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A CONNECTED COMPONENT LABELING ALGORITHM FOR
IMPLICITLY DEFINED DOMAINS

ROBERT I. SAYE

A connected component labeling algorithm is developed for implicitly defined
domains specified by multivariate polynomials. The algorithm operates by recur-
sively subdividing the constraint domain into hyperrectangular subcells until the
topology thereon is sufficiently simple; in particular, we devise a topology test
using properties of Bernstein polynomials. In many cases the algorithm produces
a certificate guaranteeing its correctness, i.e., two points yield the same label if and
only if they are path-connected. To robustly handle various kinds of edge cases,
the algorithm may assign identical labels to distinct components, but only when
they are exactly or nearly touching, relative to a user-controlled length scale. A
variety of numerical experiments assess the effectiveness of the overall approach,
including statistical analyses on randomly generated multicomponent geometry
in 2D and 3D, as well as specific examples involving cusps, self-intersections,
junctions, and other kinds of singularities.

1. Introduction

In this paper, we develop a connected component labeling algorithm for implicitly
defined domains specified by multivariate polynomials. In particular, we consider
domains of the form � := U \ {φ = 0}, where φ : Rd

→ R is a given polynomial
and U ⊂ Rd is a given bounded d-dimensional hyperrectangle, and consider the
problem of implementing a labeling function χ :�→ N such that χ(x)= χ(y) if
and only if the two points x, y ∈� are path-connected.

Our interest in this labeling problem stems from the author’s prior work on
quadrature algorithms for multicomponent implicitly defined domains [18]. For a
general, piecewise-smooth integrand function f , these algorithms output a quadra-
ture scheme of the form

∫
U f ≈

∑
i wi f (xi ) and have the following key property:

if V is a connected component of U \ {φ = 0} and f is sufficiently smooth on V ,
then

∫
V f ≈

∑
xi∈V wi f (xi ) represents a high-order accurate quadrature scheme

on V . In other words, to build a quadrature scheme on V , one may simply discard
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the quadrature points outside of V , leaving the weights of the remaining points
unmodified. Consequently, one may think of the bulk quadrature scheme over U
as an agglomeration of smaller quadrature schemes over the individual connected
components of U \ {φ = 0}. The algorithms developed in [18], however, do not
automatically determine this grouping; one of the aims of the present work is to
design a simple and efficient algorithm for this purpose. Besides this application,
connected component analysis arises in a wide variety of settings, including in
computer-aided geometric design, shape modeling and pattern matching, and in
building topological feature descriptors of physical data sets [12].

A number of approaches could be taken to solve the connected component
labeling problem:

(1) One can apply the workhorse tools of real algebraic geometry, such as the
cylindrical algebraic decomposition (CAD) algorithm pioneered by Collins [6;
5], or by computing roadmaps [2; 3]. In exact or arbitrary-precision arithmetic,
CAD and roadmap methods can be used to identify and analyze the connected
components of general, arbitrarily complex semialgebraic sets (of which � is one
particular instance). However, these methods can be computationally expensive;
moreover, their implementation in fixed-precision arithmetic requires considerable
care, even for relatively simple geometry.

(2) One can apply the computational methods of Morse theory, Reeb graphs, and
contour trees [11; 12]. Roughly speaking, these methods compute the topology of
the set of level sets of φ via the location of its extrema and saddle points, combined
with gradient path tracing algorithms. These methods become increasingly more
intricate to implement as the dimension d increases.

(3) One could isolate individual components of �+ := U ∩ {φ > 0} by finding a
polynomial which can separate them (followed by a similar procedure for �− :=

U ∩ {φ < 0}). For example, if we could find a polynomial u : Rd
→ R such that

�+ ∩ {u = 0} is empty and u(x)u(y) < 0 for two sample points x, y ∈ �+, it
would follow that the zero level set of u forms a kind of divider that separates the
two connected components associated with x and y. To find this polynomial, one
could use polynomial positivstellensatz or sums-of-squares methods [13; 14] to
compute, if possible, a polynomial w such that: (i) w>0 on �+; (ii) w=u2; and (iii)
u(x)u(y)<0. Part (i), (ignoring conditions (ii) and (iii) and various other subtleties,)
can be solved efficiently via linear or semidefinite programming techniques, see, e.g.,
[14; 1]; however, conditions (ii) and (iii) end up creating a quadratically constrained
quadratic program for the coefficients of w, whose associated feasibility condition
involves a challenging nonconvex constraint. These ideas, among various others for
computing separating polynomials, were investigated as part of the present work;
however, no sufficiently elegant or efficient approach was found.
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(4) A final and considerably simpler approach is to subdivide the constraint domain
U into small enough cells for which the topology of � is easy to determine.
Depending on the tessellation method, this approach can be quite effective (fast,
simple to implement, high resolution power), but in some cases the subdivision
process may need to be stopped, potentially leading to some components being
incorrectly merged or broken.

The preceding discussion serves to highlight that, depending on the final applica-
tion, one must ultimately decide on a suitable compromise between: (i) absolute
correctness/certifiability of the connected component labeling algorithm, potentially
needing costly arbitrary-precision computation (as exemplified by CAD-based
methods); (ii) robustness, e.g., in suitably handling fixed-precision roundoff errors
or uncertainty in the input polynomial coefficients; (iii) computational complexity
of constructing the labeling function as well as its subsequent evaluation; and (iv)
implementation simplicity. The target application of this work concerns the develop-
ment of numerical methods for multiphysics simulations involving highly complex
geometry such as liquid atomization dynamics; in particular, the input polynomial
φ represents the fluid interface and is computed dynamically. This application
necessitates prioritizing aspects (ii), (iii), and (iv), which, in turn, necessitates a
design choice for how to handle edge cases such as nearly touching components
or interfacial self-intersections. Our choice here is to require that components are
never broken, i.e., if x, y are path-connected in � and χ(x), χ(y) is the output
of the labeling algorithm, then χ(x) = χ(y) is an absolute certainty. It follows
that the labeling algorithm must be permitted to merge or “glue” together distinct
components in the (presumably rare) cases of uncertain topology. The algorithm
developed in this work glues components only if they are exactly or nearly touching,
relative to a user-defined gap threshold, typically orders of magnitude smaller than
the length scale of U .

