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Abstract

Background: The reproducibility of gene expression measured by RNA sequencing (RNA-Seq) is dependent on the
sequencing depth. While unmapped or non-exonic reads do not contribute to gene expression quantification, duplicate
reads contribute to the quantification but are not informative for reproducibility. We show that mapped, exonic,
non-duplicate (MEND) reads are a useful measure of reproducibility of RNA-Seq datasets used for gene expression analysis.
Findings: In bulk RNA-Seq datasets from 2,179 tumors in 48 cohorts, the fraction of reads that contribute to the
reproducibility of gene expression analysis varies greatly. Unmapped reads constitute 1–77% of all reads (median [IQR], 3%
[3–6%]); duplicate reads constitute 3–100% of mapped reads (median [IQR], 27% [13–43%]); and non-exonic reads constitute
4–97% of mapped, non-duplicate reads (median [IQR], 25% [16–37%]). MEND reads constitute 0–79% of total reads (median
[IQR], 50% [30–61%]). Conclusions: Because not all reads in an RNA-Seq dataset are informative for reproducibility of gene
expression measurements and the fraction of reads that are informative varies, we propose reporting a dataset’s
sequencing depth in MEND reads, which definitively inform the reproducibility of gene expression, rather than total,
mapped, or exonic reads. We provide a Docker image containing (i) the existing required tools (RSeQC, sambamba, and
samblaster) and (ii) a custom script to calculate MEND reads from RNA-Seq data files. We recommend that all RNA-Seq
gene expression experiments, sensitivity studies, and depth recommendations use MEND units for sequencing depth.
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Background

Assessing the reproducibility of RNA sequencing (RNA-Seq) gene
expression measurements has been a priority since the devel-
opment of the assay [1, 2]. The amount of sequencing generated
from all regions of the genome for a dataset generated from 1 bi-
ological sample is called the depth of sequence for that dataset.
Seminal studies showed the following 3 effects of increasing the
depth of sequencing: the convergence of measurements of the
expression of individual genes in a single dataset to a consistent
value [2], the increase in the number of true-positive differen-
tially expressed genes in cross-dataset comparisons [1], and an
increase in correlations across platforms of fold-change mea-
surements in cross-dataset comparisons [1]. These show how
reproducibility within a dataset, between datasets, and across
platforms all depend on the depth of sequence. The degree
of reproducibility required depends on the experimental de-
sign; finding large fold changes across genes requires less repro-
ducibility in gene expression values than finding smaller differ-
ences between isoforms. For comparing gene expression mea-
surements between datasets, ENCODE recommends a minimum
of 30 million mapped reads [3]; the Genetic European Variation
in Disease (GEUVADIS) consortium study had a minimum goal
of 20 million reads [4].

However, RNA-Seq data are not homogenous. Of the tens
of millions of sequences (reads) in a typical RNA-Seq dataset,
some reads cannot be mapped back to the reference transcrip-
tome. Others map to genome regions outside of exons or have
been duplicated by PCR during the library construction process
or sequencing. Nearly all methods for quantifying gene expres-
sion in bulk RNA-Seq data count reads that align to exons in a
gene; thus, unmapped and non-exonic reads do not contribute
to measurements and are consequently uninformative [5, 6].
Therefore, if the fraction of uninformative reads varies between
datasets, using the total number of reads as a proxy for RNA-
Seq gene expression reproducibility can result in inflated repro-
ducibility estimates.

Duplicate reads may be due to either highly abundant tran-
scripts or technical artifacts. The process of preparing RNA-
Seq libraries involves PCR amplification. This step can gener-
ate duplicated identical or nearly identical reads, especially if
the input amount is low. While the original read represents
gene expression in the experimental system, the artifactual du-
plicate reads do not. However, duplicate reads are also gener-
ated by very highly expressed genes because each gene has
a finite number of unique read sequences that can be gener-
ated from it [7]. Previous studies have shown that many dupli-
cates in high-quality datasets reflect gene expression, and there
is strong evidence that duplicates should not be removed for
the purpose of measuring the expression of individual genes
[8, 9]. Below we investigate the value of excluding duplicates
at the dataset level when reporting on the dataset’s sequencing
depth.

