. 4.1.

The following theorem demonstrates that under the LEMPC with on-line updating RNN

models, the closed-loop state of the nonlinear system of Eq. 4.1 is maintained in the stability

region Ωρ̂ for all times.

Theorem 4.3. Consider the closed-loop system of Eq. 4.1 under the LEMPC of Eq. 4.9 with on-line

update of RNN models via the above implementation strategy. Let ∆ > 0, εw > 0 and ρ̂ > ρ̂e >

ρw > 0 satisfy Eq. 2.30, Eq. 4.15 and the following inequality:

ρ̂e ≤ ρ̂− ĉ4
√

ρ̂√
ĉ1

f ′w(∆)−κ( f ′w(∆))
2 (4.25)

where f ′w(t) := 2Lwwm+νm
Lx

(eLxt −1). Then, for any initial condition x0 ∈ Ωρ̂ , the closed-loop state

x(t) is bounded in the stability region Ωρ̂ , ∀t ≥ 0.

Proof. We prove the boundedness of state in Ωρ̂ for the following two cases: x(tk) ∈ Ωρ̂e and

x(tk) ∈ Ωρ̂\Ωρ̂e . Specifically, we first prove that if x(tk) ∈ Ωρ̂e , the state of the nonlinear system

of Eq. 4.1 subject to bounded disturbances does not leave Ωρ̂ within one sampling period (i.e.,

∀t ∈ [tk, tk+1)). Following the proof in [6, 175], the time-derivative of the state error vector e(t) =

x(t)− x̂(t) is obtained ∀x, x̂ ∈Ωρ̂ , u ∈U and w(t) ∈W as follows:

|ė|=|F(x,u,w)−Fnn(x̂,u)|

≤|F(x,u,w)−F(x̂,u,w(rk)|+ |F(x̂,u,w(rk))−Fnn(x̂,u)|

≤Lx|e(t)|+2Lwwm +νm

(4.26)

where it is assumed that the last updated RNN models are obtained at t = rk ≤ tk. Due to the fact

that measured states are fed back to the controller at every sampling step, it follows that x(t) = x̂(t)

(i.e., e(0) = 0). Thus, the upper bound for |e(t)| is derived for all x(t), x̂(t) ∈ Ωρ̂ and |w(t)| ≤ wm
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as follows:

|e(t)|= |x(t)− x̂(t)| ≤ 2Lwwm +νm

Lx
(eLxt−1) (4.27)

Additionally, using Taylor series expansion of V̂ (x) around x̂ and Eq. 4.6, the following inequality

is derived ∀x, x̂ ∈Ωρ :

V̂ (x)≤ V̂ (x̂)+
∂V̂ (x̂)

∂x
|x− x̂|+κ|x− x̂|2

≤ V̂ (x̂)+
ĉ4
√

ρ̂√
ĉ1
|x− x̂|+κ|x− x̂|2

(4.28)

where κ > 0. Therefore, from Eq. 4.28, it is demonstrated that if Ωρ̂e is characterized to satisfy

Eq. 4.25, the closed-loop state x(t), t ∈ [tk, tk+1) is guaranteed to be bounded in Ωρ̂ since the

predicted state x̂(t) is maintained inside Ωρ̂e by the constraint of Eq. 4.8e.

On the other hand, if x(tk)∈Ωρ̂\Ωρ̂e , the constraint of Eq. 4.9f is activated such that the control

action u decreases the value of V̂ (x̂) based on the states predicted by the RNN model of Eq. 4.9b

within the next sampling period. Additionally, under the co-implementation of event-triggered

mechanisms of Eq. 4.10 and Eq. 4.23, it is ensured that the state of the closed-loop system of

Eq. 4.1 satisfies V̂ (x(t)) < V̂ (x(tk)), ∀t ∈ (tk, tk+1), and therefore, it never leaves Ωρ̂ , and can be

eventually driven back to Ωρ̂e . This completes the proof of boundedness of the closed-loop state

in Ωρ̂ for all x0 ∈Ωρ̂ under LEMPC.

Remark 4.7. The proposed on-line update of RNN models for MPC is not limited to

processes/input spaces of low dimension. Given a nonlinear system with state dimension of n,

and input dimension of m, the input to the RNN model is of dimension m+n, and the output is of

dimension n. The computational complexity of training an RNN model is approximately linear to

the size of input space, and the size of each hidden layer. The computation time is not an issue

for the initial RNN model since it is trained off-line based on the entire dataset. Additionally,

when updating RNN models on-line, we only use the most recent data to update the RNN model

instead of training a new RNN from the beginning. Therefore, the computation time is significantly

reduced compared to that for the initial RNN model, and is less than one sampling period in our

case. Moreover, parallel computing and hardware acceleration can be employed to further improve
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computational efficiency of training RNN models for large-scale systems.

4.4 Application to a Chemical Process Example

A chemical process example is used to illustrate the application of on-line update of RNN models

for LMPC and LEMPC, respectively. Specifically, a well-mixed, non-isothermal continuous

stirred tank reactor (CSTR) where an irreversible second-order exothermic reaction takes place is

considered. The reaction transforms a reactant A to a product B (A→B). The inlet concentration of

A, the inlet temperature and feed volumetric flow rate of the reactor are CA0, T0 and F , respectively.

The CSTR is equipped with a heating jacket that supplies/removes heat at a rate Q. The CSTR

dynamic model is described by the following material and energy balance equations:

dCA

dt
=

F
V
(CA0−CA)− k0e

−E
RT C2

A (4.29a)

dT
dt

=
F
V
(T0−T )+

−∆H
ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV
(4.29b)

where CA is the concentration of reactant A in the reactor, V is the volume of the reacting liquid in

the reactor, T is the temperature of the reactor and Q denotes the heat input rate. The concentration

of reactant A in the feed is CA0. The feed temperature and volumetric flow rate are T0 and F ,

respectively. The reacting liquid has a constant density of ρL and a heat capacity of Cp. ∆H, k0, E,

and R represent the enthalpy of reaction, pre-exponential constant, activation energy, and ideal gas

constant, respectively. Process parameter values are listed in Table 4.1.

We study the operation of CSTR under LMPC and LEMPC with the same unstable steady-state

(CAs, Ts) = (1.95 kmol/m3, 402 K), and (CA0s Qs) = (4 kmol/m3, 0 kJ/hr). The manipulated

inputs are the inlet concentration of species A and the heat input rate, which are represented by

the deviation variables ∆CA0 =CA0−CA0s , ∆Q = Q−Qs, respectively. The manipulated inputs are

bounded as follows: |∆CA0| ≤ 3.5 kmol/m3 and |∆Q| ≤ 5×105 kJ/hr. Therefore, the states and the

inputs of the closed-loop system are xT = [CA−CAs T −Ts] and uT = [∆CA0 ∆Q], respectively, such

114



Table 4.1: Parameter values of the CSTR with a second-order reaction.

T0 = 300 K F = 5 m3/hr

V = 1 m3 E = 5×104 kJ/kmol

k0 = 8.46×106 m3/kmol hr ∆H =−1.15×104 kJ/kmol

Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K

ρL = 1000 kg/m3 CA0s = 4 kmol/m3

Qs = 0.0 kJ/hr CAs = 1.95 kmol/m3

Ts = 402 K

that the equilibrium point of the system is at the origin of the state-space, (i.e., (x∗s ,u
∗
s ) = (0,0)). In

this study, we consider the model variations caused by the following disturbances. 1) The feed flow

rate F is varying due to an upstream disturbance that F becomes time-varying with the constraint:

0 ≤ F ≤ 12 m3/hr. 2) Additionally, catalyst activation is accounted for during the operation of

the CSTR of Eq. 4.29, which leads to a reduction in the reaction pre-exponential factor k0 with the

constraint: 0 < k0 < 8.46×106 m3/kmol hr.

The control Lyapunov function V (x) = xT Px is designed with the following positive definite P

matrix:

P =




1060 22

22 0.52


 (4.30)

Then, the closed-loop stability region Ωρ for the CSTR is characterized as a level set of the

Lyapunov function with ρ̂ = 368 inside the region φu, from which the origin can be rendered

exponentially stable under the controller u = Φ(x) ∈U .

The explicit Euler method with an integration time step of hc = 10−4 hr is used to numerically

simulate the dynamic model of Eq. 4.29. The nonlinear optimization problem of the LMPC of

Eq. 4.8 is solved using the python module of the IPOPT software package [158], named PyIpopt

with the sampling period ∆ = 10−2 hr. The initial ensemble of RNN models is generated following

the data generation and RNN learning algorithm in [171, 181]. Parallel computing is employed

to carry out the calculations of multiple RNN predictions concurrently using a Message Passing
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Interface (MPI) for the Python programming language, named MPI4Py ( [40]).

In this study, we assume that there is no noise in real-time data. However, in the case where

the state measurements are noisy, the proposed on-line update of RNN models can still be applied

via a data pre-processing step to smoothen the measurement data. For example, Savitzky-Golay

filter, a generalized moving average based on the least squares fitting, can be applied to smoothen

noisy sampled data without distorting the data tendency before feeding real-time data into the RNN

model [108, 131].

Closed-loop Simulation under LMPC

The control objective of LMPC is to operate the CSTR at the unstable equilibrium point (CAs, Ts)

by manipulating the heat input rate ∆Q and the inlet concentration ∆CA0 under the LMPC using

RNN models. The closed-loop simulation results for the nominal system of Eq. 4.29 under LMPC

are shown in [181], where it is demonstrated that the state converges to a small neighborhood Ωρmin

around the origin ultimately. The simulation results for the uncertain system of Eq. 4.29 under

LMPC with on-line update of RNN model ensemble are shown in Figs. 4.2-4.8. Specifically, the

feed flow rate F is increased to 12 m3/hr at t = 0.05 hr, and k0 is gradually decreased to 0.8k0,

0.6k0 and 0.4k0 at t = 0.1 hr, 0.2 hr and 0.4 hr, respectively, and remains unchanged afterwards.

In Fig. 4.2, it is shown that the closed-loop state trajectory under LMPC without on-line update of

RNN model ensemble (i.e., using the initial RNN model ensemble for all times) oscillates around

the origin due to disturbances, while the LMPC with on-line update of RNN model ensemble

successfully drives the closed-loop state into a small neighborhood around the origin. Additionally,

in Fig. 4.3 and Fig. 4.4, it is shown that the closed-loop states under the LMPC with on-line

RNN update are stabilized at their steady-states after t = 0.2 hr, while those under the LMPC

without on-line RNN update shows considerable oscillation since the initial RNN model ensemble

is not able to capture dynamic behavior of the system of Eq. 4.29 in the presence of disturbances.

Therefore, the dynamic performance of the closed-loop system of Eq. 4.29 under the LMPC is

significantly improved through on-line update of RNN model ensemble.
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Figure 4.2: The state-space profiles for the closed-loop CSTR under the LMPC of Eq. 4.8 with and
without on-line update of RNN model ensemble for the initial condition (-1.5, 70).
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Figure 4.3: The state profiles (x1 = CA−CAs) for the initial condition (-1.5, 70) under the LMPC
of Eq. 4.8 with and without on-line update of RNN model ensemble, respectively.
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Figure 4.4: The state profiles (x2 = T −Ts) for the initial condition (-1.5, 70) under the LMPC of
Eq. 4.8 with and without on-line update of RNN model ensemble, respectively.

Fig. 4.5 shows the evolution of moving horizon error detector Ernn(t) for the closed-loop system

of Eq. 4.29 under the LMPC of Eq. 4.8 with error-triggered on-line update of RNN models.

Specifically, since it takes only one sampling step for the closed-loop state to enter Ωρw , the

event-triggering condition of Eq. 4.10 is never triggered in this case. Additionally, in Fig. 4.5, it is

shown that the update of RNN models is triggered two times with the threshold ET = 15. After the

closed-loop state enters a small neighborhood around the origin (i.e., Ωρmin), the error-triggering

system is off-line according to the implementation strategy (i.e., Step 4) for LMPC.

Fig. 4.6 depicts the evolution of the Lyapunov function value, V̂ (x), of the closed-loop state,

under the LMPC with and without on-line update of RNN models, respectively. In Fig. 4.6, the

closed-loop state under on-line update enters Ωρmin after t = 0.1 hr in the presence of disturbances,

while it oscillates heavily and never enters Ωρmin under the LMPC without on-line model update.

Finally, in Fig. 4.7 and Fig. 4.8, the manipulated input profiles for u1 = ∆CA0 and u2 = ∆Q are

presented for both LMPCs. Specifically, when the RNN models are updated on-line, u1 in Fig. 4.7

settles to its steady-state value after t = 0.12 hr. However, without on-line update of RNN models,

u1 shows sustained oscillation between the maximum and minimum saturated points, which might
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significantly shorten the lifespan of actuators. Similarly, in Fig. 4.8, the LMPC with on-line update

of RNN models shows smoother control actions u2 compared to that without on-line model update.
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Figure 4.5: Value of Ernn(t) of Eq. 4.22 at each sampling time for the closed-loop system of
Eq. 4.29 under the LMPC of Eq. 4.8 with error-triggered on-line update of RNN models.
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Figure 4.6: Evolution of V̂ (x) for the closed-loop system of Eq. 4.29 under the LMPC of Eq. 4.8
with and without error-triggered on-line update of RNN models.
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Figure 4.7: Manipulated input profiles (u1 = ∆CA0) for the initial condition (-1.5, 70) under the
LMPC of Eq. 4.8 with and without on-line update of RNN model ensemble, respectively, where
the black dotted lines represent the upper and lower bound for u1.
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Figure 4.8: Manipulated input profiles (u2 = ∆Q) for the initial condition (-1.5, 70) under the
LMPC of Eq. 4.8 with and without on-line update of RNN model ensemble, respectively, where
the black dotted lines represent the upper and lower bound for u2.
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Closed-loop Simulation under LEMPC

The control objective of LEMPC is to maximize the profit of the CSTR process of Eq. 4.29 by

manipulating the inlet concentration ∆CA0 and the heat input rate ∆Q, and meanwhile maintain the

closed-loop state trajectories in the stability region Ωρ̂ for all times under LEMPC. The objective

function of the LEMPC optimizes the production rate of B as follows:

le(x̃,u) = k0e−E/RTC2
A (4.31)

Additionally, the following material constraint is utilized in the LEMPC of Eq. 4.9 to make the

averaged reactant material available within the operating period tp to be its steady-state value, CA0s

(i.e., the averaged reactant material in deviation form, u1, is equal to 0).

1
tp

∫ tp

0
u1(τ)dτ = 0 kmol/m3 (4.32)

In [171], it has been demonstrated that the closed-loop state of the nominal system of Eq. 4.29 is

bounded in Ωρ̂ for all times under LEMPC. In this study, we consider the same disturbances that

we have performed for the closed-loop system of Eq. 4.29 under LMPC. Additionally, the CSTR

system of Eq. 4.29 is operated under LEMPC for five consecutive operation periods with tp = 0.2 hr

for each operation period. The simulations results for the closed-loop system of Eq. 4.29 in the

presence of disturbances are shown in Figs. 4.9-4.15. Specifically, in Fig. 4.9, it is shown that

the closed-loop state circles inside the stability region Ωρ̂ due to the time-varying operation under

LEMPC. Additionally, it is demonstrated that the closed-loop state is bounded in Ωρ̂ for all times

under the LEMPC of Eq. 4.9 with on-line update of RNN models. From Fig. 4.10, it is shown

that the moving horizon error detector Ernn exceeds the threshold twice under the LEMPC with

on-line update of RNN models (i.e., the RNN update is triggered twice), and ultimately remains

at a low value (below the threshold) after a more accurate ensemble of RNN models are derived

to account for process disturbances. However, it is observed that the error detector Ernn under the
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Figure 4.9: The state trajectories for the closed-loop CSTR under the LEMPC of Eq. 4.9 with and
without on-line update of RNN model ensemble for the initial condition (0, 0).

LEMPC without on-line update of RNN models maintains at a high level (close to the threshold)

for all times, which implies that the deviation between the predicted state and the actual states

is considerable, and may lead to undesired closed-loop performance. Moreover, it is observed in

Fig. 4.13 that the event-triggered mechanism of Eq. 4.10 is never activated in this case since V̂ (x)

decreases rapidly for all states outside Ωρ̂e , and thus, satisfies V̂ (x(t))≤ V̂ (x(tk))− εw(t− tk), t ∈

[tk, tk+1).

Based on the state profiles shown in Fig. 4.11 and Fig. 4.12, the evolution of the value of V̂ (x)

for the closed-loop system of Eq. 4.29 is compared between the LEMPC with and without on-line

update of RNN models in Fig. 4.13. Specifically, it is shown that V̂ (x) under LEMPC with on-line

update of RNN models remains below 368 (i.e., the value of ρ̂ for the closed-loop stability region

Ωρ̂ ) for all times, while it exceeds 368 under the LEMPC without on-line update of RNN models

around t = 0.2 hr and t = 0.6 hr. Additionally, since the accuracy of RNN prediction for nonlinear

dynamics of Eq. 4.29 subject to disturbances is improved via on-line update using real-time process

data, V̂ (x) is smoothly maintained below ρ̂e during the last 0.4 hr. However, V̂ (x) based on the

states under the LEMPC without on-line update of RNN models shows sustained oscillation around
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Figure 4.10: Value of Ernn(t) of Eq. 4.22 at each sampling time for the closed-loop system of
Eq. 4.29 under the LEMPC of Eq. 4.9 with error-triggered on-line update of RNN models.
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Figure 4.11: The state profiles (x1 =CA−CAs) for the initial condition (0, 0) under the LEMPC of
Eq. 4.9 with and without on-line update of RNN model ensemble, respectively.
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Figure 4.12: The state profiles (x2 = T −Ts) for the initial condition (0, 0) under the LEMPC of
Eq. 4.9 with and without on-line update of RNN model ensemble, respectively.

ρ̂e due to significant model mismatch as indicated in Fig. 4.10.

Manipulated input profiles for the closed-loop system of Eq. 4.29 are given in Fig. 4.14 and

Fig. 4.15, in which it is shown that the input constraints on ∆CA0 and ∆Q are satisfied for all

times. Additionally, it is observed in Fig. 4.14 that the closed-loop system initially consumes the

maximum allowable ∆CA0 (i.e., ∆CA0 = 3.5kmol/m3) within each operation period (tp = 0.2 hr) to

maximize the production rate of B, and therefore, has to lower the reactant consumption near the

end of each operation period to meet the material constraint of Eq. 4.32 for all times.

Lastly, the total economic benefits achieved within five operation periods are calculated for the

LEMPC with on-line update of RNN models and the steady-state operation (i.e., the system of

Eq. 4.29 is operated at (CAs, Ts) for all times) using the following equation:

LE =
∫ 5tp

0
le(x,u)dt

It is shown that LE = 16.74 for the closed-loop system under LEMPC and LE = 10.23 for the

steady-state operation within 1 hr. Therefore, it is concluded that time-varying operation of the
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system of Eq. 4.29 under the LEMPC of Eq. 4.9 with on-line updating RNN models achieves

higher economic benefits compared to the steady-state operation, and outperforms that without

on-line update of RNN models in terms of smoother operation and stronger robustness properties.

Remark 4.8. The quasi-periodicity of closed-loop state and input profiles is due to the reactant

material constraint that is incorporated in LEMPC. Since it is required that the averaged reactant

material used within each operating period is equal to its steady-state value (i.e., reactant material

constraint), LEMPC consumes the maximum allowable reactants and energy at the early stage of

each operating period (owing to the second-order reaction rate to maximize reaction rate), and

lowers the reactant consumption near the end of the period to meet the material constraint. In the

simulation, the CSTR system is operated under LEMPC for five operating periods, and therefore,

the state and input profiles exhibit quasi-periodic behavior.
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Figure 4.13: Evolution of V̂ (x) for the closed-loop system of Eq. 4.29 under the LEMPC of Eq. 4.9
with and without error-triggered on-line update of RNN models, respectively.
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Figure 4.14: Manipulated input profiles (u1 = ∆CA0) for the initial condition (0, 0) under the
LEMPC of Eq. 4.9 with and without on-line update of RNN model ensemble, respectively, where
the black dotted lines represent the upper and lower bounds for u1.
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Figure 4.15: Manipulated input profiles (u2 = ∆Q) for the initial condition (0, 0) under the LEMPC
of Eq. 4.9 with and without on-line update of RNN model ensemble, respectively, where the black
dotted lines represent the upper and lower bounds for u2.
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4.5 Conclusion

This chapter focused on the real-time implementation of machine learning-based MPC and EMPC

to nonlinear processes subject to time-varying disturbances. Based on the ensemble of RNN

models that were obtained from extensive simulation data, Lyapunov-based MPC was developed to

drive the state of the nominal closed-loop system to the steady-state, and Lyapunov-based EMPC

was developed to maintain the state in the closed-loop stability region, respectively. Subsequently,

event-triggered and error-triggered mechanisms were incorporated in LMPC and LEMPC to update

the RNN models on-line using the most recent process data that account for nonlinear dynamics

in the presence of disturbances. The application of the proposed methodology to a chemical

process example demonstrated that the closed-loop state converged to the origin under LMPC,

and remained bounded in the closed-loop stability region under LEMPC with improved dynamic

performance compared to those without on-line update of RNN models.
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Chapter 5

Physics-Based Machine Learning Modeling

of Nonlinear Systems

5.1 Introduction

Recurrent neural networks (RNN), a class of artificial neural networks that can represent temporal

dynamic behavior through feedback loops in neurons, have been utilized to model nonlinear

dynamic systems and have been incorporated in the design of model predictive controllers (MPC)

that optimize process performance based on RNN prediction results in Chapter 2. However,

as neural network modeling is generally treated as a black-box modeling approach where no

physical knowledge is utilized, interpretability and optimality of neural network modeling remain

questionable. On the other hand, chemical processes have been studied for a long time by

researchers and engineers, where first-principles knowledge has been obtained based on their

predefined and well-known structure. For example, a chemical plant is designed in a sequence

of intricate operation units that perform reactions, separations, among many others operations

in which raw materials are fed in the first unit and products are obtained in the last unit in its

simplest structure. Additionally, it is also very common that some processes are highly coupled

among units through reflux of unreacted material that is recycled to upstream units to maximize
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the production [88, 150]. However, at this stage, the incorporation of first-principles or physical

knowledge of chemical processes into RNN modeling has not been thoroughly studied.

Fully-connected neural networks are developed based on the assumption that all the inputs

affect all the neural network neurons, followed by all the outputs. However, it is noted that

in realistic chemical processes, it is common that only a portion of inputs affect a portion of

outputs, for example, in a multiple unit process in which upstream units affect downstream units

but not in the opposite direction. In order to make better use of such a priori process knowledge,

many researchers have started to incorporate physical knowledge of systems in the neural network

formulation (e.g., [15, 70, 71, 86, 87, 138]). For example, hybrid models and gray-box models

have been developed to introduce chemical process knowledge into data-driven modeling in early

works [45, 50, 68, 69, 123, 143, 146, 183, 193].

Motivated by the above considerations, in this chapter, we develop a hybrid model,

a partially-connected RNN model, and a weight-constrained RNN model to incorporate

process physical knowledge into RNN modeling and training. Subsequently, the proposed

partially-connected RNN model and the weight-constrained RNN model are incorporated in

the design of MPC and of economic MPC (EMPC) to provide predictions of future states for

the optimization problem of MPC and EMPC that optimize process performance in terms of

closed-loop stability and economic optimality. Finally, the RNN-MPC and RNN-EMPC are

applied to a chemical process example to demonstrate their improved closed-loop performances in

terms of faster convergence to the steady-state under RNN-MPC and enhanced process economic

profits under RNN-EMPC than the controllers using a fully-connected RNN model.

5.1.1 Notation

The Euclidean norm of a vector is denoted by the operator |·| and the weighted Euclidean norm

of a vector is denoted by the operator |·|Q where Q is a positive definite matrix. xT denotes the

transpose of x. The notation L fV (x) denotes the standard Lie derivative L fV (x) := ∂V (x)
∂x f (x). Set

subtraction is denoted by ”\”, i.e., A\B := {x ∈ Rn | x ∈ A,x /∈ B}.
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5.1.2 Class of Systems

The class of continuous-time nonlinear systems considered is described by the following

state-space form:

ẋ = F(x,u,w) := f (x)+g(x)u+h(x)w, x(t0) = x0 (5.1)

where x ∈ Rn is the state vector, u ∈ Rm is the manipulated input vector, and w ∈ W is the

disturbance vector, where W := {w ∈ Rl | |w| ≤ θ , θ ≥ 0}. The control action constraint is

defined by u ∈U := {umin ≤ u≤ umax} ⊂Rm, where umin and umax represent the minimum and the

maximum value vectors of inputs allowed, respectively. f (·), g(·), and h(·) are sufficiently smooth

vector and matrix functions of dimensions n× 1, n×m, and n× l, respectively. Without loss of

generality, the initial time t0 is taken to be zero (t0 = 0), and it is assumed that f (0) = 0, and thus,

the origin is a steady-state of the system of Eq. 5.1 with u(t) = w(t)≡ 0.

5.1.3 Stabilizability Assumptions Expressed via Lyapunov-based Control

We assume that there exists a positive definite and proper Control Lyapunov function (CLF) V for

the nominal system of Eq. 5.1 with w(t)≡ 0 that satisfies the small control property (i.e., for every

ε > 0, ∃ δ > 0, s.t. ∀ x ∈Bδ (0), there exists u that satisfies |u| < ε and L fV (x)+LgV (x)u < 0,

[142]) and the following condition:

L fV (x)< 0,∀x ∈ {z ∈ Rn\{0} | LgV (z) = 0} (5.2)

The CLF assumption implies that there exists a stabilizing feedback control law Φ(x) ∈ U

for the nominal system of Eq. 5.1 (i.e., w(t)≡ 0) that renders the origin of the closed-loop system

asymptotically stable for all x in a neighborhood of the origin in the sense that L fV (x)+LgV (x)u<

0 holds for u = Φ(x) ∈ U . An example of a feedback control law can be found in [83]. Based

on the CLF assumption, we can first characterize a region where the time-derivative of V is

rendered negative definite under the controller Φ(x) ∈U as φu = {x ∈ Rn | V̇ (x) = L fV +LgVu <
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−kV (x),u = Φ(x) ∈U}∪{0}, where k is a positive real number. Then, the closed-loop stability

region Ωρ for the nonlinear system of Eq. 5.1 is defined as a level set of the Lyapunov function

embedded in φu: Ωρ := {x ∈ φu | V (x)≤ ρ} ⊂ φu, where ρ > 0.

Remark 5.1. We consider the nonlinear system with the form of Eq. 5.1 since control-affine

nonlinear systems are very common in the modeling of chemical processes. Additionally, with

the form of Eq. 5.1 , we can simplify the discussion on the design of a stabilizing controller

u = Φ(x) by using the Sontag control law [83]. However, it should be noted that the proposed

RNN modeling approaches that account for a priori process knowledge in this chapter are not

restricted to control-affine nonlinear systems, and can be generalized to nonlinear systems in a

more general form: ẋ = f (x,u,w).

5.1.4 Recurrent Neural Network Model

A recurrent neural network (RNN) model that approximates the nonlinear dynamics of the system

of Eq. 5.1 is developed with the following form:

˙̂x = Fnn(x̂,u) := Ax̂+Θ
T y (5.3)

where x̂ ∈ Rn is the RNN state vector and u ∈ Rm is the manipulated input vector. y =

[y1, ...,yn,yn+1, ...,ym+n] = [σ(x̂1), ...,σ(x̂n),u1, ...,um] ∈ Rn+m is a vector of both the network

state x̂ and the input u, where σ(·) is the nonlinear activation function (e.g., a sigmoid function

σ(x) = 1/(1+ e−x)). A is a diagonal coefficient matrix, i.e., A = diag{−a1, ...,−an} ∈ Rn×n, and

Θ = [θ1, ...,θn] ∈ R(m+n)×n with θi = bi[wi1, ...,wi(m+n)], i = 1, ...,n. ai and bi are constants. wi j

is the weight connecting the jth input to the ith neuron where i = 1, ...,n and j = 1, ...,(m+ n).

ai is assumed to be positive such that each state x̂i is bounded-input bounded-state stable. It is

noted that to simplify the mathematical expressions of the input vector, and of the weight matrix

in this chapter, we do not include the bias term in the notation since it can always be considered as

an additional constant input (i.e., u ∈ Rm+1), and therefore, does not affect the formulation of the
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continuous RNN models.

Although the universal approximation theorem states that a neural network with a single

hidden layer with sufficient number of neurons can approximate any continuous-time nonlinear

function on compact subsets of Rn, algorithmic learnability of the optimal neural network weights

is not guaranteed. In fact, due to the complexity of neural network structure, availability of

computing power, and feasibility of optimization algorithms, it is challenging to find such an

optimal weight for the regression problems of a large-scale, complex system. Therefore, how

to improve the performance of neural networks has been a major long-standing challenge for

researchers in machine learning community over the past few decades, where a lot of efforts

have been made to optimize neural network structure, develop advanced optimization algorithms,

improve data-processing systems and so on.

In this chapter, we will improve the performance of RNN models in terms of enhanced

prediction accuracy by incorporating structural domain knowledge of the nonlinear system of

Eq. 5.1 (i.e., knowledge of the dependence of the state variables) into the development of the

RNN structure. Specifically, instead of treating the RNN system of Eq. 5.3 like a black box and

training it using all the inputs and outputs available (termed the fully-connected model throughout

the chapter), we modify the RNN structure according to the structural process knowledge of

the nonlinear system of Eq. 5.1. The details of the proposed new structure are discussed in the

following section.

Remark 5.2. It is noted that in Eq. 5.3, we use a one-hidden-layer RNN model with n states in

order to simplify the discussion of the approximation of the nonlinear system of Eq. 5.1 using an

RNN model. However, the RNN modeling method in this section is not restricted to a one-hidden

layer RNN structure with n states only. The RNN states x̂ ∈ Rn in Eq. 5.3 can be considered to be

the last hidden layer (if the output of the nonlinear system of Eq. 5.1 is a function of states), or

the output layer of an RNN (if the state x is also the output of the nonlinear system of Eq. 5.1).

Therefore, before the last hidden layer/output layer, we can add another hidden layer or multiple

hidden layers with a sufficient number of neurons to approximate the nonlinear system of Eq. 5.1.
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5.2 Physics-based RNNs

In this section, we introduce three different methods to integrate domain knowledge into

neural network modeling and training. The first method is to develop a hybrid model that

integrates first-principles models with RNN models. The second method is to develop a

partially-connected RNN structure using a priori knowledge of process input-output relationship.

Lastly, a weight-constrained RNN model is developed by imposing constraints on the neural

network weights based on the input-output relationship of the nonlinear system of Eq. 5.1.

5.2.1 Hybrid Model

While first-principles modeling has been studied and applied to chemical processes for over a

century and has achieved good performances, it becomes difficult to obtain a 100% accurate

first-principles model for large-scale systems due to inherent complexity. Therefore, in this

chapter, we first propose a hybrid modeling method that introduces physical knowledge (e.g.,

first-principles knowledge based on physical laws such as mass and energy balances) into neural

network modeling by combining a first-principles model and an RNN model together. Specifically,

the hybrid model is developed using an RNN function f̃nn(x,u) to approximate the gap between

the first-principles model and the actual nonlinear process as follows:

ẋ = f̃ (x)+ g̃(x)u+ f̃nn(x,u) (5.4)

where ẋ = f̃ (x)+ g̃(x)u is the first-principles model that is developed based on general physical

laws and assumptions, and therefore, may not be able to fully capture the dynamics of the actual

nonlinear processes of Eq. 5.1 due to mismatch between ẋ = f̃ (x)+ g̃(x)u and ẋ = f (x)+ g(x)u.

The RNN function f̃nn(x,u) in Eq. 5.4 is utilized to bridge the gap between the first-principles

knowledge and the real process data. It is demonstrated that the hybrid model of Eq. 5.4 has the

following advantages compared with a fully-connected RNN model. First, the RNN in the hybrid

model is only used to approximate the residual between first-principles models and real process
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data, and therefore, may take less computing power and training time to learn. Additionally,

when it comes to the operating region with no data available, the hybrid model can still be

considered a reliable model due to its intrinsically physical knowledge, while the pure RNN

model may be completely dysfunctional. For example, in [15], a hybrid model that combines

first-principles free-falling equations and a neural network model was developed to improve

the estimation of future trajectories of a paper ball being tossed, in which the neural network

was developed to learn the model mismatch between the ground truth and the first-principles

model-based solution. Additionally, in [192], a hybrid neural network model was developed for a

chemical process where the linear part of the hybrid model is developed based on first-principles

knowledge and the nonlinear term of reaction rate is provided by a neural network model using

experiment/simulation data. It was demonstrated in [192] that the hybrid model achieved desired

approximation performance and the neural network well approximated the nonlinear term of

reaction rate that depends on multiple variables with an unknown reaction mechanism.

5.2.2 Partially-connected RNN

In industrial chemical processes, the unit operations in the upstream stage of the production process

affect those in the downstream stage, while the impact is ignorable in the opposite direction. This

connection between upstream and downstream stages is often reflected in the first-principles model

(if there is any), and is barely incorporated in the development of a data-driven model for the entire

process due to the difficulty of designing model structures. In particular, since it is not clear how to

derive optimal architectures for process data without any a priori knowledge, fully-connected RNN

networks are often state-of-the-art for large-scale, complex systems. Specifically, a black box NN

model that takes all available inputs to predict the outputs of interest is preferred in developing

a dynamic process model for the integrated upstream and downstream processes as it is easy to

implement using open-source machine learning software and is able to account for all possible

input-output relationships. As shown in Fig. 5.1, the RNN structure on the left represents a general

RNN model (i.e., the fully-connected RNN model) with an input layer, a hidden layer consisting
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of recurrent neurons, and an output layer, for which the training process follows the discussion of

the three-step procedure in the previous section.
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Figure 5.1: A partially-connected recurrent neural network structure based on process structural
knowledge, where u = [u1, u2] and x = [x1, x2].

To account for the structural process knowledge into RNN modeling of the nonlinear system

of Eq. 5.1, we develop a partially-connected RNN structure as shown on the right of Fig. 5.1.

Specifically, we consider the nonlinear system of Eq. 5.1 under the assumption that the state vector

x1 is affected by u1 only, and x2 is affected by both u1 and u2, where x = [x1, x2] ∈ Rn and

u = [u1 ∈Rm1, u2 ∈Rm2]∈Rm, m1+m2 = m. It is shown in Fig. 5.1 that in the partially-connected

RNN, u1 only affects x1, and both u1 and u2 have an impact on the output u2. By partitioning

the RNN modeling problem into two blocks (i.e., the data flows from u1 to x1, and from u1,

u2 to x1) that are corresponding to the structural a priori knowledge of the nonlinear system of

Eq. 5.1, it is demonstrated that the hidden layers (i.e., the RNN layers) in the partially-connected

RNN model are analogous to the unknown nonlinear functions of the system of Eq. 5.1 under

the above assumption on input-output relationship. By explicitly changing the RNN structure to
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exclude the connection between u2 and x1, a priori knowledge on process structure is infused into

RNN modeling of the nonlinear system of Eq. 5.1, and therefore, an improved approximation

performance can be derived. For example, due to the superiority of encoding priors into structure

designs, in Remark 5.5, it is demonstrated that the number of hidden neurons and weight

parameters could be significantly reduced to achieve the desired performance as good as the

fully-connected model. Additionally, the partially-connected RNN model may need less training

data to obtain a well-conditioned model since priors are acting to reveal the correct direction for

RNN to converge to an optimal solution. Moreover, the partially-connected model may outperform

the fully-connected model in the regime with no training data available since the model structure

is consistent with the actual process state variable relationship of the nonlinear system of Eq. 5.1.

Remark 5.3. It is noted that the partially-connected RNN model can achieve better approximation

performance not only in regimes where data are not available, but also in the regime in which

training and validation data are available. While in general the approximation performance of NN

model on training dataset will be improved by increasing the number of neurons and parameters,

excessive number of neurons may lead to over-fitting, which means that the NN model can capture

the input-output relationship well for training dataset but not for the validation/testing datasets.

Additionally, as in this particular example of Fig. 5.1, the second input u2 does not affect the

relationship between u1 and x1 (i.e., the weights between u2 and x1 should be zero), the connection

between u2 and x1 in a fully-connected RNN model will instead result in a negative impact on the

training process in terms of longer time to converge to an optimal solution.

5.2.3 Weight-constrained RNN

Under the assumption that a portion of the input vector u2 in the nonlinear system of Eq. 5.1

does not affect the output vector x1, we develop an RNN model structure with constrained weight

parameters representing the dynamic effects of process inputs u on the outputs x as shown in

Fig. 5.2. Specifically, the weights connecting u2 and x1 (dashed gray lines in Fig. 5.2) are

constrained in the RNN model such that the effects of u2 on x1 will be weakened during the
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training process. Based on the RNN model of Eq. 5.3, the output vector x1 and the hidden neuron

ri, i = 1, ...,h are derived as follows:

ẋ1 =
h

∑
i=1

w(2)
i ṙi (5.5)

ṙi =−airi +θiy (5.6)

where θi = bi[w
(1)
1i , ...,w

(1)
hi , ...,w

(1)
(h+m)i] and y = [σ(r1), ...,σ(rh),u1,u2]T . ai,bi are constants, w(1)

ji

is the weight connecting the jth input, j = 1, ...,h+m to ith neuron, i = 1, ...,h, and y is the input

vector consisting of the hidden states r and the manipulated inputs u. w(1), w(2) represent the

weight vectors before and after the hidden layer. Similarly, the bias term is not included in the

notation since it can be considered as an additional constant input. Based on Eq. 5.5 and Eq. 5.6,

the following equation is derived to demonstrate the contribution of u2 to ẋ1:

ẋ1 =
h

∑
i=1

w(2)
i (−airi +θiy)

=
h

∑
i=1

ni(r,w)+w(2)
i bi([w

(1)
(h+1)i, ...,w

(1)
(h+m1)i

]u1 +[w(1)
(h+m1+1)i, ...,w

(1)
(h+m)i]u

2)

(5.7)

where ni(·, ·) is a nonlinear function of the neuron states r and weights w. Therefore, to reduce the

impact of u2 to ẋ1, the weight product Πw = |w(2)
i bi[w

(1)
(h+m1+1)i, ...,w

(1)
(h+m)i]| should be constrained

by a sufficiently small bound, and this constraint will also be incorporated in the training of the

RNN model with the above input-output relationship. It is noted that since the constraint is applied

on the weight product Πw for the weight-constrained RNN model in Fig. 5.2, a zero bound for

the weight constraint could lead to disconnection of hidden neurons from inputs and outputs, and

therefore, should be avoided in any case. In addition to the weight constraints, penalty components

on weight parameters can be employed in the loss function of the RNN optimization problem to

introduce a priori weight knowledge into the training process. In general, regularization techniques

(e.g., L1 and L2 regularization) are utilized in the training process of a neural network model to

obtain a less complex model and avoid over-fitting in the presence of a large number of features in

datasets. Therefore, to constrain the weight product Πw in Eq. 5.7, the following loss function is
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Figure 5.2: A weight-constrained recurrent neural network structure, where w(1) and w(2) are the
weights before and after the hidden layer, ri, i = 1, ...,h is the RNN hidden neuron, and the dashed
gray lines denote the diminished connections between u2 and x1.

developed:

L =
Nd

∑
i=1

(xi− x̂i)
2 +λΠw (5.8)

where xi and x̂i are the actual and predicted outputs, respectively, Nd is the number of data samples

in the dataset, and λ > 0 is the weight for the regularization term. It is noted that λ needs to

be carefully chosen such that the regularization term can effectively decrease the values of the

weights, but does not dominate the optimization problem of training a neural network model.

Specifically, while a nonzero λ is required to penalize the regularization term, a large λ may render

the optimization problem under-fitting due to the dominance of the regularization term in the loss

function of Eq. 5.8. Therefore, we evaluate λ against any metric (e.g., mean-squared error, among

many other criteria) and select the value of λ that achieves the desired approximation performance
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on training and validation datasets.

Alternatively, to fully remove the connection between u2 and x1, we can design another set

of neurons rh+1, ..., r2h in the hidden layer as shown in Fig. 5.3. It is demonstrated that u2 is

disconnected from the neurons r1, ..., rh that contribute to the output vector x1 to eliminate the

impact of u2 on x1. As a result, to maintain the impact of inputs on the other output vector x2,

the new set of neurons rh+1, ..., r2h are utilized in the hidden layer to connect both the inputs u1

and u2 to the output x2. It is noted that compared to a fully-connected RNN model, the number of

neurons and the number of weights in the weight-constrained RNN shown in Fig. 5.3 are increased

to separate the connections to multiple output vectors.
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Figure 5.3: A recurrent neural network structure, where the connection between u2 and x1 is fully
removed from the blue neurons, and the connection between u2 and x2 is rebuilt using the gray
neurons in the hidden layer.

Based on the RNN model of Eq. 5.3, the output vector x and the hidden neuron ri, i = 1, ...,2h
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in Fig. 5.3 are derived as follows:

ẋ1 =
h

∑
i=1

w(2)
i ṙi, ẋ2 =

2h

∑
i=1

w(2)
i ṙi (5.9)

ṙi =−airi +θiy, i = 1, ...,2h (5.10)

where θi = bi[w
(1)
1i , ...,w

(1)
(2h)i, ...,w

(1)
(2h+m)i]and y = [σ(r1), ..., σ(r2h),u1,u2]T . ai and bi are

constants, w(1)
ji is the weight connecting the jth input, j = 1, ...,2h+m to ith neuron, i = 1, ...,2h,

and y is the input vector consisting of the hidden states r and the manipulated inputs u. w(1),

w(2) represent the weight vectors before and after the hidden layer. Specifically, to train the

weight-constrained RNN model with the structure of Fig. 5.3, we first develop a fully-connected

RNN model and then let the weights between u2 and ri, i = 1, ...,h, and the weights between ri,

i = h+ 1, ...,2h and x1 (denoted by w̃) be zero or be constrained by a sufficiently small bound.