With this design objective in mind, the connected component labeling algorithm
developed here follows the fourth approach mentioned earlier: it operates by re-
cursively subdividing the constraint hyperrectangle U ⊂ Rd into hyperrectangular
subcells until the topology of � thereon is sufficiently simple or has reached a
smallest-permitted size. This is achieved through a combination of quadtrees (in 2D)
or octrees (in 3D), along with simple yet effective topology tests using properties of
Bernstein polynomials. Once the tree is constructed, its leaf cells form the vertices
of a graph whose edges are determined by sign attainability tests on the faces of
adjacent leaf cells. The connected components of this graph ultimately decide the
overall labeling: χ(x) equals the label of the leaf cell containing x , the latter found
by fast tree traversal methods. We show in this paper that the overall approach
is efficient in handling various degrees of geometric complexity. In particular,
if the recursive subdivision process terminates without reaching the user-defined
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smallest subcell size, then the labeling is provably correct. Applied to a fixed class
of randomly generated geometry, the percentage of cases in which the algorithm is
uncertain about the topology decreases exponentially as a function of the maximum
tree depth; moreover, only a small fraction of these cases yield artificially glued
components.

An outline for the rest of the paper is as follows. In Section 2, we establish some
preliminaries on Bernstein polynomials and define the simply connected topology
test. Section 3 presents the main connected component labeling algorithm, followed
by a discussion of its features. Numerical tests are presented in Section 4, analyzing
the algorithm’s success and failure rates on randomly generated multicomponent
geometry in 2D and 3D as well as its behavior on particular examples exhibiting
cusps, self-intersections, and other kinds of singularities. Concluding remarks with
a brief discussion of possible extensions are given in Section 5.

2. Preliminaries

A key part of the connected component labeling algorithm is an effective means for
evaluating the range of attainable values of a polynomial. One of the most accurate
and straightforward methods for doing so is through the use of the Bernstein basis
[8; 15; 10; 4]. These methods make use of a convex hull property and guarantee that
a polynomial’s value, at any point in its rectangular reference domain, is no larger
(or smaller) than its maximum (or minimum) coefficient in the Bernstein basis.
Especially useful in the present setting, these bounds become monotonically more
accurate under the stable operations of Bernstein subdivision. In addition, owing to
the hyperrectangular constraint domain U and its subdivision into hyperrectangular
subcells, it is particularly natural to use a tensor-product basis. Accordingly, a
tensor-product Bernstein basis is adopted throughout this work.

In d dimensions, let φ be a tensor-product Bernstein polynomial of degree
n= (n1, . . . , nd), defined relative to the hyperrectangle U =[α1, β1]×· · ·×[αd , βd ];
φ takes the form

φ(x1, . . . , xd)=

n1∑
i1=0

· · ·

nd∑
id=0

ci1,...,id bn1,[α1,β1]
i1

(x1) · · · b
nd ,[αd ,βd ]

id
(xd)=

∑
i∈Nn

ci b
n,U
i (x),

where

bη,[α,β]

ℓ (x)=

(
η
ℓ

)
(β −α)η

(β − x)η−ℓ(x −α)ℓ, ℓ= 0, . . . , η,

are the one-dimensional Bernstein basis functions of degree η relative to the interval
[α, β], ci = ci1,...,id denotes the i th Bernstein coefficient of φ for a multiindex
i ∈ Nn

:= [0, n1] × · · · × [0, nd ], and bn,U
i (x) =

∏d
j=1bn j ,[α j ,β j ]

i j
(xi j ) denotes the

product of basis functions. This representation gives the Bernstein coefficients of
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φ relative to the given hyperrectangle U ; subdivision refers to transforming these
coefficients relative to a subset hyperrectangle and can be stably computed using
the de Casteljau algorithm [7].

In the connected component labeling algorithm, we need a method to assess
whether the topology of U ∩ {φ > 0} and U ∩ {φ < 0} is simple enough. This is
achieved through the following three concepts.1

Definition 2.1. A Bernstein polynomial φ =
∑

i∈Nn ci b
n,U
i (x) is called coefficient

monotone increasing on U (in the direction k) if there exists a coordinate direction
k such that ci ≤ ci+ek for all i ∈ Nn , ik < nk ; here, ek denotes the standard basis
vector in the direction of the kth coordinate. The polynomial is called coefficient
monotone if φ or −φ is coefficient monotone increasing.

An equivalent viewpoint comes from a convenient property of differentiation in
the Bernstein basis: up to a multiplicative factor, the coefficients of the derivative
are formed via first-order divided differences of the input polynomial’s coefficients.
Therefore, φ is coefficient monotone if and only if the Bernstein coefficients of
its derivative in the corresponding direction are either all nonnegative or all non-
positive. It follows that coefficient monotone polynomials are monotone in the
conventional sense and therefore attain their extrema on the corresponding faces of
the hyperrectangle. Tests of Bernstein coefficient monotonicity have a variety of
applications, including, e.g., in polynomial range evaluation [16]. In the present
application, an important property is that, for a coefficient monotone polynomial φ,
for any x ∈U ∩{φ > 0}, x can be path-connected to one of the corresponding faces
of the hyperrectangle without leaving the region U ∩ {φ > 0}, and analogously for
points in U ∩ {φ < 0}.

We next establish a sufficiently accurate means to determine whether a polyno-
mial attains positive or negative values on a given hyperrectangle. The following
definition sets the requirements on an algorithm implementing this task.

Definition 2.2. Given a Bernstein polynomial

φ =
∑
i∈Nn

ci b
n,U
i (x)

on the hyperrectangle U , a d-dimensional sign evaluation algorithm σd(φ, U )

outputs the possible signs of φ on U and must satisfy the following properties:

(1) σd(φ, U )⊆ {−1, 0,+1}.

1Definition 2.1 has, in various guises, appeared before in the literature; the remaining two concepts
(Definitions 2.2 and 2.3, with their implications) are perhaps new, and target specifically the objectives
of the present work.
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(2) σd(φ, U ) must be a superset of the ground-truth, i.e., {sign(φ(x)) : x ∈U } ⊆
σd(φ, U ), where sign(u) is the standard sign operator,

sign(u)=


+1 if u > 0,

0 if u = 0,
−1 if u < 0.

