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Perspective

Is a short anesthetic exposure in children safe? Time will tell: a 
focused commentary of the GAS and PANDA trials 
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Abstract: Early life exposure to general anesthesia in preclinical studies has consistently led to permanent 

cognitive deficits later in life. However, the extent to which this finding is translatable to humans is the subject of 

much debate as the results from clinical studies have been mixed. Recently two well-designed clinical trials have 

attempted to add clarity to our murky understanding. The General Anesthesia compared to Spinal anesthesia (GAS) 

trial, was an international, prospective, randomized, multicenter, equivalence trial comparing infants undergoing 

herniorrhaphy receiving general anesthesia vs. neuraxial anesthesia. The results released are from a pre-determined 

secondary outcome of a behavioral/developmental assessment of 2 years old that found equivalence between the 

two groups. The Pediatric Anesthesia NeuroDevelopment Assessment (PANDA) trial was an ambi-directional 

cohort trial, comparing patients receiving general anesthesia for hernia repair before 3 years old vs. sibling-matched 

controls. The neuropsychological battery performed showed no difference between siblings. Taken together, there 

is cautious optimism that short anesthesia exposure may not lead to significant cognitive decline in humans, but one 

should also consider that the GAS trial has yet to release the primary endpoint, IQ testing at age 5, and the PANDA 

trial may not represent the general population given the high socioeconomic status and high control IQ scores. 

Furthermore, as seen in preclinical studies, the cognitive deficit might not be significant until later in life, and 

longer exposures to anesthesia may have a more deleterious effect on cognitive function. While these new studies 

greatly increase our understanding in humans, there are many more questions that need to be addressed.
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Whether general anesthesia early in life leads to poorer 
neurocognitive outcomes has been widely debated, with 
human and animal studies showing mixed results (1-4). It 
is a difficult problem to systematically address in humans 
due to the inherent confounds of surgical intervention 
and/or disease state that is generally comorbid with 
anesthesia exposure. Furthermore, while rodent and non-
human primate studies consistently exhibit a neurotoxic 
effect of anesthesia on a cellular level immediately after 
exposure, the mechanism of injury and lasting effects on 
behavior and cognition are less clear (5-7). Two studies 
in the field recently reported outcomes of clinical trials 
aimed at determining whether general anesthesia leads to 
decreased cognitive function in exposed subjects compared 
to controls (8,9). In the first study, Davidson and colleagues 

report the secondary outcome of the General Anesthesia 
compared to Spinal anesthesia (GAS) trial, showing no 
difference in neurodevelopmental outcomes at 2 years of 
age between infants who had inguinal hernia repair under 
either general or neuraxial anesthesia. In the second study, 
Sun and colleagues present the primary and secondary 
outcomes for the Pediatric Anesthesia NeuroDevelopment 
Assessment (PANDA) trial, reporting no significant 
differences in cognitive function or behavior between 
subjects who underwent inguinal hernia repair with an 
inhaled anesthetic and their non-exposed siblings. While 
the GAS and PANDA studies make important advances in 
our understanding of anesthetic safety, there are still many 
questions that remain to be answered. 

An early description of cognitive dysfunction following 
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anesthesia in young animals ignited the field in 2003. 
Infant rats were given an anesthetic of isoflurane, nitrous 
oxide and midazolam and were subsequently found to 
have significant neuronal cell death and lasting memory 
impairment (10). Since then there have been many animal 
studies demonstrating this effect in different species (5,11), 
with different anesthetic agents (12-15), and affecting 
different domains of cognition (16-18). Early studies 
focused on anesthesia-induced apoptosis (10,19), however 
the developing brain possesses neurons in excess and normal 
apoptosis is present during development (20,21). It was 
subsequently shown that anesthesia induced apoptosis was 
not sufficient to cause the cognitive deficit (6). Anesthesia 
exposure at later ages in development results in a less 
significant insult, underscoring a time-sensitive period of 
vulnerability and further complicating our understanding 
of the mechanism of injury (14,22). Similarly, the duration 
of anesthesia is a critical determinant of the extent of the 
deficit, with shorter, lower concentrations leading to less or 
undetectable insults (18,23,24). 