Here we analyze 2,179 bulk, paired-end, polyA-selected RNA-
Seq datasets to characterize the read types present in the
datasets and evaluate what fraction of each dataset is unequivo-
cally relevant to the reproducibility of gene expression measure-
ments.

Methods
MEND read counting method

Quantification of mapped, exonic, non-duplicate (MEND) reads
was previously described [10]. Briefly, input to the program that
computes MEND is a genome-aligned bam file containing RNA-
Seq read data. Duplicates are marked with Samblaster v0.1.22
(Samblaster, RRID:SCR 000468) [11], and the RSeQC v2.7.10
[12] script read distribution.py quantifies exonic read and tag
counts, excluding quality control (QC) fail and duplicate reads,
as well as secondary alignments. The script parseReadDist.R,
which we wrote, estimates the number of MEND reads based on
RSeQC output by summing the tag counts in CDS exons, 5′ un-
translated region (UTR) exons, and 3′ UTR exons and multiplying
by reads per tag. Because a pair of reads provides information
about 2 nearby sequences, read counts are reported in pairs. For
example, 20 million reads means that there are 20 million pairs
of reads. The process for estimating MEND read counts is avail-
able as a stand-alone Docker image [13] and can be executed on
CodeOcean [14]. The source code is freely available on GitHub
[15].

Data description

Here we discuss 2,179 publicly available, polyA-selected, bulk
RNA-Seq datasets that we gathered for the RNA-Seq com-
pendium [16] used for comparative single-patient analysis [10].
Accession numbers, clinical metadata, and read counts for
each dataset are in Supplementary Table S1. Repository and
cohort information is aggregated in Supplementary Tables S2
and S3.

Of the 2,179 datasets, 2,018 were generated from pedi-
atric/adolescent/young adult cancer tumors, 66 were from adult
cancer tumors, and 95 were from cancer tumors of individuals
with unknown ages, where adults are defined as being >30 years
of age. Of the 1,692 datasets with reported sex of the patient, 42%
were female and 58% were male. Of the 602 datasets with re-
ported race of the patient, 27 were Asian, 70 were Black/African
American, 3 were Native Hawaiian or Other Pacific Islander, 494
were white, 1 identified as “non-white” and 7 as “other” with-
out further specification. None were American Indian or Alaskan
Native. Of 861 datasets with reported results of the patient’s His-
panic or Latino identity, 128 were Hispanic or Latino. The source
tumors represent a variety of hematologic and solid malignant
neoplasms (Table 1).

The datasets came from 5 repositories (Supplementary Table
S2). Each was assigned to a cohort based on (i) project accession
(for EGA and SRA datasets), (ii) disease substudy for National
Cancer Institute Therapeutically Applicable Research to Gener-
ate Effective Treatments (TARGET), or (iii) disease for datasets in
the St Jude Cloud. Cohorts were assigned IDs in descending or-
der of size. Cohort assignments were intended to approximate a
typical sequencing project performed by 1 research group at 1 se-
quencing center. The cohorts range in size from 3 to 337 datasets
(Fig. 1A); the median number of datasets in a cohort is 24.5.

All libraries were prepared with polyA selection. All data were
generated via paired-end Illumina sequencing technology. The

https://scicrunch.org/resolver/RRID:SCR_000468
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Table 1. Diseases represented in studied datasets

Disease No. (%)

Acute lymphoblastic leukemia 680 (31.2)
Acute myeloid leukemia 221 (10.1)
Medulloblastoma 201 (9.2)
Glioma 193 (8.9)
Osteosarcoma 157 (7.2)
Acute megakaryoblastic leukemia 103 (4.7)
Ependymoma 98 (4.5)
Ewing sarcoma 70 (3.2)
Rhabdoid tumor 65 (3.0)
Rhabdomyosarcoma 53 (2.4)
Lymphoma 49 (2.2)
Embryonal rhabdomyosarcoma 42 (1.9)
Alveolar rhabdomyosarcoma 40 (1.8)
Glioblastoma multiforme 29 (1.3)
Choroid plexus carcinoma 25 (1.1)
Synovial sarcoma 22 (1.0)
Other 131 (6.0)
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Figure 1. RNA-Seq datasets from 48 tumor cohorts with a variety of read lengths

were analyzed. A. Distribution of number of datasets per cohort. B. Distribution
of length of paired-end reads in this study.

reported sequencing methods for 1,133 datasets included the
model of Illumina sequencer used. The models included the
Genome Analyzer (II, IIx, and unspecified); the HiSeq (2000, 2500,
and unspecified); and the Next Seq 500. The median sequence
length is 101 bases (Fig. 1B).