(3) If ci ≥ 0 for all i , then −1 /∈ σd(φ, U ); if ci ≤ 0 for all i , then +1 /∈ σd(φ, U ).

(4) If φ is coefficient monotone in the direction k, then

σd(φ, U )⊆ σd−1(φα, Uα)∪0 σd−1(φβ, Uβ),

where φα and φβ denote the restriction of φ to the corresponding lower Uα

and upper Uβ faces of U , and σd−1 is a (d − 1)-dimensional sign evaluation
algorithm; here ∪0 is defined by

s1 ∪0 s2 :=

{
{−1, 0,+1} if s1 ∪ s2 = {−1,+1},

s1 ∪ s2 otherwise.

(5) A zero-dimensional sign evaluation algorithm must satisfy σ0(c, U )= sign(c).

Note that a method which exactly computes the minimum and maximum value of
φ on U would trivially yield a sign evaluation algorithm. However, computing the
extrema of arbitrary polynomials is a nontrivial and computationally expensive task,
perhaps as difficult as the connected component labeling problem itself. The condi-
tions of a sign evaluation algorithm are weaker than an exact computation, thereby
allowing for simpler and more efficient algorithms; nevertheless, some degree of
certitude is required. In particular, condition (3) requires an implementation be at
least as accurate as conventional Bernstein range evaluation; this ensures it inherits
at least the same level of accuracy under the action of subdivision. Condition (4)
says that if φ happens to be coefficient monotone, the sign evaluation must be at
least as accurate as what can be determined solely from the corresponding faces
where φ’s extrema are known to occur. One particularly important property is that
if a sign evaluation algorithm outputs either {−1} or {+1}, then we may conclude,
with absolute certainty, φ is uniformly signed throughout U . An example of a
simple sign evaluation algorithm is given in the next section.

Finally, a notion of whether the topology of U \ {φ = 0} is “simple enough” is
recursively defined as follows. This definition implicitly depends on the presence
of a suitable sign evaluation algorithm σd , so it is assumed that one has been
implemented and fixed ahead of time.

Definition 2.3. A (d ≥ 1)-dimensional Bernstein polynomial φ =
∑

i∈Nn ci b
n,U
i (x)

is called simply connected on U if at least one of the following three conditions
hold: (i) σd(φ, U ) = {+1}; or (ii) σd(φ, U ) = {−1}; or (iii) there is coordinate
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direction k such that (a) φ is coefficient monotone in the direction k AND (b) φ is
simply connected on the corresponding upper and lower faces of U . By definition,
a zero-dimensional Bernstein polynomial is simply connected.

A simply connected polynomial guarantees a simple topology of both �− :=

U ∩ {φ < 0} and �+ := U ∩ {φ > 0}, as follows. If conditions (i) or (ii) in
Definition 2.3 are met, then φ is nonzero throughout the hyperrectangle and so
exactly one of �± is empty and the other the whole hyperrectangle. Otherwise,
there is a coordinate axis k such that any point in x ∈�± can be path-connected
to one of the corresponding faces. These faces are themselves simply connected;
inductively it follows that if �+ (resp., �−) is nonempty, then �+ (resp., �−) has
exactly one connected component.2

To prove the correctness of the connected component labeling algorithm, it is
useful to establish two properties of simply connected polynomials:

(1) If φ is simply connected on a hyperrectangle U , then φ is simply connected on
every face of U . This can be shown via induction on the dimension; we illustrate here
with a three-dimensional example. Suppose φ is simply connected on a rectangular
3D prism. If σd(φ) ∈

{
{−1}, {+1}

}
, then it is uniformly signed and thus trivially

simply connected on every face of the prism. Otherwise, φ is coefficient monotone
in the up direction, say, such that the restriction of φ to the bottom and top faces is
simply connected; in particular, by induction, we have that φ is simply connected
on every edge of the bottom and top face. Now, on each vertical face of the
prism (those faces excluding the bottom and top), the restriction of φ is coefficient
monotone in the up direction, and, as was just concluded, φ is simply connected
on the corresponding lower and upper edges. Therefore, φ is simply connected on
every vertical face. These arguments can be extended to any dimension, and the
one-dimensional base case of the inductive argument trivially holds.

(2) If φ is simply connected on a hyperrectangle U , then a sign evaluation algorithm
yields exact results, i.e., the output of σd(φ, U ) is precisely {sign(φ(x)) : x ∈U }.
Similar to before, this can be shown via induction. Suppose φ is simply connected
on U . If σd(φ, U ) ∈

{
{−1}, {+1}

}
, then φ is with absolute certainty uniformly

signed and σd is exact. Otherwise, if φ is coefficient monotone on U in the up
direction, say, then σd(φ, U ) is at least as accurate as σd−1 applied to the restriction
of φ on the lower and upper faces of U ; by induction, the latter calculation is exact,
and therefore σd is, too.

Combining these two properties, we observe that if φ is simply connected on a
hyperrectangle U , then a sign evaluation algorithm yields exact results on every
face of U .

2In fact, �+ or �− are simply connected in the topological sense, but we do not need this fact.
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3. Connected component labeling algorithm

With these preliminaries established, we are now in a position to describe the
connected component labeling algorithm. First, we describe a sufficiently accurate
Bernstein polynomial range evaluation algorithm, which approximately (and in
various cases, exactly) evaluates the range of φ on a given hyperrectangle U . Our
particular implementation is given in Algorithm 1 and has the following properties:

• The output is an interval such that [infx∈U φ(x), supx∈U φ(x)] ⊆ range(φ, U )

always holds.

• The algorithm is at least as accurate as conventional Bernstein range evaluation,
i.e., range(φ, U )⊆ [mini ci , maxi ci ], the latter interval bounding the minimum
and maximum value of the input’s Bernstein coefficients.

• For the simple cases of linear, quadratic, or cubic polynomials in d = 1 dimen-
sions, it is a particularly simple and efficient task to exactly evaluate the range of
φ; this is implemented on line 2 and is an easy tweak benefiting overall accuracy.