A number of retrospective observational human studies 
have been done, with varied results. These include several 
large epidemiological studies. The Western Australian 
Pregnancy Cohort, initially established in the 1980s to 
study the effects of ultrasound in pregnancy, was used to 
compare subjects who had received anesthetics before 
age 3 with control subjects. Outcomes were measured by 
neuropsychological tests administered at age 10, academic 
achievement, and billing codes indicating International 
Classification of Disease, 9th Edition, Clinical Modification 
(ICD-9) diagnoses at subsequent clinical visits (25,26). 
The authors found a strong association between early 
anesthesia and language and cognition deficits on the 
neuropsychological tests and corresponding ICD-9 codes, 
but no significant correlation with achievement tests. This 
study was limited due to lack of details about the anesthetic 
exposure. In another cohort study, Danish subjects who 
had undergone pyloroplasty before 3 months of age were 
compared in terms of standardized test performance and 
teacher evaluations to age matched peers and were found 
not to be significantly different after adjusting for known 
confounders (sex, birth weight, parental age and parental 
education) (27). A Netherlands Twin study using a national 
twin registry showed an association with lower scores and 
cognitive assessments for twin pairs in which one or both 
received anesthesia before age 3 compared to control  
pairs (28). However, no difference was detected within 
twin pairs in which only one twin was exposed, leading 

the authors to conclude that the anesthesia by itself was 
not a causal factor of the learning problems detected 
later in life. In the United States, a retrospective 
cohort study in Minnesota showed a significant effect 
of multiple but not a single anesthetic exposure before  
4 years specifically in language and cognitive domains, 
but not in emotional or behavioral realms (29,30). The 
New York Medicaid database was also used to study this 
phenomenon and found an increase in risk of behavior 
and developmental diagnoses with hernia surgery 
before age 3 compared to age matched controls (31)  
siblings (32). Most recently, a retrospective cohort study 
from Canada stratified risk for cognitive/behavior deficits 
based on age at which patients received anesthesia (33). The 
outcome measure of this study was the Early Development 
Instrument (EDI), completed by teachers of kindergarten 
students. Interestingly, they found an association with 
deficits in children who received anesthesia from ages 2–4, 
but not 0–2. An earlier ambi-directional cohort trial found 
a difference in recognition memory using a similar task 
both in rodents and human children. Children anesthetized 
for greater than 120 minutes before age 2 were found to 
have a deficit compared with age matched controls (18). 
Each study design has its own limitations and the key 
confounding variables remain difficult to control for.

In light of the above studies providing some evidence 
of a correlation between anesthesia exposure and altered 
cognitive function in humans, both the GAS and PANDA 
trials were conceived to fill the need for larger prospective 
trials. The GAS trial is a multi-center, international, 
randomized controlled equivalence trial. Study subjects that 
met inclusion parameters for the GAS trial were randomly 
assigned to receive either awake-regional anesthesia (n=238) 
(spinal, caudal, or combined spinal-caudal) or sevoflurane 
general anesthesia (n=294) (with optional regional 
supplementation; caudal, ilioinguinal-iliohypogastric or field 
block) during herniorrhaphy. Exclusion criteria included a 
contraindication to either anesthetic technique, congenital 
heart disease, mechanical ventilation immediately prior to 
surgery, congenital abnormalities which are known to affect 
cognition, chromosomal abnormalities, previous volatile 
anesthesia exposure, benzodiazepine exposure as infant or 
in-utero, intraventricular hemorrhage (greater than grade 2), 
neurologic injury which would impair cognitive function, 
and social issues which would prevent follow up. Premature 
birth was not excluded and both groups had approximately 
55% births before 37 weeks gestation, 3% had hearing 
deficits in both groups, and 7% and 6% of regional 
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and general anesthesia respectively had intraventricular 
hemorrhage (grade 1 or 2). The vast majority of the subjects 
were male (81% regional, 85% general). The average age 
at the time of anesthesia was 68.9 days (regional), and 71.1 
days (general). The average sevoflurane exposure time was 
54 min.