Unlike the weight-constrained RNN model in Fig. 5.2, the weight constraint for the RNN model

with the structure of Fig. 5.3 can be equipped with a zero bound such that the connections can be

fully removed for the network. Additionally, the above weight constraints on the RNN weights

need to be well-defined before training. It should be noted that since there exist three types of

weight matrices in an RNN model: 1) the weight matrix connecting the input layer and the hidden

layer, 2) the weight matrix feeding the past neuron information into the current network (i.e., the

feedback loop in ri, i= 1, ...,2h), and 3) the weight matrix connecting the hidden layer to the output

layer, the constraints need to be implemented in all the three weight matrices such that u2 and x1

are fully disconnected.

We train the above weight-constrained RNN model in Keras, and implement weight constraints

in the constraints.py source file. Specifically, the constraints on the weight matrices that connect

inputs to hidden neurons and hidden neurons to outputs are activated through the argument

kernal constraint. The weight matrix feeding the past neuron information to the current

network is implemented by invoking recurrent constraint. Additionally, to develop an

RNN model that obtains the optimal weights subject to the weight constraints, the RNN optimizer

140



(e.g., adaptive learning rate optimization algorithm) needs to be modified to minimize the loss

function while accounting for the weight constraints in the optimization problem. Alternatively,

the weight constraints can be implemented at the end of each training epoch such that the weights

that meet the constraints remain unchanged and those exceeding the constraints will be bounded

to the saturation value. The saturated weights will then be utilized as the initial condition for

the optimization problem for the next training epoch, and the above process is repeated until the

stopping criteria of the training process are satisfied.

Remark 5.4. In this section, we proposed two approaches for weight-constrained RNN models.

Specifically, the first approach (i.e., Fig. 5.2) is to develop a weight-constrained RNN model by

adding a regularization term on constrained weights in the training process of RNN models to

reduce the connection between u2 and x1. This is typically used for the systems where we know a

priori that the connections between certain inputs and outputs are weakly connected (but not fully

unconnected). However, the second approach (i.e., Fig. 5.3) is to develop a weight-constrained

RNN model by adding another set of neurons such that the connections between u2 and x1 are fully

removed. Therefore, it will be applied to the systems where some of the inputs do not affect the

outputs at all.

5.2.4 RNN Training Process

All the physics-based RNN models are developed using Keras library, an open-source

neural-network library written in Python. Specifically, the hybrid model is developed following the

construction method for a fully-connected RNN model, where the training dataset is preprocessed

to represent the gap between the first-principles model and real process data, and then separated

into training, validation and testing datasets. To develop a partially-connected RNN model in

Fig. 5.1, an RNN layer is first developed to connect u1 and x1. Subsequently, x1 and u2 are

concatenated and followed by a second RNN layer to ultimately obtain x2. It is noted that instead

of using the full input and output vectors u and x, the input vectors u1, u2 and the output vectors x1,

x2 need to be specified and fed into the partially-connected RNN model separately. Therefore, the
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inputs and the outputs to the partially-connected RNN model in the training process are defined as

[u1, u2] and [x1, x2], respectively. The development of a weight-constrained RNN model in Fig. 5.2

follows that for a fully-connected RNN model except that the weight constraints need to be added

in the optimization problem of RNN training process beforehand by updating Keras optimizer

source files. However, to develop a weight-constrained RNN model with the structure of Fig. 5.3,

we can either implement the weight constraints within each epoch of the optimization process

in Keras optimizer source files, or saturate the corresponding elements in the weight matrices at

the end of each epoch to update the initial guess of weights for the next training epoch in Keras

constraints source files. The training processes for both weight-constrained RNN models follow

that for a fully-connected RNN model, where the training and validation datasets are used to obtain

the optimal weight matrices for RNN models, and the testing dataset is used to evaluate their

prediction performances.

To prevent the weights from drifting to infinity during the RNN training process, the weight

vector θi of the RNN model of Eq. 5.3 is also bounded by |θi| ≤ θm, with θm > 0. It is noted that

while it is possible to obtain a theoretical value for θm, this value will usually be conservative.

Therefore, in the implementation of the RNN training process, we give θm a reasonable value

and see if the RNN can approximate the nonlinear system of Eq. 5.1 with the satisfaction of

the modeling error constraint. The interested reader may refer to [80], where a σ -modification

is utilized in the RNN learing algorithm to ensure that the weights are bounded during the

training process. Additionally, the hybrid model, the partially-connected RNN model, and the

weight-constrained RNN model are all trained with a constraint on the modeling error, i.e.,

|ν | = |F(x,u,0)−Fnn(x,u)| ≤ γ|x|, where γ > 0, such that the obtained RNN models can well

represent the actual nonlinear process of Eq. 5.1 and can be utilized in a model-based predictive

controller that stabilizes the system at its steady-state with guaranteed stability. The detailed RNN

learning algorithm and the proof of the boundedness of RNN modeling error can be found in [181].

Remark 5.5. Consider the nonlinear system of Eq. 5.1 with x= [x1, x2]∈Rn and u= [u1, u2]∈Rn,

where x1 and x2, u1 and u2 are of the same dimension, respectively (i.e., x1,x2 ∈ R
n
2 , u1,u2 ∈ R

m
2 ).
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Under the assumption of the input-output relationship in this section, the total number of weights

for a partially-connected RNN model with two hidden layers, where each hidden layer has h

neurons, is calculated to be 3
2nh+mh+2h2, while the total number of weights for a fully-connected

RNN model with the same two hidden layers is mh+ 3h2 + nh (the bias term is ignored in the

comparison as it can be considered a constant input node). Since in most cases, the number of

neurons is much greater than the number of inputs and states to achieve a desired approximation

performance, the number of weights for a decoupled RNN model is significantly reduced due

to the incorporation of process structural knowledge (3
2nh+mh+ 2h2 << nh+mh+ 3h2 when

h >> m,n). However, it is noted that the number of weights in a weight-constrained model with

the structure of Fig. 5.3 is increased compared to the fully-connected RNN model due to the new

set of hidden neurons that are used to rebuild the connection between u2 and x2.

Remark 5.6. In addition to the weight constraints as discussed above, regularization can be

utilized to penalize the weights that need to be constrained in the loss function of Eq. 5.8. The

implementation of regularization using Keras is as follows. First, the kernel regularizer

command is invoked to activate the regularization term in the loss function in each layer with the

desired regularization technique (i.e., L1 or L2 regularization). With this, all the elements in the

weight matrices that connect the inputs to the hidden neurons and connect the hidden neurons to

the outputs are penalized in the loss function with a regularization parameter λ as introduced in

Eq. 5.8. Subsequently, to ensure that only the weights that need to be constrained are penalized

in the loss function, the regularizers.py source file is adapted in which the corresponding weights

for the undesired connections are included. Finally, the weight matrix feeding the past neuron

information into the current network is penalized following the same strategy as discussed above

for the implementation of weight constraints.

Remark 5.7. It is noted that all the RNN models in this section are developed for the nominal

system of Eq. 5.1 without disturbances. However, in the presence of time-varying disturbances, the

RNN model that is trained for the nominal system may be dysfunctional in a model-based predictive

controller due to a considerable model mismatch. To that end, online update of RNN models can be
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employed to capture the nonlinear dynamics subject to disturbances using the most recent process

measurement data. The interested readers may refer to [178] for the details of implementation of

online RNN update.

Remark 5.8. In the case that a single RNN model is not able to well represent the dynamics

of the nonlinear process of Eq. 5.1 in the entire operating region, multiple RNN models can be

developed to improve the overall prediction accuracy in the context of ensemble learning [96,189].

The development of multiple RNN models via ensemble learning can be found in [182], where

k different RNN models were developed for the same nonlinear process based on a k-fold

cross-validation and were utilized to derive a final prediction result that was significantly

improved compared to a single RNN model. Additionally, in [182], to improve computational

efficiency of ensemble learning and multiple RNN predictions in the real-time implementation

of machine-learning-based predictive controllers, parallel computing can be employed to speed

up the computation of RNN predictions using multiple compute cores in a distributed computing

cluster. It was also demonstrated in [182] that the computation time of calculating multiple RNN

prediction results in an RNN-based predictive controller was significantly reduced under parallel

computation of the ensemble of RNN models.

Remark 5.9. To extend the proposed RNN modeling methods to high-dimensional systems, it is

necessary to find the relationships between the inputs and outputs. For example, we can introduce

sparsity regularization that is similar to Eq. 5.8 but with relatively large penalty, or we can also

apply well-established methods such as relative gain array to determine the best input-output

pairings for multivariable processes.

5.3 RNN-based Predictive Control

In this section, we incorporate the RNN model developed in the previous section into the

design of model-based predictive controllers to optimize process performance while guaranteeing

closed-loop stability. Specifically, for any initial condition x0 ∈ Ωρ , a Lyapunov-based model
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predictive controller (LMPC) is developed to drive the closed-loop state of the nonlinear system

of Eq. 5.1 to the steady-state while maintaining the state in the stability region Ωρ for all times.

Subsequently, Lyapunov-based economic model predictive controller (LEMPC) is developed using

the RNN model to optimize process economic performance with guaranteed boundedness of the

state in Ωρ for all times.

5.3.1 Lyapunov-based MPC using RNN models

The Lyapunov-based model predictive control (LMPC) using the RNN model of Eq. 5.3 is utilized

to stabilize the nonlinear system of Eq. 5.1 in the stability region. The formulation of LMPC

optimization problem is given as follows:

J = min
u∈S(∆)

∫ tk+N

tk
(x̃T Qx̃+uT Ru)dt (5.11a)

s.t. ˙̃x(t) = Fnn(x̃(t),u(t)) (5.11b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (5.11c)

x̃(tk) = x(tk) (5.11d)

V̇ (x(tk),u)≤ V̇ (x(tk),Φnn(x(tk)),

if x(tk) ∈Ωρ\Ωρnn (5.11e)

V (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρnn (5.11f)

where x̃ is the predicted state trajectory, S(∆) is the set of piecewise constant functions with

period ∆, N is the number of sampling periods in the prediction horizon, and V̇ (x,u)represents
∂V (x)

∂x (Fnn(x,u)). In the optimization problem of Eq. 5.11, the objective function of Eq. 5.11a is the

integral of the cost function l(x̃, t) = (x̃T Qx̃+uT Ru) over the prediction horizon, where l(0,0) = 0

and l(x̃, t) > 0, ∀(x̃, t) 6= (0,0). The constraint of Eq. 5.11b is the RNN model of Eq. 5.3 that is

used to predict the states of the closed-loop system. Eq. 5.11c defines the input constraints applied

over the entire prediction horizon. Eq. 5.11d defines the initial condition x̃(tk) of Eq. 5.11b, which
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is the state measurement at t = tk. The constraint of Eq. 5.11e forces the closed-loop state to move

towards the origin if x(tk) ∈ Ωρ\Ωρnn . However, if x(tk) enters Ωρnn , the states predicted by the

RNN model of Eq. 5.11b will be maintained in Ωρnn for the entire prediction horizon. The LMPC

of Eq. 5.11 is implemented in a sample-and-hold fashion, i.e., an optimal input trajectory u∗(t),

t ∈ [tk, tk+N) is obtained by solving the LMPC optimization problem of Eq. 5.11 at each sampling

time, from which only the control action for the first sampling period of the prediction horizon will

be applied. In [181], it is demonstrated that under the LMPC of Eq. 5.11, the state of the nonlinear

system of Eq. 5.1 is bounded in the stability region Ωρ for all times, and can ultimately converge

to the origin provided that the modeling error between the the nonlinear system of Eq. 5.1 and the

RNN model of Eq. 5.3 is sufficiently small. Detailed proof for closed-loop stability can be found

in [181] and is omitted here due to space limitations.

5.3.2 Lyapunov-based EMPC using RNN models

The Lyapunov-based economic model predictive control (LEMPC) using the RNN model of

Eq. 5.3 is utilized to optimize process economic performance while maintaining the closed-loop

state of the nonlinear system of Eq. 5.1 in the stability region Ωρ . The LEMPC is formulated by

the following optimization problem:

J = max
u∈S(∆)

∫ tk+N

tk
le(x̃(t),u(t))dt (5.12a)

s.t. ˙̃x(t) = Fnn(x̃(t),u(t)) (5.12b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (5.12c)

x̃(tk) = x(tk) (5.12d)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρe (5.12e)

V̇ (x(tk),u)≤ V̇ (x(tk),Φnn(x(tk)),

if x(tk) ∈Ωρ\Ωρe (5.12f)
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where the notations follow those in Eq. 5.11. The optimization problem of Eq. 5.12 maximizes the

objective function of Eq. 5.12a that integrates le(x̃(t),u(t)) over the prediction horizon subject to

the constraints of Eqs. 5.12b-5.12f. Specifically, the constraint of Eqs. 5.12b-5.12d are the same

as Eqs. 5.11b-5.11d for LMPC. The constraint of Eq. 5.12e maintains the predicted closed-loop

states in Ωρe if x(tk) ∈ Ωρ\Ωρe , where Ωρe , 0 < ρe < ρ , is a level set of Lyapunov function that

guarantees the boundedness of state in the closed-loop stability region Ωρ accounting for the model

mismatch between the RNN model of Eq. 5.12b and the nonlinear process of Eq. 5.1. On the other

hand, if x(tk) leaves Ωρe , the contractive constraint of Eq. 5.12f will be activated to drive the state

towards the origin within the next sampling period. It is demonstrated that the closed-loop state

of the nonlinear system of Eq. 5.1 is bounded in the stability region Ωρ for all times under the

LEMPC of Eq. 5.12. The detailed proof of closed-loop stability under LEMPC is given in [181].

Remark 5.10. It is demonstrated in [181] that closed-loop stability is guaranteed for the

nonlinear system of Eq. 5.1 under the RNN-based MPC of Eq. 5.11 provided that the modeling

error between the RNN model and the actual nonlinear system is sufficiently small. Specifically,

the constraints of Eq. 5.11e and Eq. 5.11f are developed to guarantee that the closed-loop state

will move towards the origin and can be ultimately bounded in a small neighborhood around the

origin regardless of the length of prediction horizon. However, it is noted that the use of a longer

prediction horizon in MPC can generally improve closed-loop performance by obtaining better

solutions that lead to less control energy consumption and smoother state trajectories. Though we

did not show the detailed proof for closed-loop stability due to space limitation in this chapter, the

proposed partially-connected RNN and weight-constrained RNN models that account for process

structural knowledge by modifying the structure of RNNs, and adding certain constraints in the

training process of RNNs, respectively, are developed satisfying the modeling error constraint.

Therefore, closed-loop stability can be established for the closed-loop MPC using the proposed

RNN models.
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5.4 Application to a Chemical Process Example

A chemical process example is utilized to demonstrate the application of the proposed RNN

modeling with the incorporation of structural process knowledge. Specifically, two well-mixed,

non-isothermal continuous stirred tank reactors (CSTR) in series are considered where an

irreversible second-order exothermic reaction takes place in each reactor as shown in Fig. 5.4.

The reaction transforms a reactant A to a product B (A→ B). Each of the two reactors are fed with

reactant material A with the inlet concentration CA j0, the inlet temperature Tj0 and feed volumetric

flow rate of the reactor Fj0, j = 1,2, where j = 1 denotes the first CSTR and j = 2 denotes the

second CSTR. Each CSTR is equipped with a heating jacket that supplies/removes heat at a rate Q j,

j = 1,2. The CSTR dynamic models are described by the following material and energy balance

equations:

dCA1

dt
=

F10

V1
(CA10−CA1)− k0e

−E
RT1 C2

A1 (5.13a)

dT1

dt
=

F10

V1
(T10−T1)+

−∆H
ρLCp

k0e
−E
RT1 C2

A1 +
Q1

ρLCpV1
(5.13b)

dCB1

dt
=− F10

V1
CB1 + k0e

−E
RT1 C2

A1
(5.13c)

dCA2

dt
=

F20

V2
CA20 +

F10

V2
CA1−

F10 +F20

V2
CA2− k0e

−E
RT2 C2

A2 (5.13d)

dT2

dt
=

F20

V2
T20 +

F10

V2
T1−

F10 +F20

V2
T2 +

−∆H
ρLCp

k0e
−E
RT2 C2

A2 +
Q2

ρLCpV2
(5.13e)

dCB2

dt
=

F10

V2
CB1−

F10 +F20

V2
CB2 + k0e

−E
RT2 C2

A2 (5.13f)

where CA j, Vj, Tj and Q j, j = 1,2 are the concentration of reactant A, the volume of the reacting

liquid, the temperature, and the heat input rate in the first and the second reactor, respectively. The

reacting liquid has a constant density of ρL and a heat capacity of Cp for both reactors. ∆H, k0, E,

and R represent the enthalpy of the reaction, pre-exponential constant, activation energy, and ideal

gas constant, respectively, and are the same for both reactors. Process parameter values are listed

in Table 5.1.
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Table 5.1: Parameter values of the two CSTRs in series.

T10 = 300 K T20 = 300 K

F10 = 5 m3/hr F20 = 5 m3/hr

V1 = 1 m3 V2 = 1 m3

T1s = 402 K T2s = 402 K

CA1s = 1.95 kmol/m3 CA2s = 1.95 kmol/m3

CA10s = 4 kmol/m3 CA20s = 4 kmol/m3

Q1s = 0.0 kJ/hr Q2s = 0.0 kJ/hr

k0 = 8.46×106 m3/kmol hr ∆H =−1.15×104 kJ/kmol

Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K

ρL = 1000 kg/m3 E = 5×104 kJ/kmol

Figure 5.4: Process flow diagram of two CSTRs in series.

The manipulated inputs for both CSTRs are the inlet concentration of species A and the heat

input rate, which are represented by the deviation variables ∆CA j0 =CA j0−CA j0s , ∆Q j = Q j−Q js ,

j = 1,2, respectively. The manipulated inputs are bounded as follows: |∆CA j0| ≤ 3.5 kmol/m3 and

|∆Q j| ≤ 5×105 kJ/hr, j = 1,2. Therefore, the states and the inputs of the closed-loop system are

xT = [CA1−CA1s T1−T1s CA2−CA2s T2−T2s] and uT = [∆CA10 ∆Q1 ∆CA20 ∆Q2], respectively,
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where CA1s , CA2s , T1s and T2s are the steady-state values of concentration of A and temperature in

the first and second reactors, such that the equilibrium point of the system is at the origin of the

state-space.

The explicit Euler method with an integration time step of hc = 10−4 hr is used to numerically

simulate the dynamic model of Eq. 5.13. The nonlinear optimization problems of the LMPC of

Eq. 5.11 and of the LEMPC of Eq. 5.12 are solved using the python module of the IPOPT software

package [158], named PyIpopt with the sampling period ∆ = 10−2 hr. Two control Lyapunov

functions V1(x) = xT P1x, and V2(x) = xT P2x are designed for two CSTRs, respectively, with the

following positive definite P matrices:

P1 = P2 =




1060 22

22 0.52


 (5.14)

The closed-loop stability regions for the two CSTRs are characterized with ρ = 380, where ρe =

260 is chosen for the LEMPC of Eq. 5.12.

Open-loop Simulation on Testing Dataset

Open-loop simulations are first carried out to demonstrate the open-loop prediction

performances of the fully-connected RNN model, the partially-connected RNN model, and the

weight-constrained RNN model, respectively. The development of an RNN model for the CSTR

process of Eq. 5.13 follows that in [182]. It should be noted that all the RNN models are developed

using the same dataset with the same neural network parameters as follows: 2 hidden layers with

30 neurons in each layer, tanh as the activation function, and Adam as the optimizer. The root

mean square errors (RMSE) between the first-principles state trajectories (i.e., the state trajectories

using the first-principles model of Eq. 5.13) and the above three models, respectively, are reported

in Table 5.2, where P-RNN, W-RNN and F-RNN represent the partially-connected RNN model,

the weight-constrained RNN model, and the fully-connected RNN model, respectively.

From Table 5.2, it is demonstrated that the partially-connected RNN model and the
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weight-constrained RNN model outperform the fully-connected model in that the open-loop

approximations of CA1, CA2, T1 and T2 are significantly improved.

Table 5.2: RMSE comparison of open-loop prediction results with the first-principles model
results.

P-RNN W-RNN F-RNN

CA1 (kmol/m3) 1.0×10−4 5.6×10−6 0.9×10−4

T1 (K) 0.14 0.018 0.15

CA2 (kmol/m3) 8.2×10−7 2.0×10−6 2.6×10−6

T2 (K) 5.4×10−4 0.0076 0.049

Remark 5.11. It is noted that the comparison results in Table 5.2 were generated using

extensive open-loop simulations with various initial conditions and control actions, under which

the superiority of the proposed modeling approaches is clearly demonstrated by showing that

the partially-connected RNN model and the weight-constrained RNN model outperform the

fully-connected RNN model in terms of better approximation performance in the entire operating

region.

Closed-loop Simulation under LMPC

After demonstrating the open-loop prediction performances of the fully-connected RNN, the

partially-connected RNN and the weight-constrained RNN for the CSTR process of Eq. 5.13 in

the stability region, we perform the closed-loop simulation under the LMPC of Eq. 5.11 using

the above three models, respectively. Additionally, the closed-loop simulation under the LMPC

of Eq. 5.11 using the first-principles model of Eq. 5.13 is added as a baseline for comparison.

The control objective of RNN-based LMPC is to operate the CSTR process of Eq. 5.13 at its

steady-state while maintaining the closed-loop state in the stability region Ωρ for all times.

In Fig. 5.5, it is demonstrated that all the states (i.e., CA1, T1, CA2 and T2) converge to

the origin within 0.05 hr under the LMPC using the partially-connected RNN model and the
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weight-constrained RNN model. However, under the LMPC using a fully-connected RNN model,

the concentration in the first CSTR (i.e., CA1) shows undesirable oscillations around the origin

due to its considerable model mismatch as reported in Table 5.2. Therefore, through open-loop

and closed-loop simulations, the partially-connected RNN model and the weight-constrained

RNN model that incorporate structural process knowledge of the CSTR process of Eq. 5.13 are

demonstrated to achieve better approximation performance than the fully-connected RNN model.
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Figure 5.5: The state profiles (CA1−CA1s , T1−T1s , CA2−CA2s and T2−T2s) for the closed-loop
simulation of two CSTRs in series under the LMPC using the fully-connected RNN, the
partially-connected RNN, the weight-constrained RNN, and the first-principles model of Eq. 5.13,
respectively, for an initial condition (-1.5, 70, 1.5, -70).
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Closed-loop Simulation under LEMPC

The control objective of LEMPC is to maximize the profit of both CSTR systems described in

Eq. 5.13 by manipulating the inlet concentration ∆CA10 and CA20 and the heat inputs rate ∆Q1 and

∆Q2, and meanwhile maintain the closed-loop state trajectories in the stability region Ωρ for all

times under LEMPC. The objective function of the LEMPC optimizes the production rate of B as

follows:

le(x̃,u) = k0e−E/RT1C2
A1 + k0e−E/RT2C2

A2 (5.15)

Closed-loop simulations are performed under the LEMPC of Eq. 5.12 using the first-principles

model of Eq. 5.13 and the three RNN models, respectively. In Fig. 5.6, it is demonstrated

that the state trajectories for both CSTRs are bounded in the stability region Ωρ for all times

under LEMPC. Fig. 5.7 shows the evolution the Lyapunov function values of V1 and V2 under

LEMPC using the first-principles model of Eq. 5.13 and three different RNN models, respectively.

Specifically, due to a relatively large model mismatch for the fully-connected RNN model as

reported in Table 5.2, the contractive constraint of Eq. 5.12f is activated frequently under the

LEMPC using a fully-connected RNN model because the actual process state does not stay in

Ωρe under the constraint of Eq. 5.12e. As a result, it is observed in Fig. 5.7 that the V profiles

under the fully-connected model show larger oscillation compared to those under the other two

RNN models and under the first-principles model.

Additionally, we compare the accumulated economic profits LE =
∫ tp

0 Le(x,u)dt within the

operation period tp = 0.32 hr for the closed-loop CSTRs under the steady-state operation (i.e., the

CSTRs are operated at their steady-states for all times), and the LEMPC using the first-principles

model of Eq. 5.13 and the three RNN models, respectively. The result is shown in Fig. 5.8, from

which it is demonstrated that the closed-loop operation under LEMPC achieves higher economic

profits than the steady-state operation. Specifically, the LEMPC using the first-principles model

achieves the highest economic benefits since the closed-loop state trajectory reaches and stays at

the boundary of Ωρe smoothly based on accurate predictions. Moreover, it is demonstrated that
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the LEMPC using the partially-connected RNN model and the weight-constrained RNN model

economically outperform that under the fully-connected RNN model due to better prediction

accuracy in the stability region. Therefore, through both open-loop and closed-loop simulations,

we demonstrate that the physics-based RNN models achieve desired approximation performance

for the CSTR process of Eq. 5.13 and provide reliable state predictions for model-based predictive

controllers.

5.5 Conclusion

In this chapter, we developed three modeling approaches that incorporates a priori process

knowledge into RNN models. Specifically, a hybrid model that combines a first-principles

model and an RNN model was first developed. Then, a partially-connected RNN model and a

weight-constrained RNN model were developed based on an assumption on process input-output

relationship. The partially-connected and the weight-constrained RNN models were then utilized

in RNN-MPC and RNN-EMPC, and applied to a chemical process example, from which it was

demonstrated that the open-loop and closed-loop prediction performances under the LMPC and the

LEMPC using the above two RNN models outperformed those under the LMPC and LEMPC using

a fully-connected RNN model in terms of higher prediction accuracy, smoother state trajectories,

and better economic benefits.
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Figure 5.6: The state-space profiles for the closed-loop simulation for CSTR 1 (top plot) and CSTR
2 (bottom plot) under the EMPC using the fully-connected RNN model, the partially-connected
RNN model, the weight-constrained RNN model, and the first-principles model of Eq. 5.13,
respectively, for an initial condition (0, 0, 0, 0).
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Chapter 6

Control Lyapunov-Barrier Function-Based

MPC

As discussed in the Introduction, maintaining safe and stable operation is the highest priority

of the control systems in many safety-critical processes in chemical industries. In this chapter,

novel MPC designs that take advantage of barrier functions and Lyapunov functions to ensure

simultaneous closed-loop stability and process operational safety as well as recursive feasibility are

developed. Specifically, barrier function that is commonly used to enforce safety properties in the

context of optimization-based safety-critical controllers is first introduced. Subsequently, a new

function termed control Lyapunov-barrier function (CLBF) is designed by combining a control

barrier function with a control Lyapunov function through weighted sum, for which a rigorous

stability and safety analysis is presented. Based on the CLBF-based controller that guarantees

simultaneous stability and safety of nonlinear systems, CLBF-based MPC is developed and applied

to chemical process examples to demonstrate, evaluate, and analyze the closed-loop stability and

safety properties of nonlinear systems.
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6.1 Preliminaries

6.2 Notation

The set of real numbers is denoted by R, and the set of nonnegative real numbers is denoted

by R+. Rn is an n-dimensional real (Euclidean) space. The notation |·| is used to denote the

Euclidean norm of a vector, and the notation |·|Q denotes a weighted Euclidean norm of a vector

(i.e., |x|Q =
√

xT Qx where Q is a positive definite matrix). xT denotes the transpose of x. The

notation L fV (x) denotes the standard Lie derivative of function V (x) with respect to the vector

field f , i.e., L fV (x) := ∂V (x)
∂x f . A scalar continuous function V : Rn → R is proper if the set

{x ∈Rn | V (x)≤ k} is compact for all k ∈R, or equivalently, V is radially unbounded in the sense

that lim|x|→+∞V (x) = +∞ holds.

For given positive real numbers β and ε , Bβ (ε) := {x ∈ Rn | |x− ε| < β} is an open ball

around ε with radius of β . The relative complement of the set A in B is denoted by A\B := {x ∈

A,x /∈ B}. A function f (·) is of class C 1 if it is continuously differentiable. A continuous function

α : [0,a)→ R+ is said to be of class K if it is strictly increasing and α(0) = 0.

6.2.1 Class of Nonlinear Systems

The class of systems considered is described by the following system of nonlinear ordinary

differential equations (ODEs):

ẋ = f (x)+g(x)u+h(x)w, x(t0) = x0 (6.1)

where x ∈D⊂Rn is the state vector, u∈U ⊂Rm is the manipulated input vector, and w∈W is the

disturbance vector, where W := {w∈Rl | |w| ≤ θ , θ ≥ 0}. The control action constraint is defined

by u ∈U := {umin ≤ u ≤ umax} ⊂ Rm, where umin and umax are the lower and upper bounds for

the input vector, respectively. It is assumed that f (·), g(·), and h(·) are sufficiently smooth vector

and matrix functions of dimensions n×1, n×m, and n× l, respectively, with f (0) = 0. Therefore,
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the origin is a steady-state of the nominal system of Eq. 6.1 with w(t) ≡ 0. The measurement of

x(t) is assumed to be available for feedback at each sampling time tk = t0+k∆, k = 0,1, . . ., where

∆ is the sampling period. It is noted that we consider the control-affine nonlinear system in the

form of Eq. 6.1 to simplify the discussion of explicit stabilizing controller design; however, the

control Lyapunov-barrier function design and its incorporation in MPC/EMPC are not restricted to

systems of Eq. 6.1, and can be generalized to the class of continuous-time nonlinear system in a

general form:

ẋ = f (x,u,w) (6.2)

where f : Rn×Rm×Rl → Rn is a smooth vector function of its arguments with f (0,0,0) = 0.

6.2.2 Characterization of Unsafe Regions

We assume that there is a set D in state-space within which it is unsafe for the system to be

operated, and a safe operating region U that has no intersection with D , i.e., U ∩D = /0. The

definition of process operational safety for the closed-loop system of Eq. 6.1 is presented below.

Definition 6.1. Consider the nominal system of Eq. 6.1 with w(t)≡ 0 and input constraints u ∈U.

If there exists a control law u = Φ(x) ∈ U such that the state trajectories of the system for any

initial state x(t0) = x0 ∈U satisfy x(t) ∈U , ∀ t ≥ t0, we say that the control law Φ(x) maintains

the process state within the safe operating region U at all times.

To ensure process operational safety, the unsafe region D should be first characterized by

analyzing the safeness of processes based on first-principles models and past operating data.

Generally, there are two types of unsafe regions: 1) unbounded sets, for example, an unsafe region

consisting of all the states above a threshold that indicates an unsafe operation, and 2) bounded

sets, which can be characterized based on multiple process states accounting for their interaction

(e.g., a combination of temperature and concentration of reactants that reflect reaction rates in a

chemical process example). Bounded unsafe sets are also commonly used in motion planning for

robots and self-driving cars, which can be found, for example, in [95]. In this chapter, we will
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address both bounded unsafe regions (denoted by Db) and unbounded unsafe regions (denoted by

Du) and demonstrate that simultaneous closed-loop stability and process operational safety for the

nonlinear system of Eq. 6.1 can be achieved under CLBF-based controllers.

6.3 Control Barrier Function

Consider the unforced nonlinear systems described by the following system of first-order nonlinear

ordinary differential equations (ODEs):

ẋ = f (x) (6.3)

where x ∈ D ⊂ Rn, and f : D→ Rn is a smooth function of x. Barrier certificates were proposed

in [121, 122] to ensure safety for the nonlinear system of Eq. 6.3 in the sense that the system is

able to avoid undesirable regions. Since then, they have been successfully applied to solve safety

critical control problems for cyber-physical systems, for example, obstacle avoidance problems

for autonomous vehicles and collisions-free multi-robot systems [32, 159] Specifically, given a

safe operation region U in state-space, there are two types of barrier certificates/functions B(x)

that are commonly used: one is the reciprocal barrier function that satisfies B(x)→∞ as x→ ∂U ,

where ∂U represents the boundary of U , and the other one is termed zeroing barrier function

where B(x)→ 0 as x→ ∂U . To ensure process safety for the system of Eq. 6.3, we show that the

safe operating region U defined as a superlevel set ∗ of a C 1 function r : D→ R that satisfies the

following conditions [12, 13]:

U = {x ∈ D⊂ Rn | r(x)≥ 0}, (6.4a)

∂U = {x ∈ D⊂ Rn | r(x) = 0}, (6.4b)

Int(U ) = {x ∈ D⊂ Rn | r(x)> 0}, (6.4c)

∗{x ∈ Rn | f (x)≥ c} is called a superlevel set of f : Rn→ R, where c is a constant.
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is an invariant set, where Int(U ) represents the interior of the set U . Specifically, we design a

reciprocal barrier function as B(x) = −log( r(x)
1+r(x)) and impose a condition on the time-derivative

of B(x): Ḃ≤ γ

B , where γ > 0. It is readily shown that the following conditions hold for B(x):

inf
x∈Int(U )

B(x)> 0, lim
x→∂U

B(x) = ∞ (6.5)

Additionally, we derive the following inequality for ṙ by differentiating B(x) and using the

constraint Ḃ≤ γ

B :

ṙ ≥ γ(h+h2)

log( h
1+h)

(6.6)

Using the Comparison Lemma [72], it is demonstrated that for any r(x0)> 0, r(x(t))> 0 holds for

t ≥ 0. Therefore, for any initial condition x0 ∈U , the state remains inside U for all t ≥ 0 (see [13]

for the detailed proof).

Inspired by control Lyapunov functions (CLF) that were proposed for the nonlinear system

with control inputs (e.g., Eq. 6.1) based on Lyapunov function for the unforced system of Eq. 6.3,

barrier function was also extended to control barrier function (CBF) for the nonlinear affine control

system of Eq. 6.1 with w(t)≡ 0 in [165]. The definition of a CBF in [165] is presented below. For

a comprehensive review on CBFs, the reader is referred to the review [11].

Definition 6.2. Given a set of unsafe points D in state-space, a C 1 function B(x) : Rn→ R is a

CBF if it satisfies the following properties:

B(x)> 0, ∀ x ∈D (6.7a)

L f B(x)≤ 0, ∀ x ∈ {z ∈ Rn\D | LgB(z) = 0} (6.7b)

U := {x ∈ Rn | B(x)≤ 0} 6= /0 (6.7c)

Additionally, a number of recent works, e.g., [133, 165, 185] have developed control laws for

which they have been able to guarantee that the control law maintains safe operation of the process

at all times when a CBF can be found for the system. The following theorem provides sufficient
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conditions under which the existence of a CBF of Eq. 6.7 for the nominal system of Eq. 6.1 with

w(t) ≡ 0 under the control law u = Φb(x) of Eq. 6.8 guarantees process operational safety of the

closed-loop system for any initial condition x0 ∈U .

Theorem 6.1. Assume that the nominal system of Eq. 6.1 (i.e., w(t)≡ 0) with no constraints on the

control input u has a C 1 CBF B(x) : Rn→ R associated with an unsafe region D in state-space.

The control law of Eq. 6.8 guarantees that the closed-loop state is bounded in the safe region U

for all times if the initial condition x0 is in U .

Φb(x) =




− p+

√
p2 + γ|q|4
|q|2 qi if q 6= 0

0 if q = 0
(6.8)

where p denotes L f B(x), qi denotes LgiB(x), q= [q1 · · ·qm]
T , f = [ f1 · · · fn]

T , gi = [gi1 · · ·gin]
T , (i=

1,2, · · · ,m) and γ > 0.

Proof. By substituting the control law u = Φb(x) into the closed-loop system of Eq. 6.1, we can

derive the following equation:

Ḃ(x) =
∂B
∂x

( f (x)+g(x)Φb(x)) =




−
√

p2 + γ|q|4 if q 6= 0

p if q = 0
(6.9)

Since the CBF B(x) satisfies Eq. 6.7b showing that p ≤ 0 holds for all x ∈ Rn\D when q = 0,

Ḃ(x) in Eq. 6.9 is guaranteed to be nonpositive for all x ∈Rn\D . Therefore, if the state starts from

U ⊂ (Rn\D), the value of B(x) is guaranteed to be non-increasing along the trajectory of x. This

completes the proof that the safe operating region U is an invariant set under u = Φb(x).

6.4 Control Lyapunov-Barrier Function

To address simultaneously the tasks of stability, safety, and other considerations such as economic

optimality, control Lyapunov functions (CLF) and control barrier functions (CBF) are utilized
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to design process control systems. Specifically, process operational safety in the sense that the

state is bounded in a safe operating region is guaranteed under the CBFs satisfying Lyapunov-like

conditions [109, 145, 165]. CBFs can be naturally unified with CLFs to formulate a quadratic

program, which allows for the satisfaction of the objectives of stability and safety (see, for

example, [12, 13, 65]). Additionally, another approach to solving the problem of stabilization of

a nonlinear process with guaranteed safety is to use control Lyapunov-barrier functions (CLBF),

which is a function that combines CBFs and CLFs via weighted sum.

In this section, we introduce the definition of CLBFs for input-constrained system of Eq. 6.1,

followed by the construction method that separates the control design for achieving the asymptotic

stability and safety by designing the CLF and CBF, independently, and then combines them

together [133]. The design of CLBF-based controller for the nonlinear system of Eq. 6.1 will

be discussed with a rigorous theoretical analysis on closed-loop stability and operational safety.

6.4.1 Stabilization and Safety via Control Lyapunov-Barrier Function

6.4.1.1 Stabilizability assumptions

Assumption 6.1. We assume that the nominal system of Eq. 6.1 with w(t) ≡ 0 admits a positive

definite and proper control Lyapunov function V that satisfies the following condition:

L fV (x)< 0,∀x ∈ {z ∈ Rn\{0} | LgV (z) = 0} (6.10)

We also assume that V satisfies the small control property, i.e., for every ε > 0, ∃ δ > 0, s.t.

∀ x ∈Bδ (0), there exists u that satisfies |u|< ε and L fV (x)+LgV (x)u < 0.

The CLF assumption implies the existence of a stabilizing feedback control law Φ(x) that

renders the origin asymptotically stable in the sense that Eq. 6.10 holds for u=Φ(x), where Φ(x)∈

U . An example of a feedback control law that is continuous for all x in a neighborhood of the origin

and renders the origin asymptotically stable is the following control law [83]:
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ki(x) =




− p+

√
p2 + γ|q|4
|q|2 qi if q 6= 0

0 if q = 0
(6.11a)

Φi(x) =





umin if ki(x)< umin

ki(x) if umin ≤ ki(x)≤ umax

umax if ki(x)> umax

(6.11b)

where p denotes L fV (x), qi denotes LgiV (x), q= [q1 · · ·qm]
T , f = [ f1 · · · fn]

T , gi = [gi1 · · ·gin]
T , (i=

1,2, · · · ,m) and γ > 0. ki(x) of Eq. 6.11a represents the ith component of the control law Φ(x)

before considering saturation of the control action at the input bounds. Φi(x) of Eq. 6.11b

represents the ith component of the saturated control law Φ(x) that accounts for the input constraint

u ∈U .

6.4.1.2 Stabilization and safety via CLBF

Control Lyapunov-barrier function (CLBF) was originally proposed in [133], where the

stabilization and safety-related results were guaranteed only for u ∈Rm (i.e., no input constraints).

Considering the fact that practical nonlinear systems are often subject to input constraints u ∈U

as assumed in Eq. 6.1, a new CLBF must be developed to derive similar results. Therefore, based

on the definition of a CLBF in [133], we propose a modified CLBF (termed constrained CLBF or

simply CLBF in this chapter) that accounts for the presence of input constraints in the system of

Eq. 6.1. Specifically, the definition of a constrained CLBF is as follows:

Definition 6.3. Given a set of unsafe points D in state-space, a proper, lower-bounded and C 1

function Wc(x) : Rn → R is a constrained CLBF if Wc(x) has a minimum at the origin and also
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satisfies the following properties:

Wc(x)> ρc, ∀ x ∈D ⊂ φuc (6.12a)

L fWc(x)< 0, ∀ x ∈ {z ∈ φuc\(D ∪{0}∪Xe) | LgWc(z) = 0} (6.12b)

Uρc := {x ∈ φuc |Wc(x)≤ ρc} 6= /0 (6.12c)

φuc\(D ∪Uρc)∩D = /0 (6.12d)

where ρc ∈R, φuc is a neighborhood around the origin, and Xe := {x∈ φuc\(D∪{0}) | ∂Wc(x)
∂x = 0}

is a set of states where L fWc(x) = 0 (for x 6= 0) due to ∂Wc(x)/∂x = 0.