Data analysis

RNA-Seq read data were aligned to the genome with the TOIL
RNA-Seq pipeline previously described [17]. Briefly, adapters
were removed with CutAdapt v1.9 (CutAdapt, RRID:SCR 011841)
[18]. Reads were then aligned with STAR v2.4.2a (STAR, RRID:
SCR 015899) [19] with indices based on GRCh38 and gencode v23.

RSEM v1.2.25 was used to quantify gene expression. The source
code of the pipeline is available [20]. MEND read counts were cal-
culated with MEND qc release v1.1.1.

Read count and gene expression analysis was conducted
with the R programming language, using the following pack-
ages: tidyverse, janitor, knitr, corrr, cowplot, RColorBrewer, pan-
der, kableExtra, and snakecase [21–30]. The source code used
to generate the figures and statements in this article is avail-
able on Github [31] and can be run and modified on Code
Ocean [32].

Results
Read types in RNA-Seq data

We interrogated the read types present in our RNA-Seq datasets
as defined by our gene expression quantification pipeline
(Fig. 2A). We obtained the number of total and mapped reads
from the aligner log. We marked duplicates in the aligned BAM
file, and counted them, along with exonic reads, using RSeQC.
Duplicate reads are reported as a fraction of mapped reads, and
exonic reads are reported as a fraction of non-duplicate reads.
The datasets ranged in total sequence depth from 0.2 to 668 mil-
lion reads, with a median value of 61 million and an interquartile
range (IQR) of 49–102 million.

Most RNA-Seq datasets contain a small percentage of un-
mapped reads (Fig. 2B). While the fraction of unmapped reads
in the 2,179 datasets ranges from 1 to 77%, the median value
is 3% and the IQR is 3–6%. The distribution is left-skewed with
a long right tail (Fig. 3A). In 77 datasets, >25% of reads are un-
mapped. The value of excluding unmapped reads from sequenc-
ing depth read counts is self-evident because these reads do not
correspond to any known expressed gene and do not contribute
to gene expression measurements. Including those reads in any
measure of the reproducibility of gene expression measurement
would misguide the researcher.

The percentage of mapped reads that are duplicate reads
(“percent duplicates”) is more varied than the percentage of un-
mapped reads. Duplicate reads constitute 3–100% of mapped
reads (median [IQR], 27% [13–43%]). 426 datasets have >50% du-
plicates (Fig. 3A). The duplicate read fraction varies within and
between cohorts (Fig. 3B). For example, Cohort 4 is character-
ized by high duplicate fractions, with 72 of the 127 datasets hav-
ing >98% duplicates. Remarkably, these 72 datasets all identify
<100 expressed genes. However, Cohort 4 does not account for
all datasets with high duplicate fractions: 20 datasets in other
cohorts have >90% duplicates. Even cohorts with generally low
duplicate fractions can contain anomalous datasets; of the 41
cohorts with a median of <50% duplicates, 26 contain ≥1 dataset
with >50% duplicates.

If duplicate reads were only a function of datasets being espe-
cially deeply sequenced, we would expect datasets with deeper
sequencing to have a greater fraction of duplicate reads than
all datasets with lower depth of sequence.The total sequencing
depth has a 0.52 Spearman correlation with the fraction of du-
plicate reads (Fig. 4). The incomplete explanation of duplicate
fractions by sequence depth is consistent with Fu et al. [8] and
with the large number of datasets in Fig. 4 that have very differ-
ent duplicate fractions in spite of similar total read counts. The
fraction of duplicate reads cannot be inferred from the total read
depth.