The primary endpoint will be the Wechsler Preschool and 
Primary Scale of Intelligence, Third Edition (WPPSI-III)  
to be assessed when subjects reach 5 years of age. The 
current reported results are a secondary endpoint in which 
the Bailey Scales of Infant and Toddler Development 
III (Bailey-III) were used to assess development and 
cognitive performance at 2 years of age. The composite 
scores of the Bailey-III consist of cognitive, language, 
motor, adaptive behavior, and social-emotional scales. The 
overall composite scores between the regional and general 
anesthesia groups were statistically equivalent. A subgroup 
analysis also revealed no difference between all the Bailey-
III subsets except the social-emotional scales. The authors 
conclude that this provides strong evidence that early life 
general anesthesia with sevoflurane for less than 1 hour has 
no effect on neurocognitive function in 2 years old.

The PANDA trial was a prospective sibling matched 
cohort study. It enrolled 105 sibling pairs, one of which 
underwent herniorrhaphy at less than 36 months of age 
during which an inhaled general anesthetic was administered. 
A comprehensive battery of neuropsychological assessments 
was applied to subjects and siblings ages 8–15 years old. 
In addition to a Full Scale IQ score (WASI), the battery 
included many other domains including memory, motor 
speed and processing, visuospatial reasoning, language, 
attention, executive function and behavior. A panel of 
experts created the specific battery prior to enrollment. 
Inclusion criteria was ASA status 1 or 2, age 36 weeks or 
older at birth, biologically related sibling within 3 years of 
age with no anesthesia exposure prior to 36 months and 
36 weeks or older at birth. Like the GAS trial, the vast 
majority (90%) of the test subjects were male, while the 
sibling controls were 56% male. The duration of anesthesia 
exposure was 84 minutes on average. Demographically, 
subjects were overwhelmingly white (86%), of middle 
to upper middle socioeconomic status with self-reported 
parental income from $80,000 to greater than $100,000 
in 58% of subjects and 84–87% owning their own home. 
They were also well educated (40% maternal, 32% paternal 
possessing post graduate degrees). 

WASI IQ test was the primary outcome, which showed 
no significant difference between subjects and matched 

sibling controls in either the Full Scale score or the 
subcategories of verbal and performance. There was also no 
significant difference between the secondary outcomes of 
memory, attention, visuospatial function, executive function, 
language, motor and processing speed or behavioral 
domains. There were significant differences in internalizing 
behavior of exposed siblings compared to controls after 
controlling for sex, but with the limited number of exposed 
girls, the authors were unable to further study any sex 
differences. The authors conclude that a single early 
anesthetic administered to otherwise healthy children under 
age 3 does not result in cognitive deficits.

In considering both of these studies, interpretation 
should include a few points. For the GAS trial, the primary 
results have yet to be reported and the results recently 
published of the Bayley-III should be viewed with the 
understanding that the test was designed for identification 
of patients at risk of developmental delay so that early 
intervention could be initiated (34). Previous epidemiologic 
studies on early anesthesia have not revealed a clear 
correlation with global developmental delay on the same 
magnitude as autism or cerebral palsy so it is not surprising 
that regional and general anesthesia were equivalent for 
these outcomes. In addition to the limited sensitivity of this 
test, the short duration of anesthesia may cause an overall 
subtle phenotype that falls below the detection threshold or 
there may be no deficit at all. Because cognitive deficits may 
worsen with age [seen in preclinical studies (7,14,35-37)], 
any neurocognitive problem may only be recognized in 
older children capable of more complex neuropsychological 
analysis. We are still awaiting the primary endpoint from 
this study, the WPPSI-III intelligence quotient scores of 
subjects at 5 years of age. The prospective randomized 
control design of the trial is powerful, however, the 
time from randomization to testing many years later 
is a limitation given the long delay before complex 
neuropsychological testing is possible and the likelihood of 
a slowly developing deficit that could remain undetectable 
even at age 5.