We assume that there exists a feedback control law u = Φ(x) ∈U (e.g., the universal Sontag

control law of Eq. 6.11 with Wc(x) replacing V (x)) such that the state of the closed-loop nominal

system of Eq. 6.1 is bounded in a level set of Wc(x) in an open neighborhood D0 that includes the

origin in its interior in the sense that there exists a C 1 constrained CLBF Wc(x) that has a minimum

at the origin and satisfies the following inequalities for all x ∈ D0:

α1(|x|)≤Wc(x)−ρ0 ≤ α2(|x|), (6.13a)

∂Wc(x)
∂x

F(x,Φ(x),0)≤−α3(|x|),∀x ∈ D0\Bδ (xe)

∂Wc(x)
∂x

F(x,Φ(x),0)≤ 0,∀x ∈Bδ (xe)

(6.13b)

∣∣∣∣
∂Wc(x)

∂x

∣∣∣∣≤ α4(|x|) (6.13c)

where α j(·), j = 1, 2, 3, 4 are class K functions, Wc(0) = ρ0 is the global minimum value of

Wc(x) in D0, and Bδ (xe) is a small neighborhood around the stationary points xe ∈ Xe. F(x,u,w)

is used to represent the system of Eq. 6.1 (i.e., F(x,u,w) := f (x)+ g(x)u+ h(x)w). It is noted

that in Eq. 6.13b, ∂Wc(x)
∂x F(x,Φ(x),0) ≤ −α3(|x|) does not hold for all x ∈Bδ (xe) since ∂Wc(x)

∂x is

close to zero in the neighborhood around xe, where ∂Wc(x)
∂x = 0. Additionally, by continuity and the

smoothness properties assumed for f ,g and h in the nonlinear system of Eq. 6.1, there exist positive
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constants M, Lx,Lw, L
′
x,L

′
w such that the following inequalities hold for all x,x′ ∈Uρc ⊂D0,u ∈U ,

and w ∈W :

|F(x,u,w)| ≤M (6.14a)

|F(x,u,w)−F(x′,u,0)| ≤ Lx|x− x′|+Lw|w| (6.14b)
∣∣∣∣
∂Wc(x)

∂x
F(x,u,w)− ∂Wc(x′)

∂x
F(x′,u,0)

∣∣∣∣≤ L
′
x|x− x′|+L

′
w|w| (6.14c)

Based on the stabilizability and safety requirements of Eq. 6.13, we can find a positive real

number a such that {x ∈D0 | Ẇc(x(t)) = L fWc+LgWcu <−a|Wc(x)−Wc(0)|} is not an empty set

under the stabilizing control law u = Φ(x)∈U (e.g., the Sontag control law of Eq. 6.11 with Wc(x)

replacing V (x)). Therefore, φuc is defined to be the union of the above set, the origin, and Bδ (xe),

i.e., φuc := {x ∈D0 | Ẇc(x(t))<−a|Wc(x)−Wc(0)|,u = Φ(x) ∈U}∪{0}∪Bδ (xe). Additionally,

we define the set of initial conditions by X0 := {x ∈ φuc\D} where ({0}∪Xe) ∈ X0, and thus, it

is readily shown that the set Uρc defined by Eq. 6.12c is a subset of X0. From now on, we will

denote Ẇc(x(t)), if not otherwise stated, simply by Ẇc.

6.4.1.3 Closed-loop stability and safety under CLBF-based controller

We analyze closed-loop stability and safety for the following two cases: a bounded unsafe region

Db and an unbounded unsafe region Du in state-space. The definition of simultaneous closed-loop

stability and operational safety for the nonlinear system of Eq. 6.1 is presented below.

Definition 6.4. Consider the nominal system of Eq. 6.1 with w(t)≡ 0 and input constraints u ∈U.

If for any initial state x(t0) = x0 ∈ U , there exists a control action u ∈ U such that the state

trajectories of the closed-loop system satisfy x(t)∈U , ∀ t ≥ t0, and limt→∞ |x(t)| ≤ d, where Bd(0)

is a small neighborhood around the origin, then we say that closed-loop stability and operational

safety are achieved simultaneously in the sense that the process state is maintained within a safe

operating region at all times, and can be ultimately driven to the origin.

Case 1: If the unsafe region is characterized as a bounded set Db, it has been demonstrated
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in [23] that asymptotic stability of the origin cannot be achieved under the continuous control law

u = Φ(x) ∈U due to the existence of other stationary points (i.e., xe ∈ Xe and xe 6= 0). In other

words, for some x0 ∈ X0, the closed-loop state may be trapped in xe (such stationary points xe

can be either local minima or saddle points of Wc(x)) instead of the origin which has the global

minimum of Wc(x) under u = Φ(x). Specifically, as shown in Fig. 6.1, since there exist initial

states x0 ∈Uρc ⊂ φuc such that the trajectories from x0 pass around Db in all possible directions, a

discontinuous control action has to be applied at xe to choose a direction to drive the state around

Db and towards the origin. Moreover, it is noted that in order to escape from xe and converge to the

origin, Wc(x) needs to be carefully designed (e.g., the shapes and functional forms of Wc(x)) such

that xe is a saddle point rather than a local minimum. Since xe can be characterized once the form

of Wc(x) is determined, a set of control actions ū that can drive the state away from the saddle point

in the direction of decreasing Wc(x) should also be calculated in advance and be applied when the

closed-loop state converges to xe.
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Figure 6.1: A schematic representing a bounded unsafe set Db embedded within the operating
region, where there exists an initial condition x0 and a saddle point xe such that the trajectories
from x0 converge to xe and pass around Db either in the up or down direction with a discontinuous
control action at xe.

Theorem 6.2 below provides sufficient conditions under which the existence of a constrained
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CLBF of Eq. 6.12 for the nominal system of Eq. 6.1 with w(t) ≡ 0 under the control law Φ(x)

guarantees that the solution of the system of Eq. 6.1 always stays in a safe operating region. The

proof of the theorem follows from the results in [169, 172].

Theorem 6.2. Consider that a constrained CLBF Wc(x) : Rn → R, that has a minimum at the

origin, exists for the nominal system of Eq. 6.1 (i.e., w(t) ≡ 0) with the input constraints u ∈U,

defined with respect to a bounded unsafe region Db in state-space. The feedback control law

Φ(x) guarantees that the closed-loop state stays in X0 and does not enter Db for all times for

x(0) = x0 ∈ X0.

Proof. First, we prove that if x0 ∈ X0 where X0 := {x ∈ φuc\Db}, then the closed-loop state will

never enter Db, for all t ≥ 0. Consider the first case that x0 ∈Uρc ⊂ X0. By the definition of φuc,

it is guaranteed that Ẇc is negative everywhere in the set X0\({0}∪Xe). (e.g., if LgWc(x) = 0, it

follows that Ẇc(x) = L fWc(x)< 0; if LgWc(x) 6= 0, it follows that Ẇc =−
√

L fW 2
c + γ|LgWc|4 < 0

using the Sontag control law of Eq. 6.11 with Wc(x) replacing V (x)). Additionally, if x ∈ Xe,

Ẇc(x) = 0 holds. Therefore, it follows that Wc(x(t))≤Wc(x(0)) for all x(t) ∈Uρc by Ẇc ≤ 0, i.e.,

x(t) stays in the set Uρc for all t ≥ 0 if x0 ∈Uρc .

Also, Uρc is a compact invariant set due to the properness of Wc and the property Ẇc ≤ 0.

Due to the fact that Uρc ∩Db = /0, it follows that for any x0 ∈Uρc , the closed-loop state does not

enter the set of unsafe states at any time (i.e., it is maintained within the set of safe states at all

times). Additionally, since any subset of Uρc , Uρ := {x ∈ φuc |Wc(x)≤ ρ} where ρ ≤ ρc, is also

a compact invariant set, we can show that if x0 ∈Uρ , it holds that x(t) ∈Uρ , ∀t ≥ 0. It remains to

be shown that for all other initial states x0 ∈ φuc\(Db∪Uρc), x(t) /∈ Db,∀ t ≥ 0. Given an initial

state x0 that belongs to the set φuc\(Db∪Uρc), Wc(x0) > ρc holds because it is not within the set

Uρc defined in Eq. 6.12c. However, since Eq. 6.12b holds within φuc\(Db∪{0}), the conclusion

that Ẇc(x) is negative along the trajectory of x(t) holds using the same steps as performed above

when x0 was within Uρc . Furthermore, since the set φuc\(Db∪Uρc) does not intersect with Db, any

trajectory starting in φuc\(Db ∪Uρc) will reach the boundary of φuc\(Db ∪Uρc) before reaching

the boundary of Db. Because Eq. 6.12d holds (i.e., φuc\(Db∪Uρc)∩Db = /0), it must hold that
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φuc\(Db∪Uρc)∩Uρc , is a nonempty set. Because Wc(x)> ρc within φuc\(Db∪Uρc) but Wc(x)≤

ρc within Uρc from Eq. 6.12c, Wc(x) = ρc, ∀x ∈ ∂φuc\(Db∪Uρc) due to the continuity of Wc,

which means that the trajectory will enter and remain in Uρc after it reaches the boundary of

φuc\(Db∪Uρc). This completes the proof that for all x0 ∈ X0, x(t) /∈Db,∀ t ≥ 0.

Remark 6.1. In Theorem 6.2, simultaneous stability (boundedness of the closed-loop state) and

safety are proved for the nominal system of Eq. 6.1 with any x0 ∈X0 under u = Φ(x). Note that the

set of initial condition X0 contains two parts. One is Uρc of Eq. 6.12c, where it satisfies Wc(x)≤ ρc;

the other one is φuc\(Db∪Uρc), which is required to satisfy Eq. 6.12d. Therefore, if we restrict the

initial conditions to Uρc or any subset of it, the conditions of a constraint CLBF in Eq. 6.12 can be

reduced to Eqs. 6.12a-6.12c. Otherwise, if the set φuc\(Db∪Uρc) is considered as a part of initial

conditions, all the conditions in Eq. 6.12 are required to hold for Wc. The additional condition of

Eq. 6.12d for the case of x0 ∈ φuc\(Db∪Uρc) also implies that Wc(x) = ρc for all x ∈ ∂Db, which

can be readily shown by contradiction.

Case 2: If an unbounded unsafe region Du is considered, there does not exist such a stationary

point xe 6= 0 according to [23]. As a result, Eq. 6.12 can be simplified with Xe = /0 and Ẇc < 0 holds

for all x ∈Uρc\{0} under the controller u = Φ(x) ∈U . It is shown in Fig. 6.2 that in this case, the

trajectories from x0 ∈Uρc converge to the origin while avoiding Du in one direction. Additionally,

from now on, we will restrict the set of initial conditions to be in Uρc (i.e., x0 ∈Uρc) to simplify the

discussion. The following theorem demonstrates that closed-loop stability and process operational

safety are achieved simultaneously for the system of Eq. 6.1 under u = Φ(x) ∈U .

Theorem 6.3. Consider that a constrained CLBF Wc(x) : Rn→R that has a minimum at the origin

and meets the conditions of Eq. 6.12, exists for the nominal system of Eq. 6.1 with w(t)≡ 0 subject

to input constraints, defined with respect to an unbounded unsafe region Du in state-space. The

continuous feedback control law u = Φ(x) ∈U guarantees that the closed-loop state is bounded in

Uρc for all times and the origin can be rendered asymptotically stable ∀x0 ∈Uρc .
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Figure 6.2: A schematic representing an unbounded unsafe set Du in state-space, where the
trajectories starting from any initial condition x0 avoid Du and converge to the origin x∗s .

Proof. Following the first part of proof for Theorem 6.2, it is readily shown that Ẇc remains

negative for all x in the set φuc\{0} under the controller u = Φ(x) ∈ U , which implies that

∀x0 ∈ Uρc ⊂ φuc, the state stays in Uρc for all times and will ultimately converge to the origin

due to the fact that Ẇc < 0,∀x ∈Uρc\{0}.

Remark 6.2. Control Lyapunov-barrier function Wc(x) and Lyapunov function V (x) are similar in

that they both have a global minimum at the origin of state-space and the level sets of Wc(x) and

V (x) are both invariant sets. However, the level sets of a CLBF can have negative upper bounds

(i.e., ρc < 0) and there exist multiple stationary points (other than the origin) for Wc(x). Thus,

the Lyapunov-based control law (e.g., Sontag control law of Eq. 6.11 in terms of V (x)) guarantees

convergence of the state to the origin (i.e., the equilibrium point at the origin is asymptotically

stable), while the CLBF-based control law (e.g., Sontag control law of Eq. 6.11 in terms of Wc(x))

guarantees boundedness of the state and avoidance of the unsafe region in a level set of Wc(x).

Additionally, convergence of the state to the origin can be guaranteed for CLBF-based control law

170



if other stationary points (i.e., saddle points) are addressed using a discontinuous control law.

6.4.2 Design of Constrained CLBF

The method for constructing a constrained CLBF is discussed in this section. Specifically, a

constrained CLBF can be constructed by combining a CLF and a CBF that have been separately

designed, and we present a practical method for designing a CLBF that satisfies the properties in

Eq. 6.12. Proposition 6.1 below provides the guidelines for choosing the CLF and CBF, and the

corresponding weights, through which the global minimum of Wc(x) is achieved at the origin.

Proposition 6.1. Given an open set D of unsafe states for the nominal system ẋ = f (x)+g(x)u+

h(x)w with w(t)≡ 0, assume that there exists a C 1 CLF V : Rn→R+, and a C 1 CBF B : Rn→R,

such that the following conditions hold:

c1 |x|2 ≤V (x)≤ c2 |x|2 , ∀x ∈ Rn,c2 > c1 > 0 (6.15)

D ⊂ H ⊂ φuc, 0 /∈ H (6.16)

B(x) =−η < 0, ∀x ∈ Rn\H; B(x)> 0, ∀x ∈D (6.17)

where H is a compact and connected set within φuc. Define Wc(x) to have the form Wc(x) :=

V (x)+µB(x)+ν , where:

L fWc(x)< 0, ∀ x ∈ {z ∈ φuc\(D ∪{0}∪Xe) | LgWc(z) = 0} (6.18)
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µ >
c2c3− c1c4

η
, (6.19a)

ν = ρc− c1c4, (6.19b)

c3 := max
x∈∂H

|x|2, (6.19c)

c4 := min
x∈∂D

|x|2. (6.19d)

Then for initial states x0 ∈ φuc\DH , where DH := {x ∈ H |Wc(x) > ρc}, the control law Φ(x) of

Eq. 6.11 (with Wc(x) replacing V (x)) guarantees that the closed-loop state is bounded in φuc\DH

and does not enter the unsafe region DH for all times.
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Figure 6.3: A schematic representing the relationship between the sets φuc, D , DH and H, where
the invariant set Uρc is shown as an ellipse subtracting DH .

Proof. We define a new compact and connected set H, which satisfies Eq. 6.16, and an expanded

unsafe region DH , such that all the states with Wc(x) > ρc inside the region H are included in

DH . A schematic describing the above relationship among different sets is shown in Fig. 6.3. We

prove that the proposed constrained CLBF, Wc(x), meets all the requirements of Eq. 6.12 with DH
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replacing D and has a global minimum at the origin. Firstly, it is trivial to show that Eq. 6.12a

holds by the definition of DH . Additionally, we can use Eqs. 6.15, 6.17, and 6.19 to show that for

all x ∈D , Wc(x)> ρc also holds as follows:

Wc(x) =V (x)+µB(x)+ν

> c1 |x|2 +ρc− c1c4

> ρc

(6.20)

Eq 6.12b is also trivially satisfied by the proposed CLBF via the required property of Eq. 6.18. To

prove that Eq. 6.12c holds, we obtain the following inequalities for all x ∈ ∂H,

Wc(x) =V (x)+µB(x)+ν

≤ c2 |x|2−µη +ρc− c1c4

< ρc

(6.21)

Hence, Eq. 6.12c holds due to the fact that Uρc 6= /0 obtained from Eq. 6.21, which also implies

that ∂H ∩ ∂DH = /0. Following this, we have DH ⊂ H ⊂ (DH ∪Uρc), which implies the

boundary of φuc\(DH ∪Uρc) does not intersect with the boundary of DH , (i.e., Eq. 6.12d holds,

φuc\(DH ∪Uρc)∩DH = /0). Additionally, Wc(x) has a global minimum at the origin since the

minimums of V (x) and B(x) are both at the origin. Therefore, we can conclude that for any

initial states x0 ∈ φuc\DH , the control law Φ(x) guarantees that the closed-loop state is bounded in

φuc\DH and does not enter DH for all times.

6.5 CLBF-based Model Predictive Control

In this section, a CLBF-based model predictive control (CLBF-MPC) scheme that incorporates

CLBF-based stability and safety constraints is proposed to regulate the nonlinear system of Eq. 6.1

to the steady-state while avoiding the unsafe operation at the same time. We first provide a brief
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overview of model predictive control methods. Then, we discuss the impact of sample-and-hold

implementation of control actions on the stability and safety properties derived by the continuous

controller u = Φ(x)∈U . Subsequently, a rigorous theoretical treatment of the closed-loop stability

and safety properties of the system of Eq. 6.1 with the control architecture is provided.

6.5.1 Sample-and-hold Implementation of CLBF-based Controller

As Lyapunov-based MPC only accounts for closed-loop stability, the avoidance of unsafe regions

in state-space is not guaranteed. Therefore, a new design of MPC that incorporates CLBF

constraints is developed in the following sections. In the proof of Theorem 6.2, it was noted that

when a constrained CLBF exists for the nominal system of Eq. 6.1, i.e., ẋ = f (x)+g(x)u+h(x)w

with w(t) ≡ 0, the controller Φ(x) when continuously implemented, can maintain the state in

a safe region of operation. Since the CLBF will be used to design constraints for MPC, for

which control actions are implemented in sample-and-hold, the sample-and-hold properties of the

controller Φ(x) (with a sampling period ∆) must be investigated in the presence of disturbances.

The next proposition and its proofs develop these results.

Proposition 6.2. Consider the nominal system of Eq. 6.1 with a constrained CLBF Wc that meets

the requirements of Definition 6.3 and has a minimum at the origin, and the set of initial conditions

Uρc ⊂ X0. Let u(t) = Φ(x(tk)), tk ≤ t < tk+1, for any x(tk) ∈ Uρc\Bδ (xe) where δ > 0, xe ∈ Xe

and tk represents the time instance, i.e., tk = k∆, k = 0,1,2, .... Let u(t) = ū(x) ∈U such that if

x(tk) ∈Bδ (xe), Wc(x(tk+1))<Wc(x(tk)) holds for any ∆ > 0 under ū(x). Then, given any positive

real number d, there exists a positive real number ∆∗, such that, if ∆ ∈ (0,∆∗] and x0 ∈Uρc , then

x(t) ∈Uρc , ∀t ≥ 0, and limt→∞ |x(t)| ≤ d.

Proof. We need to show that under sample-and-hold implementation, any states originating in

Uρc converge to a level set around the origin Uρmin := {x ∈ φuc | Wc(x) ≤ ρmin} as t → ∞ where

ρmin < ρc. Following this, it is trivial to show that x(t) ∈Uρmin as t→ ∞ implies limt→∞ |x(t)| ≤ d

by the continuity of Wc(x). To prove that the state will converge to Uρmin , we first show that
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∀ x(tk) ∈ Uρc\(Uρs ∪Bδ (xe)), where ρs < ρmin < ρc, Ẇc(x(t),u(t)) < −ε holds in the set Z :=

{x ∈ φuc\Bδ (xe) | ρs ≤Wc(x)≤ ρc} with u(t) = u(tk) = Φ(x(tk)), ∀ t ∈ [tk, tk +∆∗) as below:

Ẇc(x(t),u(t)) =Ẇc(x(tk),u(tk))+(Ẇc(x(t),u(t))−Ẇc(x(tk),u(tk)))

=L fWc(x(tk))+LgWc(x(tk))u(tk)+(L fWc(x(t))−L fWc(x(tk)))

+(LgWc(x(t))−LgWc(x(tk)))u(t)

(6.22)

where Ẇc(x,u) is used to represent ∂Wc(x)
∂x ( f (x) + g(x)u). Due to the smoothness of f (·) and

g(·), and the fact that Wc(x) is a C 1 function that satisfies Eq. 6.13c, there exist positive

real numbers k1 and k2, such that |(L fWc(x(t))− L fWc(x(tk))| ≤ k1|x(t)− x(tk)|, |(LgWc(x(t))−

LgWc(x(tk)))u(t))| ≤ k2|x(t)− x(tk)|. Since f (x) and g(x) are continuous functions, and Z is

bounded, there exists a positive real number k4 and a sampling period ∆′, such that |x(t)−x(tk)| ≤

k4∆′ for all t ∈ [tk, tk +∆′). Also, by the definition of φuc, it follows that Ẇc(x(tk)) < −a|Wc(x)−

Wc(0)| < −aρm holds for all x ∈ Z, where ρm := min
x∈Z
|Wc(x)−Wc(0)|. Let ∆′ < aρm−ε

k4(k1+k2)
and

0≤ ε < aρm, where a > 0 is used to characterize the set φuc, and substitute the above inequalities

obtained from Lipschitz conditions into Eq. 6.22, then it follows that

Ẇc(x(t),u(t))≤ Ẇc(x(tk),u(tk))+ k4(k1 + k2)∆
′

<−aρm + k4(k1 + k2)∆
′

<−ε

(6.23)

Eq. 6.23 implies that Wc(x(t)) < Wc(x(tk)) ≤ ρc,∀ t > tk and within finite steps, the closed-loop

state trajectory x(t) will enter Uρs . Hence, x(t) is shown to be bounded in Uρc , for all t ∈ [tk, tk+∆′).

Additionally, consider x(tk) ∈ Bδ (xe) where xe are designed to be saddle points. Since we

assume that there exists a set of control actions ū(x) that decreases Wc(x), x(tk+1) is able to move

to a smaller level set of Wc(x) and within finite sampling steps leaves Bδ (xe). Moreover, x(t) never

returns to Bδ (xe) once it leaves since Eq. 6.23 (i.e., Wc(x(t))<Wc(x(tk)),∀ t > tk) holds thereafter.

It remains to show that given x(tk) ∈Uρs , the trajectory of x(t) will stay in Uρmin,∀ t ∈ [tk, tk +
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∆′′). Consider ∆′′ such that

ρmin = max
∆t∈[0,∆′′)

{Wc(x(tk +∆t)) | x(tk) ∈Uρs, u ∈U}. (6.24)

Again, there exists a sufficiently small ∆′′ such that Eq. 6.24 holds. Therefore, let ∆∗ =

min{∆′,∆′′}, and now we are able to show that for any state x(tk) ∈ Uρc , x(t) will move towards

Uρmin and remain in Uρc during a sampling period t ∈ [tk, tk+1), where tk+1 := tk+∆ and ∆∈ (0,∆∗].

An example of the closed-loop trajectory under the sample-and-hold implementation of u = Φ(x)

and the relationship among the sets Uρc , Uρmin and Uρs are shown in Fig. 6.4.

Figure 6.4: A schematic representing the sets Uρc , Uρmin and Uρs , where an example of the
closed-loop trajectory that originates from x0 ∈ Uρc (dotted) is shown to avoid the unsafe region
D , and ultimately enter and remain in Uρmin under the sample-and-hold implementation of
u = Φ(x) ∈U .

Remark 6.3. The above proof is based on the assumption that the system of Eq. 6.1 is undisturbed,

i.e., w(t) ≡ 0. However, when taking the bounded disturbance |w(t)| ≤ θ into account and the

CLBF-based controller is applied in a sample-and-hold fashion, we can show that Proposition 6.2

still holds for the system of Eq. 6.1 subject to the bounded disturbance. Specifically, we first derive

a similar result for LhWc(x) via the local Lipschitz property of h(·): ∃ k3 > 0, s.t. |(LhWc(x(t))−
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LhWc(x(tk))| ≤ k3|x(t)−x(tk)|. Following that, we obtain similar results for Ẇc(x(t),u(t)) and ρ ′min

that account for w(t) as follows:

Ẇc(x(t),u(t))≤ Ẇc(x(tk),u(tk))+ k4(k1 + k2 + k3θ)∆′

<−aρm + k4(k1 + k2 + k3θ)∆′

<−ε

(6.25)

ρ
′
min = max

∆t∈[0,∆′′)
{Wc(x(tk +∆t),u,w) | x(tk) ∈Uρs, u ∈U, |w| ≤ θ}. (6.26)

where ∆′ < aρm−ε

k4(k1+k2+k3θ) and 0 ≤ ε < aρm, respectively. Therefore, by choosing appropriate

∆′ and ε for the sufficiently small bounded disturbance (i.e., θ is sufficiently small), Ẇc still

remains negative during each sampling period in the presence of disturbance. Additionally, if

x(tk) ∈ Bδ (xe), we again assume that there exists a set of feasible control actions ū(x) that

satisfies Wc(x(tk+1))<Wc(x(tk)), ∀ |w| ≤ θ . On the other hand, based on the definition of ρ ′min of

Eq. 6.26, it is trivial to show that for any x(tk) ∈Uρs , the trajectory of x(t) is guaranteed to stay in

Uρ ′min
,∀ t ∈ [tk, tk +∆′′). The above proof implies that the CLBF-based controller u = Φ(x) ∈U in

a sample-and-hold fashion is robust to the sufficiently small bounded disturbance.

Remark 6.4. We assume that there exists a set of feasible solutions ū(x) ∈U in Bδ (xe) such that

the closed-loop state leaves Bδ (xe) in the direction of decreasing Wc(x). For example, ū(x) can

be determined as ū(x(tk)) = argminu∈U{Wc(x(tk+1)) | Wc(x(tk+1)) < Wc(x(tk))}. However, in

the absence of input constraints, the fact that xe is a saddle point ensures that there is always a

control action (maybe large) that would make Wc(x) decrease. Once the state leaves Bδ (xe) in the

direction of decreasing Wc(x), it continues to move towards the origin under u = Φ(x).
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6.5.2 Formulation of CLBF-MPC

The CLBF-MPC design is represented by the following optimization problem [169]:

min
u∈S(∆)

∫ tk+N

tk
lt(x̃(t),u(t))dt (6.27a)

s.t. ˙̃x(t) = f (x̃(t))+g(x̃(t))u(t) (6.27b)

x̃(tk) = x(tk) (6.27c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (6.27d)

Ẇc(x(tk),u(tk))≤ Ẇc(x(tk),Φ(x(tk))),

if Wc(x(tk))> ρ
′
min and x(tk) /∈Bδ (xe) (6.27e)

Wc(x̃(t))≤ ρ
′
min, ∀ t ∈ [tk, tk+N), if Wc(x(tk))≤ ρ

′
min (6.27f)

Wc(x̃(t))<Wc(x(tk)), ∀ t ∈ (tk, tk+N), if x(tk) ∈Bδ (xe) (6.27g)

where x̃(t) is the predicted state trajectory, S(∆) is the set of piecewise constant functions with

period ∆, and N is the number of sampling periods in the prediction horizon. Ẇc(x,u) is

used to represent ∂Wc(x)
∂x ( f (x)+ g(x)u). The cost function lt(x̃(t),u(t)) satisfies lt(0,0) = 0 and

lt(x̃(t),u(t)) > 0, ∀(x̃(t),u(t)) 6= (0,0) such that the minimum value of the cost function will be

attained at the equilibrium point of the system of Eq. 6.1. Let u∗(t) be the optimal solution of

the optimization problem of Eq. 6.27 over the prediction horizon t ∈ [tk, tk+N). We assume that

the states of the closed-loop system are measured at each sampling time. Specifically, the above

optimization problem is solved based on the measured state x(tk) at t = tk. After u∗(t), where

t ∈ [tk, tk+N), is obtained from the CLBF-MPC optimization problem, only the first control action

of u∗(t) is sent to the control actuators to be applied over the next sampling period. Then, at the

next instance of time tk+1 := tk +∆, the optimization problem is solved again, and the horizon will

be rolled one sampling period.

In the optimization problem of Eq. 6.27, the objective function of Eq. 6.27a that is minimized is

the integral of lt(x̃(t),u(t)) over the prediction horizon, where the function lt(x,u) is not restricted
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to a traditional quadratic function. The constraint of Eq. 6.27b is the nominal system of Eq. 6.1

(i.e., w(t) ≡ 0) and is used to predict the evolution of the closed-loop state. Eq. 6.27c defines the

initial condition of the nominal process system of Eq. 6.27b. Eq. 6.27d defines the input constraints

for all the inputs over the entire prediction horizon. The constraint of Eq. 6.27e forces Wc(x̃) along

the predicted state trajectories to decrease at least at the rate under u = Φ(x) when Wc(x(tk))> ρ ′min

and x(tk) /∈Bδ (xe), while the constraint of Eq. 6.27f activates if Wc(x(tk))≤ ρ ′min (i.e., x(tk) enters

a small ball around the origin Bd(0) := {x ∈ Rn | |x| ≤ d}) so that the states of the closed-loop

system will remain inside Bd(0) afterwards. Additionally, if x(tk) ∈ Bδ (xe), the constraint of

Eq. 6.27g is activated to decrease Wc(x). Once the state leaves Bδ (xe), it is guaranteed that the

state does not return to Bδ (xe) because the state will be driven to smaller level sets of Wc(x) under

the constraint of Eq. 6.27e thereafter.

Theorem 6.4 below shows that the control actions computed by the CLBF-MPC of Eq. 6.27

guarantee that the state of the closed-loop system of Eq. 6.1 is always bounded in Uρc , and is

ultimately bounded in a small region around the origin. In addition, the optimization problems are

recursively feasible.

Theorem 6.4. Consider the system of Eq. 6.1 with a constrained CLBF Wc which has a minimum

at the origin, and the set of initial conditions Uρc . Given any initial state x0 ∈Uρc , it is guaranteed

that the optimization problem is feasible for all times under the CLBF-MPC scheme of Eq. 6.27

with sampling period ∆ ∈ (0,∆∗], which is defined in Proposition 6.2. Additionally, for x0 ∈ Uρc ,

it is guaranteed that x(t) ∈Uρc , ∀ t ≥ 0, and limsupt→∞ |x(t)| ≤ d.

Proof. The proof of this proposition consists of two parts. In the first part, we show that for

all x0 ∈ Uρc , the optimization problem of Eq. 6.27 is recursively feasible throughout the entire

operating period. Then, we show that under the CLBF-MPC, the trajectory of x(t) is always

bounded in Uρc , and is ultimately bounded in a small region around the origin Uρ ′min
.

Part 1 : Assuming that x(tk) ∈ Uρc\Uρ ′min
, tk ≥ 0 where ρ ′min is defined in Eq. 6.26, the

sample-and-hold control law u(t) = Φ(x(tk + i∆)), i = 0,1, . . . ,N−1, and u(t) = ū(x) are feasible

solutions to the optimization problem of Eq. 6.27. Specifically, when x(tk) ∈ Uρc\(Uρ ′min
∪
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Bδ (xe)), u(t) = Φ(x(tk + i∆)) satisfies both the input constraint of Eq. 6.27d and the constraint

of Eq. 6.27e when the controller is applied in the sample-and-hold fashion. However, if x(tk) ∈

Bδ (xe), u(t) = ū(x) ∈U is a set of feasible solutions that satisfies the constraints of Eq. 6.27d and

of Eq. 6.27g. The constraint of Eq. 6.27f is not activated in this case.

When x(tk) ∈ Uρ ′min
, u(t) = Φ(x(tk + i∆)), i = 0,1, . . . ,N− 1 is again a feasible solution that

satisfies the constraints of Eqs. 6.27d, 6.27f. Specifically, if x(tk) ∈ Uρs ⊂ Uρ ′min
, it is guaranteed

that the constraint of Eq. 6.27f is satisfied according to the definition of ρ ′min of Eq. 6.26. However,

if x(tk) ∈ Uρ ′min
\Uρs , based on the proof in Proposition 6.2, it follows that the sample-and-hold

controller u(t) = Φ(x(tk + i∆)) guarantees Ẇc(x) < −ε over a sampling period, which implies

that Wc(x(tk+1)) ≤Wc(x(tk)) ≤ ρ ′min. Therefore, at every sampling time, if x(tk) ∈Uρc , a feasible

solution to the optimization problem of Eq. 6.27 exists.

Part 2 : We now prove that if x0 ∈Uρc , it holds that x(t) ∈Uρc , ∀ t ≥ 0. We first consider the

case of a bounded unsafe region Db. Since the initial condition x0 is in the set Uρc , it follows that

under the constraints of Eqs. 6.27d-6.27g, x(t) ∈ Uρc, ∀ t ≥ 0 by letting tk = 0 for the result of

Wc(x(t))<Wc(x(tk))≤ ρc,∀ t > tk from Proposition 6.2. Therefore, the assumption that x(tk)∈Uρc

at t = tk, tk ≥ 0 in Part 1 is also proved.

Finally, let x0 ∈ Uρc\Uρ ′min
, we will show that x(t) ultimately enters Uρ ′min

and remains there

for all subsequent times. It follows that Wc(x(t +∆))<Wc(x(t)) holds when x(t) ∈Uρc\(Uρ ′min
∪

Bδ (xe)) and x(t) ∈Bδ (xe) from the proof in Proposition 6.2. This implies that within finite time

ts, the trajectory will enter Uρ ′min
. Additionally, it has been shown in Part 1 that if x(t) ∈ Uρ ′min

,

the constraint of Eq. 6.27f is satisfied according to the definition of Uρ ′min
, and hence there always

exists a set of control actions such that Wc(x(t)) ≤ ρ ′min, ∀ t ≥ ts. Note that Wc(·) is a continuous

function of the state, and thus, given the real number ρ ′min, one can find a positive real number d,

such that Wc(x(t))≤ ρ ′min implies limsupt→∞ |x(t)| ≤ d.

On the other hand, if the unsafe region is an unbounded set Du in state-space, if follows that

the origin is the only stationary point in state-space (i.e., Xe = /0) and the constraint of Eq. 6.27g

will never be activated. Therefore, under the constraint of Eq. 6.27e, Ẇc is rendered negative and
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the state of the closed-loop system of Eq. 6.1 is driven towards Uρ ′min
. Finally, the closed-loop state

is bounded in Uρ ′min
under the constraint of Eq. 6.27f.

Remark 6.5. We note that Theorem 6.4 applies to both the nominal closed-loop system of Eq. 6.1,

i.e., ẋ = f (x) + g(x)u+ h(x)w with w(t) ≡ 0, and the closed-loop system of Eq. 6.1 subject to

bounded disturbances (i.e., |w| ≤ θ ) under the sample-and-hold implementation of CLBF-MPC.

The case of nominal closed-loop system is straightforward since the nominal system of Eq. 6.1 is

used as the prediction process model in the formulation of CLBF-MPC of Eq. 6.27, which implies

that the actual closed-loop states are consistent with the predicted states under the CLBF-MPC,

and therefore, closed-loop stability and safety are guaranteed following the above proof. However,

for the system subject to bounded disturbances, it is shown in Proposition 6.2 that for sufficiently

small disturbances |w(t)| ≤ θ and sufficiently small sampling period ∆, Ẇc of the uncertain

closed-loop system of Eq. 6.1 still satisfies Ẇc <−ε for all x∈Uρc\(Uρ ′min
∪Bδ (xe)). Additionally,

if x ∈ Uρ ′min
or x ∈ Bδ (xe), the constraints of Eq. 6.27f and of Eq. 6.27g still hold since ρ ′min

of Eq. 6.26 and ū(x) are determined accounting for the impact of the bounded disturbances.

Therefore, all the constraints of CLBF-MPC are satisfied and Theorem 6.4 holds for the uncertain

closed-loop system of Eq. 6.1 with |w| ≤ θ .

Remark 6.6. It should be noted that the problem of convergence to xe instead of the origin can

be solved by taking advantage of the CLBF-MPC. The constraint of Eq. 6.27g requires Wc(x) to

decrease if x(tk) ∈ Bδ (xe), which drives the state out of Bδ (xe) in the direction of decreasing

Wc(x). Additionally, since in general, the objective function of the CLBF-MPC of Eq. 6.27a

penalizes the distances between states and the origin and also control actions, the objective

function value becomes large if the state converges to any points other than the origin (e.g.,

xe). Therefore, CLBF-MPC will try to avoid converging to xe by optimizing control actions in

a sample-and-hold fashion (i.e., discontinuous control actions) and taking future cost values into

account.
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6.5.3 Application to a Chemical Process Example

In this section, we utilize a chemical process example to illustrate the application of the proposed

CLBF-MPC method. Consider a well-mixed, non-isothermal continuous stirred tank reactor

(CSTR) where an irreversible first-order exothermic reaction takes place. The reaction converts

the reactant A to the product B via the chemical reaction A→ B. A heating jacket that supplies

or removes heat from the reactor is used. The CSTR dynamic model derived from material and

energy balances is given below:

dCA

dt
=

F
VL

(CA0−CA)− k0e−E/RTCA +w1 (6.28a)

dT
dt

=
F
VL

(T0−T )− ∆Hk0

ρLCp
e−E/RTCA +

Q
ρLCpVL

+w2 (6.28b)

where CA is the concentration of reactant A in the reactor, T is the temperature of the reactor, Q

denotes the heat supply/removal rate, and VL is the volume of the reacting liquid in the reactor. The

feed to the reactor contains the reactant A at a concentration CA0, temperature T0, and volumetric

flow rate F . The liquid has a constant density of ρL and a heat capacity of Cp. k0, E and ∆H are

the reaction pre-exponential factor, activation energy and the enthalpy of the reaction, respectively.

Process parameter values are listed in Table 6.1. The control objective is to operate the CSTR at

the equilibrium point (CAs, Ts) = (0.57 kmol/m3, 395.3 K) and maintain the state in a safe region

of state-space by manipulating the heat input rate ∆Q = Q−Qs, and the inlet concentration of

species A, ∆CA0 = CA0−CA0s . The input constraints for ∆Q and ∆CA0 are |∆Q| ≤ 0.0167 kJ/min

and |∆CA0| ≤ 1 kmol/m3, respectively.

To place Eq. 6.28 in the form of nonlinear systems of Eq. 6.1, deviation variables are used

in this example, such that the equilibrium point of the system is at the origin of the state-space.

xT = [CA−CAs T − Ts] represents the state vector in deviation variable form, uT = [∆CA0 ∆Q]

represents the manipulated input vector in deviation variable form, and wT = [w1 w2] is the

bounded disturbance vector of Gaussian distribution with zero mean and standard deviation σ1 =

1.0 kmol/(m3 min), σ2 = 3.5 K/min. The upper bound for disturbances |w1| ≤ 1.0 kmol/(m3 min)
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Table 6.1: Parameter values of the CSTR with a first-order reaction.

T0 = 310 K F = 100×10−3 m3/min

VL = 0.1 m3 E = 8.314×104 kJ/kmol

k0 = 72×109 min−1 ∆H =−4.78×104 kJ/kmol

Cp = 0.239 kJ/(kg K) R = 8.314 kJ/(kmol K)

ρL = 1000 kg/m3 CA0s = 1.0 kmol/m3

Qs = 0.0 kJ/min CAs = 0.57 kmol/m3

Ts = 395.3 K

and |w2| ≤ 3.17 K/min are approximated via simulation runs under various sizes of disturbances.

The control Lyapunov function is designed using the standard quadratic form V (x) = xT Px with

P =




9.35 0.41

0.41 0.02


.

6.5.3.1 Case study: bounded unsafe region

We first demonstrate the application of CLBF-MPC to a bounded unsafe region Db located within

the set φuc. The unsafe region is defined as an ellipse: Db := {x ∈ R2 | F(x) = (x1+0.22)2

1 +

(x2−4.6)2

1×104 < 2× 10−4}. H is defined as H := {x ∈ R2 | F(x) < 4× 10−4} such that it satisfies

Db ⊂ H ⊂ φuc in Proposition 6.1. The control barrier function B(x) is defined as follows.

B(x) =





e
λF2(x)

F(x)−4×10−4 − e−2λ×10−4
, if x ∈ H

−e−2λ×10−4
, if x /∈ H

(6.29)

where λ > 0 is a parameter that can be used to adjust the value of B(x) in characterizing the set

φuc. From Eq. 6.29, it is guaranteed that B(x) is positive in the unsafe region Db. Then, the

control Lyapunov-barrier function Wc(x) =V (x)+µB(x)+ν is constructed following the rules in

Proposition 6.1, where the parameters are determined as follows, λ = 0.001, ρc = 0, c1 = 0.001,

c2 = 10, c3 = maxx∈∂H |x|2 = 34.8, c4 = minx∈∂Db
|x|2 = 16.85, and ν = ρc− c1c4 = −1.685×

10−2. Hence, µ is chosen to be 5000 to satisfy Eq. 6.19. Based on the above Wc(x), xe is calculated
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to be a saddle point (-0.235, 4.83) in state-space.

The objective function of the CLBF-MPC in this example is to drive the system to

its equilibrium point while minimizing the heat supply/removal rate, and the feed reactant

concentration as well, and is given as follows,

lt(x̃,u) = |x̃(t)|2QL
+ |u(t)|2RL

(6.30)

where the weighting matrices for the states and inputs are chosen to be QL =




1000 0

0 10




and RL =




1 0

0 100


, respectively, such that the term related to the states and the term related

to the inputs are on the same order of magnitude in Eq. 6.30 to penalize both state and input

deviations from the steady-state significantly. In the simulations below, the process model of

Eq. 6.28 is integrated numerically using the explicit Euler method with an integration time step

of hc = 10−5 min. The MPC sampling period and the prediction horizon were chosen to be

∆ = 2× 10−3 min and N = 10, under which the desired closed-loop performance is achieved

with high computational efficiency (i.e., the control action calculation is done within the sampling

period). The constrained nonlinear optimization problem is solved using the IPOPT software

package ( [158]) with a 4-core CPU desktop.

Scenario 1: We first carry out the closed-loop simulation for the nominal CSTR system (i.e.,

no disturbances w) in the presence of a bounded unsafe region D . We chose the subset Uρ ⊂Uρc as

the safe operating region and set an initial condition that is far away from the set D . Starting from

the initial condition (x1, x2)=(0.2, -5), it is demonstrated that the stabilization of the closed-loop

system can be achieved (the green trajectory in Fig. 6.5), and the states always remain in Uρ .

Additionally, another three initial conditions (-0.19, 5.5), (-0.35, 7) and (-0.235, 6.5) are chosen to

start the system from where the state encounters the unsafe region D on its way to the origin under

the CLBF-MPC as shown in Fig. 6.5. All three demonstrate that the states avoid the unsafe region

D and ultimately converge to the origin.
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Figure 6.5: Closed-loop state trajectories under CLBF-MPC for four different initial conditions
(0.2, -5) (green), (-0.19, 5.5) (red), (-0.35, 7) (black) and (-0.235, 6.5) (blue). The set of unsafe
states D is shaded in solid black area and the set Uρ is the region between the largest ellipse and
the set H.