• If φ happens to be coefficient monotone on U , then the range evaluation algorithm
is as least as accurate as what can be determined by evaluating the range on the
corresponding faces of U where the extrema of φ is known to occur (line 8).
Further, if φ happens to be coefficient monotone in multiple directions, then the
tightest possible range is returned (lines 9–10).

The main purpose of the range evaluation algorithm is to implement a sign
evaluation algorithm. In particular, we define

σd(φ, U ) :=
{
sign(r) : r ∈ range(φ, U )

}
.

1: if d = 1 and n1 ≤ 4 then
2: Compute θ := min

α1≤x≤β1
φ(x) and 2 := max

α1≤x≤β1
φ(x).

3: else
4: Set θ :=mini ci and 2 :=maxi ci .
5: if d > 1 then
6: for k = 1, 2, . . . , d do
7: if φ is coefficient monotone in direction k on U then
8: Compute

R := range(φ|xk=αk , lower face of U )∪ range(φ|xk=βk , upper face of U ).

9: Update θ←max{θ, inf R}.
10: Update 2←min{2, sup R}.
11: return [θ, 2].

Algorithm 1. Given a d-dimensional, degree n = (n1, . . . , nd ) Bernstein polynomial
φ=

∑
i∈Nn ci bn,U

i (x) and a corresponding hyperrectangular domain U = [α1, β1]×· · ·×
[αd , βd ], evaluate range(φ, U ).
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In other words, σd(φ) is defined by the possible signs of φ as computed by the
range evaluation algorithm. By construction, it satisfies all the required properties
set out in Definition 2.2. In particular, it is exact for low-degree one-dimensional
polynomials, whenever 0 /∈ range(φ), as well as various other cases. Using the sign
evaluation algorithm, it is also straightforward to implement an algorithm that tests
whether φ is simply connected on a given hyperrectangle U ; our implementation
carries out the algorithmic process naturally suggested by Definition 2.3.

With these ingredients, we can now describe the connected component labeling
algorithm. Given a Bernstein polynomial φ and a hyperrectangular constraint
domain U , we first test whether φ is simply connected on U . If it is, then �+ :=

U∩{φ > 0} and �− :=U∩{φ < 0} are either empty or have exactly one component,
in which case the labeling problem is trivial. Otherwise, we recursively subdivide
U into smaller and smaller subcells until either φ is simply connected on the
subcell or a maximum recursion depth is met. In this work, we have opted for a
quadtree/octree-style subdivision wherein the subcells maintain the aspect ratio of
U , though other subdivision algorithms are certainly possible. Upon conclusion
of the subdivision process, we have a grid in which most (and in many cases, all)
leaf cells have simple topology. In the second phase of the algorithm, two graphs
G± are constructed, each representing the connectivity of the cells overlapping
�+ and �−. For example, if σd−1 applied to a shared face F = Ui ∩U j of the
grid yields s ⊆ {−1, 0,+1} and −1 ∈ s (resp., +1 ∈ s), then an edge (Ui , U j ) is
inserted into G− (resp., G+). These edges reflect the fact that there is likely (and in
most cases, definitely) a path connecting Ui ∩�± and U j ∩�±. Ultimately, it is
the connected components of G− and G+ which define the possible labels of the
overall algorithm; computing this labeling can be done with negligible cost via
efficient disjoint-set/merge-find data structures. In essence, these graphs establish
the globally topology of �, whereas each leaf cell of the tree handles the local
topology. Finally, to determine which component an arbitrary point x ∈� belongs,
we apply standard (and fast) tree traversal algorithms to find a leaf cell containing x ,
and then adopt its corresponding label from G+ (if φ(x) > 0) or G− (if φ(x) < 0).

Algorithms 2 and 3 sketch the implementation of the connected component
labeling algorithm. A few remarks are in order:

• In Algorithm 2, whenever the restriction of φ to a subcell U or its face is re-
quired, the corresponding Bernstein coefficients can be efficiently and accurately
computed via the de Casteljau algorithm.

• On line 6, 3 specifies the user-defined maximum recursion depth. For example,
if the constraint domain is the unit cube [0, 1]d , the parameter corresponds to
the smallest-possible subcell having width 2−3. The effect of 3 on the overall
labeling is studied in detail in the next section.
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Construct the subdivision tree:
1: Create the root node νroot representing U .
2: call VISIT(νroot, U , 0).
3: procedure VISIT(ν, U , ℓ)
4: if φ is simply connected on U then
5: Designate ν as a simply connected leaf node.
6: else if ℓ≥3 then
7: Designate ν as a nonsimply connected leaf node.
8: else
9: Designate ν as a nonleaf node, pointing to the following child nodes.
10: for i = 1, . . . , 2d do
11: Let Ui denote the i th subcell of U .
12: Insert a new node representing Ui into the tree; call it νi .
13: call VISIT(νi , Ui , ℓ+ 1).
Build subcell connectivity:
14: Initialize G+ and G− as empty graphs.
15: for every pair of leaf cells Ui , U j sharing a face do
16: Let F :=Ui ∩U j denote the shared face.
17: Compute s := σd−1(φ|F ,F).
18: if −1 ∈ s then
19: Insert the edge (Ui , U j ) into G−.

20: if +1 ∈ s then
21: Insert the edge (Ui , U j ) into G+.

Generate connected component labels:
22: Create a unique integer label for the combined set of connected components of G− and G+.
23: Initialize every leaf cell’s −⃝ and +⃝ labels as undefined.
24: for every leaf cell U do
25: if U is a vertex of G− then
26: Set the leaf cell’s −⃝ label to the corresponding label of G−.
27: if U is a vertex of G+ then
28: Set the leaf cell’s +⃝ label to the corresponding label of G+.

Algorithm 2. Construction phase of the connected component labeling algorithm: given
the polynomial φ and the hyperrectangular constraint domain U , build the subdivision tree
and create labels for its path-connected leaf cells.

1: Using standard, fast tree traversal methods, find a leaf cell U containing x ; if x belongs to
multiple leaf cells it does not matter which is used.

2: Let ·⃝ denote −⃝ if φ(x) < 0 or +⃝ if φ(x) > 0.
3: if U ’s ·⃝ label is undefined then
4: Create a new, unique label and assign it to U .
5: return the ·⃝ label assigned to U .