In the PANDA trial, the cohort studied is significantly 
different from the general population, being mostly white, 
highly educated and of advanced socioeconomic status 
(SES). A number of recent preclinical studies suggest 
that an adverse or enriched environment after anesthesia 
exposure may have a critical influence on cognitive outcome 
(16,38). An enriched environment, which includes social 
housing, exercise, and a complex home cage, rescues 
the behavioral deficit exhibited by anesthesia-exposed 
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rats, while an adverse environment may aggravate the 
detrimental effects of exposure (16,39). It is difficult to 
translate the environment experienced by rodents to 
human subjects, however, it is likely that the group’s SES 
and education is a correlate of environmental enrichment, 
evidenced by the high average IQ in subjects and controls 
reported in the PANDA study (95% confidence interval: 
108–113 for both subject and controls). There is a large 
body of evidence from the behavioral sciences showing 
the complex relationship between parental SES and child 
IQ scores (40-42). Another consideration is that 23 out of 
105 sibling controls had anesthesia after age 3 and were 
not excluded from the analysis. This may be significant if 
these control subjects decreased the averages of the control 
group, making it harder to detect a difference between the 
groups. An important feature of this study design is that it 
recruited a well matched treatment and control group who 
could be tested in the future in different domains such as 
recognition memory which has been shown to be sensitive 
to early anesthesia (18).

One potential protective factor in both the GAS 
and PANDA trials is the length of anesthetic exposure. 
The average sevoflurane exposure was 54 and 84 min 
respectively. Rodent studies show little to no deficit at short 
durations of anesthesia (35,43) and previous human studies 
generally identify a deficit only after longer exposures 
(greater than 2 hours) which is consistent with rodent  
data (18,30,43).

The sex of the subjects studied was overwhelmingly 
male, with 80% in GAS and 90.5% in PANDA trial. 
This is not a recruitment oversight but represents a 
disproportionate burden of surgical need as the most 
common surgeries in infants are mostly or exclusively male: 
inguinal herniorrhaphy, hypospadias, circumcision, and 
pyloromyotomy. There is pre-clinical data that suggests 
that males may be more vulnerable to the effects of early 
anesthesia, so this experimental design would be more likely 
than a sex-matched cohort to show an anesthetic effect (44). 
If these results are replicated it provides some reassurance 
that short anesthetic exposure in males may not be as 
concerning as has been imagined.

In conclusion, both GAS and PANDA are well-designed 
clinical trials with encouraging results suggesting that there 
is no significant neurocognitive deficit for short anesthetic 
exposure early in life. There are several major considerations 
to keep in mind however, not least is the GAS trial results 
are only secondary endpoints and the primary endpoint data 
has yet to be published. In the PANDA trial, the high SES 

and advanced education of the household yields a higher IQ 
than the general population. This may change the threshold 
of vulnerability or be a source of environmental enrichment 
which allows the subjects to compensate for the insult. 
Additionally, both trials had mean anesthetic durations of 
less than 2 hours which likely leads to a less severe (possibly 
undetectable) cognitive insult and neither study specifically 
assessed recognition memory, which was previously reported 
to be impaired after a 2-hour exposure early in life (18)  
(PANDA trial assessed face-recognition however, this 
can be performed solely on the basis of global familiarity 
decreasing its sensitivity for recognition memory). Given 
a lack of data regarding longer duration exposures and no 
defined critical age at exposure, the most prudent clinical 
plan may be to delay elective surgeries as long as possible 
and to minimize anesthetic duration for non-essential 
surgeries. These well-designed studies represent an 
important advance in the field and provide some reassurance 
regarding brief exposures, but many questions surrounding 
early anesthesia and cognition remain unanswered.
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