Scenario 2: We now compare the closed-loop performance of the CSTR system under

CLBF-MPC with that under a non-Lyapunov-based MPC with a state constraint to avoid D

and a terminal constraint to guarantee closed-loop stability that is described by the following

optimization problem.

min
u∈S(∆)

∫ tk+N

tk
lt(x̃(t),u(t))dt (6.31a)

s.t. ˙̃x(t) = f (x̃(t))+g(x̃(t))u(t) (6.31b)

x̃(tk) = x(tk) (6.31c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (6.31d)

x̃(t) ∈Uρ , ∀ t ∈ [tk, tk+N), if x(tk) ∈Uρ (6.31e)

x̃(tk+N) ∈Uρmin (6.31f)

It is demonstrated in Fig. 6.6 that starting from the same initial condition (-0.235, 6.5), the

185



state under CLBF-MPC (black solid) will first reach the boundary of H, then avoid the unsafe

region D by passing around it, and finally, move towards the origin. However, under MPC with

state constraints, it is demonstrated that the optimization problem becomes infeasible when the

trajectory gets close to the boundary of the unsafe region. In this case, we deactivate the state

constraint and apply the feasible solution of the optimization problem of MPC with terminal

constraint only such that the trajectory crosses the unsafe region but can still move towards the

origin. Therefore, CLBF-MPC outperforms the standard MPC with state constraints since it

reconciles the tasks of safety and closed-loop stability with guaranteed recursive feasibility.

Figure 6.6: Closed-loop state profiles under the CLBF-MPC of Eq. 6.27 (solid) and under the MPC
with state constraints (dashed), where the unsafe region D is an obstacle for the closed-loop state
trajectory starting from the initial condition (-0.235, 6.5).

Scenario 3: We carry out the closed-loop simulation subject to bounded disturbance. It is

demonstrated in Fig. 6.7 that the CLBF-MPC can still guarantee safety and closed-loop stability.

The corresponding input profiles are also shown in Fig 6.8, in which it is seen that the control

actions oscillate around the steady state due to the disturbance.

Scenario 4: Lastly, to demonstrate the advantages of the proposed CLBF-MPC control scheme

compared to the case of using explicit CLBF-based control law of Eq. 6.11 all the time, the

simulation results of the closed-loop state and inputs profiles for the same initial condition (-0.235,
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Figure 6.7: Closed-loop state profile for the initial condition (-0.235, 6.5) under the CLBF-MPC
of Eq. 6.27 (solid) subject to bounded disturbance.
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Figure 6.8: Manipulated input profiles (u1 = ∆CA0 and u2 = ∆Q) for the initial condition (-0.235,
6.5) under the CLBF-MPC of Eq. 6.27 subject to bounded disturbance.
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6.5) are shown in Fig. 6.9 and Fig. 6.10, respectively. In Fig. 6.10, it is observed that under the

CLBF-based control law of Eq. 6.11, the inlet concentration of the reactant and the heat input rate

start oscillating heavily from t = 0.003 min to t = 0.2 min, and correspondingly, the oscillation

arises in the state trajectory near the boundary of H. The reason for the oscillation is that the

intrinsic dynamics of the closed-loop system force the states to go towards and cross the unsafe

region, yet the constraints of CLBF-MPC prevent this undesirable behavior due to the dramatic

increase in the values of Wc inside the unsafe region (barrier function dominates). By balancing

these two opposite effects, the control action becomes oscillating when the state moves around

the boundary of H. Additionally, under the proposed CLBF-MPC control scheme, the dynamic

performance was improved since MPC has the ability to anticipate future state behavior and can

take control actions accordingly.

Figure 6.9: Closed-loop state profiles for the initial condition (-0.235, 6.5) under the CLBF-MPC
of Eq. 6.27 (solid) and under the CLBF-based controller of Eq. 6.11 (dashed).

Furthermore, it is calculated based on the simulation results under CLBF-MPC that the total

consumptions of reactant ∆CA0 and of energy ∆Q within the operating time ts = 3 min are

0.268 kmol/m3 and 0.006 kJ, respectively, which represent improvements of 13% and 25%,

respectively, compared to 0.308 kmol/m3 and 0.008 kJ under the explicit CLBF-based controller.
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Figure 6.10: Manipulated input profiles (u1 = ∆CA0 and u2 = ∆Q) for the initial condition (-0.235,
6.5) under the CLBF-MPC of Eq. 6.27 (solid) and under the CLBF-based controller of Eq. 6.11
(dashed).

Therefore, in this case, the CLBF-MPC of Eq. 6.27 outperforms the explicit CLBF-based controller

of Eq. 6.11 due to the smoother control actions and reduced control energy consumptions.

6.5.3.2 Case study: unbounded unsafe region

The closed-loop simulation for the CSTR system with an unbounded unsafe region is carried out in

this section. Specifically, the unsafe region is defined as an unbounded set with high temperature

and concentration: Du := {x ∈R2 | F(x) = x1 +x2 > 7.2}. H is defined as H := {x ∈R2 | F(x)>

6.8}. The control barrier function B(x) is defined as follows.

B(x) =





eF(x)−7.2−2× e−0.4, if x ∈ H

−e−0.4, if x /∈ H
(6.32)

The control Lyapunov-barrier function Wc(x) = V (x) + µB(x) + ν is constructed with the

following parameters: ρc = 0, c1 = 0.001, c2 = 10, c3 = 98.78, c4 = 51.99, and ν = ρc− c1c4 =

−1.685×10−2. Hence, µ is chosen to be 1500 to satisfy Eq. 6.19. For simplicity, we only discuss

the scenario of the nominal CSTR system under CLBF-MPC. It is demonstrated in Fig. 6.11 that
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under the CLBF-MPC of Eq. 6.27, all the trajectories with initial states inside Uρ avoid the unsafe

region Du on the top and converge to Uρmin .
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Figure 6.11: Closed-loop state trajectories for the system of Eq. 6.28 under CLBF-MPC with
different initial conditions marked by stars. The set of unbounded unsafe states Du is the red area
on the top.

Therefore, from the above case studies of a bound and an unbounded unsafe region, it is

demonstrated that simultaneous closed-loop stability and process operational safety are achieved

under the CLBF-MPC of Eq. 6.27 in the sense that for any initial state x0 ∈ Uρ ⊂ Uρc , the

closed-loop state is guaranteed to stay inside Uρ and avoid the unsafe region for all times, and

will converge to a small neighborhood Uρmin around the origin ultimately.

6.6 CLBF-based Economic Model Predictive Control

By incorporating CLBF-based constraints into tracking MPC, the state of a closed-loop nonlinear

system can be driven to its set point while avoiding a bounded/unbounded unsafe region in

state-space. However, given that the steady-state operation may not be optimal for industrial

process operation as demonstrated in the previous chapter, economic model predictive control
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(EMPC) that optimizes directly in real time the economic performance of the process is an

efficient method to improve process economic performance while maintaining stable operation.

Therefore, based on the Lyapunov-based EMPC of Eq. 3.1 and the stabilizability and safety

assumptions in Section 6.4.1, we present the design of CLBF-based EMPC (CLBF-EMPC) that

ensures closed-loop stability, process operational safety, and economic optimality simultaneously.

It should be noted that simultaneous closed-loop stability and operational safety now represent the

boundedness of the state in a safe operating region only as EMPC does not require the convergence

of state to the steady-state.

6.6.1 CLBF-based EMPC formulation

The CLBF-EMPC design is represented by the following optimization problem [175]:

max
u(t)∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ)) dτ (6.33a)

s.t. ˙̃x(t) = f (x̃(t))+g(x̃(t))u(t) (6.33b)

x̃(tk) = x(tk) (6.33c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (6.33d)

Wc(x̃)≤ ρe, ∀ t ∈ [tk, tk+N), if x(tk) ∈Uρe (6.33e)

Ẇc(x(tk),u(tk))≤ Ẇc(x(tk),Φ(x(tk))), if x(tk) ∈Uρ\Uρe (6.33f)

where the notation follows that for CLBF-MPC in Eq. 6.27. The optimization problem of Eq. 6.33

optimizes the time integral of the cost function le(x,u) of Eq. 6.33a that represents process

economic benefits while satisfying the constraints of Eqs. 6.33b-6.33f. Specifically, the nominal

process model of Eq. 6.33b is used as the prediction of CLBF-EMPC. Eq. 6.33c defines the initial

condition for the optimization problem of Eq. 6.33 using the measurement of the process state at

the current time tk. Eq. 6.33d defines the input constraints applied over the prediction horizon.

If x(tk) is inside Uρe , the Mode 1 constraint of Eq. 6.33e is applied to maintain the predicted
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closed-loop state within the set Uρe ⊂Uρ , which is designed to make the safe operating region Uρ

a forward invariant set in the presence of sufficiently small disturbances (i.e., |w(t)| ≤ θ ) and also

include the states xe ∈ Xe inside (i.e., Bδ (xe) ⊂Uρe). Under the Mode 2 constraint of Eq. 6.33f,

the contractive constraint is activated only for the next sampling step to decrease the value of

Wc(x), such that the closed-loop state will move back into Uρe within finite sampling steps. The

CLBF-EMPC is implemented in a sample-and-hold fashion, which implies only the first step of

the optimized input trajectory will be applied over the next sampling period.

Before we demonstrate closed-loop stability and safety under CLBF-EMPC in Theorem 6.5,

we first establish a few propositions that will be used in the proof of theorem. Specifically,

Proposition 6.3 gives the upper bound on the difference between the evolutions of the trajectories

of the nominal system (i.e., w(t) ≡ 0) and the disturbed system of Eq. 6.1. Proposition 6.4

establishes the relationship of the disturbance bound, Lipschitz constants, and the sampling period

that is required to maintain Ẇc negative during one sampling period, which will be utilized in the

proof of closed-loop stability and safety of the CLBF-EMPC in Theorem 6.5. Also, it should be

pointed out that for the CLBF-EMPC of Eq. 6.33, we omit the case where x0 ∈ φuc\(D ∪Uρc) and

only consider the initial condition x0 ∈Uρ ⊂Uρc since closed-loop stability under CLBF-EMPC

represents the boundedness of the state x(t) within an invariant set Uρ .

Proposition 6.3. Consider the system of Eq. 6.1, i.e., ẋ = F(x,u,w) := f (x)+g(x)u+h(x)w and

the nominal system ˙̂x = F(x̂,u,0) (i.e., w(t)≡ 0) with initial conditions x0 = x̂0 ∈Uρ ⊂Uρc . There

exists a class K function fw(·) and a positive constant β such that the following inequalities hold

∀x, x̂ ∈Uρ and w(t) ∈W:

|x(t)− x̂(t)| ≤ fw(t) :=
Lwθ

Lx
(eLxt−1) (6.34a)

Wc(x)≤Wc(x̂)+α4(α
−1
1 (ρ−ρ0))|x− x̂|+β |x− x̂|2 (6.34b)
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Proof. Let the error vector e(t) = x(t)− x̂(t). The derivative of e(t) can be obtained as follows:

|ė(t)|= |F(x(t),u(t),w(t))−F(x̂(t),u(t),0)| (6.35)

Following Eq. 6.14b, it is obtained that

|ė(t)| ≤ Lx|x(t)− x̂(t)|+Lw|w(t)| ≤ Lx|e(t)|+Lw|θ | (6.36)

Therefore, for all x(t), x̂(t)∈Uρ , |w(t)| ≤ θ and zero initial condition (i.e., e(0) = 0), we can derive

the upper bound of the norm of the error vector as follows:

|e(t)|= |x(t)− x̂(t)| ≤ Lwθ

Lx
(eLxt−1) (6.37)

Subsequently, we prove Eq. 6.34b holds for all x, x̂ ∈ Uρ by using the Taylor series expansion of

Wc(x) around x̂ as follows:

Wc(x)≤Wc(x̂)+
∂Wc(x̂)

∂x
|x− x̂|+β |x− x̂|2 (6.38)

Substituting Eq. 6.13a and Eq. 6.13c into Eq. 6.38, it follows that

Wc(x)≤Wc(x̂)+α4(α
−1
1 (ρ−ρ0))|x− x̂|+β |x− x̂|2 (6.39)

Proposition 6.4. Consider the system of Eq. 6.1 under the controller u = Φ(x) ∈ U, designed

based on Wc with its minimum at the origin and meeting Eq. 6.12 and Eq. 6.13, implemented in

sample-and-hold. Let εw > 0, ∆∗ > 0, ρ > ρe satisfy

−α3(α
−1
2 (ρe−ρ0))+L

′
xM∆

∗+L
′
wθ ≤−εw/∆

∗ (6.40)
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Then, for any x(tk) ∈Uρ\Uρe , the following inequality holds under u = Φ(x) ∈U:

Wc(x(t))≤Wc(x(tk)), ∀t ∈ [tk, tk+1) (6.41)

Proof. Assuming x(tk) ∈Uρ\Uρe , we prove that within one sampling period, the value of Wc(x) is

decreasing under the controller u(t) = Φ(x(tk)) ∈U . The time derivative of the CLBF Wc(x) along

the trajectory x(t) of the nominal system of Eq. 6.1 in t ∈ [tk, tk+1) is given by:

Ẇc(x(t)) =
∂Wc(x(t))

∂x
F(x(t),Φ(x(tk)),w(t)) (6.42)

Adding ∂Wc(x(tk))
∂x F(x(tk),Φ(x(tk)),0) to both sides and using Eq. 6.13b, the following inequality is

obtained:

Ẇc(x(t))≤−α3(|x(tk)|)+
∂Wc(x(t))

∂x
F(x(t),Φ(x(tk)),w(t))

− ∂Wc(x(tk))
∂x

F(x(tk),Φ(x(tk)),0)
(6.43)

Based on the inequalities of Eq. 6.13a and Eq. 6.14, the upper bound of Ẇc(x(t)) is derived as

follows for x(tk) ∈Uρ\Uρe:

Ẇc(x(t))≤−α3(α
−1
2 (ρe−ρ0))+L

′
x|x(t)− x(tk)|+L

′
wθ

≤−α3(α
−1
2 (ρe−ρ0))+L

′
xM∆

∗+L
′
wθ

(6.44)

Therefore, if Eq. 6.40 is satisfied, Ẇc(x(t)) ≤ −εw/∆∗ holds for all x(tk) ∈Uρ\Uρe , t ∈ [tk, tk+1).

Through the integral of the above equation, we obtain that Wc(x(tk+1))≤Wc(x(tk))− εw, and also

the conclusion shown in Eq. 6.41.

Based on the CLBF-EMPC of Eq. 6.33, the following theorem establishes that under the

sample-and-hold implementation of the solution of the CLBF-EMPC of Eq. 6.33, both closed-loop

stability and process operational safety are guaranteed for the system of Eq. 6.1, and the

optimization problem is recursively feasible.
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Theorem 6.5. Consider the system of Eq. 6.1 with a constrained CLBF Wc(x) : Rn → R that has

its minimum at the origin and meets Eqs. 6.12 and 6.13. Let ∆ ≤ ∆∗ and ρ > ρe satisfy Eq. 6.40

and ρe be determined as follows:

ρe ≤ ρ−α4(α
−1
1 (ρ−ρ0)) fw(∆)−β ( fw(∆))

2 (6.45)

Given any initial state x0 ∈ Uρ , it is guaranteed under the CLBF-EMPC of Eq. 6.33, x(t) ∈

Uρ , ∀t ≥ 0 for the closed-loop system of Eq. 6.1, where Uρ ⊂Uρc and Uρ ∩D = /0.

Proof. To prove closed-loop stability and safety of the system of Eq. 6.1 subject to small bounded

disturbances (i.e., |w(t)| ≤ θ ) under CLBF-EMPC, we first prove that under the Mode 1 constraint

of Eq. 6.33e of CLBF-EMPC, the closed-loop state is always bounded in the stability and safety

region Uρ (stability comes from the invariance of the level set of Wc(x) while safety is due to the

fact that Uρ ∩D = /0). We then prove that if the system operates in the second operation mode

(i.e., the Mode 2 constraint of Eq. 6.33f when x(tk) ∈ Uρ\Uρe), the closed-loop state will move

towards the origin, and enter Uρe in finite sampling steps. Finally, we prove that the CLBF-EMPC

of Eq. 6.33 is solved with recursive feasibility for all states x(t) ∈Uρ .

Part 1 : We prove that if x(tk) ∈ Uρe, tk ≥ 0, the closed-loop state x(t) ∈ Uρ , ∀t ∈ [tk, tk+1]

holds. Since the state x(tk) at t = tk is assumed to be in the set Uρe , the CLBF-EMPC of Eq. 6.33

operates in the first operation mode (i.e., the Mode 1 constraint of Eq. 6.33e is applied and the Mode

2 constraint of Eq. 6.33f is inactivated). Initially, we consider the case where the CLBF-EMPC

of Eq. 6.33 is designed using the nominal system of Eq. 6.33e for prediction, and also applied

to the nominal system of Eq. 6.1. Since the prediction model and the actual process model are

both the nominal system with w(t) ≡ 0, from the constraint of Eq. 6.33e, it is trivial to show that

Wc(x̂(tk+1))≤ ρe ≤ ρ for the nominal system of Eq. 6.1 where again, x̂ denotes the predicted state

of the nominal system. Now we consider the case where CLBF-EMPC uses the nominal system for

prediction, but is applied to the system of Eq. 6.1 subject to small bounded disturbances |w(t)| ≤ θ .

The predicted state is still within Uρe (i.e., Wc(x̂(tk+1))≤ ρe) based on the constraint of Eq. 6.33e.
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However, by Propositions 6.3, 6.4 and Eq. 6.45, it follows that

Wc(x(tk+1))≤+α4(α
−1
1 (ρ−ρ0))|x(tk+1)− x̂(tk+1)|

+β |x(tk+1)− x̂(tk+1)|2 +Wc(x̂(tk+1))

≤ α4(α
−1
1 (ρ−ρ0)) fw(∆)+β ( fw(∆))

2 +ρe

≤ ρ

(6.46)

Therefore, for any x(tk) ∈ Uρe , regardless of whether the CLBF-EMPC is applied to the nominal

system or the disturbed system with sufficiently small bounded disturbances, the state x(tk+1) is

always bounded in Uρ . Additionally, it is trivial to show that the above inequality holds for any

t ∈ [tk, tk+1) if we plug in a smaller sampling period into the monotonically increasing function

fw(·) in Eq. 6.46.

Part 2 : In this part, we prove that if x(tk) ∈ Uρ\Uρe , the closed-loop state x(t) will move

towards the origin within the next sampling period (i.e., Wc(x(t))≤Wc(x(tk)), ∀t ∈ [tk, tk+1)), and

will enter Uρe within finite sampling steps. Since it is assumed that x(tk) ∈ Uρ\Uρe , the Mode

2 constraint of Eq. 6.33f is activated in this case and the Mode 1 constraint of Eq. 6.33e remains

inactive. Similarly, we first consider the scenario that both the prediction model and the real model

are the nominal system of Eq. 6.1 with w(t) ≡ 0. From the constraint of Eq. 6.33f and Eq. 6.13b,

the following inequality is obtained:

Ẇc(x(tk),u(tk)) =
∂Wc(x(tk))

∂x
F(x(tk),u(tk),0)

≤ ∂Wc(x(tk))
∂x

F(x(tk),Φ(x(tk)),0)

≤−α3(|x(tk)|)

(6.47)

where u(tk) is the optimal input derived by the CLBF-EMPC at t = tk, and applied at the

next sampling period (i.e., ∀t ∈ [tk, tk+1)). Under the sample-and-hold implementation of the

CLBF-EMPC of Eq. 6.33, Ẇc(x(t)),∀t ∈ [tk, tk+1) is derived using results similar to Eq. 6.43 and
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Eq. 6.44 by letting w(t) = 0:

Ẇc(x(t),u(tk)) =
∂Wc(x(t))

∂x
F(x(t),u(tk),0)

≤−α3(|x(tk)|)+L
′
xM∆+L

′
w|0|

(6.48)

Correspondingly, we can also derive the upper bound for Ẇc(x(t),u(tk)) for the case that the

CLBF-EMPC is designed using the nominal system of Eq. 6.1 but applied to the system of Eq. 6.1

subject to bounded disturbances. The results are shown as follows:

Ẇc(x(t),u(tk)) =
∂Wc(x(t))

∂x
F(x(t),u(tk),w(t))

≤−α3(|x(tk)|)+L
′
xM∆+L

′
wθ

(6.49)

Since Eq. 6.40 in Proposition 6.4 is satisfied, it implies that for both the nominal system of Eq. 6.1

and the system of Eq. 6.1 subject to bounded disturbances, Ẇc(x(t)) ≤ −εw/∆, ∀t ∈ [tk, tk+1)

holds, from which we can conclude that Wc(x(t)) ≤Wc(x(tk)), ∀t ∈ [tk, tk+1) and Wc(x(tk+1)) ≤

Wc(x(tk))− εw through the integral of Ẇc(x(t)). As a result, it follows that within finite sampling

steps, Wc(x) will be rendered less than ρe, which implies that the closed-loop state x(t) moves back

into Uρe .

So far, we have proved that under the CLBF-EMPC of Eq. 6.33, whether x(tk) ∈ Uρe or

x(tk) ∈ Uρ\Uρe , the state at the next sampling time x(tk+1) is guaranteed to be bounded in Uρ .

By rolling the horizon, it is trivial to show that x(t), t ≥ tk ≥ 0 is always bounded in the stability

and safety region Uρ , which implies that given any initial condition x0 ∈Uρ , closed-loop stability

and process operational safety are guaranteed under the CLBF-EMPC of Eq. 6.33.

Part 3 : Lastly, we prove that there exists a feasible solution (e.g., the explicit stabilizing

controller Φ(x) designed based on Wc with its minimum at the origin and meeting Eqs. 6.12

and 6.13 implemented in sample-and-hold) for the optimization problem of the CLBF-EMPC

of Eq. 6.33 all the time. First, assuming that x(tk) ∈ Uρe , the sample-and-hold CLBF-based

control law u(t) = Φ(x(tk + i∆)), i = 0,1, . . . ,N − 1 is a feasible solution to the optimization
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problem of Eq. 6.33. Specifically, it satisfies both the input constraint of Eq. 6.33d and the

constraint of Eq. 6.33e because the state will move towards the origin or the saddle points

xe ∈Uρe under Φ(x) as shown in the CLBF-MPC of Eq. 6.27. In either case, the predicted states

x̃(tk + i∆), i = 0,1, . . . ,N − 1 are bounded in Uρe). On the other hand, if x(tk) ∈ Uρ\Uρe , the

explicit stabilizing controller u(t) = Φ(x(tk)) can be directly used as a feasible solution since it

meets the input constraint of Eq. 6.33d and the constraint of Eq. 6.33f.

After the optimal solution derived from the CLBF-EMPC of Eq. 6.33 is applied to the next

sampling period of the system of Eq. 6.1 and the time instance is moving one sampling period

forward (i.e., the rolling horizon), there again exists a feasible control action for x(tk+1) at t = tk+1

since x(tk+1) ∈ Uρ is guaranteed. The analysis for the two scenarios: x(tk+1) ∈ Uρe or x(tk+1) ∈

Uρ\Uρe follows exactly the same discussion in the last paragraph. Therefore, the optimization

problem of the CLBF-EMPC of Eq. 6.33 is feasible for all x(t) ∈Uρ if x0 ∈Uρ .

Remark 6.7. In the formulation of the CLBF-EMPC of Eq. 6.33, ρe is determined by Eq. 6.45 to

make Uρ a forward invariant set in the presence of small bounded disturbances. Additionally, Uρe

is designed to include the saddle points xe where ∂Wc(xe)/∂x= 0 such that the issue of convergence

to xe will not occur in CLBF-EMPC. Specifically, when x(tk) ∈Uρ\Uρe , the Mode 2 constraint of

Eq. 6.33f will drive the process state into Uρe without having any issue of saddle points since xe are

not included in Uρ\Uρe . Furthermore, the saddle points will not be an issue either when x(tk) ∈

Uρe since the state attempts to move dynamically within Uρe instead of converging to a saddle

point in order to maximize process economic benefits under the Mode 1 constraint of Eq. 6.33e.

Therefore, saddle points are handled decently under CLBF-EMPC due to the nature of EMPC

that process economic performance is optimized in a consistently dynamic fashion. However, if the

system is required to be operated at the origin under a tracking MPC, for example, the CLBF-MPC

of Eq. 6.27, Wc(x) needs to be well-designed such that xe is a saddle point, and an additional

constraint needs to be designed in MPC layer to drive the state away from xe in case the state gets

trapped in xe.
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6.6.2 Application to a Chemical Process Example

We use the same chemical process example as in Chapter 1 to illustrate the application of

CLBF-EMPC that maintains the closed-loop state within the stability and safety region in

state-space. A well-mixed, non-isothermal continuous stirred tank reactor (CSTR) where an

irreversible second-order exothermic reaction (from reactant A to product B) takes place is

considered. The CSTR dynamic model and the description of process variables can be found

in Section 1.3.1.

The states of the CSTR system are the concentration of A in the reactor (denoted by CA) and the

temperature of the reactor (denoted by T ). The manipulated inputs are the inlet concentration of

species A (denoted by CA0) and the heat input rate (denoted by Q). The CSTR is initially operated

at the steady-state (CAs, Ts) = (1.22 kmol/m3, 438 K), and (CA0s Qs) = (4 kmol/m3, 0 kJ/hr).

Additionally, all the variables are represented in their deviation forms, i.e., the states and the inputs

of the closed-loop system are xT = [CA−CAs T − Ts] and uT = [∆CA0 ∆Q], respectively, where

∆CA0 = CA0−CA0s and ∆Q = Q−Qs. The manipulated inputs are bounded as follows: |∆CA0| ≤

3.5 kmol/m3 and |∆Q| ≤ 5×105 kJ/hr. The control objective is to maximize the profit of CSTR

process while keeping the closed-loop state trajectories in the stability and safety region Uρ using

a CLBF-EMPC scheme. The objective function of the CLBF-EMPC optimizes the production rate

of B: le(x̃,u) = k0e−E/RTC2
A.

The unsafe region D is defined as an open set inside the stability region (i.e., the level set of

V (x)) where the temperature in D is relatively high, for this example, an ellipse described by D :=

{x ∈ R2 | F(x) = (x1 + 0.92)2 + (x2−42)2

500 < 0.06}. H is defined as H := {x ∈ R2 | F(x) < 0.07},

and therefore, the control barrier function B(x) is designed as follows:

B(x) =





e
F(x)

F(x)−0.07 − e−6, if x ∈ H

−e−6, if x /∈ H
(6.50)
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Then, a control Lyapunov function V (x)= xT Px is constructed with P=




1060 22

22 0.52


. Finally,

the control Lyapunov-barrier function Wc(x) = V (x) + µB(x) + ν is constructed following the

procedure in Proposition 6.1, where the parameters are determined as follows, ρc = 0, c1 = 0.1,

c2 = 1061, c3 = maxx∈∂H |x|2 = 2295, c4 = minx∈∂D |x|2 = 1370, ν = ρc−c1c4 =−160. Hence, µ

is chosen to be 1×109 to satisfy Eq. 6.19 and Uρ with ρ =−2.47×106 is the stability and safety

region in the simulation. Based on the above Wc(x), xe is calculated to be a saddle point (-1.00,

47.5) in state-space. Additionally, a material constraint 1
tp

∫ tp
0 u1(τ)dτ = 0 kmol/m3 is introduced

to make the averaged reactant material available over a given operating period tp = 1.0 hr to be 0

(in deviation from the steady-state value, CA0s). The explicit Euler method with an integration time

step of hc = 10−4 hr is applied to numerically simulate the dynamic model described by Eq. 1.1

in Section 1.3.1. The nonlinear optimization problem of the CLBF-EMPC of Eq. 6.33 is solved

using the IPOPT software package [158] with the sampling period ∆ = 10−2 hr. The closed-loop

state and manipulated input profiles of the CSTR system under the CLBF-EMPC of Eq. 6.33 are

shown in Fig. 6.12 and Fig. 6.13, respectively, where the dashed horizontal lines in Fig. 6.13 are

the upper and lower bounds for the manipulated inputs.
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Figure 6.12: The state-space profiles for the closed-loop CSTR under LEMPC and under the
CLBF-EMPC of Eq. 6.33 for an initial condition (0,0).
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Figure 6.13: Manipulated input profiles (u1 = ∆CA0, u2 = ∆Q) for the initial condition (0,0) under
the CLBF-EMPC of Eq. 6.33, and under the LEMPC of Eq. 3.1.
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In Fig. 6.12, it is demonstrated that the CLBF-EMPC can maintain the state of the closed-loop

CSTR system within the stability and safety region (i.e., Uρ ), while under the standard LEMPC of

Eq. 3.1 that does not account for safety considerations, the closed-loop states are only guaranteed

to be bounded in the stability region (i.e., Uρ ∪D), but not within the safe region (i.e., it is possible

for the trajectory to cross the red unsafe region in Fig. 6.12). In Fig. 6.13, it is demonstrated that

the optimized control actions satisfy the input constraints and the material constraint. Specifically,

under CLBF-EMPC, the control system consumes approximately the maximum allowable reactant

∆CA0 during the first 0.5 hr, and therefore has to lower the consumption at the second half hour to

meet the material constraint. From t = 0.5 hr, the control actions also show oscillation when the

closed-loop state approaches the boundary of the unsafe region D because the closed-loop system

dynamics attempt to drive the states across the unsafe region, yet the CLBF constraint prevents this

undesirable behavior.

Additionally, it is calculated that the economic benefits LE =
∫ tp

0 le(x,u)dt within the entire

operation period tp = 1 hr under steady-state operation, and under the CLBF-EMPC are 13.9

and 16.2, respectively, from which it is shown that the CLBF-EMPC economically outperforms

steady-state operation and ensures process operational safety.

6.7 Conclusions

In this chapter, CLBF-based MPC scheme was developed to optimize closed-loop performance and

ensure closed-loop stability and operational safety simultaneously for nonlinear systems associated

with a bounded/unbounded unsafe region. CBFs were first introduced to maintain a safe operation

for nonlinear systems by avoiding undesirable regions in state-space. Subsequently, a constrained

CLBF was developed for input-constrained systems by combining a CLF and a CBF together

following a specific construction method. Following that, CLBF-based controllers were designed

with a rigorous theoretical analysis of closed-loop stability and operational safety showing that the

closed-loop state is driven to the steady-state while avoiding the unsafe region for all times. Both
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the cases of bounded and unbounded unsafe regions were discussed, in which it was demonstrated a

discontinuous control action was required to address the issue of convergence of the state to saddle

points under continuous implementation of a stabilizing controller in the presence of a bounded

unsafe region.

In order to optimize closed-loop performance while accounting for closed-loop stability and

operational safety, CLBF-based MPC scheme was developed by incorporating CLBFs in the

designs of stability and safety constraints. The formulations of the CLBF-MPC scheme was

provided and rigorous theoretical treatments of the schemes were carried out. Based on that, a

new class of economic model predictive controllers (EMPC) for nonlinear systems that account

for process operational safety and economic optimality simultaneously was also developed.

The effectiveness of the MPC and EMPC schemes were demonstrated using chemical process

examples. Additionally, the superiority of CLBF-MPC was demonstrated through the comparison

with an explicit CLBF-based controller and a standard MPC with state constraints.
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Chapter 7

Machine Learning in Process Operational

Safety

In Chapter 6, control Lyapunov-barrier function (CLBF)-based MPCs that ensure closed-loop

stability and operational safety were developed based on a nonlinear first-principles process model.

However, as such a process model is very often unavailable for complex processes in chemical

industries, we have demonstrated that recurrent neural network modeling can be used to derive a

data-driven process models for MPCs. Therefore, in this chapter, CLBF-MPC and CLBF-EMPC

schemes that use RNN models for prediction are developed with guaranteed closed-loop stability

and operational safety. Additionally, online learning of RNN models that has been discussed in

Chapter 4 is also employed to update machine learning models in real-time implementation of

controllers to capture the most recent process dynamics subject to time-varying disturbances. The

machine learning-based control schemes are applied to a chemical reactor example to demonstrate

the effectiveness of the control schemes in stabilizing systems with guaranteed safety.
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7.1 Preliminaries

7.1.1 Notation

The set of real numbers is denoted by R, and the set of nonnegative real numbers is denoted

by R+. Rn is an n-dimensional real (Euclidean) space. The notation |·| is used to denote the

Euclidean norm of a vector, and the notation |·|Q denotes a weighted Euclidean norm of a vector

(i.e., |x|Q =
√

xT Qx where Q is a positive definite matrix). xT denotes the transpose of x. The

notation L fV (x) denotes the standard Lie derivative of function V (x) with respect to the vector

field f , i.e., L fV (x) := ∂V (x)
∂x f . A scalar continuous function V : Rn → R is proper if the set

{x ∈Rn | V (x)≤ k} is compact for all k ∈R, or equivalently, V is radially unbounded in the sense

that lim|x|→+∞V (x) = +∞ holds.

For given positive real numbers β and ε , Bβ (ε) := {x∈Rn | |x−ε|< β} is an open ball around

ε with radius of β . The relative complement of the set A in B is denoted by A\B := {x ∈ A,x /∈ B}.

A function f (·) is of class C 1 if it is continuously differentiable. Given a set D , the boundary,

the closure, and the interior of D are denoted by ∂D , D , and Int(D), respectively. A continuous

function α : [0,a)→ R+ is said to be of class K if it is strictly increasing and α(0) = 0.

7.1.2 Class of Nonlinear Systems

The class of continuous-time nonlinear systems considered is described by the following system

of first-order nonlinear ordinary differential equations:

ẋ = F(x,u,w) := f (x)+g(x)u+h(x)w, x(t0) = x0 (7.1)

where x ∈ D ⊂ Rn is the state vector, u ∈U ⊂ Rm is the manipulated input vector, and w ∈W is

the disturbance vector, where W := {w ∈ Rl | |w| ≤ wm, wm ≥ 0}. The control action constraint

is defined by u ∈ U := {umin ≤ u ≤ umax} ⊂ Rm, where umin and umax are the lower and upper

bounds for the input vector, respectively. It is assumed that f (·), g(·), and h(·) are sufficiently
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smooth vector and matrix functions of dimensions n×1, n×m, and n× l, respectively, with f (0) =

0. Therefore, the origin is a steady-state of the nominal system of Eq. 7.1 with w(t) ≡ 0. The

measurement of x(t) is assumed to be available for feedback at each sampling time tk = t0+k∆, k =

0,1, . . ., where ∆ is the sampling period.

7.1.3 Stabilization Via Control Lyapunov Function

Assumption 7.1. We assume that there exists a stabilizing feedback controller u = Φ(x) ∈U for

the nominal system of Eq. 7.1 with w(t)≡ 0 that renders the origin of the closed-loop system under

continuous implementation of the controller exponentially stable in the sense that there exists a C 1

Lyapunov function V : D→R+ such that the following inequalities hold for all x in a neighborhood

D around the origin:

c1|x|2 ≤V (x)≤ c2|x|2, (7.2a)

∂V (x)
∂x

F(x,Φ(x),0)≤−c3|x|2, (7.2b)

∣∣∣∣
∂V (x)

∂x

∣∣∣∣≤ c4|x| (7.2c)

where ci, i = 1,2,3,4 are positive real numbers.

The stability region Ωρ is designed as a level set of the Lyapunov function V (x) within D, from

which Eq. 7.2 is satisfied: Ωρ := {x ∈ D | V (x) ≤ ρ, ρ > 0}. It is readily shown that Ωρ is an

invariant set since it holds that V̇ ≤ −c3|x|2 under u = Φ(x) ∈U for all x ∈ Ωρ . The following

control law is used to render the origin of the nominal system of Eq. 7.1 exponentially stable.

ki(x) =




− p+

√
p2 + γ|q|4
|q|2 qi if q 6= 0

0 if q = 0
(7.3a)
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Φi(x) =





umin if ki(x)< umin

ki(x) if umin ≤ ki(x)≤ umax

umax if ki(x)> umax

(7.3b)

where p denotes L fV (x), qi denotes LgiV (x), q= [q1 · · ·qm]
T , f = [ f1 · · · fn]

T , gi = [gi1 · · ·gin]
T , (i=

1,2, · · · ,m) and γ > 0. ki(x) of Eq. 7.3a represents the original Sontag control law without

saturation. Φi(x) of Eq. 7.3b represents the ith component of the saturated control law Φ(x) that

accounts for the input constraint u ∈U .

7.2 CLBF-MPC Using RNN models

In Chapter 6 control Lyapunov-barrier functions (CLBF) have been adopted to design model

predictive controllers (MPC) for input-constrained nonlinear systems to ensure closed-loop

stability and process operational safety simultaneously. In this section, a machine-learning-based

CLBF-MPC is developed by taking advantage of the ensemble of RNN models that approximate

the nonlinear system of Eq. 7.1. Closed-loop stability and process operational safety analysis for

the system of Eq. 7.1 associated with two types of unsafe regions, i.e., bounded and unbounded

sets, is also provided.

To begin with, we assume that there is a set D ⊂ Rn within which it is unsafe for the system

to be operated, and a safe stability region U that satisfies U ∩D = /0 and {0} ⊂U , within which

simultaneous closed-loop stability and process operational safety are achieved in the following

sense:

Definition 7.1. Consider the system of Eq. 7.1 and input constraints u∈U. If there exists a control

law u = Φ(x) ∈U such that for any initial state x(t0) = x0 ∈ U , x(t) remains inside U , ∀t ≥ 0,

and the origin of the closed-loop system of Eq. 7.1 can be rendered asymptotically stable, we say

that that closed-loop stability and operational safety are achieved simultaneously.

The unsafe region is characterized based on the safety analysis of processes either from

first-principles models or process operational data. Specifically, as demonstrated in Chapter 6,
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there are two types of unsafe regions: 1) bounded sets, which are generally encountered in motion

planning for robots and self-driving cars, and 2) unbounded sets, which are very common in

chemical processes, for example, an unsafe region within which the temperature in a reactor

is above a threshold that indicates an unsafe operation. In this chapter, both bounded unsafe

region (denoted by Db) and unbounded unsafe region (denoted by Du) will be discussed. A

CLBF-based predictive controller based on machine learning models will be developed to ensure

that the closed-loop state can be driven to the steady-state and avoid the unsafe region (bounded

and unbounded).

7.2.1 Stabilization and Safety via CLBF-Based Control

The definition of the CLBF of Eq. 6.12 is restated here for convenience.

Definition 7.2. Given a set of unsafe points in state-space D , a proper, lower-bounded and C 1

function Wc(x) : Rn → R is a constrained CLBF if Wc(x) has a minimum at the origin and also

satisfies the following properties:

Wc(x)> ρ, ∀ x ∈D ⊂ φuc (7.4a)

L f̂Wc(x)< 0, ∀ x ∈ {z ∈ φuc\(D ∪{0}∪Xe) | LĝWc(z) = 0} (7.4b)

Uρ := {x ∈ φuc |Wc(x)≤ ρ} 6= /0 (7.4c)

where ρ ∈R, and Xe := {x∈ φuc\(D ∪{0}) | ∂Wc(x)/∂x = 0} is a set of states for the RNN model

of Eq. 2.4 where L f̂Wc(x) = 0 (for x 6= 0) due to ∂Wc(x)/∂x = 0. f̂ and ĝ are from the RNN model

in the form of Eq. 2.5. Additionally, in this section, we consider the case that the safe operating

region is a level set of Wc, (i.e., Uρ ) only, and therefore, the original definition of CLBF of Eq. 6.12

can be simplified to Eq. 7.4 according to the discussion in Remark 6.1. A feedback control law

u = Φnn(x) ∈U that renders the origin exponentially stable within an open neighborhood φuc that

includes the origin in its interior is assumed to exist for the RNN system of Eq. 2.4 (also in the

form of Eq. 2.5) in the sense that there exists a C 1 constrained control Lyapunov-barrier function
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Wc(x) that has a minimum at the origin and satisfies the following inequalities ∀x ∈ φuc:

ĉ1|x|2 ≤Wc(x)−ρ0 ≤ ĉ2|x|2, (7.5a)

∂Wc(x)
∂x

Fnn(x,Φnn(x))≤−ĉ3|x|2,∀x ∈ φuc\Bδ (xe)

∂Wc(x)
∂x

Fnn(x,Φnn(x))≤ 0,∀x ∈Bδ (xe)

(7.5b)

∣∣∣∣
∂Wc(x)

∂x

∣∣∣∣≤ ĉ4|x| (7.5c)

where ĉ j(·), j = 1, 2, 3, 4 are positive real numbers, Wc(0) = ρ0 is the global minimum value of

Wc(x) in φuc, and Bδ (xe) is a small neighborhood around xe ∈ Xe. Fnn(x,u) is the RNN system

of Eq. 2.4. It is noted that ∂Wc(x)
∂x Fnn(x,Φnn(x)) ≤ −ĉ3|x|2 does not hold for x ∈ Bδ (xe) since

∂Wc(x)
∂x is close to zero in a neighborhood around the stationary point xe, where ∂Wc(x)

∂x = 0. The

set φuc is characterized using numerical simulations as a set of states in the state-space where

Eq. 7.5 is satisfied. Additionally, by continuity and the smoothness assumed for f ,g and h in the

nonlinear system of Eq. 7.1, there exist positive constants M, Lx,Lw, L
′
x,L

′
w such that the following

inequalities hold for all x,x′ ∈Uρ ,u ∈U , and w ∈W :

|F(x,u,w)| ≤M (7.6a)

|F(x,u,w)−F(x′,u,0)| ≤ Lx|x− x′|+Lw|w| (7.6b)
∣∣∣∣
∂Wc(x)

∂x
F(x,u,w)− ∂Wc(x′)

∂x
F(x′,u,0)

∣∣∣∣≤ L
′
x|x− x′|+ | ≤ L

′
w|wm| (7.6c)

The universal Sontag controller of Eq. 7.3 with Wc(x) replacing the Lyapunov function V (x) can

be used as an example of the stabilizing control law Φnn(x) associated with CLBFs. It should be

noted that the CLBF of Eq. 7.4 and the set φuc are designed based on the RNN model of Eq. 2.4

(also in the form of Eq. 2.5, i.e., ẋ = f̂ (x)+ ĝ(x)u) since the nonlinear system of Eq. 7.1 is assumed

to be unknown. A constrained CLBF that satisfies all the conditions in Eq. 7.4 can be developed by

first designing a CLF and a CBF separately, and then combining them together via the construction
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method in Section 6.4.2.