Algorithm 3. Connected component label evaluation algorithm: using the subdivision
tree constructed by Algorithm 2, evaluate χ :�→N for a given point x ∈� :=U \{φ= 0}.
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• Algorithm 2 only assigns labels to cells that are path-connected to other cells;
as such, if a cell contains a part of �+, say, that has not been path-connected
to any other cell overlapping with �+, then that cell does not (yet) have a +⃝
label defined. Our main motivation for this mainly concerns the scenarios for
which the smallest-possible cell size is reached whereon the topology of �+

is still uncertain: in these cases, we do not want to unnecessarily create a new
label when �+ thereon may actually be empty. In a sense, if a sign evaluation
algorithm is unable to certify the presence of �+, then doing so will be up to
the subsequent evaluation of χ ; indeed, Algorithm 3 creates a label only when a
point x ∈�+ is given which proves the nonemptiness of �+ in that cell.

• By caching the results of the simply connected tests on the leaf cells, as computed
by the first phase of Algorithm 2, various steps in the second and last phase can
be accelerated. For example, it is unnecessary to compute s := σd−1(φ|F ,F)

on a shared face F if it is already known that φ is uniformly signed on one of
the corresponding cells. On a related note, if both a + and a − path connection
already exists between Ui and U j , it is unnecessary to execute lines 16–21
because these lines would not alter that connectivity; thus, some faces can be
skipped during the second phase of the algorithm.

• Our particular implementation of the subdivision tree represents each node by a
bit-field of width 16 bits. One bit specifies whether the node is a leaf or nonleaf
node; the remaining 15 bits of a nonleaf node points to the children of that
node; the remaining 15 bits of a leaf node store the type of the leaf cell (2 bits,
flagging whether it is uniformly negative, uniformly positive, mixed sign and
simply connected, or not simply connected) and 6 bits each to cache the +⃝
and −⃝ labels created by Algorithms 2 and 3. This implies an upper bound of
26
−1= 63 components for each phase, ample for our purposes. In addition, our

implementation of Algorithm 2 bypasses the explicit creation of the graphs G±;
instead, an efficient disjoint-set/merge-find data structure is used to represent
the edge formations and subsequent label creation and lookup.

• Finally, our implementation also makes use of a fuzzy threshold to robustly handle
roundoff error in fixed-precision arithmetic. A tolerance ϵ is incorporated into the
sign evaluation algorithm as follows: if R= range(φ, U ), then σd(φ, U )= {+1}
iff inf R ≥ ϵ, σd(φ, U )= {−1} iff sup R ≤−ϵ, and σd(φ)= {−1, 0,+1} in all
other cases. This tolerance helps to prevent inconsistencies arising from roundoff
error, such as what might occur when the zero level set {φ = 0} grazes the
boundary of a cell. Here, the tolerance is chosen to scale relative to the Bernstein
coefficients of φ on U ; in particular, we have set ϵ = 103 ϵ0 maxi |ci |, where ϵ0

is machine epsilon (approximately 10−16 in double-precision arithmetic).



40 ROBERT I. SAYE

To conclude this section, we prove the correctness of the connected component
labeling algorithm in the case the subdivision process finishes without hitting the
maximum-imposed recursion depth. In other words, every leaf cell of the tree
satisfies the simply connected property. In the prior section we saw that the sign
evaluation algorithm is exact in this case, and so two adjacent cells Ui and U j are
+⃝-connected if and only if (Ui ∩U j ) ∩ {φ > 0} is nonempty. It follows that if
x, y ∈ �+ := U ∩ {φ > 0} are path connected, then a corresponding path would
go through zero or more faces overlapping with �+, all of which must have been
assigned the same label by Algorithm 2. Conversely, if for two points x, y ∈�+

the evaluation of Algorithm 3 yields χ(x)= χ(y), then there must be a sequence
of leaf cells U1, U2, . . . , Um with x ∈ U1 and y ∈ Um such that, for each pair,
(Ui ∩ Ui+1) ∩ {φ > 0} is nonempty. Therefore, there is a sequence of points
zi ∈ (Ui ∩Ui+1)∩{φ > 0}, and, because each Ui ∩�+ has exactly one component,
there exists a path connecting x→ z1→ z2→· · ·→ zm−1→ y, and so x and y are
path connected. The same arguments apply analogously to the negative region, and
it is trivial to see that χ(x) ̸= χ(y) whenever φ(x)φ(y) < 0, since the negative and
positive regions do not have overlapping label identifiers. In summary, when all the
leaf cells satisfy the simply connected property, the output of Algorithm 3 is exact
in the sense that χ(x) = χ(y) if and only if x and y are path connected. In fact,
we will observe in the next section that in many instances, the labeling algorithm
continues to be exact even when the maximum recursion depth is reached.

4. Numerical experiments

In this section, we assess the effectiveness of the connected component labeling
algorithm on randomly generated geometry in 2D and 3D as well as on particular
examples exhibiting cusps, self-intersections, and other kinds of singularities.

4.1. Randomly generated geometry. We consider here a class of randomly gen-
erated polynomials whose corresponding implicitly defined geometry exhibits a
variety of characteristics such as high-curvature pieces and almost-touching com-
ponents. The random polynomials are defined through the orthonormal Legendre
polynomials, as follows. Let pi , i = 0, 1, 2, 3, denote the first four univariate
Legendre polynomials relative to the interval [−1, 1], i.e.,

p0(x)= 1, p1(x)= x, p2(x)= 1
2(3x2

− 1), p3(x)= 1
2(5x3

− 3x).

In d dimensions, define a tensor-product polynomial φ : [−1, 1]d → R of degree
(3, . . . , 3) as follows:

φ(x)=
∑

i∈{0,1,2,3}d
ci ωi

d∏
ℓ=1

piℓ(xℓ), (1)
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where ci ∈R is a given set of 4d coefficients, one for each multiindex i ∈{0, 1, 2, 3}d ,
and ω > 0 is a given (fixed) parameter such that ωi

:=
∏d

ℓ=1 ωiℓ . With this set
up, the class of randomly generated geometry is defined by polynomials of the
form (1) such that the coefficients ci are randomly and independently drawn from
the uniform distribution on [−1, 1]. Depending on the value of ω, the factor ωi

controls the smoothness of the polynomial φ by damping (or magnifying) the
higher-order oscillatory modes of the Legendre basis. In particular, we have set
ω = 0.5, empirically chosen to give a reasonable spread between relatively mild to
more complex geometry involving multiple components of high degree curvature;
examples are given in the next set of figures.