Consider the RNN model of Eq. 2.4 (also in the form of Eq. 2.5) with a constrained CLBF

Wc(x). Simultaneous closed-loop stability and safety can be derived for both a bounded unsafe

region Db and an unbounded unsafe region Du following the similar analysis that has been

performed for the nominal system of Eq. 7.1 in Section 6.4.1.3 (see Theorem 6.2 and Theorem 6.3).

Specifically, it is noted that in the case of a bounded unsafe set, there exist stationary points (other

than the origin) in state-space (i.e., Xe in Eq. 7.4b), and thus, a continuous controller cannot

render the origin exponentially stable. This issue can be addressed by designing the stationary

points to be saddle points and then implementing discontinuous control actions at saddle points

to drive the state away from them in the direction of decreasing Wc(x). However, in the presence

of an unbounded unsafe region, the origin is the unique stationary point in state-space, thereby

closed-loop stability and process operational safety can be readily derived under the controller

u = Φnn(x) ∈U . The following theorem provides sufficient conditions under which closed-loop

stability and process operational safety are achieved simultaneously for the RNN system of Eq. 2.4

under the control law designed based on a constrained CLBF of Eq. 7.4.

Theorem 7.1. Consider that a constrained CLBF Wc(x): Rn → R that has a minimum at the

origin and meets the conditions of Eq. 7.4, exists for the RNN system of Eq. 2.4. The controller u =

Φnn(x) ∈U that satisfies Eq. 7.5 guarantees that the closed-loop state stays in Uρ for all times for

any x0 ∈Uρ . Additionally, the origin can be rendered exponentially stable under u = Φnn(x) ∈U,

for all x0 ∈Uρ in the presence of an unbounded unsafe region Du; however, discontinuous control

actions u = ū(x) ∈U that decrease Wc(x) are required at saddle points xe to ensure exponential

stability of the origin in the presence of a bounded unsafe region Db in state-space.

Proof. To demonstrate that the state is bounded in the safe operating region Uρ for all times,

we need to show that there exists a controller u = Φnn(x) ∈ U such that Ẇc ≤ 0 holds for all

x ∈ Uρ . This has been proven in Theorem 6.2 by showing that the universal Sontag controller of

Eq. 7.3 with Wc(x) replacing the Lyapunov function V (x) can be utilized as Φnn(x). Additionally,

since Uρ is characterized as a level set of Wc(x) in φuc within which Eq. 7.5 is satisfied, we can
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further demonstrate that the origin can be rendered exponentially stable under u = Φnn(x) ∈ U .

The issue of saddle points in the presence of a bounded unsafe region is handled by discontinuous

control actions ū(x) (i.e., ū(x) 6= Φnn(x)). The detailed proofs for both bounded and unbounded

unsafe regions follow closely to those for Theorem 6.2 and Theorem 6.3 in Section 6.4.1.3, and

are omitted here.

Remark 7.1. As we assume that the nonlinear system of Eq. 7.1 is unknown, the CLBF of

Eq. 7.4 and the safe operating region Uρ are characterized based on the RNN system of Eq. 2.4.

Theorem 7.1 is established to demonstrate that closed-loop stability and operational safety are

achieved for the RNN system of Eq. 2.4 via a stabilizing controller u = Φnn(x) ∈U that is defined

with respect to the CLBF of Eq. 7.4. In the following section, we will demonstrate that the

CLBF-based controller u = Φnn(x) ∈ U also guarantees simultaneous closed-loop stability and

operational safety for the nonlinear system of Eq. 7.1 provided that the modeling error between

the nonlinear system of Eq. 7.1 and the RNN system of Eq. 2.4 is sufficiently small.

7.2.2 CLBF-based MPC Using an Ensemble of RNN Models

This section presents the formulation of the CLBF-based MPC (CLBF-MPC) that incorporates an

ensemble of RNN models for predicting future states. We first demonstrate that the stability and

safety properties in Theorem 7.1 hold for the nominal system of Eq. 7.1 (i.e., w(t)≡ 0) under the

CLBF-based controller u = Φnn(x) ∈U that is designed to stabilize the RNN system of Eq. 2.4

with guaranteed safety. Subsequently, the CLBF-MPC is developed to drive the state to a small

neighborhood around the origin while optimizing process performance under sample-and-hold

implementation of control actions. To proceed, the following proposition is first developed to

obtain an upper bound for the error between the states predicted by the RNN model of Eq. 2.4

and the states of the nonlinear process of Eq. 7.1 in the presence of bounded disturbances (i.e.,

|w(t)| ≤ wm) and a bounded modeling error (i.e., |ν |= |F(x,u,0)−Fnn(x,u)| ≤ γ|x| ≤ νm).

Proposition 7.1. Consider the nonlinear system ẋ = F(x,u,w) of Eq. 7.1 in the presence of

bounded disturbances |w(t)| ≤ wm. Assuming that the RNN model ˙̂x = Fnn(x̂,u) of Eq. 2.4 has
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the same initial condition x0 = x̂0 ∈Uρ as the nonlinear system of Eq. 7.1, there exists a class K

function fw(·) and a positive constant κ such that the following inequalities hold ∀x, x̂ ∈ Uρ and

w(t) ∈W:

|x(t)− x̂(t)| ≤ fw(t) :=
Lwwm +νm

Lx
(eLxt−1) (7.7a)

Wc(x)≤Wc(x̂)+
ĉ4
√

ρ−ρ0√
ĉ1

|x− x̂|+κ|x− x̂|2 (7.7b)

Proof. Let e(t) = x(t)− x̂(t) denote the error vector between the solutions of the system ẋ =

F(x,u,w) and the RNN model ˙̂x = Fnn(x̂,u). The time-derivative of e(t) is obtained as follows:

|ė|= |F(x,u,w)−Fnn(x̂,u)|

≤ |F(x,u,w)−F(x̂,u,0)|+ |F(x̂,u,0)−Fnn(x̂,u)|
(7.8)

Using Eq. 7.6b, the upper bound for the first term of Eq. 7.8 is derived by the following inequality

for all x, x̂ ∈Uρ and w(t) ∈W :

|F(x,u,w)−F(x̂,u,0)| ≤ Lx|x(t)− x̂(t)|+Lw|w(t)|

≤ Lx|x(t)− x̂(t)|+Lwwm

(7.9)

Additionally, it is noticed that the second term of Eq. 7.8 represents the modeling error (i.e., |ν |=

|F(x̂,u,0)−Fnn(x̂,u)|), and is bounded by |ν | ≤ νm. Therefore, the upper bound for ė(t) in Eq. 7.8

is obtained as follows:
|ė(t)| ≤ Lx|x(t)− x̂(t)|+Lw|wm|+νm

≤ Lx|e(t)|+Lw|wm|+νm

(7.10)

Given the zero initial condition (i.e., e(0) = 0), the upper bound for |e(t)| is derived for all

x(t), x̂(t) ∈Uρ and |w(t)| ≤ wm as follows:

|e(t)|= |x(t)− x̂(t)| ≤ fw(t) (7.11)
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where

fw(t) :=
Lwwm +νm

Lx
(eLxt−1)

Moreover, since Wc(x) is continuous and bounded on compact sets, the following inequality is

derived based on the Taylor series expansion of Wc(x) around x̂, ∀x, x̂ ∈Uρ :

Wc(x)≤Wc(x̂)+
∂Wc(x̂)

∂x
|x− x̂|+κ|x− x̂|2 (7.12)

where κ is a positive real number and the term κ|x− x̂|2 is used to bound the high order terms of

the Taylor series of Wc(x), ∀x, x̂ ∈Uρ . The following inequality is derived using Eq. 7.5a, Eq. 7.5c

and Eq. 7.11:

Wc(x)≤Wc(x̂)+
ĉ4
√

ρ−ρ0√
ĉ1

|x− x̂|+κ|x− x̂|2

≤Wc(x̂)+
ĉ4
√

ρ−ρ0√
ĉ1

fw(t)+κ fw(t)2
(7.13)

This completes the proof of Proposition 7.1.

7.2.2.1 CLBF-based control using RNN models

The following propositions are developed to demonstrate that the controller u = Φnn(x) ∈ U

designed for the RNN model of Eq. 2.4 is able to maintain the state of the nominal system of Eq. 7.1

within the safe operating region Uρ provided that the modeling error is sufficiently small. We first

consider the case of an unbounded unsafe region, for which exponential stability is achieved for

the closed-loop nominal system of Eq. 7.1 under u = Φnn(x) ∈U .

Proposition 7.2. Consider the nominal system of Eq. 7.1 (i.e., w(t)≡ 0) with an unbounded unsafe

region Du under the feedback controller u = Φnn(x) ∈U that satisfies Eq. 7.5 for all x ∈ Uρ . If

there exists a positive real number γ < ĉ3/ĉ4 such that for all x ∈ Uρ and u ∈U, the modeling

error between the RNN model of Eq. 2.4 and the nonlinear system of Eq. 7.1 is constrained by

|ν | = |F(x,u,0)−Fnn(x,u)| ≤ γ|x|, then the stability and safety properties in Theorem 7.1 also

hold for the nominal closed-loop system of Eq. 7.1 under u = Φnn(x) ∈U.

213



Proof. To demonstrate that the origin of the nominal system of Eq. 7.1 (i.e., w(t) ≡ 0) can be

rendered exponentially stable under u = Φnn(x) ∈ U , we prove that there exists a positive real

number c̃3 such that ∂Wc(x)
∂x F(x,Φnn(x),0)≤−c̃3|x|2, ∀x∈Uρ holds. It is noted that in the presence

of an unbounded unsafe region, there is no saddle point within the safe operation region Uρ .

Therefore, the time-derivative of Wc is derived as follows using Eq. 7.5b and Eq. 7.5c:

Ẇc =
∂Wc(x)

∂x
F(x,Φnn(x),0)

=
∂Wc(x)

∂x
(Fnn(x,Φnn(x))+F(x,Φnn(x),0)−Fnn(x,Φnn(x)))

≤− ĉ3|x|2 + ĉ4|x|(F(x,Φnn(x),0)−Fnn(x,Φnn(x)))

≤− ĉ3|x|2 + ĉ4γ|x|2

(7.14)

Let c̃3 = −ĉ3 + ĉ4γ . It is obtained that Ẇc ≤ −c̃3|x|2 ≤ 0 if γ is chosen to satisfy γ < ĉ3/ĉ4.

Therefore, following the proof of closed-loop stability and safety for the RNN system of Eq. 2.4 in

Theorem 7.1, the controller u = Φnn(x) ∈U can drive the state of the nominal system of Eq. 7.1 to

the origin while avoiding the unbounded unsafe region Du for all times. This completes the proof

of simultaneous closed-loop stability and operational safety for any initial condition x0 in the safe

operating region Uρ .

The following proposition is developed to provide sufficient conditions under which

simultaneous closed-loop stability and process operational safety are guaranteed for the nominal

system of Eq. 7.1 with a bounded unsafe region Ub accounting for the existence of saddle points

xe in the safe operating region Uρ .

Proposition 7.3. Consider the nominal system of Eq. 7.1 with a bounded unsafe region Db under

the controller u = Φnn(x) ∈U that satisfies Eq. 7.5 for all x ∈ Uρ . If there exists a positive real

number γ < ĉ3/ĉ4 such that for all x ∈Uρ and u ∈U, the modeling error is constrained by |ν |=

|F(x,u,0)−Fnn(x,u)| ≤ γ|x|, and Eq. 7.15 is satisfied under discontinuous control actions u =
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ū(x) ∈U when x(tk) = x̂(tk) ∈Bδ (xe),

Wc(x̂(t))<Wc(x̂(tk))− fe(t− tk), ∀t > tk (7.15)

where

fe(t− tk) :=
ĉ4
√

ρ−ρ0√
ĉ1

fw(t− tk)−κ fw(t− tk)2

and fw(t) is given in Eq. 7.11, then the stability and safety properties in Theorem 7.1 also hold for

the nominal closed-loop system of Eq. 7.1 with a bounded unsafe region Db under u = Φnn(x) ∈U

and u = ū(x) ∈U.

Proof. Since there exist saddle points xe in the safe operating region Uρ in the presence of a

bounded unsafe region, the origin of the nominal system of Eq. 7.1 (i.e., w(t) ≡ 0) cannot be

rendered exponentially stable under the continuous controller u=Φnn(x)∈U . To address the issue

of saddle points xe, another set of control actions ū will be applied within a neighborhood around

xe to drive the state away from saddle points and towards the origin. Specifically, in the presence

of a bounded unsafe region, it is readily shown that Eq. 7.14 still holds for all x ∈ Uρ\Bδ (xe)

since ∂Wc(x)
∂x Fnn(x,Φnn(x)) ≤ −ĉ3|x|2 is satisfied in Uρ\Bδ (xe). This implies that in the presence

of a bounded unsafe region, the controller u = Φnn(x) ∈U that is designed to achieve closed-loop

stability and safety for the RNN model of Eq. 2.4 is also able to maintain the state of the closed-loop

system of Eq. 7.1 within Uρ for all times.

Subsequently, we prove that the discontinuous control actions u = ū(x) ∈U that are designed

for the RNN model of Eq. 2.4 around saddle points can drive the state of the nonlinear system

of Eq. 7.1 away from saddle points in the direction of decreasing Wc(x). Proposition 7.1 has

established that starting from the same initial condition, the error between the states of the RNN

system of Eq. 2.4 and of the nonlinear system of Eq. 7.1 is bounded under the same control actions,

and therefore, the evolution of Wc(x) based on the state of the nominal system of Eq. 7.1 is also

bounded by Eq. 7.13 accounting for the modeling error and bounded disturbances. Assuming that

the state enters a neighborhood around the saddle points at t = tk (i.e., x̂(tk) = x(tk) ∈Bδ (xe)), if
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the discontinuous control actions ū(x̂) that are determined for the RNN model of Eq. 2.4 satisfy

Eq. 7.15 for all x ∈Bδ (xe), the following inequality can be derived from Eq. 7.13 and Eq. 7.15 to

show that the value of Wc(x) based on the state of the nonlinear system of Eq. 7.1 is guaranteed to

decrease ∀t > tk:

Wc(x(t))≤Wc(x̂(t))+
ĉ4
√

ρ−ρ0√
ĉ1

fw(t− tk)+κ fw(t− tk)2,

<Wc(x̂(tk))

(7.16)

Therefore, the state of the nonlinear system of Eq. 7.1 can escape from saddle points under the

discontinuous control actions u = ū(x) ∈ U that are designed for the RNN system of Eq. 2.4

provided that the decreasing rate of Wc(x) of Eq. 7.15 is satisfied. This implies that for any initial

condition x0 ∈ Uρ , the closed-loop state of the nonlinear system of Eq. 7.1 can be driven to the

origin while avoiding the bounded unsafe region Db under the controllers u = Φnn(x) ∈ U and

u = ū(x) ∈U .

Remark 7.2. From Proposition 7.2 and Proposition 7.3, it is demonstrated that the controller

u = Φnn(x) ∈ U that is designed to stabilize the RNN system of Eq. 2.4 (i.e., ˙̂x = Fnn(x̂,u))

guarantees simultaneous closed-loop stability and operational safety for the nominal system of

Eq. 7.1 (i.e., w(t) ≡ 0). Specifically, in the case of an unbounded unsafe region, the state of the

nominal system of Eq. 7.1 is bounded in the safe operating region Uρ for all times and the origin

can be rendered exponentially stable under u = Φnn(x) ∈ U. However, to ensure closed-loop

stability and operational safety for the nominal system of Eq. 7.1 in the presence of a bounded

unsafe region, in addition to the controller u = Φnn(x) ∈ U that is applied everywhere except

the neighborhood around saddle points (i.e., Bδ (xe)), a set of discontinuous control actions

u = ū(x) ∈U that satisfy Eq. 7.15 is required for the state in Bδ (xe).
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7.2.2.2 Sample-and-hold implementation of CLBF-based controller

In this section, we present the stability properties of the CLBF-based controllers u = Φnn(x) ∈U

and u = ū(x) ∈U (for a bounded unsafe region) for the nonlinear system of Eq. 7.1 accounting

for bounded disturbances (i.e., |w(t)| ≤ wm) and sample-and-hold implementation of the control

actions. To proceed, we need the following proposition to demonstrate that under the controllers

u = Φnn(x) ∈U and u = ū(x) ∈U implemented in a sample-and-hold fashion, i.e., u(t) = u(tk),

∀t ∈ [tk, tk+1), where tk+1 := tk +∆ and ∆ is the sampling period, the closed-loop state x(t) of the

nonlinear system of Eq. 7.1 is bounded in Uρ for all times, and will be ultimately driven to a small

neighborhood Uρmin around the origin.

Proposition 7.4. Consider the system of Eq. 7.1 under the sample-and-hold implementation of the

controller u = Φnn(x) ∈U that meets the conditions of Eq. 7.5. If Eq. 7.15 is satisfied under the

controller u = ū(x)∈U in a sample-and-hold fashion for x∈Bδ (xe), and there exist εw > 0, ∆ > 0

and ρ > ρmin > ρnn > ρs that satisfy

− c̃3

ĉ2
(ρs−ρ0)+L

′
xM∆+L

′
wwm ≤−εw (7.17)

and

ρnn := max{Wc(x̂(t +∆)) | x̂(t) ∈Uρs,u ∈U} (7.18a)

ρmin ≥ ρnn + fe(∆) (7.18b)

where fe(t) is given by Eq. 7.15, then for any x(tk) ∈ Uρ\Uρs , Wc(x(t)) based on the state of the

nonlinear system of Eq. 7.1 is guaranteed to decrease within every sampling period, and thus, can

be bounded in Uρ for all times and ultimately bounded in Uρmin .

Proof. Assuming x(tk) = x̂(tk) ∈Uρ\Uρs , the time-derivative of Wc(x) for the nonlinear system of
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Eq. 7.1 in the presence of bounded disturbances (i.e., |w| ≤ wm) is derived as follows:

Ẇc(x(t)) =
∂Wc(x(t))

∂x
F(x(t),Φnn(x(tk)),w)

=
∂Wc(x(tk))

∂x
F(x(tk),Φnn(x(tk)),0)+

∂Wc(x(t))
∂x

F(x(t),Φnn(x(tk)),w)

− ∂Wc(x(tk))
∂x

F(x(tk),Φnn(x(tk)),0)

(7.19)

Based on Eq. 7.5b, Eq. 7.14 and the Lipschitz condition in Eq. 7.6, the following inequality is

obtained for Ẇc(x(t)) for all t ∈ [tk, tk+1) and x(tk) ∈Uρ\(Uρs ∪Bδ (xe)):

Ẇc(x(t))≤−
c̃3

ĉ2
(ρs−ρ0)+

∂Wc(x(t))
∂x

F(x(t),Φnn(x(tk)),w)

− ∂Wc(x(tk))
∂x

F(x(tk),Φnn(x(tk)),0)

≤− c̃3

ĉ2
(ρs−ρ0)+L

′
x|x(t)− x(tk)|+L

′
w|w|

≤− c̃3

ĉ2
(ρs−ρ0)+L

′
xM∆+L

′
wwm

(7.20)

It is noted that Eq. 7.20 does not hold for x ∈ Bδ (xe) since Eq. 7.14 may not hold in the

neighborhood around saddle points where ∂Wc(x)
∂x is close to zero. If Eq. 7.17 is satisfied, we can

obtain the following inequality based on Eq. 7.20 for all x(tk) ∈Uρ\Uρs and t ∈ [tk, tk+1):

Ẇc(x(t))≤− εw (7.21)

From Eq. 7.21, the boundedness of the state of the closed-loop system of Eq. 7.1 in the safe

operating region Uρ is obtained under the sample-and-hold implementation of u = Φnn(x) ∈U for

any initial condition x0 ∈Uρ .

Additionally, to ensure that the state of the nonlinear system of Eq. 7.1 moves towards the

origin and ultimately enters a small neighborhood Uρs around the origin instead of converging

to saddle points, the controller u = ū(x(tk+i)) ∈ U , ∀t ∈ [tk+i, tk+i+1), i = 0,1,2, ... is applied

to drive the state away from saddle points when x(tk) = x̂(tk) ∈Bδ (xe). If Eq. 7.15 is satisfied
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under the sample-and-hold implementation of u = ū(x̂) ∈ U , it is demonstrated from Eq. 7.16

in Proposition 7.3 that Wc(x(t)) < Wc(x(tk)) holds for the nonlinear system of Eq. 7.1, ∀t > tk.

Therefore, Wc(x) will keep decreasing until the state of the nonlinear system of Eq. 7.1 leaves the

neighborhood around saddle points. After that, the controller u = Φnn(x)∈U will be applied again

to drive the state towards the origin.

It remains to show that once the state enters Uρs (i.e., x(tk) = x̂(tk)∈Uρs), it is bounded in Uρmin

for the remaining time t ≥ tk. According to the definition of Uρnn in Eq. 7.18a, it is shown that

Uρnn is the largest level set of Wc(x̂) that the state of the RNN system of Eq. 2.4 can reach within

one sampling period if starting from Uρs . Additionally, Uρmin of Eq. 7.18b is the corresponding

largest level set of Wc(x) based on the state of the nonlinear system of Eq. 7.1 when the RNN state

x̂ is bounded in Uρnn . Since Ẇc ≤−εw may not hold for the state in Uρs under the sample-and-hold

implementation of u = Φnn(x) ∈ U , the sets Uρnn and Uρmin are characterized to guarantee that

the states of the RNN system of Eq. 2.4 and of the nonlinear system of Eq. 7.1 are bounded in

the neighborhoods around the origin that are slightly larger than Uρs . Additionally, Uρnn can be

characterized from extensive open-loop simulations for all u ∈ U and x ∈ Uρs . Subsequently,

Uρmin of Eq. 7.18b is characterized based on Uρnn to account for the impact of modeling error and

bounded disturbances within one sampling period. This completes the proof of Proposition 7.4 by

showing that the state of the nonlinear system of Eq. 7.1 with bounded disturbances (i.e., |w(t)| ≤

wm) can be maintained in the safe operating region Uρ for all times, and ultimately be bounded in

Uρmin under the sample-and-hold implementation of u = Φnn(x) ∈U and u = ū(x) ∈U .
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7.2.2.3 Formulation of CLBF-MPC

The CLBF-MPC design is represented by the following optimization problem [174]:

min
u∈S(∆)

∫ tk+N

tk
lt(x̃(t),u(t))dt (7.22a)

s.t. ˙̃x(t) =
1

Ne

Ne

∑
j=1

F j
nn(x̃(t),u(t)) (7.22b)

x̃(tk) = x(tk) (7.22c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (7.22d)

Ẇc(x(tk),u(tk))≤ Ẇc(x(tk),Φnn(tk)), if Wc(x(tk))> ρnn and x(tk) /∈Bδ (xe) (7.22e)

Wc(x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if Wc(x(tk))≤ ρnn (7.22f)

Wc(x̃(t))<Wc(x(tk))− fe(t− tk), ∀ t ∈ (tk, tk+N), if x(tk) ∈Bδ (xe) (7.22g)

where x̃(t) is the predicted state trajectory, S(∆) is the set of piecewise constant functions with

period ∆, and N is the number of sampling periods in the prediction horizon. Ẇc(x,u) is used

to represent ∂Wc(x)
∂x Fnn(x,u). The cost function lt(x̃(t),u(t)) is generally in a quadratic form that

has the minimum value at the equilibrium of the system of Eq. 7.1 : |x̃(t)|2QL
+ |u(t)|2RL

, where

QL and RL are positive definite matrices. The predicted states x̃(t), t ∈ [tk, tk+N) are calculated

by taking the average of an ensemble of RNN models F j
nn, j = 1, ...,Ne in Eq. 7.22b, where

Ne is the number of RNN models in the ensemble. The objective function of Eq. 7.22a is the

time integral of lt(x̃(t),u(t)) over the prediction horizon. The input constraints of Eq. 7.22d are

applied over the entire prediction horizon. The state measurement of Eq. 7.22c at t = tk is taken

as the initial condition for the RNN models of Eq. 7.22b. The constraints of Eqs. 7.22e-7.22g

in the CLBF-MPC optimization problem are utilized to ensure closed-loop stability and process

operational safety. Specifically, the constraint of Eq. 7.22e forces Wc(x̃) along the predicted state

trajectories to decrease at least at the rate under the CLBF-based controller u = Φnn(x) ∈U when

Wc(x(tk)) > ρnn and x(tk) /∈Bδ (xe). If Wc(x(tk)) ≤ ρnn, the constraint of Eq. 7.22f is activated to

maintain the predicted state of the RNN system within Uρnn such that the closed-loop state of the
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nonlinear system of Eq. 7.1 is bounded Uρmin . Additionally, if x(tk) ∈Bδ (xe), the constraint of

Eq. 7.22g decreases Wc(x) over the prediction horizon such that the state can escape from saddle

points xe within finite sampling steps. The state measurements of the closed-loop system of Eq. 7.1

are assumed to be available at each sampling time. After the CLBF-MPC optimization problem of

Eq. 7.22 solves the optimal solution u∗(t), only the first control action of u∗(t) is sent to the control

actuators to be applied over the next sampling period. Then, the horizon will be rolled forward one

sampling time, and at the next instance of time tk+1 := tk +∆, the optimization problem is solved

again. Additionally, since the CLBF-MPC optimization problem of Eq. 7.22 is based on the state

of the RNN model of Eq. 2.4 only, we use x instead of x̂ to represent the RNN state in CLBF-MPC

to simplify the notations.

The theorem below is established to demonstrate that under the CLBF-MPC of Eq. 7.22,

closed-loop stability and process operational safety are achieved simultaneously for the nonlinear

system of Eq. 7.1 in the sense that the closed-loop state is bounded in the safe operating region Uρ

for all times, and is ultimately bounded in Uρmin .

Theorem 7.2. Consider the system of Eq. 7.1 with a constrained CLBF Wc that satisfies Eq. 7.4 and

has a minimum at the origin. Given any initial state x0 ∈Uρ , it is guaranteed that the CLBF-MPC

optimization problem of Eq. 7.22 can be solved with recursive feasibility for all times. Additionally,

under the sample-and-hold implementation of CLBF-MPC based on an ensemble of RNN models

that satisfy |ν | = |F(x,u,0)−Fnn(x,u)| ≤ γ|x| ≤ νm and the conditions in Proposition 7.4, it is

guaranteed that for any x0 ∈Uρ , the state is bounded in Uρ , ∀ t ≥ 0, and ultimately converges to

Uρmin as t→ ∞.

Proof. The proof consists of two parts. The first part presents the proof of recursive feasibility of

the CLBF-MPC optimization problem of Eq. 7.22 for all states x(t)∈Uρ . The second part includes

the proof of simultaneous closed-loop stability and process operational safety of the nonlinear

system of Eq. 7.1 under the CLBF-MPC that uses an ensemble of RNN models of Eq. 2.4 for

prediction.

Part 1: A feasible solution to the the CLBF-MPC optimization problem of Eq. 7.22 exists
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for all times since it has been demonstrated in Propositions 7.2, 7.3 and 7.4 that the controllers

u = Φnn(x) ∈U , ∀x ∈ Uρ\Bδ (xe) and u = ū(x) ∈U , ∀x ∈Bδ (xe) in a sample-and-hold fashion

satisfy the CLBF-MPC constraints of Eqs. 7.22d-7.22g. Specifically, the input constraint of

Eq. 7.22d is satisfied over the prediction horizon since both u=Φnn(x) and u= ū(x) are constrained

by u ∈ U . The satisfaction of Eq. 7.22e is readily shown by letting u(tk) = Φnn(x(tk)) when

x(tk) ∈ Uρ\(Bδ (xe) ∪ Uρnn). Additionally, the input trajectories u(t) = Φnn(x(tk+i)) ∈ U ,

∀t ∈ [tk+i, tk+i+1) with i = 0, ...,N−1 is a set of feasible control actions that meet the constraint of

Eq. 7.22f. In Proposition 7.4, it is shown that once the state is driven into Uρs under the controller

u = Φnn(x) ∈U , it will not leave Uρnn within one sampling period for any u ∈U . Therefore, the

constraint of Eq. 7.22f is satisfied under the sample-and-hold implementation of u = Φnn(x) ∈U .

Lastly, if x(tk) ∈Bδ (xe), u(t) = ū(x(tk+i)) ∈U , ∀t ∈ [tk+i, tk+i+1) with i = 0, ...,N− 1 is a set of

control actions that meet the constraint of Eq. 7.22g as the controller u = ū(x) ∈U is designed to

satisfy Eq. 7.15 to drive the state away from saddle points. This completes the proof of recursive

feasibility for the CLBF-MPC optimization problem of Eq. 7.22.

Part 2: We first consider the case of an unbounded unsafe region Du for the nonlinear system

of Eq. 7.1. As there is no saddle point in the presence of Du (i.e., Xe = /0), the last constraint of

Eq. 7.22g in the CLBF-MPC optimization problem is never activated. Therefore, for any initial

condition x0 ∈Uρ\Uρnn , the constraint of Eq. 7.22e forces the state to move towards the origin and

drives the state into Uρnn within finite sampling steps. After the state enters Uρnn , the constraint of

Eq. 7.22f ensures boundedness of the state in Uρnn for the remaining time. As a result, the nonlinear

system of Eq. 7.1 is considered practically stable because it has been shown in Proposition 7.4 that

the state of the nonlinear system of Eq. 7.1 is ultimately bounded in Uρmin (a small neighborhood

around the origin). Additionally, it should be noted that since the state is also bounded in the safe

operating region Uρ for all times, which does not intersect with the unbounded unsafe region Du in

state-space, process operational safety for the system of Eq. 7.1 is guaranteed under CLBF-MPC.

Following the above analysis, the proof of closed-loop stability and process operational safety

for a bounded unsafe region Db is presented by showing that the state can be ultimately bounded
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in Uρnn instead of converging to saddle points. Starting from an initial condition x0 ∈ Uρ\Uρnn ,

the constraint of Eq. 7.22e drives the state towards the origin. However, the state may settle in

saddle points (local minima of the CLBF) along its trajectory towards the origin if no further

action is taken around the saddle points. To address this, the constraint of Eq. 7.22g is activated

when x(tk) ∈Bδ (xe) to move the state away from the saddle points in a direction of decreasing

the value of Wc(x) such that the state can escape from saddle points and ultimately converge to

the origin. Once the state leaves the neighborhood Bδ (xe) around the saddle points, closed-loop

stability and process operation safety are still guaranteed under the constraints of Eqs. 7.22e-7.22f

in the sense that the state of the nonlinear system of Eq. 7.1 stays in the safe operating region

Uρ for all times, and is ultimately maintained in Uρnn . This completes the proof of simultaneous

closed-loop stability and operational safety for both an unbounded unsafe region and a bounded

unsafe region.

7.2.3 Online Learning of RNNs

Now we consider the nonlinear system of Eq. 7.1 subject to bounded time-varying disturbances

(i.e.,|w(t)| ≤ wM, where wM is greater than the sufficiently small bound wm in Eq. 7.1) that cannot

be fully eliminated by the sample-and-hold implementation of CLBF-based predictive controllers

using the RNN models that are developed for the nominal system of Eq. 7.1 (i.e., w(t)≡ 0). In this

case, it is readily shown that the closed-loop system of Eq. 7.1 may be rendered unstable under the

CLBF-based predictive controllers using the nominal RNN model (i.e., the RNN model obtained

from open-loop simulations of the nominal system of Eq. 7.1 with w(t)≡ 0) for all times since the

modeling error between the nominal RNN model and the uncertain system of Eq. 7.1 no longer

satisfies the constraint |ν |= |F(x,u,w)−Fnn(x,u)| ≤ γ|x| ≤ νm.

To account for the impact of disturbances in the predictions of the CLBF-MPC of Eq. 7.22, the

RNN models of Eq. 7.22b need to be updated via online learning using the most recent process data

to capture the nonlinear dynamics of the system of Eq. 7.1 subject to the time-varying disturbances

w(t). Event-triggered and error-triggered mechanisms can be utilized to implement online learning
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of RNN models, e.g., [178, 179]. Specifically, the event-triggered mechanism updates the RNN

model if the following inequality is violated for any x ∈Uρ\Uρw:

Wc(x(t))≤Wc(x(tk))− εw(t− tk), t ∈ [tk, tk+1) (7.23)

where εw > 0. Uρw with ρw < ρ is characterized to be the largest level set of Wc(x) within Uρ

such that if the current state is in Uρw , the value of Wc(x) does not increase under the stabilizing

controller u =Φnn(x) within one sampling period in the presence of bounded disturbances |w(t)| ≤

wM, i.e., Wc(x(t))<Wc(x(tk)), ∀t ∈ [tk, tk+1). Additionally, it also ensures that the closed-loop state

is bounded in Uρ and ultimately enters Uρw for any initial state in Uρ . From Eq. 7.23, it is shown

that the event-triggered mechanism activates the online update of RNN models if the decreasing

rate of CLBF Wc(x) is not satisfied within one sampling period. As a result, the RNN prediction

accuracy is improved once the online learning is activated using the most recent process data and

the closed-loop state can be driven into Uρw at a faster rate.

In addition to the event-triggered mechanism, the following moving horizon error metric

Ernn(tk) is developed to indicate the RNN model prediction accuracy at t = tk:

Ernn(tk) =
Nb

∑
i=0

|xp(tk−i)− x(tk−i)|
|x(tk−i)|+δ

(7.24)

where Nb is the number of sampling periods before tk that contribute to the quantification of the

prediction error. xp(tk−i) and x(tk−i), i = 0, ...,Nb are the predictions of the past states using RNN

models, and the past state measurements from the actual nonlinear system of Eq. 7.1 under the

same control actions, respectively. δ is a small positive real number that is introduced in the

denominator of Eq. 7.24 to avoid the division by small numbers when x(tk−i) approaches zero.

The RNN model of Eq. 7.22b is updated if the accumulated error Ernn(tk) exceeds the threshold

ET :

Ernn(tk)> ET (7.25)
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where ET is determined via extensive closed-loop simulations. It should be noted that when an

online learning of RNN models is activated, all the data points since the last model update will be

used as the training and validation data for the new RNN model. As the number of available

data points has a great impact on the RNN model accuracy, Nb and ET need to be carefully

chosen to achieve a desired training performance. Specifically, the moving horizon length Nb

is first determined via extensive closed-loop simulations to ensure that there are enough data

points that can be utilized in the online update of RNN models, and meanwhile, will not cause

data-storage burden. Subsequently, the threshold ET is determined via simulations off-line to

trigger an RNN model update when the state error has accumulated to an undesired level while

accounting for common measurement noise, which is sufficiently small compared to time-varying

disturbances from model uncertainty, and should not trigger an update of RNN models in most

times. Additionally, when the state approaches the unsafe region, the threshold ET should be

adjusted to update online learning more frequently such that the new RNN models are able to

capture the most recent dynamics subject to disturbances in a timely manner, and therefore, provide

a sufficiently accurate prediction for the CLBF-MPC of Eq. 7.22 to avoid the unsafe region. Lastly,

after the RNN model is updated at a certain sampling step t = tk, all the errors before t = tk are

reset to zero.

Remark 7.3. It is noted that the event-triggered mechanism or the error-triggered mechanism

could be activated when the conditions of Eq. 7.23 is violated, or the prediction error of Eq. 7.25

exceeds its threshold at a time instant t = rk that is within one sampling period, i.e., rk ∈ [tk, tk+1).

However, since the CLBF-MPC of Eq. 7.22 are implemented in a sample-and-hold fashion where

the control actions remain the same for each sampling period ∆, i.e., u = u(tk), ∀t ∈ [tk, tk+1),

the control actions will not be updated immediately after the RNN model update is triggered

within one sampling period. In other words, if the online update of RNN models is triggered

at t = rk ∈ [tk, tk+1), the control actions will still be calculated at the next sampling time, i.e.,

t = tk+1, using the updated RNN models. The asynchronization between the online learning of

RNN models and the calculation of control actions using the new RNN models ensures that the
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sample-and-hold implementations of the CLBF-MPC of Eq. 7.22 remain unchanged, and also

leaves enough computation time for RNN models to be updated using the most recent process data.

Remark 7.4. The main objective of triggered model update is to improve the prediction accuracy

of RNN models such that they are able to capture the most recent process dynamics subject to

time-varying disturbances. Since the event-triggered mechanism updates RNN models only if

the condition is violated, it is demonstrated that the event-triggered mechanism updates RNN

models less frequently, and therefore, achieves better approximation performance due to more data

available than the regular model update that is triggered every sampling period. Additionally, the

frequency of online update depends on the threshold ET . As a result, the optimal value of ET is

determined via extensive closed-loop simulations to achieve the desired closed-loop performance

under disturbances.

7.2.3.1 Implementation strategy for online RNN learning within CLBF-MPC

Based on the event-triggered and the error-triggered schemes, the implementation of online RNN

learning is integrated with the machine-learning-based CLBF-MPC of Eq. 7.22 as follows:

Step 1 : An initial RNN model that will be utilized in the CLBF-MPC of Eq. 7.22 is derived

from extensive open-loop simulations for the nominal system of Eq. 7.1 (i.e., w(t)≡ 0) following

the construction method in Section 2.2.2.

Step 2 : As shown in Fig. 7.1, starting from an initial condition x0 ∈Uρ , the nonlinear system of

Eq. 7.1 is operated under CLBF-MPC in a sample-and-hold fashion with states being continuously

monitored and collected. The online update of RNN models is triggered the moment that the

decreasing rate of CLBF Wc(x) of Eq. 7.23 is violated for any x(t) ∈ Uρ\Uρw , or the moving

horizon error detector of Eq. 7.24 exceeds its threshold ET for any x ∈ Uρw\Uρmin . At the next

sampling time, the new RNN model will replace the old model in the CLBF-MPC of Eq. 7.22 to

solve for the optimal control actions u∗(t) for the next sampling period.

Step 3 : When the closed-loop state enters a small neighborhood Uρmin around the origin,

which is considered to be practically stable for the nominal system of Eq. 7.1, the error-triggering
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Wc

Figure 7.1: Evolution of CLBF Wc(x) (blue trajectory) under the CLBF-MPC of Eq. 7.22 with
event-triggered condition of Eq. 7.23 and error-triggered condition of Eq. 7.25, where the dashed
lines with the slope −εw represent the threshold lines in Eq. 7.23.

mechanism is taken off-line until the state leaves Uρmin again due to time-varying disturbances.

Remark 7.5. It is noted that the online learning of RNN models is performed using the most

recent process data only by loading the old RNN models with the previous RNN structure and

weight matrices as initialization. Therefore, the new RNN models that are trained using new

data points inherit some important features of the nominal process from the old RNN models

and also capture the recent dynamics subject to time-varying disturbances from new data points.

Additionally, instead of training a new RNN model from scratch, the training process based on the

most recent data and the previous RNN model is more computationally tractable, and thus, can be

readily incorporated in the real-time implementation of CLBF-MPC.

Remark 7.6. To ensure that there are enough data points for the online training of RNN models,

an additional constraint for the number of collected data points can be employed with the

event-triggered and the error-triggered mechanisms without affecting closed-loop stability or

safety. Specifically, based on the definition of Uρw in Eq. 7.23, the closed-loop state is guaranteed

to move towards the origin every sampling period (maybe slowly) even if the online learning of

RNN models is not activated. Therefore, it allows us to collect enough data points from multiple

sampling periods to achieve a better training performance while maintaining the state in the
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closed-loop stability region. Additionally, in the error-triggered mechanism of Eq. 7.25, the moving

horizon window length Nb for the prediction error of Eq. 7.24 needs to be carefully chosen to obtain

a sufficient number of data points that will be utilized in the online update of RNN models.

7.2.4 Application to a Chemical Process Example

In this section, a chemical process example is utilized to illustrate the application of the proposed

machine-learning based CLBF-MPC scheme to nonlinear systems with a bounded/unbounded

unsafe region. We consider a well-mixed, non-isothermal continuous stirred tank reactor (CSTR)

where an irreversible second-order exothermic reaction takes place. The reaction converts the

reactant A to the product B via the chemical reaction A→ B. A heating jacket that supplies or

removes heat from the reactor is used. The CSTR dynamic model derived from material and

energy balances is given below:

dCA

dt
=

F
V
(CA0−CA)− k0e

−E
RT C2

A (7.26a)

dT
dt

=
F
V
(T0−T )+

−∆H
ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV
(7.26b)

where CA is the concentration of reactant A in the reactor, V is the volume of the reacting liquid in

the reactor, T is the temperature of the reactor and Q denotes the heat input rate. The concentration

of reactant A in the feed is CA0. The feed temperature and volumetric flow rate are T0 and F ,

respectively. The reacting liquid has a constant density of ρL and a heat capacity of Cp. ∆H,

k0, E, and R represent the enthalpy of reaction, pre-exponential constant, activation energy, and

ideal gas constant, respectively. Process parameter values are listed in Table 7.1. The CSTR is

initially operated at the unstable steady-state (CAs, Ts) = (1.95 kmol/m3, 402 K), and (CA0s Qs) =

(4 kmol/m3, 0 kJ/hr). The manipulated inputs are the inlet concentration of species A and the

heat input rate, which are represented by the deviation variables ∆CA0 =CA0−CA0s , ∆Q = Q−Qs,

respectively. The manipulated inputs are bounded as follows: |∆CA0| ≤ 3.5 kmol/m3 and |∆Q| ≤

5× 105 kJ/hr. The states and the inputs of the closed-loop system are xT = [CA−CAs T − Ts]
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Table 7.1: Parameter values of the CSTR system.

T0 = 300 K F = 5 m3/hr

V = 1 m3 E = 5×104 kJ/kmol

k0 = 8.46×106 m3/kmol hr ∆H =−1.15×104 kJ/kmol

Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K

ρL = 1000 kg/m3 CA0s = 4 kmol/m3

Qs = 0.0 kJ/hr

and uT = [∆CA0 ∆Q], respectively, such that the equilibrium point of the system is at the origin of

the state-space, (i.e., (x∗s ,u
∗
s ) = (0,0)). The explicit Euler method with an integration time step of

hc = 2×10−5 hr is applied to numerically simulate the dynamic model of Eq. 7.26. The nonlinear

optimization problem of the CLBF-MPC of Eq. 7.22 is solved using the python module of the

IPOPT software package [158], named PyIpopt with the sampling period ∆ = 2×10−3 hr.

7.2.4.1 Development of RNN models

To develop an ensemble of RNN models that will be used in CLBF-MPC, extensive open-loop

simulations are performed within the operating region for the CSTR of Eq. 7.26 to generate the

dataset. Specifically, we run open-loop simulations with various initial states in state-space and

inputs u ∈U for finite sampling steps such that the dataset is sufficiently large to be representative

in the operating region. The sampled data points including states x and inputs u are saved with

a minimum time step as the integration time step hc. The RNN model is constructed with one

input layer, two hidden layers consisting of 96 and 64 recurrent units, respectively, and one output

layer. The inputs to the RNN model of Eq. 2.4 are the states x(tk) and the control actions u(tk)

at t = tk, k = 0,1, ..., and the outputs are the predicted state trajectory over one sampling period

(i.e., t ∈ [tk, tk+1]), where the data points with the time interval of hc (i.e., the integration time

step for the explicit Euler method) are treated as the internal states for RNN models. The sigmoid

function is used as the activation function for RNN models, and early stopping is employed to avoid

over-fitting. Additionally, we utilize a 10-fold cross validation to derive an ensemble of 10 RNN
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models for the CLBF-MPC of Eq. 7.22. The optimal number of recurrent neural network models

in the ensemble generally depends on the complexity of process dynamics and the size of datasets.

In this example, the optimal number is determined by closed-loop simulations. Specifically, to

determine the optimal number of neural network models, we first derive k RNN models based on

a k-fold cross-validation. Subsequently, we start with a single RNN model and keep increasing the

number of models used in MPC. The optimal number is determined to be the one when no further

improvement of closed-loop performance is noticed for the increase of RNN models being used.

We first carry out open-loop simulation using the RNN model and the first-principles model of

the CSTR system of Eq. 7.26, respectively. It should be noted that the machine learning approach

is used when only data are available. The first-principles model in this study substitutes for the role

of the experimental/industrial process. In other words, the simulation using first-principles model

only serves as a benchmark to determine the best performance that any data-driven modeling

method can achieve. In Chapter 2, we have demonstrated that starting from the same initial

condition x0 ∈ Ωρ̂ with the same input sequences, the state trajectories for a fixed finite interval

of time under the RNN model are close to those under the first-principles model of the nonlinear

CSTR of Eq. 7.26 (see Fig. 2.9). This implies that the RNN model can be regarded as a good

representation for the CSTR first-principles model of Eq. 7.26 within the operating region.

7.2.4.2 Closed-loop simulation results

The control objective is to operate the CSTR at the unstable equilibrium point (CAs, Ts) and avoid

the unsafe operating region (bounded and unbounded) in state-space by manipulating the heat input

rate ∆Q and the inlet concentration ∆CA0 under the RNN-based CLBF-MPC. We first demonstrate

the application of the proposed CLBF-MPC control scheme to an unbounded unsafe region Du in

state-space. The unsafe region is characterized as an unbounded set with high temperature and

concentration for the CSTR of Eq. 7.26: Du := {x ∈ R2 | F(x) = x1 + x2 > 47}. It is noted that

with the form of F(x) = x1+x2, the temperature in the reactor is considered the dominant factor in

characterizing the unsafe region Du, while the reactant concentration is also accounted for because
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of its impact on the reaction rate r = k0e−E/RTC2
A. Following the construction method of a CLBF

in Section 6.4.2, we first design a control Lyapunov function with the standard quadratic form

V (x) = xT Px, where P is a positive definite matrix as follows:

P =




1060 22

22 0.52


 (7.27)

Then, we characterize a set H that contains Du: H := {x ∈R2 | F(x)> 45}, and design the control

barrier function B(x) as follows:

B(x) =





eF(x)−47−2× e−2, if x ∈ H

−e−2, if x /∈ H
(7.28)

The control Lyapunov-barrier function Wc(x) =V (x)+µB(x)+ν is constructed with the following

parameters: ρ̂ = 0, c1 = 0.1, c2 = 1061, c3 = 5808, c4 = 2259, ν = ρ̂− c1c4 =−225.9, and µ =

4.6×107. It is demonstrated in Fig. 7.2 that under the CLBF-MPC of Eq. 7.22, all the trajectories

starting from initial states in Uρ̂ (a subset of the safe operating region Uρ in state-space) avoid the

unbounded unsafe region Du on the top and converge to Uρmin .
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CA − CAs
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T
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Uρ̂

Uρmin

Unsafe Region Du

Figure 7.2: Closed-loop state trajectories for the CSTR system of Eq. 7.26 under the CLBF-MPC
using an ensemble of RNN models. The initial conditions are marked by circles, and the set of
unbounded unsafe states Du is the gray area on the top.
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The second example is used to demonstrate that the state of the closed-loop system of Eq. 7.26

can avoid a bounded unsafe region Db in state-space and converge to a small neighborhood around

the origin under the CLBF-MPC of Eq. 7.22. To demonstrate that the state is able to pass around

the unsafe region along the trajectory towards the origin, we design a bounded unsafe region Db

embedded within the safe operating region as shown in the above example. Specifically, the unsafe

region is defined as an ellipse: Db := {x ∈ R2 | F(x) = (x1+0.92)2

1 + (x2−42)2

500 < 0.06}. H is defined

as H := {x ∈ R2 | F(x)< 0.07}. The control barrier function B(x) is defined as follows:

B(x) =





e
F(x)

F(x)−0.07 − e−6, if x ∈ H

−e−6, if x /∈ H
(7.29)

Using the same control Lyapunov function V (x) as in the first example, the control

Lyapunov-barrier function Wc(x)=V (x)+µB(x)+ν is constructed with the following parameters:

ρc = 0, c1 = 0.1, c2 = 1061, c3 =maxx∈∂H |x|2 = 2295, c4 =minx∈∂D |x|2 = 1370, ν = ρc−c1c4 =

−160. Hence, µ is chosen to be 1× 109 to satisfy the construction rules in Section 6.4.2 and

Uρ̂ with ρ̂ = −2.47× 106 is the stability and safety region in the simulation. Additionally, we

calculate the stationary point of Wc(x) (other than the origin) in state-space by letting ∂Wc(x)
∂x = 0.

It is obtained that the stationary point is xe = (−1.004, 47.48) and it turns out to be a saddle point

from partial derivative test (i.e., xe is a saddle point if the determinant of the Hessian matrix of

Wc(x) at xe is negative).

In Fig. 7.3, it is demonstrated that for all initial states x0 in Uρ̂ (marked by circles), the

closed-loop trajectories avoid the bounded unsafe region Db that is embedded within Uρ̂ , and

ultimately converges to Uρmin under CLBF-MPC.

7.2.4.3 Comparison with a linear state-space model

Additionally, to demonstrate the merits of the machine-learning-based CLBF-MPC in terms of

desired prediction accuracy and guaranteed process operational safety, a linear state-space model

is derived using the same dataset for the RNN models to approximate the nonlinear dynamics in the
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Figure 7.3: Closed-loop state trajectories for the system of Eq. 7.26 under the CLBF-MPC using
an ensemble of RNN models. The initial conditions are marked by circles, and the set of bounded
unsafe states Db is the gray area embedded within Uρ̂ .

operating region for comparison. Specifically, the linear state-space model for the CSTR system

of Eq. 7.26 is developed with the following form:

ẋ = Asx+Bsu (7.30)

where x and u are the state vector and the manipulated input vector, As and Bs are coefficient

matrices for the state-space model. Following the system identification method in [74], the

numerical algorithms for subspace state space system identification is utilized to obtain As and

Bs as follows:

As = 100×



−0.154 −0.003

5.19 0.138


 , Bs =




4.03 0

1.23 0.004


 (7.31)

The eigenvalues of matrix As is calculated to be λ1 =−5 and λ2 = 3.14, which is consistent with

the fact that the steady-state (CAs, Ts) = (1.95 kmol/m3, 402 K) is an unstable equilibrium point

of CSTR.

It is shown in Fig. 7.4 that for some initial conditions in Uρ̂ , the closed-loop state trajectories

are able to avoid the unsafe region and converge to the steady-state under the MPC using a linear
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model. However, in Fig. 7.5, it is demonstrated that for some other initial conditions, the state

trajectories (with dashed line) enter the unsafe region due to a considerable model mismatch of

the linear state-space model. It is noted that the model predictive controller using a simple linear

state-space model is generally able to stabilize the nonlinear system in a neighborhood around

the steady-state provided that the model mismatch between the linear model and the nonlinear

system is small in the neighborhood. However, the MPC using a linear state-space model does

not work in this example because in addition to closed-loop stability, we are addressing process

operational safety that requires a sufficiently small model mismatch for which feedback control

without an accurate process model cannot guarantee that the process state avoids the unsafe region

for all times. In fact, in the presence of a large model mismatch, feedback control cannot prevent

the state from entering the unsafe region since the state predicted by the linear model may be

outside of the unsafe region while the true state actually enters it within one sampling period.

Therefore, it motivates us to use an ensemble of RNN models with a sufficiently small model

mismatch to approximate nonlinear dynamics in the operating region and provide sufficiently

accurate predictions for MPC.
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Figure 7.4: Closed-loop state trajectories for the CSTR system under the CLBF-MPC using a
linear state-space model. The initial conditions are marked by circles, and the set of bounded
unsafe states Db is the gray ellipse in state-space.
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Figure 7.5: Comparison of the closed-loop state trajectories under the CLBF-MPC using a linear
state-space model (dashed) and an ensemble of RNN models (solid), respectively. The initial
conditions are marked by circles, and the set of bounded unsafe states Db is the gray ellipse in
state-space.

The above two case studies demonstrate that the RNN models that are developed from extensive

open-loop simulations to replace the CSTR process of Eq. 7.26 in CLBF-MPC achieve a desired

approximation performance. Subsequently, the CLBF-MPC of Eq. 7.22 based on an ensemble of

RNN models guarantees that for any initial condition in the safe operating region, the state of the

closed-loop system of Eq. 7.26 is maintained within the safe operating region for all times, and

is able to converge to a small neighborhood Uρmin around the origin ultimately while avoiding the

unsafe region (bounded and unbounded) in state-space.

7.2.4.4 Real-time CLBF-MPC with online learning of RNN models

Under the CLBF-MPC of Eq. 7.22, we consider the model variations due to the following

disturbances: (1) the feed flow rate F is changing from 5 m3/h to 7 m3/h at t = 0 hr, and (2)

the actual value of the pre-exponential constant k0 used in the process model is reduced by half to

represent a change in the reaction rate at the simulation time t = 0 hr. The closed-loop simulation

results for the CSTR of Eq. 7.26 under the CLBF-MPC with and without online learning of RNN
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Figure 7.6: The state-space profiles for the closed-loop CSTR subject to time-varying disturbances
under the CLBF-MPC of Eq. 7.22 with (red trajectory) and without online RNN update (blue
trajectory), respectively, for an initial condition (-1.5,70).

models, respectively, are shown in Figs. 7.6-7.8. Specifically, in Fig. 7.6, it is demonstrated that in

the presence of disturbances, the closed-loop state trajectory under the CLBF-MPC using online

update of RNN models is able to avoid the unsafe region and converge to a small neighborhood

around the origin, while the one under the CLBF-MPC without online RNN update crosses the

red unsafe region D due to a considerable model mismatch between the initial RNN model for

the nominal process of Eq. 7.26 and the actual process subject to disturbances. Fig. 7.7 shows the

input profiles under the CLBF-MPC with and without online RNN update, from which recursive

feasibility and satisfaction of input constraints are demonstrated for both optimization problems.

Additionally, it is observed in Fig. 7.7 that since RNN models are updated in a timely manner under

the CLBF-MPC with online learning, the oscillation of u1 becomes less near the end of operation

period compared to the one without online update.

In the closed-loop simulation, it is demonstrated that the event-triggered mechanism of Eq. 7.23

is not activated as the closed-loop state moves towards the origin quickly. Therefore, the value of

the accumulated prediction errors Ernn(t) of Eq. 7.24 is shown in Fig. 7.8 for CLBF-MPCs with

and without online RNN update, respectively, to show the real-time prediction accuracy of the
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Figure 7.7: Manipulated input profiles (u1 = ∆CA0, u2 = ∆Q) for the closed-loop CSTR subject to
time-varying disturbances under the CLBF-MPC of Eq. 7.22 with (red profile) and without online
RNN update (blue profile), respectively, for an initial condition (-1.5,70).

RNN models. Fig. 7.8 demonstrates that without online learning, the error (blue lines) exceeds

the threshold (left y-axis) quickly and increases to an undesired level during the operation, which

implies the failure of the initial RNN model in capturing the actual CSTR dynamics in the presence

of disturbances. However, under the CLBF-MPC with online RNN learning, it is demonstrated that

the RNN model update is triggered six times during the entire operation period (i.e., from t=0 hr

to t=0.06 hr) to maintain the error (red lines) below its threshold (right y-axis) for most of the

time. Therefore, by using online learning, the RNN models in CLBF-MPC always capture the

latest process dynamics subject to disturbances, and lead to a desired closed-loop performance for

the CSTR of Eq. 7.26 in terms of simultaneous closed-loop stability and operational safety.

7.3 CLBF-EMPC Using RNN models

To achieve higher economic profitability than the steady-state operation of the nonlinear system of

Eq. 7.1, economic model predictive control scheme (EMPC) that is formulated with an economic
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Figure 7.8: Value of Ernn(t) at each sampling time for the closed-loop CSTR subject to
time-varying disturbances under the CLBF-MPC of Eq. 7.22 with (red, right y-axis) and without
online RNN update (blue, left y-axis), respectively, where the threshold ET is set to 0.15 (dashed
horizontal line corresponding to the right y-axis).

objective function to operate the system in a time-varying fashion is utilized in this section. See,

also, Section 6.6 for designs of EMPC accounting for operational safety. Specifically, based on the

RNN-based CLBF-MPC of Eq. 7.22, an RNN-based economic model predictive controller with

CLBF-based constraints (i.e., CLBF-EMPC) is developed in this section. Similarly, the ensemble

learning of multiple RNN models are used to improve the overall prediction performance. k-fold

cross-validation is used to train k distinct RNN models for the same process, (i.e., the nonlinear

system of Eq. 7.1), and the final prediction results are obtained by taking average of k RNN

predictions. Based on the ensemble of RNN models, the CLBF-EMPC scheme using RNN models
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is represented by the following optimization problem [173]:

max
u∈S(∆)

∫ tk+N

tk
le(x̃(t),u(t))dt (7.32a)

s.t. ˙̃x(t) =
1

Ne

Ne

∑
j=1

F j
nn(x̃(t),u(t)) (7.32b)

x̃(tk) = x(tk) (7.32c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (7.32d)

Wc(x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N), if Wc(x(tk))≤ ρe (7.32e)

Ẇc(x(tk),u(tk))≤ Ẇc(x(tk),Φnn(tk)), if Wc(x(tk))> ρe (7.32f)

where the notation follows that in Eq. 7.22 and the CLBF-EMPC is again implemented in a

sample-and-hold fashion. Unlike the CLBF-MPC objective function lt(x,u) of Eq. 7.22a that

has its minimum value at the steady-state, the objective function le(x,u) of Eq. 7.32a represents

the process economic performance and will be maximized over the prediction horizon. Two

CLBF-based constraints are incorporated in the design of CLBF-EMPC to ensure boundedness

of the state in the safe stability region Uρ in Eq. 7.4. The constraint of Eq. 7.32e is activated

when the state x(tk) is in Uρe , where ρe < ρ . When the state leaves Uρe due to disturbances or

model mismatch (which will be discussed in the following section), the constraint of Eq. 7.32f is

applied to drive the state towards the origin. As a result, the state will move into Uρe within finite

sampling periods. Additionally, we assume that the state measurements of the closed-loop system

of Eq. 7.1 is available at each sampling time. The CLBF-EMPC optimization problem of Eq. 7.32

will calculate an optimal input sequence u∗(t), ∀t ∈ [tk, tk+N), but only the first control action of

u∗(t) will be applied over the next sampling period.

7.3.1 Stability and Safety Under CLBF-EMPC

Closed-loop stability and safety for the nonlinear system of Eq. 7.1 under the CLBF-EMPC of

Eq. 7.32 will be proven in this section. It should be noted that for the operation of the nonlinear
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system of Eq. 7.1 under EMPC, the system is considered stable and safe if the state can be bounded

in a safe stability region for all times for any initial condition inside of this region. In other words,

the system is not required to be operated at the steady-state like what it is under CLBF-MPC

since it is demonstrated that economic performance can be improved under time-varying operation

than the steady-state operation. The following proposition is developed to demonstrate that the

feedback controller u=Φnn(x)∈U that maintains the state of the RNN model of Eq. 2.4 in the safe

operating region Uρ also ensures the boundedness of the state of the nonlinear system of Eq. 7.1

within Uρ accounting for bounded disturbances (i.e., |w(t)| ≤ wm), bounded modeling error (i.e.,

|ν |= |F(x,u,0)−Fnn(x,u)| ≤ γ|x| ≤ νm) and sample-and-hold implementation of control actions.

Proposition 7.5. Consider the system of Eq. 7.1 under the sample-and-hold implementation of

the controller u = Φnn(x) ∈U that meets the conditions of Eq. 7.5. If there exists a positive real

number γ < ĉ3/ĉ4 such that for all x ∈Uρ and u ∈U, the modeling error between the RNN model

of Eq. 2.4 and the nonlinear system of Eq. 7.1 is constrained by |ν |= |F(x,u,0)−Fnn(x,u)| ≤ γ|x|,

and there exist εw > 0, ∆ > 0 and ρ > ρe that satisfy

− c̃3

ĉ2
(ρe−ρ0)+L

′
xM∆+L

′
wwm ≤−εw (7.33a)

ρe ≤ ρ− fe( fw(∆)) (7.33b)

Xe ⊂Uρe (7.33c)

where fw(t) and fe(t) are given by Eq. 7.7a and Eq. 7.15, respectively, then for any x(tk)∈Uρ , the

state of the nonlinear system of Eq. 7.1 is guaranteed to be bounded in Uρ for all times.

Proof. We first prove that Ẇc(x) based on the state of the nonlinear system of Eq. 7.1 can be

rendered negative under continuous implementation of u = Φnn(x) ∈U for any x ∈Uρ\Uρe . The
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time-derivative of Wc(x), ∀x ∈Uρ\Uρe is derived as follows using Eq. 7.5b and Eq. 7.5c:

Ẇc =
∂Wc(x)

∂x
F(x,Φnn(x),0)

=
∂Wc(x)

∂x
(Fnn(x,Φnn(x))+F(x,Φnn(x),0)−Fnn(x,Φnn(x)))

≤− ĉ3|x|2 + ĉ4|x|(F(x,Φnn(x),0)−Fnn(x,Φnn(x)))

≤− ĉ3|x|2 + ĉ4γ|x|2

(7.34)

Therefore, if γ is constrained by γ < ĉ3/ĉ4, it holds that Ẇc ≤−c̃3|x|2 < 0, ∀x ∈Uρ\Uρe by letting

c̃3 =−ĉ3+ ĉ4γ . Next, we consider the impacts of bounded disturbances and of the sample-and-hold

implementation of control actions (i.e., u(t) = u(tk), ∀t ∈ [tk, tk+1), where tk+1 := tk +∆ and ∆

is the sampling period) on closed-loop stability of the nonlinear system of Eq. 7.1. Assuming

x(tk) = x̂(tk)∈Uρ\Uρs , the time-derivative of Wc(x) in Eq. 7.34 for the nonlinear system of Eq. 7.1

subject to bounded disturbances (i.e., |w| ≤ wm) can be derived as follows:

Ẇc(x(t)) =
∂Wc(x(t))

∂x
F(x(t),Φnn(x(tk)),w)

=
∂Wc(x(tk))

∂x
F(x(tk),Φnn(x(tk)),0)+

∂Wc(x(t))
∂x

F(x(t),Φnn(x(tk)),w)

− ∂Wc(x(tk))
∂x

F(x(tk),Φnn(x(tk)),0)

(7.35)

Using Eq. 7.5b, Eq. 7.34 and the Lipschitz condition in Eq. 7.6, Ẇc(x(t)) is bounded by the the

following inequality for all t ∈ [tk, tk+1) and x(tk) ∈Uρ\Uρe:

Ẇc(x(t))≤−
c̃3

ĉ2
(ρe−ρ0)+

∂Wc(x(t))
∂x

F(x(t),Φnn(x(tk)),w)

− ∂Wc(x(tk))
∂x

F(x(tk),Φnn(x(tk)),0)

≤− c̃3

ĉ2
(ρe−ρ0)+L

′
x|x(t)− x(tk)|+L

′
w|w|

≤− c̃3

ĉ2
(ρe−ρ0)+L

′
xM∆+L

′
wwm

(7.36)

From Eq. 7.36, it is obtained that Ẇc(x(t))≤−εw holds for all x(tk) ∈Uρ\Uρe and t ∈ [tk, tk+1) if
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Eq. 7.33a is satisfied.

So far we have demonstrated that for any state x(tk) ∈ Uρ\Uρe , the state does not leave Uρ

under the the sample-and-hold implementation of u = Φnn(x) ∈ U . It remains to show that for

x(tk) ∈ Uρe , the state of the nonlinear system of Eq. 7.1 will not leave Uρ within one sampling

period if the state predicted by the RNN system of Eq. 2.4 is bounded in Uρe . Specifically, for

any x(tk) = x̂(tk) ∈ Uρe , the following inequality is derived based on Eq. 7.7 and Eq. 7.15 for

t ∈ [tk, tk+1):

Wc(x(t))≤Wc(x̂(t))+ fe(|x(t)− x̂(t)|)

≤Wc(x̂(t))+ fe( fw(t− tk))

≤ ρe + fe( fw(∆))

(7.37)

Therefore, if Uρe is characterized to satisfy Eq. 7.33b, it follows that Wc(x(t))≤ ρ , which implies

that the state of the nonlinear system of Eq. 7.1 is bounded in Uρ within one sampling period.

This completes the proof that the closed-loop state of the nonlinear system of Eq. 7.1 subject

to bounded disturbances (i.e., |w(t)| ≤ wm) is guaranteed to be bounded in the safe operating

region Uρ for any initial condition x0 in this region under the sample-and-hold implementation of

u = Φnn(x) ∈U .

Remark 7.7. The issue of convergence to the stationary points (for x 6= 0) in the presence of a

bounded unsafe region Db is addressed by designing the set Uρe to include the set of stationary

points inside (i.e., Eq. 7.33c). Specifically, since the state of the nonlinear system of Eq. 7.1 is not

required to move towards the origin (or any stationary points) within Uρe under the constraint of

Eq. 7.32e, the state will not get stuck in a stationary point unless it is exactly the state where the

objective function of CLBF-EMPC of Eq. 7.32 attains its maximum value. Therefore, boundedness

of the state in Uρ is guaranteed for the nonlinear system of Eq. 7.1 with both bounded and

unbounded unsafe regions when implementing u = Φnn(x) ∈ U in a sample-and-hold fashion.

However, it should be noted that when the system is required to be operated at the steady-state

under a tracking MPC, e.g., CLBF-MPC, Theorem 7.2 has been established to show that the

stationary points need to be handled by a set of discontinuous control actions such that the state
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can escape from the stationary points and converge to the origin.

Based on Propositions 7.1 and 7.5, we establish the following theorem to demonstrate

closed-loop stability and process operational safety guarantees for the nonlinear system of Eq. 7.1

under the CLBF-EMPC of Eq. 7.32.

Theorem 7.3. Consider the system of Eq. 7.1 with a CLBF Wc that satisfies Eq. 7.4. If there

exist ρ > ρe and γ < ĉ3/ĉ4 that satisfy the conditions in Propositions 7.1 and 7.5, then given any

initial state x0 ∈ Uρ , recursive feasibility of the CLBF-EMPC optimization problem of Eq. 7.32

and boundedness of the state in the safe stability region Uρ are guaranteed for all times.

Proof. We first prove that a set of feasible solution exists for the CLBF-EMPC optimization

problem of Eq. 7.32 for all states x(t) ∈ Uρ by showing that the input trajectories u(t) =

Φnn(x(tk+i)) ∈U , ∀t ∈ [tk+i, tk+i+1) with i = 0, ...,N−1 meet the constraints of the CLBF-EMPC

optimization problem of Eq. 7.32. The discussion mainly focuses on the constraints of

Eqs. 7.32e-7.32f as the satisfaction of the input constraint u ∈ U of Eq. 7.32d is readily shown

for the controller u = Φnn(x) ∈ U . Specifically, if x(tk) ∈ Uρe , the constraint of Eq. 7.32e is

satisfied under the sample-and-hold implementation of u = Φnn(x) ∈U since the state of the RNN

system of Eq. 2.4 will be steered towards the origin or the stationary points in the presence of a

bounded unsafe region. In any case, the state is maintained in Uρe under u = Φnn(x) ∈U . On the

other hand, if x(tk) ∈ Uρ\Uρe , the set of control actions u(t) = Φnn(x(tk+i)) ∈U , i = 0, ...,N− 1

is again a feasible solution that meets the constraints of Eq. 7.32f (i.e., the inequality constraint of

Eq. 7.32f becomes an active constraint). This completes the proof of recursive feasibility for the

CLBF-EMPC of Eq. 7.32.

The proof of boundedness of the state in Uρ follows the conclusions in Propositions 7.1 and 7.5.

We first consider the case where x(tk) ∈ Uρe . As it is required by the constraint of Eq. 7.32e that

the state x(t), ∀t ∈ [tk, tk+1) predicted by the ensemble of RNN models of Eq. 7.32b be bounded

in Uρe , it follows from Eq. 7.37 that the state of the nonlinear system of Eq. 7.1 does not leave

Uρ within one sampling period. At the next sampling period, if x(tk+1) remains in Uρe , it is again
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bounded in Uρ following the above analysis. However, if x(tk+1) enters Uρ\Uρe , the constraint of

Eq. 7.32e is activated to drive the state of the RNN model of Eq. 2.4 towards the origin. Since it

is proven in Proposition 7.5 that Ẇc based on the state of the nonlinear system of Eq. 7.1 can be

rendered negative accounting for bounded disturbances and modeling error within one sampling

period under u = Φnn(x) ∈U (a feasible solution to the CLBF-EMPC optimization problem), the

state of the nonlinear system of Eq. 7.1 is also able to move towards the origin and ultimately

enters Uρe within finite sampling periods. This completes the proof of closed-loop stability of the

nonlinear system of Eq. 7.1 under CLBF-EMPC.

Additionally, since the safe stability region Uρ does not intersect with the (bounded and

unbounded) unsafe region (i.e., Uρ ∩D = /0) according to the definition of the constrained CLBF

of Eq. 7.4, the state trajectory under the time-varying operation of the nonlinear system of Eq. 7.1

does not enter the unsafe region for all times. Therefore, process operational safety in terms of

avoidance of the unsafe region is also guaranteed under CLBF-EMPC.

7.3.1.1 Online learning of RNN models

Closed-loop stability and safety in Theorem 7.3 holds for the system of Eq. 7.1 subject to bounded

disturbances (i.e., |w(t)| ≤ wm) as the effects of disturbances have been accounted for in the

sample-and-hold implementation of the control actions, which requires the disturbances w(t) and

the sampling period ∆ to be sufficiently small such that Eq. 7.36 is satisfied. However, in the

presence of time-varying disturbances that are not sufficiently small, e.g., |w(t)| ≤ wM where

wM > wm, the nonlinear system of Eq. 7.1 may lose closed-loop stability and safety in terms of

boundedness of the state in the safe stability region due to a considerable model mismatch between

the actual nonlinear process under disturbances and the RNN models that are developed for the

nominal system of Eq. 7.1 with w(t)≡ 0. In this case, real-time adaptive machine-learning-based

predictive control can be employed to mitigate the impact of disturbances by updating RNN models

online using the most recent process data. Following the discussion of online learning of RNN

models in Section 7.2.3, the implementation strategy of online update of RNN models within
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CLBF-EMPC is given as follows:

Step 1 : An initial ensemble of RNN models for the nominal system of Eq. 7.1 (i.e., w(t)≡ 0)

are developed to approximate the nonlinear dynamics in the operating region Uρ .

Step 2 : The nonlinear system of Eq. 7.1 is operated under CLBF-EMPC in a sample-and-hold

fashion and the states are continuously monitored and collected. For any x(t) ∈ Uρ\Uρe ,

where Uρe ⊂ Uρw , the online learning of RNN models is activated following the event-triggered

mechanism of Eq. 7.23. For any x(t) ∈Uρe , the error-triggered mechanism of Eq. 7.25 is utilized

to adapt the RNN models to the time-varying disturbances using the most recent process data.

Similarly, at the next sampling time, the CLBF-EMPC of Eq. 7.32 will use the updated RNN

model to calculate the optimal control actions u∗(t) for the next sampling period.

7.3.2 Application to a Chemical Process Example

We consider the same chemical process example as in Section 7.2.4 to illustrate the application of

CLBF-EMPC using an ensemble of RNN models. The dynamic process model of the continuous

stirred tank reactor (CSTR) and the parameter values are given in Eq. 7.26 and Table 7.1,

respectively, and are omitted here. The CSTR is initially operated at the unstable steady-state

(CAs, Ts) = (1.95 kmol/m3, 402 K), and (CA0s Qs) = (4 kmol/m3, 0 kJ/hr). The states x and

the manipulated inputs u of the closed-loop CSTR system are represented in deviation forms, i.e.,

xT = [CA−CAs T −Ts] and uT = [∆CA0 ∆Q], respectively. Additionally, the manipulated inputs are

bounded as follows: |∆CA0| ≤ 3.5 kmol/m3 and |∆Q| ≤ 5×105 kJ/hr. The explicit Euler method

with an integration time step of hc = 2× 10−5 hr is applied to numerically simulate the dynamic

model of Eq. 7.26. Additionally, the ensemble of RNN models are developed following the same

approach as performed in Section 7.2.4.1.

7.3.2.1 Closed-loop simulation results

The control objective of CLBF-EMPC is to maximize the profit of the CSTR process of Eq. 7.26

by manipulating the inlet concentration ∆CA0 and the heat input rate ∆Q, while maintaining the

245



closed-loop state trajectories in the safe stability region Uρ for all times. The objective function of

the CLBF-EMPC is of the following form:

le(x̃,u) = k0e−E/RTC2
A (7.38)

Additionally, a material constraint is incorporated in the CLBF-EMPC of Eq. 7.32 to make the

averaged reactant material available within the entire operating period tp to be its steady-state

value, CA0s. The material constraint is formulated as follows:

1
tp

∫ tp

0
u1(τ)dτ = 0 kmol/m3 (7.39)

where the averaged reactant material in deviation form, u1, is equal to 0. Similar to the application

of CLBF-MPC scheme in Section 7.2.4, we also demonstrate the application of the RNN-based

CLBF-EMPC control scheme to both bounded and unbounded unsafe regions in state-space.

We first consider the case of an unbounded unsafe region in state-space, where the unsafe

region, CLBF Wc(x) and the parameter values are the same as those in Section 7.2.4. The

Lyapunov-based EMPC (LEMPC) that accounts for closed-loop stability only is also used here

for comparison. Specifically, based on the formulation of the standard LEMPC of Eq. 3.1, the

LEMPC using RNN models is presented as follows [171]:

max
u∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ)) dτ (7.40a)

s.t. ˙̃x(t) =
1

Ne

Ne

∑
j=1

F j
nn(x̃(t),u(t)) (7.40b)

x̃(tk) = x(tk) (7.40c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (7.40d)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρe (7.40e)

V̇ (x(tk),u(tk))≤ V̇ (x(tk),Φnn(x(tk))), if x(tk) ∈Ωρ\Ωρe (7.40f)
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where the notations follow those in Eq. 3.1 and Eq. 7.32. As the objective of EMPC is to

dynamically optimize the profit of the CSTR process of Eq. 7.26 by maximizing the production

rate r = k0e−E/RTC2
A, it is observed in Fig. 7.9 that under the LEMPC of Eq. 7.40 that does not

account for safety concerns, the closed-loop state is driven to the top of the operating region where

temperature is much higher than the steady-state value, to obtain an increased economic profits

compared to the steady-state operation (i.e., the system is operated at steady-state for all times).

Additionally, by designing the unbounded unsafe region with the form of F(x) = x1+x2, it is noted

that the temperature in the reactor plays a more important role in characterizing the unsafe region

Du than the concentration due to its larger magnitude. This is consistent with the operation of an

exothermic reaction in CSTR, where rapid increases in temperature might lead to potential safety

problems. However, it should be mentioned that reactant concentration is still accounted for in the

characterization of the unbounded unsafe region Du due to its impact on the reaction rate.
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Figure 7.9: Closed-loop state trajectories for the system of Eq. 7.26 within one operating period
under CLBF-EMPC and LEMPC, respectively, where the initial condition is (0, 0) and the
unbounded set of unsafe states Du is the gray area on the top of Uρ .

The closed-loop simulation results for the system of Eq. 7.26 under the RNN-based

CLBF-EMPC of Eq. 7.32, and the LEMPC of Eq. 7.40 are shown in Figs. 7.9-7.11. Specifically,

Fig. 7.9 shows the comparison of the state trajectories under LEMPC and CLBF-EMPC,
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respectively. It is demonstrated that starting from the initial condition (0, 0), the state trajectory

for one simulation period tp = 0.128 hr under CLBF-EMPC is maintained below the unbounded

unsafe region Du for all times, while the one under LEMPC exceeds the threshold and enters Du

near the end of simulation. Additionally, we run the closed-loop simulation for successive four

operating period, where each operating period is tp = 0.128 hr. The material constraint is imposed

in each operating period such that the averaged reactant material (in deviation form) within each

operating period equals zero. It is demonstrated in Fig. 7.10 that the state trajectory under the

CLBF-EMPC of Eq. 7.32 remains in the safe stability region Uρ within four operating periods,

while the one under LEMPC enters the unsafe region during the first operating period and stays

there for the remainder of the process operation. Both state trajectories progress in a circular

manner in the stability region (the solid ellipse) because the material constraint forces the decrease

of the reactant concentration near the end of each operating period. This can also be observed in

the input profiles for the closed-loop system of Eq. 7.26 within four operating periods shown in

Fig. 7.11, where CLBF-EMPC consumes the maximum allowable ∆CA0 at the beginning of each

operating period and lowers the consumption near the end.
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Figure 7.10: Closed-loop state trajectories for the system of Eq. 7.26 within four operating
periods under CLBF-EMPC and LEMPC, respectively, where the initial condition is (0, 0) and
the unbounded set of unsafe states Du is the gray area on the top of Uρ .
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Figure 7.11: Input profiles for the closed-loop system of Eq. 7.26 within four operating periods
under CLBF-EMPC, where the unsafe region is the gray area on the top of Uρ .

We also calculate the total economic profits over four operating periods, i.e., LE =

∫ 4tp
t=0 k0e−E/RTC2

Adt, for the closed-loop system of Eq. 7.26 under the different controllers. It

was obtained that the LE values are 8.42, 8.01 and 5.24 for the closed-loop CSTR under

LEMPC, CLBF-EMPC, and steady-state operation, respectively, from which it is demonstrated

that economic profits are significantly improved (around 52%) under EMPC compared to the

steady-state operation. The reason for a slightly larger LE under LEMPC than CLBF-EMPC is that

the state under LEMPC enters the unsafe region during the simulation where increased production

rate is obtained due to higher temperature (Fig. 7.10).

The second example is to demonstrate the effectiveness of the CLBF-EMPC of Eq. 7.32 for

the CSTR system with a bounded unsafe region Db in state-space. The bounded unsafe region

Db is designed to be a set embedded within the stability region as shown in the above example to

demonstrate that the the CLBF-EMPC of Eq. 7.32 is able to achieve economic optimality while

maintaining the state out of Db for all times. The bounded unsafe region as well as the CLBF and

its parameters are the same as those in Section 7.2.4.

The simulation results for the closed-loop system of Eq. 7.26 under CLBF-EMPC are shown
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in Figs. 7.12-7.13. Specifically, in Fig. 7.12, it is demonstrated that the state trajectory under

CLBF-EMPC is maintained in the safe stability region Uρ for all times (i.e., four successive

operating periods with tp = 0.128 hr). However, the state trajectory under LEMPC enters the

bounded unsafe region Db since the design of the LEMPC of Eq. 7.40 does not account for any

safety constraints. Similarly, Fig. 7.13 shows the input profiles for the closed-loop system of

Eq. 7.26 within four operating periods under the CLBF-EMPC of Eq. 7.32, where ∆CA0 shows

variation due to the material constraint of Eq. 7.39 applied in each operating period. Additionally,

the accumulated economic profits are calculated for the closed-loop system of Eq. 7.26 in the

presence of a bounded unsafe region. It was found that the LE values are 8.42, 8.47 and 5.24

for LEMPC, CLBF-EMPC, and steady-state operation, respectively. This again demonstrates that

process economics is optimized under EMPC while closed-loop stability and process operational

safety are both guaranteed. It is noted that the total economic profits under LEMPC and under

CLBF-EMPC are very close since the two state trajectories both stay in a region above the unsafe

set for most of the simulation time (Fig. 7.12). The only difference is that the state trajectory under

CLBF-EMPC avoids the bounded unsafe region for all times, while the one under LEMPC does

not.

Additionally, it is noted that the RNN-based MPC is computationally more demanding than the

first-principles-model-based MPC because the RNN model is essentially a complicated nonlinear

function which requires more computation time for prediction. In our example, the computation

time for running RNN-based MPC is around 2.3 s, which is less than one sampling period (i.e.,

2× 10−3 hr = 7.2 s) such that it can implemented in real-time optimization and control. The

above case studies demonstrate that the CLBF-EMPC of Eq. 7.32 based on an ensemble of RNN

models achieved desired model prediction results for the nonlinear system of Eq. 7.26, and thus,

is able to optimize control actions that maintain the closed-loop state within the safe stability

region Uρ for all times. Additionally, we demonstrate the applicability of the CLBF-EMPC of

Eq. 7.32 to both bounded and unbounded unsafe regions in a CSTR example. The economic profits

over multiple operating periods are calculated and compared under LEMPC, CLBF-EMPC and
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Figure 7.12: Closed-loop state trajectories for the system of Eq. 7.26 within four operating periods
under CLBF-EMPC and LEMPC, respectively, where the initial condition is (0, 0) and the bounded
set of unsafe states Db is embedded within Uρ .
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Figure 7.13: Input profiles for the closed-loop system of Eq. 7.26 within four operating periods
under CLBF-EMPC, where the bounded set of unsafe states Db is embedded within Uρ .

steady-state operation, respectively, from which it can be concluded that significant improvement

of economic benefits can be achieved under EMPC.
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7.3.2.2 Real-time CLBF-EMPC with online learning of RNN models

The closed-loop simulation results for the CSTR of Eq. 7.26 under the machine-learning-based

CLBF-EMPC of Eq. 7.32 with and without online learning of RNN models, respectively, are

shown in this subsection. The disturbance on the feed flow rate F which varies from 5 m3/h

to 10 m3/h at t = 0.11 hr is introduced into the closed-loop system. The simulation results are

shown in Figs. 7.14-7.17. In Fig. 7.14, it is demonstrated that the closed-loop state trajectory

under CLBF-EMPC with updating RNN models avoids the unsafe region while the one under the

CLBF-EMPC using the initial RNN model for all times enters the unsafe region D near the end of

operating period due to the disturbed feed flow rate F and reaction rate.
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Figure 7.14: The state-space profiles for the closed-loop CSTR subject to time-varying
disturbances under CLBF-EMPC with (red trajectory) and without online RNN update (blue
trajectory), respectively, for an initial condition (0,0).

Moreover, the closed-loop simulation of the CSTR system under CLBF-EMPC with multiple

operating periods is performed with the following disturbances: (1) the feed flow rate F is changing

from 5 m3/h to 11.5 m3/h at t = 0.1 hr during the first operating period from t = 0 hr to

t = 0.128 hr, and (2) the actual value of the pre-exponential constant k0 used in the process

model is reduced by 20% to represent a change in the reaction rate at t = 0.148 hr during the
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second operating period from t = 0.128 hr to t = 0.256 hr. Fig. 7.15 and Fig. 7.16 show the

closed-loop simulation results under the above settings. Specifically, Fig. 7.15 demonstrates

that with online learning of RNN models, the closed-loop state trajectory under CLBF-EMPC

is able to avoid the unsafe region for all times within two consecutive EMPC operating periods.

Fig. 7.16 shows the corresponding input profiles under CLBF-EMPC, from which it is observed

that the inlet concentration ∆CA0 consumes its maximum allowable value at the beginning of each

operating period, and thus, decreases to its lower bound near the end of each operating period to

meet the material constraint of Eq. 7.39. Additionally, the accumulated prediction error diagram

under CLBF-EMPC with and without online learning of RNN models is shown in Fig. 7.17. It

is demonstrated that the prediction error (red lines) for the CLBF-EMPC with updating RNN

models is maintained at a very low level during the two consecutive EMPC operating periods.

However, the prediction error (blue lines) derived from the CLBF-EMPC without updating RNN

models indicates a large model mismatch between the initial RNN model for the nominal CSTR

of Eq. 7.26 and the actual disturbed system.
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Figure 7.15: The state-space profiles for the closed-loop CSTR subject to time-varying
disturbances under CLBF-EMPC with (red trajectory) and without online RNN update (blue
trajectory), respectively, for two consecutive operating periods with an initial condition (0,0).