As discussed in the prior section, the connected component labeling algorithm
is exact whenever the subdivision process finishes without reaching the maximum
recursion depth 3. Consequently, we expect that as 3 increases, the percentage of
cases in which the algorithm is certifiably correct will also increase. To quantify
this, we generate a fixed number of random polynomials of the form (1), convert
them to the Bernstein basis, and invoke Algorithm 2 on each instance on the
reference domain U=[−1, 1]d . Three possible outcomes are tallied by the following
quantities:

• Let ρ= denote the percentage of cases in which line 7 is not executed, i.e.,
every leaf cell is simply connected so that the labeling is certifiably exact.

• Let ρ✓ denote the percentage of cases in which line 7 is executed (i.e., the
algorithm is uncertain about the topology), yet the labeling produced is exact.

• Let ρ× = 100%− (ρ=)− (ρ✓) denote the percentage of remaining cases, i.e.,
those in which two or more components have been artificially glued.

Note that the last two scenarios require a notion of the ground truth so as to determine
whether the labeling is exact or not; to that end, a reference solution for each of
the randomly generated cases is computed by applying the base algorithm with
unlimited recursion depth.3

Figure 1 plots ρ=, ρ✓, and ρ× as a function 3.4 On this class of randomly
generated geometry, it is rare for the topology to be fully resolved with just one
or two levels of subdivision (e.g., ρ= is less than 10% when 3 ≤ 1); however,
after a few more levels of subdivision, ρ= increases to around 99% when 3 = 6
in 2D, and around 90% when 3 = 7 in 3D. In general, we observe that as 3

increases, the number of cases in which the labeling algorithm is certifiably correct
increases exponentially. Furthermore, note that ρ× decays to zero at about the
same exponential speed as ρ✓, but is a significantly small fraction thereof; as such,

3In every computed instance, the ground truth solution terminated in finite time.
4The data shown in Figure 1 was collected from ten million randomly generated cases in 2D and

one million random examples in 3D, more than enough to stabilize the results.
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Figure 1. Percentage breakdown analysis corresponding to the three possible outcomes
of the connected component labeling algorithm as it applied to the randomly generated
geometry considered in Section 4.1. As a function of the maximum recursion depth 3,
the quantities indicate the percentage of cases in which the algorithm: (i) yields certifiably
correct labeling (ρ=); (ii) is uncertain about the topology but produces correct labeling
(ρ✓); and (iii) is uncertain about the topology such that two or more nearly touching
components are glued (ρ×); in particular, take note of the quasilogarithmic scale.

even when the algorithm reaches the maximum recursion depth and is consequently
uncertain about the topology, the labeling continues to be exact in more cases
than not. We also note that the failure rate ρ× is somewhat similar in 2D and 3D,
but the rate of certitude (ρ=) in 3D is smaller than it is in the 2D setting. This
can be attributed to a number of aspects, chief among which the 3D geometry
is substantially more complex. Another major reason concerns the Bernstein
polynomial range evaluation, which is generally less accurate in 3D versus 2D;
consequently, a few more levels of subdivision are needed in order to pass the simply
connected polynomial tests, and intuitively one may expect higher dimensions to
require additional refinement power.

Figures 2–4 provide some 2D examples demonstrating the above three scenarios.
Each example illustrates the quadtree and the colors have a one-to-one correspon-
dence with the computed labeling; shaded cells correspond to those whereon φ is
not simply connected, per the requirements of Definition 2.3. Figure 2 shows some
examples in which the algorithm is certain about the topology, i.e., every cell is
simply connected; observe that, as expected, progressively more complex geometry



A LABELING ALGORITHM FOR IMPLICITLY DEFINED DOMAINS 43

1= 1

1= 2

1= 3

1= 4

1= 5

1= 6

Figure 2. Examples of randomly generated geometry for which the connected component
labeling algorithm yields certifiably correct results. The depth of the subdivision quadtree,
1, is indicated in each row, e.g., the topmost examples require just one subdivision step to
be certain of the topology. Each example applies its own coloring scheme to illustrate the
labeling output of the algorithm.
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3= 1

3= 2

3= 3

3= 4

3= 5

3= 6

Figure 3. Examples of randomly generated geometry for which the connected component
labeling algorithm reaches the maximum-imposed recursion depth 3, is uncertain about the
topology, yet correctly labels distinct components. Each example applies its own coloring
scheme to illustrate the labeling output of the algorithm. Shaded regions indicate quadtree
cells upon which the input polynomial is not simply connected, according to Definition 2.3.
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3= 1

3= 2

3= 3

3= 4

3= 5

3= 6

Figure 4. Examples of randomly generated geometry for which the connected component
labeling algorithm reaches the maximum-imposed recursion depth 3, is uncertain about the
topology, and glues distinct components. Each example applies its own coloring scheme
to illustrate the labeling of the algorithm; in particular, glued components have the same
color. The shaded regions indicate the quadtree cells upon which the input polynomial is
not simply connected, according to Definition 2.3; some of these cells are responsible for
bridging the gap between glued components.
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can be resolved as further subdivision steps are permitted. Figure 3 demonstrates
cases in which the maximum recursion depth is reached (hence some cells are
shaded), yet the labeling is still exact; these instances arise whenever a shaded
cell U contains at most one component each of U ∩ {φ > 0} and U ∩ {φ < 0}, but
for some reason the simply connected test did not hold. Often, this occurs when
a saddle point or extrema is nearby the zero level set of φ. Meanwhile, Figure 4
demonstrates cases in which the subdivision is, in a sense, forced to stop early,
leaving some components glued together. This scenario occurs whenever: (i) a
shaded cell contains multiple components; and/or (ii) a shaded cell is +⃝-connected
or −⃝-connected to a neighbor even when no path exists between them. Situation (ii)
arises whenever the sign evaluation algorithm applied to the shared face is inexact
in the sense that it predicts all possible signs, yet in actuality φ is uniformly signed
on the face.5

Similar behavior is obtained in 3D, though it is much less straightforward to
visualize. Figure 5 illustrates some examples. Note that in some cases, two cells with
different labels can be touching, demonstrating that the sign evaluation algorithm
was successful in disconnecting them.