Lastly, to demonstrate the improved process economic benefits under the time-varying
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subject to time-varying disturbances under CLBF-EMPC with (red trajectory) and without online
RNN update (blue trajectory), respectively, for two consecutive operating periods with an initial
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Figure 7.17: Value of Ernn(t) at each sampling time for the closed-loop CSTR subject to
time-varying disturbances under CLBF-EMPC with and without online RNN update, respectively,
where the threshold ET is set to 0.15.
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operation of EMPC, accumulated economic profits over the entire operating period, i.e., LE =

∫ t=0.256 hr
0 le(x,u)dτ is compared for the CLBF-EMPC and the steady-state operation (i.e., the

CSTR of Eq. 7.26 is operated at the steady-state for all times). It is obtained that LE = 4.93 for the

closed-loop system under CLBF-EMPC with online update of RNN models and LE = 2.61 for the

steady-state operation within 0.256 hr. Therefore, it is concluded that closed-loop stability, process

operational safety and economic optimality are achieved simultaneously for the disturbed CSTR

process of Eq. 7.26 under the CLBF-EMPC of Eq. 7.32 with online learning of RNN models.

7.4 Conclusions

In this chapter, CLBF-MPC and CLBF-EMPC methods formulated with machine learning models

were developed for nonlinear process systems. RNN models were first trained using extensive

open-loop simulation data to capture process dynamics in a certain operating region such that the

modeling error between the recurrent neural network model and the actual nonlinear process model

was sufficiently small. Then, the well-fitting RNN models were incorporated in the formulation

of CLBF-MPC/EMPC to predict process dynamics, for which ensemble learning was employed

to improve prediction accuracy and parallel computing was used to reduce computation time of

multiple RNN models.

The stability analysis of the closed-loop system under the CLBF-MPC/EMPC schemes using

RNN models established the boundedness of the closed-loop state in the safety and stability region

for MPC and EMPC and demonstrated the ultimate convergence to a small neighborhood around

the origin for MPC. Additionally, event-triggered and error-triggered mechanisms were designed

for the real-time implementation of CLBF-MPC and CLBF-EMPC schemes to update the RNN

models online using the most recent process data that account for nonlinear dynamics in the

presence of time-varying disturbances. The application of the machine-leaning-based control

schemes to a chemical reactor demonstrated the applicability and effectiveness of the schemes

in stabilizing nonlinear systems with simultaneous stability and safety guarantees, and the ability
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to deal with time-varying disturbances using online learning of machine learning models.
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Chapter 8

Detector-Integrated Controller for Process

Cybersecurity

8.1 Introduction

Cyber-physical systems (CPS) integrate communication networks, computation, and physical

process components to ensure automated real-time operation in a seamless manner. Stable

and secure operation of cyber-physical systems require accurate information and reliable

communication technologies. In more recent years, the cyber-security of cyber-physical

systems has become increasingly important as more communication networks are replaced or

complemented by wireless networks in addition to point-to-point communications [3, 35]. While

these new developments increase operation efficiency and performance, they also increase the

system’s vulnerability to cyber-attacks. As more components are included, there is a high

probability that continuous feedback measurements cannot be guaranteed due to bursts of network

transmission errors, which poses a challenge for closed-loop control systems that rely on accurate

feedback measurements. Malicious cyber-attacks could target any device or communication

channels in the control network to modify control actions and jeopardize operational cost, stability,

integrity, and other safety considerations. With access to technical details of the control system,
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these targeted cyber-attacks are intelligently designed to disrupt process operation and compromise

fundamental process safety. As cyber-attacks pose severe threats to the control system, safety

measures addressing cyber-security need to be carefully considered and incorporated in plant-wide

risk assessments.

On the other hand, with the increase in digital connectivity and computing power, potential

applications of archived plant data could extend beyond day-to-day monitoring and operation.

One example use of these “big data” approaches is cyber-attack and anomaly detection. Due

to the close interactions between cyber and physical components, operational cyber-security of

control systems would mandate a different strategy than traditional information technology (IT)

approaches – one that combines robust control strategies with an advanced detection scheme using

the process data at hand [128]. Due to the sophistication of cyber-attacks and their accessibility to

control system information, they are intended to disrupt the closed-loop system while avoiding

being detected by conventional detection methods or by control engineers, thus making them

fundamentally different from sensor or actuator faults. Situations where conventional model-based

detection schemes may be rendered ineffective by intelligent cyber-attacks can be potentially

tackled by data-based detection methods [27]. Machine learning, a method of data analysis

that can help engineers learn from data, identify patterns and make decisions with minimal

human intervention, has attracted an increasing attention and shown promising potential for use

in detection of cyber-attacks. The development and applications of machine-learning methods in

traditional engineering fields have increased in recent years, and more specifically in the field of

systems engineering, e.g., [119, 130, 155, 181]. Machine learning techniques, such as artificial

neural networks, support vector machines, as well as more advanced deep learning methods, such

as recurrent neural networks, have demonstrated success in detecting machine and plant anomalies,

e.g., [24, 28, 29, 59, 105, 114, 149, 163, 168], and can be readily adopted in the context of control

theory and cyber-physical security.

In this chapter, machine-learning-based detection systems and resilient control schemes are

developed to detect and mitigate the impact of stealthy cyber-attacks. In the first section, the
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concept of stealthy cyber-attacks is presented, followed by several common cyber-attacks in

literature. The second section presents the construction of data-based machine-learning detection

algorithms which can effectively detect multiple classes of intelligent cyber-attacks. Subsequently,

we design several resilient control strategies to promptly contain and eliminate the impact of

cyber-attacks upon detection. The application to a benchmark multivariable nonlinear process

example is presented to evaluate the ability of the proposed detection and mitigation schemes.

8.1.1 Notation

The set of real numbers is denoted by R, and the set of nonnegative real numbers is denoted

by R+. Rn is an n-dimensional real (Euclidean) space. The notation |·| is used to denote the

Euclidean norm of a vector, and the notation |·|Q denotes a weighted Euclidean norm of a vector

(i.e., |x|Q =
√

xT Qx where Q is a positive definite matrix). xT denotes the transpose of x. The

notation L fV (x) denotes the standard Lie derivative of function V (x) with respect to the vector

field f , i.e., L fV (x) := ∂V (x)
∂x f . A scalar continuous function V : Rn → R is proper if the set

{x ∈Rn | V (x)≤ k} is compact for all k ∈R, or equivalently, V is radially unbounded in the sense

that lim|x|→+∞V (x) = +∞ holds.

For given positive real numbers β and ε , Bβ (ε) := {x∈Rn | |x−ε|< β} is an open ball around

ε with radius of β . The relative complement of the set A in B is denoted by A\B := {x ∈ A,x /∈ B}.

A function f (·) is of class C 1 if it is continuously differentiable. Given a set D , the boundary,

the closure, and the interior of D are denoted by ∂D , D , and Int(D), respectively. A continuous

function α : [0,a)→ R+ is said to be of class K if it is strictly increasing and α(0) = 0.
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8.1.2 Class of Nonlinear Systems

The class of continuous-time nonlinear systems considered is described by the following

state-space form:

ẋ(t) = f (x(t),u(t),w(t)) (8.1a)

x̄(t) = h(x(t)) (8.1b)

where x(t) ∈ D ⊂ Rn is the state vector, and u(t) ∈ Rm is the manipulated input vector, which

is constrained by u ∈ U := {umin
i ≤ ui ≤ umax

i , i = 1, ...,m} ⊂ Rm, where umin
i and umax

i are the

lower and upper bounds for the input vector. We will denote the vector of state measurements

from sensors, which may be compromised by sensor cyber-attacks, with x̄(t) ∈ Rn. When no

cyber-attacks are present in the system, x̄(t) = x(t). w ∈W is the noise vector, where W := {w ∈

Rl : | |w| ≤ θ , θ ≥ 0}. Without loss of generality, the initial time t0 is taken to be zero (t0 = 0).

It is assumed that f (·, ·, ·) is a sufficiently smooth vector function of its arguments, and h(·) is

a sufficiently smooth vector function of x where f (0,0,0) = 0, h(0) = 0. Thus, the origin is an

equilibrium point of the system of Eq. 8.1 under u(t) = 0.

We assume that there exists an explicit feedback controller of the form u = Φ(x) ∈U that can

render the origin of the nominal closed-loop system of Eq. 8.1 (i.e., w(t)≡ 0) asymptotically stable.

The stabilizability assumption implies the existence of a C 1 Lyapunov function V : D→ R+ that

satisfies the following conditions:

α1(|x|)≤V (x)≤ α2(|x|), (8.2a)

∂V (x)
∂x

f (x,Φ(x),0)≤−α3(|x|), (8.2b)

∣∣∣∣
∂V (x)

∂x

∣∣∣∣≤ α4(|x|) (8.2c)

where D is an open neighborhood around the origin, and αi(·), i = 1,2,3,4, are class K functions.
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The stability region Ωρ of the closed-loop system of Eq. 8.1 is characterized as a level set of V (x)

inside D in which Eq. 8.2 is satisfied under u = Φ(x) ∈U , i.e., Ωρ := {x ∈ D | V (x)≤ ρ,ρ > 0}.

Therefore, given that the sensor measurements received by the controller are secure and reliable

(i.e., x̄(t) = x(t)), the controller u = Φ(x)∈U guarantees that the state trajectory of the closed-loop

system of Eq. 8.1 remains within Ωρ and asymptotically converges to the origin for any initial

conditions x0 ∈ Ωρ . Additionally, the smoothness property of f (x,u,w) and the boundedness of

u ∈U imply that there exist positive constants M, Lx, L
′
x such that the following inequalities hold

for all x,x′ in a neighborhood around the origin:

| f (x,u,0)| ≤M (8.3a)

| f (x,u,0)− f (x′,u,0)| ≤ Lx|x− x′| (8.3b)
∣∣∣∣
∂V (x)

∂x
f (x,u,0)− ∂V (x′)

∂x
f (x′,u,0)

∣∣∣∣≤ L
′
x|x− x′| (8.3c)

8.1.3 Lyapunov-based MPC and EMPC

Cyber-attack detection systems and resilient control schemes in this chapter are developed in

the context of model predictive control, and more specifically, Lyapunov-based model predictive

control (LMPC) and Lyapunov-based economic model predictive control (LEMPC). Therefore,

the LMPC and LEMPC formulations are presented here again for convenience. Specifically, the
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LMPC optimization problem is formulated as follows:

min
u∈S(∆)

∫ tk+N

tk
lt(x̃(τ),u(τ)) dτ (8.4a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (8.4b)

x̃(tk) = x(tk) (8.4c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (8.4d)

∂V (x(tk))
∂x

f (x(tk),u(tk),0)≤
∂V (x(tk))

∂x
f (x(tk),Φ(x(tk)),0),

if x(tk) ∈Ωρ\Ωρmin (8.4e)

V (x̃(t))≤ ρmin, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρmin (8.4f)

where the notations follow those in Eq. 2.19. The LEMPC is represented by the following

optimization problem:

max
u∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ)) dτ (8.5a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (8.5b)

x̃(tk) = x(tk) (8.5c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (8.5d)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρe (8.5e)

∂V (x(tk))
∂x

f (x(tk),u(tk),0)≤
∂V (x(tk))

∂x
f (x(tk),Φ(x(tk)),0),

if x(tk) ∈Ωρ\Ωρe (8.5f)

where the notations follow those in Eq. 3.1. For EMPC, it is common that chemical processes are

subject to periodic feed stock constraints, which are specified as part of the input constraint set U ,

where the quantity of feed materials is limited within a fixed period of time tNp . During this period
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of time, the total feed material is constrained to a constant value C as follows:

1
tNp

∫ tNp

t0
um(τ)dτ =C (8.6)

where um represents feed material used at every sampling period. Therefore, the material

consumption constraint renews every tNp . If the total operation time is longer than one material

constraint period, this material consumption constraint results in cyclic operation of the plant, and

consequently, cyclic behavior of the state-space trajectory. At the start of a new material constraint

period, the total consumption limit is renewed, as new feed materials become available to be used

again for the next constraint period.

When a secure state measurement x is available every sampling step, it is demonstrated

that closed-loop stability is guaranteed for the nonlinear system of Eq. 8.1 in the sense that

for any initial condition x0 ∈ Ωρ , the closed-loop state is guaranteed to be bounded in Ωρ

for all times under LMPC/LEMPC, and can be ultimately driven to a small neighborhood

Ωρmin around the origin under LMPC. However, under cyber-attacks that compromise sensor

measurements or communication networks between sensors and controllers, closed-loop stability

under LMPC/LEMPC is no longer guaranteed because the evolution of the true state will be

different from the MPC predicted state trajectory based on falsified state measurements.

8.2 Intelligent Cyber-Attacks

Stealthy, intelligent cyber-attack diagnosis and defense span a much broader scope than classical

fault detection problems because intelligent adversaries can modify the actuator, the sensor, or

the control implementation using process and control system information. With knowledge of

the plant model and of the control formulation, cyber-attacks are strategically programmed with

the goal of disruption, and are fundamentally different from ordinary sensor and actuator faults.

Specifically, among sensor cyber-attacks, Denial-of-Service attacks, replay attacks and deception

attacks (e.g., Min-Max, Geometric, Surge) are some of the most common and easily implementable
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ones by attackers [140]. They are designed to intentionally destroy the control objectives of the

system, disrupting system stability and degrading control performance. Furthermore, the effects of

these attacks may be only observed in changes of the dynamic behavior (runtime variables) of the

closed-loop system; thus, using hardware performance counters to track code modifications is not

feasible [75].

In this section, we consider the attacks on sensor measurements. Sensor feedback

measurements must accurately report the true state of the process to ensure closed-loop stability;

falsified measurements may result in control actions that will no longer achieve maximum

economic benefit and may ultimately drive the true process states outside of the stability region.

There are some standard types of cyber-attacks considered in literature [140]. For example,

min-max cyber-attacks aim to achieve maximum disruptive impact within shortest amount of time.

Surge attacks cause maximum deviation for an initial “surge” period, and then the attacked value

is set to a reduced value for the remainder of the attack duration such that the cumulative deviation

will not exceed a certain threshold that will trigger alarms in conventional detection methods

such as Cumulative Sum [27, 100]. Geometric attacks geometrically increase the deviation of

the attacked value from its true value until it reaches the alarming threshold. Being process and

controller behavior aware, the cyber-attacks will have access to information on the operating region

of the process under LMPC/LEMPC, and existing alarms configured on the input and output

ranges. Specifically, when attacks intend to induce maximum disruption (i.e., in min-max or

surge attacks), the attacked value will be set to the maximum or minimum value beyond which an

alarm monitoring the current state measurement will be immediately triggered. These intelligent

cyber-attacks are designed such that no alarms will be sounded (i.e., the falsified state measurement

is not outside the operating stability region or the alarm window) and the controller is still able to

compute feasible control actions, but have large enough variations such that economic optimality

and closed-loop stability will be lost.
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8.2.1 Types of Intelligent Cyber-attakcs

Consider the system of Eq. 8.1 under LMPC/LEMPC within the operating region Ωρ . The

cyber-attacks imposed on the sensors are designed to prevent having a falsified measurement

beyond the operating region Ωρ and to avoid triggering any immediate alarms based on the values

of the state measurements. The mathematical formulations of min-max, surge, geometric, and

replay attacks are presented as follows.

8.2.1.1 Min-max cyber-attack

While avoiding triggering any alarms, min-max attacks result in maximum destabilizing impact

within a short time period. Therefore, the falsified state measurements take values that are furthest

from the equilibrium point (minimum or maximum) but not outside of the operating region Ωρ .

The min-max attack can be formulated as follows:

x̄(ti) = min
x∈Rn

/max
x∈Rn
{x | V (x(ti)) = ρ}, ∀ i ∈ [i0, i0 +La] (8.7)

where ρ defines the level set of the Lyapunov function V (x) that characterizes the operating

region of the closed-loop system of Eq. 8.1 under LMPC/LEMPC, x̄ is the compromised sensor

measurement, i0 is the time instant that the attack is introduced, and La is the total duration of the

attack in terms of sampling periods.

8.2.1.2 Geometric cyber-attack

Under geometric cyber-attacks, closed-loop system stability deteriorates at a geometric speed

until the cyber-attack reaches the maximum or minimum allowable value as characterized by the

operating region. At the start of the attack ti0 , a small constant β ∈R is added to the true measured

output x(ti0), where x(ti0)+β is well below the alarm threshold. Following that, at each subsequent

time step, β is multiplied by a factor (1+α), where α ∈ (0,1), until x̄ reaches the maximum

allowable attack value bounded by Ωρ . Thus, attackers will choose the two parameters α and β
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based on Ωρ and the attack duration. Geometric attacks can be written in the form as follows:

x̄(ti) = x(ti)+β × (1+α)i−i0, ∀ i ∈ [i0, i0 +La] (8.8)

where β and α are parameters that define the magnitude and speed of the geometric attack.

8.2.1.3 Replay cyber-attack

Replay cyber-attacks have access to all previous system outputs corresponding to secure nominal

operating conditions where no cyber-attacks are present. The attacker extracts segments of these

previous state measurements and injects them into the current measurement readings. As the

replayed values are given by secure sensors and supposedly inside the operating bounds, classical

detectors will not be able to recognize any abnormalities. Replay attacks can be represented by the

following equations:

x̄(ti) = x(tk), ∀ k ∈ [k0,k0 +La], ∀ i ∈ [i0, i0 +La] (8.9)

where x(tk) is the true plant measurement, La represents the length of the attack (which is also the

length of the replay segment) in terms of sampling periods, and x̄ is the series of replay attacks

added at time ti0 duplicating previous state measurements that are recorded starting from time tk0 .

The duration of the attack could be exactly the length of one or more material constraint periods.

Therefore, the tampered state trajectory would look identical to the nominal state trajectory of one

(or more) complete cycle(s) of operation starting from a different set of initial conditions.

8.2.1.4 Surge cyber-attack

Surge cyber-attack is a stealthy cyber-attack that cannot be detected by conventional detection

methods such as cumulative sum (CUSUM). Specifically, based on the process model of Eq. 8.1,

CUSUM statistic detection method [27] is developed to minimize the detection time when a
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cyber-attack occurs. The CUSUM statistic method detects cyber-attacks by calculating the

cumulative sum of the deviation between expected and measured states as follows:

S(k) = (S(k−1)+ z(k))+, S(0) = 0 (8.10a)

D(S(k)) =





1, if S(k)> ST H

0, otherwise
(8.10b)

where S(k) is the nonparametric CUSUM statistic and ST H is the threshold of the detection of

cyber-attacks. (S)+ = S, if S≥ 0 and (S)+ = 0 otherwise. D is the detection indicator where D = 1

indicates that the cyber-attack is confirmed or there is no cyber-attack if D= 0. z(k) is the deviation

between expected states x̃(tk) and measured states x(tk) at time t = tk: z(k) := |x̃(tk)− x(tk)| − b

where x̃(tk) is derived using the known process model, the state and the control action at t = tk−1,

and b is a small positive constant to reduce the false alarm rate due to disturbances.

With a carefully selected ST H , the model-based detection method can detect many sensor

cyber-attacks efficiently. However, the above model-based method may be evaded and becomes

invalid for stealthy cyber-attacks if attackers know more about the system (e.g., the system model

and the principles of the detection method). For example, surge attacks maximize the disruptive

impact for an initial short period of time, then they remain at a lower value for the rest of the attack

duration to maintain S(k) below ST H . The maximum or minimum attack value is also defined based

on the operating region, Ωρ . The length of the initial surge period and the reduced value after the

surge can be designed in many ways as long as the cumulative error from ti0 to ti0+La between state

measurements and their predicted true values does not exceed the threshold ST H of the CUSUM

detection method. In this study, the reduced value after the surge is set to act as a sufficiently small

bounded noise imposed on the attacked sensor. The formulation of the surge attack is presented

below:

x̄(ti) = min
x∈Rn

/max
x∈Rn
{x | V (x(ti)) = ρ}, if i0 ≤ i≤ i0 +Ls

x̄(ti) = x(ti)+η(ti), if i0 +Ls < i≤ i0 +La

(8.11)
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where i0 is the start time of the attack, Ls is the duration of the initial surge, and ηl ≤ η(tu) ≤ ηu

is the bounded noise added on the sensor measurement after the initial surge period, where ηl and

ηu are the lower and upper bounds of the noise, respectively.

8.3 Detection of Cyber-Attacks Targeting MPC Systems

While conventional detection methods have demonstrated their effectiveness in detecting

suspicious process variable deviations, most of these methods are model-based – either dependent

on network and computer system models, or on physical process models. Certain classes

of intelligent cyber-attacks either render traditional detection methods ineffective, or remain

undetected until the system experiences a significant deviation and reaches an undesirable

operating point, at which the existing alarm systems could be triggered. The goal of a robust

cyber-attack detector is to identify attacks from subtle variations in real-time process state

measurements and mitigate the risk before an operation alarm is triggered. Therefore, without

explicit knowledge on the process model, adopting a data-based detection approach utilizing

machine-learning algorithms provides a promising path for the detection of unknown intelligent

cyber-attacks. The integration of existing advanced control techniques (e.g., MPC) and online

machine-learning-based detection algorithms adds another protective safeguard to the multi-layer

cyber-defense strategy that is standard to next-generation smart manufacturing. Cyber-attack

detection carried out using machine-learning methods have been studied in many literature

[2, 62, 112]. Using data-based methods to train a detection algorithm for cyber-attacks separates

the detector from the physical process model, and therefore makes the detector resilient to both

process changes and intelligent stealthy attacks designed based on process behavior. Amongst

advanced machine-learning methods, neural networks (NN) have been successful in a wide

range of applications for both supervised and unsupervised classifications [53]. In a supervised

classification problem, by training the neural network with labeled data corresponding to each

target class, the neural network can be used to classify new data into classes that share similar
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Figure 8.1: Feed-forward neural network structure with 2 hidden layers with inputs being a
nonlinear function p(x̄) at each sampling time of the model predictive controller within the
detection window NT , and output being the probability of each class label for the examined
trajectory indicating the status and/or type of cyber-attack.

characteristics. Depending on the training data, the neural network can distinguish between two

(i.e., “attack” or “no attack”) or multiple classes (each class representing a known type of attack).

We use a feed-forward artificial neural network for supervised classification in this study. Each

layer in the neural network consists of a series of nonlinear functions, yielding values for the

neurons in the subsequent layer from the previous layer. Specifically, the neurons in the first

hidden layer are derived from the inputs, and the neurons in the output layer are calculated from

those in the last hidden layer. These nonlinear functions are activation functions of the weighted

sum of inputs (or neurons in the previous layer) with an added bias term. The structure of a

basic neural network model employed here is shown in Fig. 8.1, with each input representing a

nonlinear function p(·) of the full state measurements at each sampling time, and an output vector

for predicted class label. The mathematical formulation of a two-hidden-layer feed-forward neural
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network is as follows:

θ
(1)
j = g1(

NT

∑
i=1

w(1)
i j p(x̄(ti))+b(1)j ) (8.12a)

θ
(2)
j = g2(

h1

∑
i=1

w(2)
i j θ

(1)
i +b(2)j ) (8.12b)

θ
(3)
j = g3(

h2

∑
i=1

w(3)
i j θ

(2)
i +b(3)j ), ypred = [θ

(3)
1 ,θ

(3)
2 , ...,θ

(3)
H ]T (8.12c)

with θ
(1)
j and θ

(2)
j representing neurons in the first and second hidden layer, respectively, where j =

1, ...,hl is the number of neurons in layer l = 1 and l = 2. θ
(3)
j represents neurons in the output layer

(l = 3), where j = 1, ...,H, and H is the number of class labels. In this study, we use two hidden

layers for the cyber-attack detector design; however, multiple hidden layers can also be developed

using similar formulations. For each sample, the input layer consists of variables p(x̄(ti)), which is

a nonlinear function of the full-state measurements at time ti, where i= 1, ...,NT is the length of the

time-varying trajectory. The weights connecting neurons i and j in consecutive layers (from l−1

to l) are w(l)
i j , and the bias term on the jth neuron in the lth layer is b(l)j . Each layer calculates an

output based on the information received from the previous layer, as well as the optimized weights,

biases, and the nonlinear activation function gl (some examples include hyperbolic tangent sigmoid

transfer function g(z) = 2
1+e−2z −1, and softmax function g(z j) =

ez j

∑
H
i=1 ezi

where H is the number of

class labels). Various common activation functions including ReLu, sigmoid, radial basis functions

were presented and their performances were analyzed in [139]. In the output layer, ypred is a

vector giving the predicted probabilities of each class label. The predicted class label for the

examined sample is indicated by the neuron with the highest probability, which in turn provides

information on either the presence of a cyber-attack, or the type of the cyber-attack, depending on

the classification problem the neural network is trained to solve.

To obtain an optimal set of weights and biases in Eq. 8.12, the Levenberg-Marquardt algorithm

[81, 92] is used to minimize a Bayesian regularized mean squared error cost function, which has

the following form:
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S(w) = µ

Ns

∑
k=1

(ypred,k− ytrue,k)
2 +ζ

Nw

∑
p=1

w2
p (8.13)

where k = 1, ...,Ns represents the number of samples in the training dataset, p= 1, ...,Nw represents

the number of weights and biases in the neural network, ytrue is the vector of target class labels

of each sample, ypred is the vector of the predicted probabilities associated with each class label,

and µ and ζ are the regularization hyper-parameters. Within the Levenberg-Marquardt algorithm,

the gradient and the Hessian matrix of S(w) are calculated using the backpropagation method.

The weights and the data are assumed to have Gaussian prior probability distributions. Then, the

regularization hyper-parameters, µ and ζ , are updated by maximizing their posterior probability

distribution provided the data, which is equivalent to maximizing the likelihood of evidence by

Bayes’ Theorem. Within each epoch, two sequential procedures are carried out: the cost function

S(w) is minimized with respect to w, and the likelihood of evidence is maximized with respect to µ

and ζ . Detailed formulation of this procedure can be found in [25]. Training and testing accuracies

are calculated, which are the ratios between the number of correctly classified samples and total

number of samples in the training and testing sets, respectively.

To develop an NN detector, state measurement data are collected while the system is operated

under feedback controllers, i.e., the LMPC of Eq. 8.4 or the LEMPC of Eq. 8.5. For better detection

accuracy, various state evolutions within the stability region under different operating conditions

need to be accounted for; therefore, training data is collected for a broad range of initial conditions

within the stability region Ωρ . Full state measurements x̄(t) are recorded along the time-varying

trajectory for t ∈ [t0, tNT ], and a nonlinear function denoted by p(x̄) is computed. In order to

provide an effective one-dimensional input feature for the detection problem, the function p(x̄)

needs to capture the dynamic behavior of all states. The selection of this input variable, p(x̄), will

be discussed in Section 8.3.1.

After data collection and adequate training, the NN detector is implemented online with the

process controlled by MPCs with cyber-attack resilient control strategies that will be discussed in

Section 8.4. The feed-forward NN model is a static model receiving inputs of fixed dimension,
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NT , which is the length of the time-varying trajectory. Therefore, the detection window of the

NN detector while implemented online also matches the trajectory length of the training data, NT .

For example, the detector can be activated every time full state measurements become available,

and uses a moving horizon detection window, receiving latest sequences of x(tk) of fixed length

NT . Alternatively, the NN detector can be activated at the end of each material constraint period

(under EMPC), where NT = Np. In this case, the detector will receive the entire sequence of full

state measurements x̄(tk) over the latest material constraint period with a fixed length NT . Each

sample consists of a two-dimensional matrix n×NT , where n is the full state dimension, and NT is

the length of each state trajectory within the detection window. Each training sample corresponds

to a different set of initial conditions for the closed-loop system simulation, and equal number of

samples within each class labels are collected to ensure training accuracy.

8.3.1 Choice of Detection Input Variable

We first consider the case of LMPC. Since the control objective of the LMPC of Eq. 8.4 is

to stabilize the system at the origin, for any initial condition in the operating region Ωρ , the

closed-loop state profiles ultimately converge to their steady-state values if no attacks occur.

Therefore, the closed-loop state profiles provide a good measure of system dynamic operations

under LMPC, and thus, can be directly used as the NN input. However, unlike the case of

operation under tracking MPC where the Lyapunov function decreases as the process states

are driven towards the origin, off steady-state operation of LEMPC results in a state trajectory

that remains on the boundary of the operating region Ωρ where V (x̄) = ρ to maximize process

economic benefits. Considering this, the exact trajectory of each individual state variable is not

predictable and does not follow a general expected trend even under nominal operation. Therefore,

assessing the trajectory of the measured state vector might not be an effective method of detecting

the occurrence of a cyber-attack in EMPC systems. Moreover, if the goal of a cyber-attack is to

destabilize the closed-loop system within the shortest amount of time, the attacker will choose to

set the current state measurement to the maximum/minimum allowable attack value characterized
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by the boundary of the operating region Ωρ such that no alarms will be triggered. As a result, the

falsified sensor measurements will also yield a Lyapunov function that is equal to ρ . The trajectory

of the Lyapunov function V (x̄) under nominal operation and under cyber-attacks can be too similar

to differentiate. For these reasons, the Lyapunov function of the full-state measurements V (x̄),

which is used as an input variable for the detection algorithm used together with LMPC, is no

longer a good measure of input for the detection algorithm when the system is operated under

LEMPC.

Given that EMPC optimizes the economic benefit in its cost function, the progression of

economic benefit is a measure that effectively reflects the time-varying operation under LEMPC;

hence, information derived from the economic benefit provides a good comparison for attacked and

not-attacked scenarios. Therefore, we will be monitoring the evolution of economic benefits during

closed-loop operation. The cumulative economic benefit increases monotonically as operation

time progresses. The first derivative of cumulative economic benefit (i.e., incremental economic

benefit, which can be analogous to the reaction rate of desired product, at each sampling period)

displays varying patterns depending on the initial conditions and on the material consumption

constraint. The rate of change in the incremental economic benefit, or the change in the production

reaction rate between sampling periods, provides information on the rate of change in the optimized

cost function le inside the integral in Eq. 8.5a. This rate of change, which is also the second

derivative of the cumulative economic benefit, will be used as the input parameters p(x̄) for the

neural-network-based detection algorithm.

8.3.2 Sliding Detection Window

As the NN detector may not have perfect classification accuracy, false alarms may occur based on

a one-time detection where large oscillatory data within normal ranges may be misclassified as a

cyber-attack. To reduce false alarm rates, a sliding alarm verification window is also implemented,

where the number of positive attack detections within this window need to surpass a threshold

before a cyber-attack alarm is confirmed. Specifically, a detection indicator Di generated by each
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sub-model Mi and a sliding detection window with length Ns are developed as follows:

Di =





1, if attack is detected by Mi

0, if no attack is detected by Mi

(8.14)

Based on the detection indicator Di at every Na sampling steps, the weighted sum of detection

indicators within the sliding detection window DI shown in Fig. 8.2 at t = tk = k∆ is calculated as

follows:

DI =
bk/Nac
∑

j=d(k−Ns+1)/Nae
λ
b k

Na c− jD j (8.15)

where λ is a detection factor that gives more weight to recent detections within the sliding window

because the classification accuracy of the NN increases as more data is used for training. If DI ≥

DT H , where DT H is a threshold for the sliding alarm verification window, then the cyber-attack is

confirmed and reported by the NN-based detection system; otherwise, the detection system remains

silent and the sliding window will be rolled one sampling time forward. To balance false alarms and

missed detections, the threshold DT H is determined via extensive closed-loop simulations under

cyber-attacks to derive a desired detection rate.

Additionally, since there is no guaranteed feasible control action that can drive the state back

towards the origin once the state of the system of Eq. 8.1 is outside the stability region Ωρ , it is also

necessary to check whether the state is in Ωρ , especially when cyber-attacks occur but have not

been detected yet. Therefore, to prevent the system state from entering a region in state-space

where closed-loop stability is not guaranteed, the boundedness of the state vector within the

stability region can also be checked using the state measurement from redundant, secure sensors

at the time when Di = 1. If the state x has already left Ωρ , closed-loop stability is no longer

guaranteed and in this case further safety system components (e.g., physical safety devices) need

to be activated to avoid dangerous operations [191]. However, if x ∈ Ωρ , the state measurement

will be read from redundant, secure sensors instead of the original sensors to avoid deterioration

of stability under the potential cyber-attack indicated by Di = 1.
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Figure 8.2: The sliding detection window with detection activated every Na sampling steps, where
triangles represent the detection indicator Di and the box with length Ns represents the sliding
detection window.

Remark 8.1. The sliding window with length Ns is employed to reduce false alarm rates.

Considering that the classification accuracy derived is not perfect, the idea behind the sliding

detection window is that a cyber-attack is confirmed only if it has been detected for a few times

continuously instead of a one-time detection. The length of sliding window Ns will balance the

efficiency of detection and false alarm rates. Specifically, a larger Ns and a higher detection

threshold DT H (DI ≥ DT H within the sliding detection window represents the confirmation of a

cyber-attack) lead to longer detection time but a lower false alarm rate, while a smaller Ns and a

lower DT H have the opposite effect. Therefore, Ns and DT H should be determined well to achieve

a balanced performance between detection efficiency and false alarm rate.

Remark 8.2. The above supervised learning-based cyber-attack detection method is able to

distinguish the normal operation of the system of Eq. 8.1 from the abnormal operation under

cyber-attacks, provided that there is a large amount of labeled data available for training.

However, for those unknown cyber-attacks which are never used for training, the detection is not

guaranteed. Specifically, if there exists an unknown cyber-attack that is distinct from the trained

cyber-attacks, the NN-based detection method may not be able to identify it as a cyber-attack.
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In this case, an unsupervised learning-based detection method may achieve better performance

by clustering unknown cyber-attack data into a new class. However, if the unknown cyber-attack

shares similar properties (e.g., similar attack mechanism) with a trained cyber-attack, the NN

method may still be able to detect it and classify it as one of the available classes.

8.4 Cyber-Attack Resilient Control Systems

In this section, we focus on the development of cyber-attack resilient control systems that can

mitigate the impact of cyber-attacks upon detection. Several resilient control strategies are

discussed for the closed-loop system of Eq. 8.1 under LMPC and LEMPC.

8.4.1 Redundant Sensors

When the cyber-attack is detected by Di = 1 but not confirmed by DI ≥ DT H yet, the LMPC

(LEMPC) optimization problem can use the state measurement from redundant, secure sensors

instead of the original sensors as the initial condition x(tk) for the optimization problem of Eq. 8.4

(Eq. 8.5) until the next instance of detection. However, if the cyber-attack is finally confirmed

by DI ≥ DT H , the misbehaving sensor will be isolated, and the LMPC (LEMPC) optimization

problem starts to use the state measurement from secure sensors instead of the compromised state

measurement as the initial condition x(tk) for the optimization problem of Eq. 8.4 (Eq. 8.5) for the

remaining time of process operation. The structure of the integrated cyber-attack-detection-control

system for LMPC is shown in Fig. 8.3. If the cyber-attack is detected and confirmed before the

closed-loop state is driven out of the stability region, it follows that the closed-loop state is always

bounded in the stability region Ωρ thereafter and ultimately converges to a small neighborhood

Ωρmin around the origin for any x0 ∈ Ωρ under the LMPC of Eq. 8.4. An example trajectory

is shown in Fig. 8.4, where it is demonstrated that starting from an initial condition in Ωρ , the

trajectory first moves away from the origin due to cyber-attacks and finally re-converges to a

small neighborhood Ωρmin around the origin under LMPC once the cyber-attack is detected by
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Figure 8.3: Basic structure of the proposed integrated NN-based detection and LMPC control
method.
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Figure 8.4: A schematic showing an example state trajectory under the integrated detection and
control scheme.

the proposed NN-based detection scheme.

8.4.2 Attack-Resilient Combined Open-loop and Closed-loop Control

Upon the successful detection of cyber-attacks in sensors, one strategy that we have shown in

Section 8.4.1 is to utilize the response plan that involves physical replacements of problematic

sensors with their redundant back-up sensors. While sensor device replacement is an effective

measure, there may be circumstances where redundant sensors cannot be deployed immediately,

during which time the process may need to be operated in open-loop without reliable feedback

measurements. Specifically, in this section, we consider the case of LEMPC, under which the state

of the nominal system of Eq. 8.1 (i.e., no disturbances or cyber-attack) is bounded in Ωρ for all

times. Additionally, since the LEMPC operates the system at the boundary of the operating region

for the majority of operating time, we define a smaller level set Ωρsecure := {x∈Ωρ |V (x)≤ ρsecure}

inside the the stability region Ωρ as the new operating region such that the state may leave Ωρsecure

due to cyber-attacks but still remains in Ωρ before detection. Specifically, as the economic benefit

of the process is maximized with respect to the state vector, it is likely that during the operating

period, the optimized states will reach, and evolve along the boundary of the secure region Ωρsecure .
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Assuming that the attacker has knowledge on the stability region as well as the secure region that

the LEMPC operates based on, in order to induce maximum destructive impact on the system

(e.g., in a min-max or surge cyber-attack) without triggering any alarms, the tampered state

measurements will be near or on the boundary of the secure region Ωρsecure . Therefore, regardless of

the presence of a cyber-attack, the measured process states will likely reach the boundary of Ωρsecure

where V (x̄) = ρsecure during the operation of one material constraint period. In other words, when

measured process states yield V (x̄) = ρsecure, there could be two reasons: 1) following optimized

control actions u∗(tk), the measured process states reach the boundary of the bounded secure

region Ωρsecure at time tk under the normal operation with no cyber-attacks, or 2) the measured

states are compromised by a cyber-attack (e.g., min-max, or surge) at time tk. Therefore, when

measured states x̄(tk) provide V (x̄(tk)) = ρsecure, this measurement can no longer be trusted due to

the ambiguous cause of this observation, and closed-loop control can no longer be carried out.

To combat the ambiguity of state measurements when they are on the boundary of Ωρsecure ,

open-loop control actions will be used in conjunction with closed-loop control. Assuming that the

states measured at the beginning of each material constraint period, t = tN0 , are secure and correct

(the LEMPC can operate the system in multiple periods where the material constraint of Eq. 8.6 is

satisfied in each operating period), the open-loop control actions are computed at the beginning of

the material constraint period by solving the following nonlinear optimization problem:

max
u′∈S(∆)

∫ tN0+Np

tN0

le(x̃(t),u′(t))dt (8.16a)

s.t. ˙̃x(t) = f (x̃(t),u′(t)) (8.16b)

u′(t) ∈U, ∀ t ∈ [tN0, tN0+Np) (8.16c)

x̃(tN0) = x̄(tN0) (8.16d)

V (x̃(t))≤ ρsecure, ∀ t ∈ [tN0, tN0+Np), if x̄(tN0) ∈Ωρsecure (8.16e)

V̇ (x̄(tN0),u
′)≤ V̇ (x̄(tN0),Φ(x̄(tN0)), if x̄(tN0) ∈Ωρ\Ωρsecure (8.16f)

where Np is the number of sampling periods in one material constraint period, which is the
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prediction horizon for open-loop control. At time tk, a new material constraint period begins,

the EMPC in open-loop control mode receives state measurement x(tk) and computes the optimal

trajectory of Np control actions that will be applied in a sample-and-hold manner until the end of

this material constraint period. In the case that there are no cyber-attacks or process disturbances,

this optimal trajectory of control actions would yield maximum economic benefits while meeting

all input and state constraints.

While at closed-loop operation, if feedback measurement is no longer reliable and cannot be

used for closed-loop control, the open-loop control actions that were calculated at the beginning

of the material constraint period will be used as a substitute until the end of the material constraint

period. At the end of the material constraint period, a cyber-attack detector is activated to determine

any occurrence of an attack, and the reliability of the control system is re-assessed. The detector

will provide information on the security status of the feedback measurements over the latest

material constraint period. Upon mitigating the impact of a confirmed attack and/or confirming

the security of the control system, closed-loop control with secure feedback measurement can be

reactivated as a new material constraint period starts.

Although the absence of feedback may result in minor performance degradation in the case

that process disturbances and modeling error exist and no cyber-attack is present, this strategy also

completely eliminates the impact of a min-max or surge attack on the sensor measurements. The

implementation strategy is illustrated in a logic flow diagram in Fig. 8.5, and the specific steps are

outlined as follows:

1. At the start of a material constraint period (t = tN0), open-loop control actions over the course

of the material constraint period are computed following Eq. 8.16. Closed-loop control is

active, calculating the optimal control action over the next sampling period following Eq. 8.5

with Ωρsecure replacing Ωρe .

2. If ρsecure−V (x̄(tk)) ≤ c, (where c > 0 quantifies the distance from the boundary of secure

region to categorize a state measurement as being untrustworthy), then closed-loop control
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Figure 8.5: Logic flowchart outlining the implementation steps of the attack-resilient operation
of LEMPC using combined closed-loop and open-loop control actions when operating within a
secure region Ωρsecure .

(i.e., the LEMPC of Eq. 8.5) will be deactivated and open-loop control action u′(tk)

calculated by the LEMPC of Eq. 8.16 will be used as an substitute.

3. Open-loop control actions u′(tk) will be used until tN0+Np .

4. At tN0+Np , the cyber-attack detector is activated to examine past full-state measurements x̄(tk)

for k ∈ [N0,N0 +Np]. If an attack is detected, then disconnect the tampered sensors, reroute

these measurement signals to a set of secure back-up sensors, and go to Step 5. If detection

indicates no attack, go to Step 5.

5. At tN0+Np , a new material constraint period starts, and closed-loop control is reactivated.
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Repeat Steps 1 – 4.

Remark 8.3. In some cases, the system may never reach the boundary of Ωρsecure depending on the

initial condition, the size of Ωρsecure , and the length of the material constraint period. If this is the

case, and cyber-attacks wrongfully set the measured states to be on the boundary of Ωρsecure , then

closed-loop control will still be deactivated following the implementation of Step 2, and open-loop

control actions will be used.

8.4.3 Post Cyber-Attack State Reconstruction

In addition to redundant sensors and integrated open-loop and closed-loop control, in this section,

we present a state reconstruction method to handle the compromised sensor measurements and

continue process control following the successful detection of cyber-attacks. Measurement

reconstruction has been of interest for many decades in the process fault detection field, e.g.,

[8, 54, 77, 127, 156, 160, 170]. As it is important to develop accurate detectors to promptly report

the intrusion of a cyber-attack as well as building robust frameworks to mitigate the impact of

cyber-attacks before the detector is activated, it is equally important to have recuperating measures

in place to maintain controllability of the system in the absence of reliable sensors. The state

reconstructor is developed to estimate the true state values using state measurements x̄ and control

actions u applied in real-time operation. In this section, we first introduce the recurrent neural

network that is used to develop the state reconstructor using open-loop simulation data of the

nonlinear system of Eq. 8.1. Subsequently, the state reconstructor is implemented in real-time to

obtain estimated true state values based on closed-loop simulation data under attacks.

8.4.3.1 Recurrent neural network

Recurrent neural network (RNN) has been widely used in developing nonlinear dynamic functions

based on time-series data to predict future states. The RNN structure is shown in Fig. 8.6 and

its mathematical formulation can be found in Eq. 2.4. Since there exists a feedback loop in
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its neurons, RNN models exhibit temporal behavior, and therefore, can be utilized to represent

dynamic systems. The RNN-based state reconstructor is developed to estimate true state values

in real-time based on faulty measurements x̄ and control actions u. Specifically, the inputs to the

RNN model are x̄(t) and u(t), ∀t ∈ [tk, tk+r), where r is the number of sampling periods in the

reconstruction window, and the output of the RNN models is the estimate of the true state x over

t ∈ [tk, tk+r).
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Figure 8.6: Recurrent neural network structure (left) and time-series input and output data (right),
where x̄, u are the input vectors, x is the output vector, ∆ is the sampling period, r∆ is the length
of reconstruction window of RNN model, and fNN represents the hidden neurons that are used to
capture the nonlinear relationship between input and output.

To develop RNN-based state reconstructors for the nonlinear system of Eq. 8.1 under the

min-max, surge, and geometric cyber-attacks on sensor measurements that were introduced in

the previous section, we first perform extensive open-loop simulations for the nonlinear system of

Eq. 8.1 with x ∈Ωρ and u ∈U under each of the different cyber-attacks, respectively. Specifically,

starting from an initial condition x0 ∈ Ωρ , we apply a set of open-loop input sequences to the

nonlinear system of Eq. 8.1 and introduce the above cyber-attacks at the second sampling period

of each simulation run to obtain the trajectories of measured states and true states over a certain

period of time (i.e., reconstruction window length r∆), respectively. Subsequently, the dataset

that consists of extensive open-loop simulation runs is split into training, validation and testing
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datasets, and the training process of RNN models is conducted following the standard procedure

as introduced in Section 2.2.2 to minimize the difference between the predicted and the actual

true state trajectories. Additionally, to ensure that the obtained RNN model can provide reliable

state estimation for closed-loop operation of the nonlinear system of Eq. 8.1, the RNN model

needs to be well trained such that the error between estimated states x̂ and actual states x satisfies

|x− x̂| ≤ γ , where γ > 0 is a sufficiently small bound. The RNN models are demonstrated to be

able to capture the attacking patterns, for example, the zigzag pattern of measured states in the

presence of min-max cyber-attack as shown in Fig. 8.11b, and provide the corresponding estimate

of true state trajectory under a certain type of cyber-attack.

Remark 8.4. The data-based state reconstruction approach can be applied in the closed-loop

simulation of the nonlinear system of Eq. 8.1 provided that the sensor attacks are sparse attacks

(i.e., a part of process state measurements remains secure), since the RNN model essentially

generates the estimate of true states for those compromised sensors based on other secure

sensor measurements and used control actions. Under the worst-case scenario that all the state

measurements are under attacks, for example, the measured states remain unchanged for all times

under attacks, it becomes barely possible for data-based state reconstructor to estimate the true

states without any reliable information of secure sensors. In this case, an open-loop model-based

control strategy could be applied to mitigate the impact of cyber-attacks to the greatest extent.

Remark 8.5. It is noted that since the dataset is generated using extensive open-loop simulations,

the application of the RNN-based state reconstructor developed in this section is not restricted to

the use of the LMPC of Eq. 8.4 or the LEMPC of Eq. 8.5. It can be applied to the closed-loop system

of Eq. 8.1 using any other controller, for example, proportional-integral-derivative controller,

provided that the state measurement is available at each sampling step. Therefore, the RNN-based

state reconstruction provides a general approach to state estimation for the nonlinear system of

Eq. 8.1 under sparse sensor attacks.
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8.4.3.2 Online reconstruction

Once cyber-attacks are detected by the NN-based detectors developed in Section 8.3, online state

reconstruction will be implemented from the last secure checkpoint. Specifically, the RNN-based

state reconstruction will be performed with the following steps. 1) Since the NN-based detectors

can be implemented in real-time with a moving detection window to confirm the occurrence of

cyber-attacks only if the cyber-attacks have been detected multiple times, the secure checkpoint

will be set at the sampling step before the first detection to make sure the initial state measurement

for the RNN reconstructor is not attacked. 2) Subsequently, the state reconstructor is applied to

predict the state evolution from the last secure checkpoint to the current time step t = tk based on

the sensor measurements and control actions in this period. Since the RNN model is developed

with a reconstruction window length r∆, the estimated state in the second sampling period in the

window will be used as the initial conditions for the next reconstruction as it moves one sampling

step forward every time. 3) The estimated state x(tk) at the current time step will be sent to the

controller (e.g., the LMPC of Eq. 8.4 or the LEMPC of Eq. 8.5) to calculate the control action u(tk)

for the next sampling period t ∈ [tk, tk+1). 4) After the control action u(tk) is applied and the new

state measurements x̄(t), t ∈ [tk, tk+1) are received, the state reconstruction window will be rolled

one sampling time forward to estimate the true state value at t = tk+1 using new compromised state

measurements and control actions.

Remark 8.6. It is noted that the RNN-based state reconstruction method is not restricted to the

cyber-attacks discussed in this chapter since it is a data-driven approach that does not require

any first-principles knowledge of process model or of cyber-attacks. For example, it can be

applied to deception attacks such as optimization-based deception attack, randomly injected

attacks and scheduled attacks on sensor measurements. However, there is one restriction, that

is the cyber-attacks should target sensor measurements instead of blocking the communication

networks between sensors and controllers, such that the RNN reconstructor can continuously

receive (falsified) state measurements to make estimation. Therefore, the proposed approach may

not be applied to cyber-attacks such as denial-of-service attack that makes sensor measurement
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unavailable to its intended users by temporarily disrupting network services.

8.4.3.3 Closed-loop control with reconstructed states

After the estimated state x̂(tk) at the current time step t = tk is obtained through state reconstruction,

the LMPC of Eq. 8.4 and the LEMPC of Eq. 8.5 will use the estimated state x̂ instead of sensor

measurement x̄ to solve for the optimal control actions afterwards. However, considering that

there may exist a state estimation error, in this section, we demonstrate that the RNN model

needs to be well trained to achieve a desired estimation accuracy such that closed-loop stability

is still guaranteed under LMPC/LEMPC with state reconstruction. The following proposition is

developed to demonstrate that the error between true state trajectories x and the trajectories based

on estimated states x̂ of the nonlinear system of Eq. 8.1 is bounded under the same control actions

for finite time.

Proposition 8.1. Consider the solution x(t) of the nominal system ẋ = f (x,u,0) of Eq. 8.1 based

on the actual state x, and the solution x̂(t) of the nonlinear system ˙̂x = f (x̂,u,0) based on the

estimated state x̂ with the initial condition |x0− x̂0| ≤ γ , where γ > 0. If x(t), x̂(t) ∈ Ωρ for all

times, then there exists a positive constant κ such that the following inequalities hold ∀x, x̂ ∈Ωρ :

|x(t)− x̂(t)| ≤ γeLxt (8.17a)

V (x)≤V (x̂)+α4(α
−1
1 (ρ))|x− x̂|+κ|x− x̂|2 (8.17b)

Proof. We define the state error vector as e(t) = x(t)− x̂(t) and derive the time-derivative of e(t),

∀x, x̂ ∈Ωρ and u ∈U using Eq. 8.3c as follows:

|ė|= | f (x,u,0)− f (x̂,u,0)| ≤ Lx|e(t)| (8.18)

Since the error between x0 and x̂0 is bounded (i.e., |x0− x̂0| ≤ γ), the upper bound for |e(t)| is
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derived for all x(t), x̂(t) ∈Ωρ as follows:

|e(t)|= |x(t)− x̂(t)| ≤ γeLxt (8.19)

Additionally, we derive Eq. 8.17b based on Eq. 8.2a, Eq. 8.2c and the Taylor series expansion of

V (x) around x̂ for all x, x̂ ∈Ωρ as follows:

V (x)≤V (x̂)+
∂V (x̂)

∂x
|x− x̂|+κ|x− x̂|2

≤V (x̂)+α4(α
−1
1 (ρ))|x− x̂|+κ|x− x̂|2

(8.20)

where κ is a positive real number.

The following proposition is developed to demonstrate that by implementing the stabilizing

controller u = Φ(x̂) ∈U based on estimated states x̂ in a sample-and-hold fashion after detection

of cyber-attacks, V̇ (x) for the nonlinear system of Eq. 8.1 can be rendered negative for all times

such that the true state x can be driven towards the origin.

Proposition 8.2. Consider the nominal system of Eq. 8.1 with w(t)≡ 0 under the sample-and-hold

implementation of the controller u=Φ(x̂)∈U based on the estimated state x̂ that satisfies |x̂−x| ≤

γ . Let εs > 0, ∆ > 0 and ρ > ρs > 0 satisfy

−α3(α
−1
2 (ρs))+L

′
x(γ +M∆)≤−εs (8.21)

Then, V̇ (x)≤−εs holds for any x(tk) ∈Ωρ\Ωρs .

Proof. The time-derivative of V (x(tk)) is obtained as follows:

V̇ (x(tk)) =
∂V (x(tk))

∂x
f (x(tk),Φ(x̂(tk)),0)

=
∂V (x̂(tk))

∂x
f (x̂(tk),Φ(x̂(tk)),0)+

∂V (x(tk))
∂x

f (x(tk),Φ(x̂(tk)),0)

− ∂V (x̂(tk))
∂x

f (x̂(tk),Φ(x̂(tk)),0)

(8.22)
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We can further derive the following inequalities using Eq. 8.2a, Eq. 8.2b and the Lip:cyberschitz

condition of Eq. 8.3:

V̇ (x(tk))≤−α3(α
−1
2 (ρs))+L

′
x|x(tk)− x̂(tk)|

≤−α3(α
−1
2 (ρs))+L

′
xγ

(8.23)

Therefore, V̇ (x) ≤ −εs can be proved by further accounting for the impact of sample-and-hold

implementation of control actions provided that Eq. 8.21 is satisfied as follows:

V̇ (x(t)) =
∂V (x(t))

∂x
f (x(t),Φ(x̂(tk)),0)−

∂V (x(tk))
∂x

f (x(tk),Φ(x̂(tk)),0)

+
∂V (x(tk))

∂x
f (x(tk),Φ(x̂(tk)),0)

≤L
′
x|x(t)− x(tk)|+V̇ (x(tk))

≤L
′
xM∆−α3(α

−1
2 (ρs))+L

′
xγ

≤− εs

(8.24)

Based on the above proposition showing that V̇ can be rendered negative within each sampling

period, closed-loop stability for the nonlinear system of Eq. 8.1 under the LMPC of Eq. 8.4 can be

readily proved, and therefore, is omitted here. The interested reader is referred to the similar proof

for LMPC with secure state measurement in Section 2.3.2.

The next proposition demonstrates that Ωρe needs to be carefully chosen for the closed-loop

system under LEMPC to ensure the invariance of the stability region Ωρ accounting for the

estimation error.

Proposition 8.3. Consider the nominal system of Eq. 8.1 with w(t)≡ 0 under the sample-and-hold

implementation of the LEMPC of Eq. 8.5. Let ∆ > 0 and ρ > ρe > ρs > 0 satisfy the following

inequality:

ρe ≤ ρ−α4(α
−1
1 (ρ))γeLx∆−κ(γeLx∆)2 (8.25)
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If the state estimation error |x̂−x| is bounded by γ for all times, then, the true state of the nonlinear

system of Eq. 8.1 under LEMPC is guaranteed to remain inside the stability region Ωρ , ∀t ≥ 0, for

any x0 ∈Ωρ .

Proof. Following the results of Proposition 8.1, ρe is determined accounting for the error between

true state trajectories x of the nonlinear system of Eq. 8.1 and the predicted trajectories based on

estimated state x̂ under the sample-and-hold implementation of control actions. The proof follows

closely to that for LEMPC with secure state measurement in [57], and is omitted here.

Therefore, given that the RNN model is well trained to achieve a sufficiently small estimation

error, i.e., |x− x̂| ≤ γ , closed-loop stability is guaranteed for the nonlinear system of Eq. 8.1 under

resilient LMPC and LEMPC using estimated state x̂ upon detection of cyber-attacks.

Remark 8.7. In this study, we assume no measurement noise, and thus, the RNN state

reconstructor takes the compromised state measurement under cyber-attacks as the inputs to

estimate the true state values. However, in the presence of measurement noise, which is

very common in practical systems, the RNN reconstructor can still work well as long as the

training dataset is developed from simulations/industrial process data that also account for the

measurement noise with the same distribution. Additionally, closed-loop stability of MPC is still

guaranteed provided that the modeling error of the RNN reconstructor is sufficiently small, which

will be implemented as a constraint in the training process.

8.5 Application to a Nonlinear Chemical Process

The application of the LEMPC of Eq. 8.5, the resilient control strategy presented in Section 8.4.2,

as well as the training and online detection of NN cyber-attack detectors are demonstrated on

the chemical reactor example that has been discussed in Chapter 7. Specifically, we consider an

irreversible second-order reaction, A→ B, that transforms reactant A to product B at a reaction rate

rB = k0e−E/RTC2
A in a well-mixed, non-isothermal continuous stirred tank reactor (CSTR). The
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CSTR is equipped with a heating jacket that supplies or removes heat at a rate Q. The dynamic

model of this CSTR process is described by the following material and energy balance equations:

dCA

dt
=

F
V
(CA0−CA)− k0e

−E
RT C2

A (8.26a)

dT
dt

=
F
V
(T0−T )+

−∆H
ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV
(8.26b)

where the description of process variables can be found in Section 7.2.4, and a complete list of

the process parameter values is given in Table 7.1. The CSTR is initially operated at the unstable

steady-state [CAs, Ts] = [1.95 kmol/m3, 402 K], and [CA0s Qs] = [4 kmol/m3, 0 kJ/hr]. The

manipulated inputs are the inlet concentration of reactant A and the heat input rate represented

by the deviation variables, i.e., ∆CA0 = CA0−CA0s and ∆Q = Q−Qs, respectively. Additionally,

considering the physical limitations, the manipulated inputs are bounded as follows: |∆CA0| ≤

3.5 kmol/m3 and |∆Q| ≤ 5× 105 kJ/hr. Both the state and the inputs of the closed-loop CSTR

system are represented in deviation variable forms, i.e., xT = [CA−CAs T−Ts] and uT = [∆CA0 ∆Q],

respectively. Therefore, the equilibrium point of the system is at the origin of the state-space, (i.e.,

xT
s = [0,0],uT

s = [0,0]). We assume that at time t = t0, the system is at the equilibrium point (i.e.,

the initial conditions of the system are x0 = [0,0]T ).

The control objective of LEMPC is to maximize the economic profit of the CSTR process

of Eq. 8.26 by manipulating the inlet concentration ∆CA0 and the heat input rate ∆Q, while

maintaining the closed-loop state trajectories in the stability region Ωρ for all times. The objective

function of the LEMPC optimizes the production rate of B as follows:

le(x̃,u) = rB(CA,T ) = k0e−E/RTC2
A (8.27)

The dynamic model of Eq. 8.26 is numerically simulated using the explicit Euler method with an

integration time step of hc = 2.5×10−5 hr. The nonlinear optimization problem of the LEMPC of

Eq. 8.5 is solved using the MATLAB OPTI Toolbox with the sampling period ∆ = 2.5×10−3 hr.

The LEMPC of Eq. 8.5 uses the following material constraint to make the averaged reactant
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material available within one operating period tNp = 0.06 hr to be its steady-state value, CA0s (i.e.,

the averaged reactant material in deviation form, u1, is equal to 0).

1
tNp

∫ tNp

0
u1(τ)dτ = 0 kmol/m3 (8.28)

The control Lyapunov function V (x) = xT Px is designed with the following positive definite P

matrix:

P =




1060 22

22 0.52


 (8.29)

The closed-loop stability region Ωρ for the CSTR with ρ = 320 is characterized as a level set

of Lyapunov function inside the region D, from which the origin can be rendered asymptotically

stable under the controller u = Φ(x) ∈ U . The secure operating region Ωρsecure for the LEMPC

in Eq. 8.5 is selected to have ρsecure = 90. Specifically, the design of the secure operating

region Ωρsecure can be adjusted depending on system dynamics and desired threshold for economic

benefits. If the process dynamics is very fast, then more room needs to be vacated between Ωρ and

Ωρsecure to accommodate for the fast changes in process states when under cyber-attacks. However,

designing a conservative secure operating region Ωρsecure is at the expense of compromising

economic benefits, since the maximum economic gain under normal operation is bounded by

Ωρsecure . Therefore, the determination of the size of Ωρsecure comes from a balance between

operational stability and economic performance.

Resilient Operation of LEMPC

With initial conditions x0 = [0,0]T , the closed-loop operation of the CSTR process in Eq. 8.26 over

one material constraint period tNp under the LEMPC in Eq. 8.5, and under the resilient control of

LEMPC with combined open-loop and closed-loop control actions as described in Section 8.4.2

around the secure operating region Ωρsecure are both carried out. Fig. 8.7 presents the state-space

plot showing the trajectory of the measured process states using the LEMPC of Eq. 8.5 and using
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the resilient LEMPC control strategy when the process is under no attack. The switching from

using closed-loop to open-loop control actions happens at ts = 0.0175 hr. For t0≤ tk < ts, measured

process states are well within the secure operating region Ωρsecure , and closed-loop control using

the LEMPC of Eq. 8.5 is used with state feedback updates. The LEMPC of Eq. 8.5 is deactivated

at ts = 0.0175 hr when the measured process states first reach the boundary of the secure operating

region, and can no longer be trustworthy as this may be a result of a cyber-attack, i.e., when

ρsecure−V (x̄(tk))≤ c, where c = 0.5 for this case study. Therefore, for ts≤ tk ≤ tNp , control actions

u′(tk) from the open-loop optimization of Eq. 8.16 that are solved based on the initial condition x0

will be applied.
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Figure 8.7: State-space plot showing the evolution of measured process states over one material
constraint period under LEMPC (red trajectory) and under resilient LEMPC (blue trajectory).

Even in the case that no process disturbance, no model mismatch, and no cyber-attack is
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present, the resulting state trajectories under LEMPC (closed-loop only), and the resilient LEMPC

(closed-loop followed by open-loop control actions after the switching time ts) are slightly

different. This is because the prediction horizon used in the ordinary LEMPC with periodic

closed-loop feedback has a length of N = 8 and rolls forward in time as feedback signal updates

are received, whereas the open-loop optimization problem computed at the beginning of the

material constraint period accounts for Np = 24. Therefore, the control actions computed from

the open-loop optimization, u′(tk), will be slightly different from u(tk) calculated from online

optimization, resulting in slightly different state trajectories.

Despite the subtle differences in the state trajectory, using open-loop control actions following

closed-loop control still maintains the process states within the secure operating region (hence the

stability region) for all times. It is important to note that, if the process is operated at steady-state,

the total economic benefits in the form of
∫ tNp

t0 le(x̄(t))dt is 0.6397 kmol/m3, which is much less

than that achieved under time-varying EMPC operation. The total economic benefits from t0 to

tNp using closed-loop-only control actions from the LEMPC of Eq. 8.5 is 0.7936 kmol/m3, and

using the resilient control strategy outlined in Section 8.4.2 is similarly 0.7947 kmol/m3. This

shows the effectiveness of the resilient control strategy when the system is under no attack as it

does not compromise system stability and economic performance. Furthermore, the similarity in

the two trajectories also suggests that, if a cyber-attack is present and the resilient control strategy

is utilized, the evolution of true process states will highly resemble that under closed-loop control

in the absence of cyber-attacks.

Cyber-attack Resiliency Assessment

The purpose of using the resilient control strategy outlined in Section 8.4.2 is to prevent true

process states from exiting the stability region Ωρ when under sensor cyber-attacks. Fig. 8.8 shows

the state-space plot of the evolution of true process states and attacked state measurements from

initial conditions x0 = [0,0]T over one material constraint period under LEMPC and under resilient

LEMPC when the temperature sensor is attacked by min-max, geometric, replay and surge attacks,
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respectively. In all cases, once the specified cyber-attack starts, it will continue until it has been

successfully detected; the detection results and process simulation after the detection are shown in

Section 8.5. Here, the simulation results over only one material constraint period are shown. After

a cyber-attack has tampered the sensor, the resulting falsified state measurements will not exit the

secure operating region Ωρsecure so as to stay inconspicuous to the control engineer.
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Figure 8.8: State-space plot showing the evolution of true process states and attacked state
measurements (yellow trajectories) over one material constraint period under LEMPC (blue
trajectories) and under resilient LEMPC (red trajectories) when (a) min-max, (b) geometric, (c)
replay, and (d) surge attacks, are targeting the temperature sensor, where the dash-dotted ellipse is
the stability region Ωρ and the dashed ellipse is Ωρsecure .

Min-max and surge cyber-attacks are added at t = ts = 0.0175 hr such that there will be no
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suspicious deviation in the Lyapunov function of the system. At t = 0.0175 hr, both the true

process state and the attacked state measurement will reach the boundary of the secure operating

region, V (x(ts))=V (x̄(ts))= ρsecure. As shown in Fig. 8.8(a) and Fig. 8.8(d), when the temperature

sensor is under min-max and surge attacks respectively, true process states will exit Ωρsecure and

eventually Ωρ if only closed-loop control actions from the online LEMPC optimization in Eq. 8.5

are used. However, when the resilient LEMPC control strategy is implemented, closed-loop control

is deactivated at t = 0.0175 hr, and the falsified feedback measurements can no longer impact the

control system. Open-loop control actions, which are calculated based on a correctly measured

set of initial conditions, are used starting at t = 0.0175 hr until the end of the material constraint

period when t = tNp = 0.06 hr. As a result, the true process states will not exit Ωρsecure , and the

evolution of the true process states is almost identical to that under secure closed-loop control.

The system stays resilient to min-max and surge attacks, with protected stability and comparable

control performance.

However, the resilient control strategy may not be effective when the system is under other

types of attacks, particularly in situations where the falsified state measurement does not approach

the boundary of Ωρsecure . To illustrate this, geometric attacks on the temperature measurements as

shown in Fig. 8.8(b) start at t = 0.01 hr following Eq. 8.8, where β = x(t)∗ (1.001) and α = 0.1.

As cyber-attacks could happen at any time instant during operation, geometric attacks are designed

and inserted as such to demonstrate the incapability of the resilient control strategy in handling

geometric attacks or attacks alike. At t = 0.01 hr, the states have not reached the boundary of

Ωρsecure , therefore not satisfying the condition for deactivating closed-loop control. Geometric

attacks starting at t = 0.01 hr resulted in state measurements that did not reach the boundary of

Ωρsecure for the entire duration of cyber-attack. Hence, closed-loop control continued with these

false measurements, and the true process states exited Ωρsecure during operation. Despite having a

correct array of open-loop control actions computed at t = 0 hr using the correctly measured initial

conditions, these control actions were not used. As a result, the resilient control strategy fails to

ensure that the true process states are maintained within the secure operating region Ωρsecure .
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Moreover, there may be situations where, even when closed-loop control is deactivated and

feedback measurements are no longer used, the true process states still exit Ωρsecure because the

open-loop control actions are calculated based on false sensor measurements. To illustrate this

scenario, replay attacks as shown in Fig. 8.8(c) start at t0 = 0 hr, and the replayed signals span

the duration of one material constraint period. In other words, the replayed signals are real

closed-loop state measurements when the system started from a different set of initial conditions,

x̄0 = [−0.2107 kmol/m3;7.8047 K]. Since the initial conditions x̄0 are incorrect, open-loop control

actions optimized over the prediction horizon of Np based on x̄0 are also not correct. As a result,

despite the falsified state measurements also reaching the boundary of Ωρsecure at t = 0.0175 hr and

deactivating closed-loop control, these incorrect open-loop control actions applied on the process

still resulted in true process states exiting the secure operating region.

In this example, when under geometric and replay attacks, the true process states did not exit the

stability region Ωρ ; however, this may not be the case for a different geometric attack with larger α

(geometric factor), a different replay attack that yielded more aggressive open-loop control actions,

or for a faster process. In other words, system stability cannot be guaranteed by using the resilient

control strategy, and an effective cyber-attack detection mechanism needs to be included.

Detectors Training and Testing

To train neural-network detectors, training data will be collected under closed-loop operation

with the secure LEMPC outlined in Eq. 8.5. Simulation period is one material constraint period

tNp = 0.06 hr with Np = 24. Cyber-attacks are added at random times and last until the end of

the simulation period. Neural network models are constructed and trained using the MATLAB

Machine Learning and Deep Learning Toolboxes.

The reaction rate to yield product B, rB(x̄) can be calculated from full-state measurement x̄(t) at

each time instant tk from k = 0 to k = Np following Eq. 8.27, where CA = x̄1+CAs and T = x̄2+Ts.

The input parameters used for neural network training are the time-varying trajectory of the rate

of change in r(x̄) over the simulation period of one material constraint period Np = 24, which is
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denoted as p(x̄), shown as follows:

p(x̄(t)) =
dr(x̄)

dt
(8.30)

The evolution of p(x̄) when the temperature sensor is under no attack, and under min-max,

geometric, replay, and surge attacks, are shown in Fig. 8.9. Each sample consists of a 1× 24

array of p(x̄), started from a different initial condition within Ωρ . With extensive closed-loop

simulations, equal number of samples are collected for each output label, from which 70% are

used for training, and 30% are used for testing.
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Figure 8.9: Time-derivative of the reaction rate rB of Eq. 8.27 based on measured process states
over one material constraint period, when the temperature sensor is under no attack, and under
min-max, geometric, replay, and surge attacks, respectively.

First, min-max attacks are used to train a neural-network-based detector. This feed-forward

297



neural network model has two hidden layers with 12 and 10 neurons in each layer respectively.

Both hidden layers use a tansig activation function, which is in the form g1,2(z) = 2
1+e−2z −1. The

output layer uses a so f tmax function to provide a predicted probability of the class labels, which is

in the form of g3(z j) =
ez j

∑
H
i=1 ezi

where H denotes the number of class labels. Bayesian regularized

mean squared error cost function S(w) are minimized with respect to the weights and biases using

the Levenberg-Marquardt algorithm, in which the gradient and the Hessian matrix of S(w) are

calculated using the back-propagation method. A total of 750 samples are collected for each class

label. The training time for this 2-class detector is 2.05 seconds, undergoing 70 epochs, and the

detector achieves a training accuracy of 98.9%. The testing accuracy of this detector against the

different attack types is shown in Table 8.1. Note that geometric attacks are not identified as being

attacked due to the vast difference in the trends of p(x̄) when under geometric attack compared to

min-max attacks as shown in Fig. 8.9.

A second detector is trained with min-max and geometric attacks. The detector is able to

classify between 3 classes: not attacked, attacked by min-max cyber-attacks, and attacked by

geometric cyber-attacks. Thus, the detector is capable of differentiating the types of cyber-attacks

in addition to indicating the presence of one. This detector is trained because geometric attacks

exhibit very different behavior than min-max attacks, and therefore the testing accuracy by the

2-class detector is very low. This 3-class feed-forward neural network detector has two hidden

layers with 15 and 12 neurons each, using the same activation functions and cost function in

Eq. 8.12, which is minimized using the Levenberg-Marquardt algorithm. The training time for

this 3-class detector is 39.48 seconds with 300 epochs. This 3-class detector achieves an overall

training accuracy of 91.8%, and its testing accuracies in response to min-max, geometric, and surge

attacks are shown in Table 8.1. The detector accurately identifies min-max and geometric attacks

as their respective labels, and it classifies 71.0% of surge attacks as min-max, 10.0% as geometric,

and the remaining 19% are wrongly classified as “not attacked”.

Remark 8.8. Since replay signals could mimic the secure operation of one entire material

constraint period starting at a different initial condition, they are essentially a different sample that
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Table 8.1: Detection accuracies of NN detectors in response to min-max, geometric, and surge
attacks.

Detector 1 Detector 2

(Attacked vs. Not Attacked) (Min-max vs. Geometric vs. Not Attacked)

Min-max 98.3% 89.7%

Geometric 2.4% (Attacked) 71.1%

Surge 87.0% (Attacked) 71.0% (Min-max); 10.0% (Geometric)

Not Attacked 98.4% 95.6%

belongs to the class of “not attacked”, and will be rightfully classified as being “not attacked”.

At the end of the material constraint period, the falsified signals follow exactly the trajectory

of previous secure measurements of one period, thus they will remain undetectable by the NN

detectors.

Online Detection

Detector 1 is used to detect min-max and surge attacks, whereas detector 2 is used to detect

geometric attacks. The corresponding detector is activated at the end of the material constraint

period, and examines state measurements received over the last material constraint period. Since

replay attacks cannot be detected, the online detection results are also not shown. Fig. 8.10 shows

the evolution of true process states and measured process states attacked by min-max, geometric,

and surge cyber-attacks when the process is controlled by the resilient LEMPC with combined

open-loop and closed-loop control. The figures show the trajectories over two material constraint

periods, where NN-based detection occurs twice – once at the end of the first period, and once at

the end of the second period. Min-max and surge attacks are correctly detected by detector 1 at the

end of the first constraint period t = 0.06 hr by examining the trajectory of p(x̄(t)) from t = 0 hr

to t = 0.06 hr, after which the sensor devices are switched to a secure set of redundant sensors

and operation continues with these secure sensor measurements. During the second period, the

attacked old set of sensors are no longer connected to the control system, and the newly switched
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set of sensors are not tampered by cyber-attacks. At the end of the second material constraint

period t = 0.12 hr, detector 1 is activated again, and it correctly classifies the secure measurements

as “not attacked”.

Furthermore, if a particular attack type is trained as a separate class (i.e., “geometric”) from

other attack types (i.e., “min-max”), then the detector is also capable of identifying the type of

cyber-attack. As shown in Fig. 8.10(b), although the true process states exited Ωρsecure during

the first material constraint period (closed-loop control based on false feedback signals was not

deactivated), the state measurements attacked by geometric attacks were still correctly identified

as geometric by detector 2 at the end of the first material constraint period. After switching the

sensor devices to the respective secure back-up sensors, detector 2 correctly identifies the trajectory

of p(x̄(t)) over the second material constraint period from t = 0.06 hr to t = 0.12 hr as “not

attacked”. This means that, although the resilient control strategy cannot ensure stability over

one material constraint period if the attacked measurement deliberately avoids approaching the

boundary of Ωρsecure , the attack can still be detected at the end of the material constraint period,

and mitigation measures can be taken following the successful detection to terminate the impact

of the cyber-attacks. Therefore, setting a shorter material constraint period in addition to operating

within a conservative secure region could be another preventative method to consider, so that the

cyber-attack detection can happen more frequently.

Real-time State Reconstruction

In addition to the integrated open-loop and closed-loop control, we also carry out the closed-loop

simulations for the CSTR system of Eq. 8.26 under LEMPC with state reconstruction that was

discussed in Section 8.4.3. In this case, we assume that the CSTR system of Eq. 8.26 is normally

operated in the region Ωρe with ρe = 280 under no attacks, and the cyber-attack detection is

implemented in real-time, i.e., at each sampling period, instead of after each material constraint

period. When cyber-attacks occur, the true state trajectory may leave Ωρe under LEMPC, and

therefore, the size of Ωρe is carefully chosen to maintain the state within the stability region Ωρ
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before the detection of cyber-attacks.

Two-hidden-layer RNN models with 60 neurons in each layer are designed using the

state-of-the-art machine learning library, Keras, to train the state reconstructors for min-max,

surge, and geometric cyber-attacks, respectively with datasets consisting of around 150,000 data

sequences. The averaged mean square errors of the three state reconstructors on training and

validation datasets are maintained below 10−5. The averaged training time for each neural network

is around 2.5 hr. The training is done off-line, and the obtained RNN model is used on-line

for state estimation within MPC. It is noted that the state estimation within MPC is completed

almost instantaneously because the RNN model after training is essentially a nonlinear function

that calculates estimated values (output) given the past state measurements (input). Therefore,

the computational time for running estimation using RNN models is negligible compared to the

process sampling time.

The closed-loop state trajectories and profiles for min-max, surge, and geometric cyber-attacks

under LEMPC are shown in Fig. 8.11a-8.11b, Fig. 8.12a-8.12b, and Fig. 8.13a-8.13b, respectively.

Specifically, in Fig. 8.11a, it is shown that starting from the initial condition x0 = (0, 0), the system

of Eq. 8.26 is initially operated without any attacks. Then, the min-max cyber-attack is introduced

on the temperature sensor at t = 0.05 hr, and it is shown that the sensor measurement (dashed red

trajectory) stays on the lower boundary of Ωρe , while the true state trajectory (blue) starts exiting

the Ωρe from the upper boundary. Once the cyber-attack is detected at t = 0.07 hr, we reconstruct

the true states (colored dotted trajectories) based on past sensor measurements and control actions,

and subsequently, the LEMPC of Eq. 8.5 restabilizes the CSTR system by using the estimated state.

In Fig. 8.11b, it is demonstrated that the reconstructed concentration and temperature are very close

to the true states in closed-loop simulation, and therefore, provide reliable state estimation for the

feedback control with LEMPC. During online implementation, state reconstruction will be ideally

activated after the first positive detection given by the cyber-attack detector to save computational

power, given that detection happens in real-time and promptly reports the occurrence of a

cyber-attack. However, starting state reconstruction is not limited to only when the detector
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gives a positive detection. Here, we have plotted the reconstructed states right after the attack

occurs to demonstrate the effectiveness of this RNN-based state reconstruction method throughout

the attack duration. Moreover, even in the case that the sensor measurements are not faulty, the

NN-based state reconstructor is also capable of predicting the true process states successfully with

a sufficiently small bounded error. Therefore, state reconstruction could start at the beginning of

the operation period, as long as the sensor measurements prior to which time are reliable.

In Fig. 8.12a-8.12b, we perform closed-loop simulation under surge cyber-attack for multiple

EMPC operating periods. It is demonstrated in Fig. 8.12b that the surge cyber-attacks are

introduced in each material constraint period (i.e., from t = 0 hr to t = 0.15 hr, from t = 0.15 hr

to t = 0.3 hr, and from t = 0.3 hr to t = 0.45 hr with tNp = 0.15 hr), from which the compromised

sensor measurement first reaches its maximum allowable value and remains a small deviation

from true states afterwards. Similarly, RNN-based state reconstructor successfully estimates

the true state trajectory and provides a reliable correction for sensor measurement for LEMPC.

Additionally, Fig. 8.13a-8.13b show the simulation results of closed-loop CSTR system under

geometric cyber-attack, for which the analysis is similar to the above, and is omitted here.

8.6 Conclusions

In this chapter, the secure operation of nonlinear chemical processes under MPC/EMPC was

presented via the design of resilient control strategies, and a neural-network-based cyber-attack

detector. Considering a general class of nonlinear systems, the NN-based detection system was

first developed with the sliding detection window to detect intelligent cyber-attacks. Subsequently,

resilient control systems were developed with several control strategies including redundant

sensors, combined open-loop and closed-loop control, and post cyber-attack state reconstruction.

Through simulating a continuously stirred tank reactor process, it was demonstrated that the

proposed control strategy was effective in maintaining process stability against particular types

of malicious cyber-attacks, namely min-max, geometric and surge attacks, while achieving
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comparable economic performance compared to nominal operation under no attacks. A

neural-network-based cyber-attack detector was able to provide a diagnosis at the end of each

LEMPC operation period, and simulation results demonstrated that min-max and surge attacks

could be successfully detected. Additionally, the RNN-based state reconstructor successfully

estimated the true states in real-time implementation of LEMPC such that closed-loop stability

of the nonlinear processes can be guaranteed upon cyber-attack detection.
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Figure 8.10: State-space plot showing the evolution of true process states (blue trajectories)
and attacked state measurements (red trajectories) over two material constraint periods under the
resilient LEMPC when (a) min-max, (b) geometric, and (c) surge attacks, targeting the temperature
sensor are successfully detected by a NN detector at the end of the first material constraint period,
t = 0.06 hr, where the dash-dotted ellipse is the stability region Ωρ and the dashed ellipse is Ωρsecure .
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Figure 8.11: (a) State-space trajectories, and (b) closed-loop profiles of true state (blue), measured
state (red), and reconstructed state (marked by colored circles) for the CSTR system of Eq. 8.26
under LEMPC when a min-max cyber-attack is introduced at t = 0.05 hr on the temperature sensor.
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Figure 8.12: (a) State-space trajectories, and (b) closed-loop profiles of true state (blue), measured
state (red), and reconstructed state (marked by colored circles) for the CSTR system of Eq. 8.26
under LEMPC when surge cyber-attacks are introduced at t = 0.03 hr, t = 0.21 hr, and t = 0.36 hr
on the temperature sensor.
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Figure 8.13: (a) State-space trajectories, and (b) closed-loop profiles of true state (blue), measured
state (red), and reconstructed state (marked by colored circles) for the CSTR system of Eq. 8.26
under LEMPC when geometric cyber-attacks are introduced at t = 0.03 hr, t = 0.21 hr, and t =
0.36 hr on the temperature sensor.
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Chapter 9

Conclusion

This dissertation provides a number of rigorous methods for the design of machine-learning-based

MPC systems to improve process operational safety and cybersecurity for chemical processes

described by nonlinear dynamic models. Specifically, data-driven models were developed

for nonlinear dynamic processes using machine learning techniques, and then incorporated in

MPC and EMPC schemes to predict process dynamics in solving the optimization problems.

Following that, the real-time implementation of machine-learning-based MPC/EMPC with online

learning of machine leaning models was discussed. Physics-based machine learning modeling

methods were further presented to improve model performance by accounting for a priori process

knowledge. Subsequently, model predictive control (MPC) and economic MPC schemes that

use control Lyapunov-barrier functions (CLBF) to ensure closed-loop stability and operational

safety were presented with rigorous stability and safety analysis. Then, the development of

machine-learning-based CLBF-MPC and CLBF-EMPC schemes were presented with process

stability and safety analysis. Finally, an integrated detection and control system for process

cybersecurity was developed, in which several types of intelligent cyber-attacks, machine learning

detection methods and resilient control strategies were presented.

In Chapters 2, 3, 4 and 5, machine learning techniques were utilized to develop data-driven

models to approximate nonlinear dynamic processes. Specifically, in Chapters 2 and 3, the
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concept of recurrent neural networks (RNN) and a general framework to develop RNN models

for nonlinear dynamic systems were first introduced. Machine-learning-based MPC and EMPC

schemes were developed by incorporating RNN model as the prediction model, with sufficient

conditions provided to ensure closed-loop stability. Parallel computing of an ensemble of machine

learning models were developed to improve computational efficiency in training and in closed-loop

operation under RNN-MPC. In Chapter 4, online learning of machine learning models were

utilized to update machine learning models using the most recent process data in order to improve

model accuracy for the nonlinear process subject to time-varying disturbances. In Chapter 5, three

physics-based machine learning modeling approaches (i.e., hybrid model, partially-connected

RNN model, and weight-constrained RNN model) that incorporate a priori process knowledge

into RNN models were developed to improve model accuracy. The effectiveness of all the

aforementioned machine learning models and machine-learning-based MPC/EMPC schemes were

demonstrated through the applications to chemical process examples.

In Chapter 6, the concept of operational safety in process control was introduced, followed by a

novel function termed control Lyapunov-barrier function (CLBF) that was used to derive stability

and safety properties. Lyapunov-based MPC and EMPC schemes that incorporate CLBF-based

constraints were developed to maintain the process state in the safe operating region and optimize

process performance simultaneously. Rigorous theoretical results of closed-loop stability, process

operational safety and recursive feasibility of MPCs were developed, and a benchmark chemical

reactor example was used to illustrate the effectiveness of the proposed CLBF-based MPC/EMPC

methods.

In Chapter 7, issues relating to model development and real-time implementation of

CLBF-based MPC schemes were addressed. The CLBF-based MPC and EMPC schemes using

RNN models for predicting system dynamics were developed, with sufficient conditions under

which closed-loop stability and operational safety were derived. Online learning of machine

learning models were implemented within MPCs to update models for the nonlinear process

subject to time-varying disturbances. The methods were applied to the benchmark chemical reactor
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example.

In Chapter 8, machine-learning-based detection systems and resilient control schemes were

developed to detect and mitigate the impact of stealthy cyber-attacks in MPC and EMPC systems.

The construction method of data-based machine-learning detectors that can detect multiple classes

of intelligent cyber-attacks was first presented. Several cyber-attack resilient control strategies

were subsequently developed to contain and eliminate the impact of cyber-attacks by reconfiguring

the control system. The application to a benchmark multivariable nonlinear process example was

presented to evaluate the ability of the integrated detection and mitigation scheme.
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