Intuitively, we expect the algorithm to glue components only when they are
nearly touching. Indeed, the examples in Figure 4 illustrate how the associated gaps
are generally less than the size of the smallest cell, sometimes much smaller. To
quantify this, we define an error metric which assigns a “cost” to gluing multiple
components together. Roughly speaking, the cost is defined by the sum of the gaps
between the agglomerated components. More precisely, given a set V ⊆ U and
two points x, y ∈ V , we define the cost of connecting x and y by the shortest path
connecting them, as measured by the arclength outside of V :

C(x, y; V ) := inf
γ

length
(
image(γ ) \ V

)
,

where the infimum is taken over all paths γ connecting x and y such that the part
of γ exterior to V has measurable and finite length. The cost of gluing multiple
connected components U1, . . . , Um is then defined as

C(U1, . . . , Um) := sup
x,y∈V

C(x, y; V ) where V =
⋃
i

Ui .

For example, the cost of gluing two connected components is the smallest straight-
line gap between them. As another example, the cost of gluing the 1D sets [0, 1],
[2, 3], and [5, 6] is 3, being the sum of the two smaller gaps.

5In 2D, on the randomly generated degree 3 polynomials under consideration, scenario (ii) never
occurs because our particular range evaluation algorithm Algorithm 1 on 1D edges is exact.
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Figure 5. Examples illustrating the connected component labeling algorithm applied to
randomly generated geometry in 3D. Only a subset of the octree is shown, corresponding
to the cells for which �+ labels have been assigned. From top left to bottom right, the
geometric complexity increases from two components up to eight.
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Figure 6. Gap distance between glued components, relative to the size of the smallest cell
in the quadtree/octree. Aggregated over all relevant instances of the randomly generated
geometry considered in Section 4.1, i.e., those making up the ρ× tally, the shaded region
demarcates the first-to-third quartile spread of g, the interior solid line indicates the median,
while the dashed lines indicate the minimum and maximum g values.

This metric is used to analyze the failure modes of the connected component
labeling algorithm, as follows. For now, suppose 3 is fixed. For each of the above-
generated random polynomials φi , we invoke Algorithm 2. Using the reference
solution, we determine which components have been glued together and compute
the associated cost;6 if no components were glued, the example is excluded from
further analysis; if there are multiple sets of glued components, the cost of each set
is measured and the maximal such cost is used. The output is the “error” ei for each
example i making up the ρ× tally defined earlier; note that ei measures gaps of the
input geometry, but its value depends on which components have been glued, which
in turn depends on 3. We expect ei to scale with the smallest cell size; in the present
setting, for the reference domain U = [−1, 1]d , the smallest cells have a diagonal
length of 21−3

√
d . We therefore examine their ratio and define the overall error for

polynomial φi by gi = ei 23−1/
√

d. Aggregated over all such examples, we then
compute the minimum and maximum value of gi as well as the median, first, and

6A separate algorithm has been developed to compute the gaps between the set of connected
components of U \ {φ = 0}. The algorithm uses a recursive subdivision approach combined with a
kind of adaptive point sampling. Its output is an interval bounding the exact gap value and can be
made as tight as necessary; in particular, the gap calculations being presented here are sufficiently
accurate for the analysis shown in Figure 6.
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third quartiles. Figure 6 displays the results corresponding to the set of 2D and 3D
randomly generated polynomials. Once 3 is sufficiently large so as to resolve the
typical geometry (and for Bernstein subdivision to become sufficiently accurate),
we observe that the gap between glued components is typically 25%–50% of the
smallest cell. Meanwhile, the upper dashed curves of g in Figure 6 correspond to
the rare cases in which two or more components are glued across a small chain
of neighboring leaf cells. Notwithstanding this critical analysis, it is worth being
reminded that, as Figure 1 shows, the number of cases in which components are
artificially glued decreases rapidly as 3 is made larger.

4.2. Additional examples. Figure 7 illustrates some additional examples involving
corners, cusps, self-intersections, and other kinds of singularities. These examples
are more contrived in the sense they typically would not occur in a computational
physics modeling problem, say; nonetheless, they serve to stress-test the connected
component labeling algorithm in ways the randomly generated geometry did not. In
particular, the examples demonstrate cases in which the implicitly defined geometry
contains points of singularity, i.e., points where both φ and its gradient are zero.
In these cases, at least in comparison to the topology test of Definition 2.3, it is
considerably more nuanced to determine whether the topology of U \ {φ = 0} is
sufficiently simple on a subcell U . The examples of Figure 7 serve to illustrate the
algorithm’s behavior near singularities; in particular, (i) and (iv) show cases where
the algorithm produces exact results despite the presence of singularities, while the
remaining examples show cases where components are glued:

• Figure 7(i) demonstrates a deltoid curve given by the zero level set of φ(x, y)=

(x2
+ y2)2

+18(x2
+ y2)−8(x3

−3xy2)−27; note how the subdivision focuses
in on the singular portions of the curve situated at the deltoid’s three cusps.
In this case, the maximum-defined subdivision recursion depth is always met,
but the resulting labeling is always exact.

• Figure 7(ii) demonstrates a trifolium curve, given by the zero level set φ(x, y)=

(x2
+ y2)2

− x3
+ 3xy2, containing a point of self-intersection at the origin.

The subdivision process focuses in on the origin until it is forced to stop;
the labeling algorithm subsequently glues the three connected components of
{φ > 0}, while the negative component {φ < 0} is unaffected.

• Besides corners, cusps, and self-intersections, another kind of edge case
concerns nonnegative polynomials φ such that {φ > 0} contains multiple
components. Figure 7(iii) illustrates a case involving circular geometry, where
φ(x, y)= (x2

+ y2
− r2)2. A ring of smallest-permitted subcells is obtained

such that the components on either side of the interface are glued, as indicated
by the solid white in the figure.
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(i) Deltoid, three cusps (ii) Trifolium, self-intersection

(iii) Nonnegative polynomial (iv) Oloid, one cusp

(v) High-order junction (vi) Line of singularities

Figure 7. Examples of test problems containing interfacial singularities.

• Figure 7(iv) demonstrates a 3D case involving a single isolated cusp, given
by conic-like oloid surface {φ = 0} where φ(x, y, z)= x2

+ y2
+ z3. Similar

to the example in Figure 7(i), the polynomial will never be simply connected
on subcells sufficiently close to the cusp, and so the algorithm continues to
subdivide until the maximum recursion depth is met. The labeling, however,
is exact in this case.
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• Figure 7(v) is a 3D analogue of (ii), and is given by the zero level set of
φ(x, y, z) = (x + y + z − 1)(−x − y + z − 1)(x − y − z − 1)(−x + y − z −
1)− 2(x2

+ y2
+ z2
− 3)2. The full surface on R3 contains six globular “arms”

meeting at four junction points; we focus on just one of these singularities
in the figure. In fixed-precision arithmetic, roundoff errors could lead to
inconsistencies in the treatment of this geometry; the design choices in the
present work result in all three components being glued.

• Finally, Figure 7(vi) demonstrates a nontrivial example in which the set of
singularities is one-dimensional. Here, φ(x, y, z) = xyz − x2

− y2, whose
corresponding implicitly defined geometry resembles two pinched pieces of
paper, one above the other, rotated and connected via a line of singularities
situated along the whole z-axis. In this example, the algorithm subdivides until
the maximum-permitted resolution is met, with all subcells near or containing
the z-axis marked as not simply connected. These leaf cells then form a
bridge from one folded paper to the other, gluing all four of their respective
components.

As an addendum, we point out that a tailor-made connected component labeling
could be designed to specifically handle the kinds of geometry shown in Figure 7.
For example, in all of these cases the polynomial degree is small enough that it
would be straightforward to apply cylindrical algebraic decomposition methods
from real algebraic geometry. Our main purpose for these test problems is to
demonstrate the “failure modes” of the connected component labeling algorithm in
these exceptional situations.

5. Concluding remarks

The connected component labeling algorithm developed here operates by recursively
subdividing the constraint hyperrectangular domain U into progressively smaller
subcells until the topology of � := U \ {φ = 0} thereon is sufficiently simple. This
is achieved through a “simply connected” test exploiting some useful properties
of the Bernstein polynomial basis, namely its effective methods for polynomial
range evaluation. If the subdivision process succeeds, then the labeling is certifiably
exact, i.e., χ(x) = χ(y) if and only if x, y ∈ � are path-connected. At its core,
however, the connected component labeling problem is ill-posed in the sense that
tiny changes in the coefficients of the input polynomial φ could alter the number and
topology of the connected components. We treated that here by allowing distinct
components to be glued together, but only when the topology is uncertain: gluing
occurs mainly when two components are nearly touching relative to the length scale
of the smallest-permitted subcell; gluing also occurs for various edge cases such
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as interfacial self-intersections or junctions, or grazing-type singularities such as
nonnegative polynomials for which {φ > 0} has multiple components.

We have yet to discuss the speed of the algorithm. In general, the computational
complexity is difficult to precisely quantify, being intricately dependent on the input
polynomial φ. For a fixed spatial dimension d and bounded polynomial degree,
the construction of the subdivision tree (Algorithm 2) has a worst-case complexity
o(2d3); in practice, however, it is usually significantly faster. Computation of χ(x)

for some x ∈ � (Algorithm 3) has a worst-case complexity O(3); in practice,
however, it is usually significantly faster. Indeed, for a given fixed polynomial,
as soon as the subdivision process resolves its implicitly defined geometry, the
algorithmic complexity becomes independent of 3.7 A comparison to the high-order
quadrature algorithms developed in [18] is perhaps useful: solving the connected
component labeling problem is about as fast as building a moderate order quadrature
scheme. These quadrature algorithms are already “fast” in some sense, so the speed
of the labeling algorithm is sufficient for our intended usage. As an additional indi-
cation, the cost of tree construction for the randomly generated geometry problems
in Section 4.1 is about 8 microseconds per instance in 2D and 0.2 milliseconds
per instance in 3D; about two thirds of that time is spent in the first phase of
Algorithm 2, about one third in the second phase, and negligible time in third phase.
After tree construction and on the same set of test problems, the cost of evaluating
χ(x) for a random point x is about 0.05 microseconds per evaluation in 2D and
0.1 microseconds in 3D.8

Finally, we mention here some possibilities for extending the algorithmic ap-
proach. One immediate possibility is to develop a more sophisticated subcell
topology test, e.g., �±∩U being star-connected or via an analysis of convexity [9].
Accompanying this change, a more sophisticated sign evaluation algorithm might
also be required, so as to appropriately path-connect neighboring cells, consistent
with the updated topology test. Depending on the end application, however, these
alterations might come with an increased computational cost. Another possibility is
to replace the quadtree/octree-style subdivision with a k-d tree subdivision, or, more
generally, a binary space partitioning (BSP) tree. In this setting, the most efficient
subdivision process would likely occur by orienting to the features of the polynomial,
e.g., by choosing hyperplanes which are locally parallel to its level sets. One would
then have to generalize the range evaluation algorithms to polytopes and contend

7In pathological cases, such as those illustrated in Figure 7, the computational complexity depends
on the measure of the input polynomial’s set of singularities; in particular, if its set of singularities
(inside U) is nonempty and has maximal manifold dimension ds < d, the worst-case complexity of
Algorithm 2 is O(λ) when ds = 0, or O(2ds3) when ds > 0, as 3→∞.

8Timing measurements obtained on an Intel Xeon E3-1535m v6 laptop, single core, operating at
approximately 3.5 Ghz.
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with more complex algorithms for building the cell connectivity. On the other hand,
the quadtree/octree approach allows for a considerably simpler implementation,
partly due to the use of tensor-product polynomials as well as dimension reduction
and recursion techniques. As a final possibility, we note that the basic idea of the
subdivision algorithm could be extended to nonpolynomial level set functions; for
example, one approach might be to apply automatic differentiation and interval
arithmetic techniques (see, e.g., [17]) to devise a suitable subcell topology test for
arbitrary level set functions.
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