Like percent of duplicates, the percent of non-exonic reads
among all mapped, non-duplicate reads (“percent non-exonic”)
has a broad distribution compared to other read type fractions,

https://scicrunch.org/resolver/RRID:SCR_011841
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Figure 2. RNA-Seq datasets include 4 main types of sequencing reads. A. Simplified schematic illustrating read types. The X axis (blue) is a genomic locus containing
an exon. The other boxes each represent 1 sequencing read. Two of 5 reads are MEND reads. Other reads do not map to the genome (unmapped; orange border), map
to a non-exonic region of the genome (non-exonic; green border), or are duplicates of other reads (duplicate; red border). The MEND reads (black) fit none of these

categories and are most informative for determining the reproducibility of gene expression quantification. B. Schematic illustrating read type quantification. Bars
representing uninformative reads are white with a colored border. For each informative fraction, the range and median (med.) are reported.

ranging from 4% to 97% with a median [IQR] of 25% [16–37%].
There are 330 datasets that have a fraction of non-exonic reads
>50%. Therefore, the percentage of duplicate reads or non-
exonic reads among all mapped, non-duplicate reads is not di-
rectly informative about the dataset’s gene expression measure-
ments.

Computing requirements for MEND pipeline

We recorded the time required to run our most recent pipelines
on computers with 64 GB of memory and 12 VCPU. The 382 RNA-
Seq datasets examined were obtained from SRA and EGA and
had reads that were 100 bases in length. For datasets within 10
million total reads of the median total read size in our survey of
2,179 datasets (61 million total reads), the median duration is 290
minutes (4.8 hours) for the expression pipeline and 143 minutes
(2.4 hours) for the MEND pipeline.

Conclusion

Researchers wish to know that their data are sufficient for mak-
ing reproducible measurements. For RNA-Seq experiments, they
often wish to know whether the dataset is sufficient for repro-
ducibly measuring expression of known genes. Here we show

that the fraction of relevant content of an RNA-Seq dataset (per-
cent of MEND reads) varies substantially within and between co-
horts, and thus should be measured in each dataset.

This work was performed using data from pediatric tumor
datasets as part of the development of our comparative RNA-
Seq assay for patients with pediatric cancer [10, 16]. Because
the factors that reduce the quality of RNA-Seq datasets (e.g.,
degradation, low input amounts, contamination, and low base
quality) are not specific to pediatric cancer datasets, we predict
that other kinds of RNA-Seq datasets would also show compo-
sitional variability. The MEND read counting tool is independent
of species and genome version; it can be used on any bulk RNA-
Seq dataset.

Previous studies have shown that paired-end libraries con-
tain relatively few artifactual duplicate reads [7, 9]. However,
these studies are typically conducted on high-quality datasets
from a single source. For example, Parekh et al. [9] base their con-
clusions on analysis of paired-end datasets with a range of du-
plicates of 6–19%. In our survey of real-world data, Cohort 4 con-
tains 72 datasets with >98% duplicates, and 20 more datasets
from other cohorts contain >90% duplicates.

There are several reasons why a survey of this breadth has
not been previously performed. Obtaining and processing clin-
ical datasets from multiple sources is an intensive effort [33].
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Figure 3. Read type fractions vary within and between cohorts. A. The percent distribution of different uninformative read types observed in 2,179 datasets. B. The
percentage of read types observed in cohorts, annotated with the number of datasets in the cohort.

r=0.52; p=6e−149

0.00

0.25

0.50

0.75

1.00

0 200 400 600
Read counts (million)

%
 D

up
lic

at
es

Figure 4. Duplicate fraction is not completely explained by total read depth. The Spearman correlation and P-value are shown. Many datasets have very different

duplicate fractions in spite of similar total read counts; n = 2,179.

Access to tumor datasets is usually controlled, and obtaining
the 48 cohorts that we report on here required multiple legal
agreements [33]. Analyzing read types requires genome-aligned

reads; the files containing genome-aligned reads are large and
are not generated when using the much faster pipelines that
quantify gene expression via pseudoalignment. Large RNA-Seq
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cohorts such as Genotype-Tissue Expression (GTEx) and The
Cancer Genome Atlas use consistent methods and exclude
datasets that fail their stringent and consistent QC [34, 35]. They
lack the kind of heterogeneity observed in data cohorts gath-
ered from diverse sources. In short, generating these data for
>2,000 datasets is time-consuming and expensive and requires
staff with diverse expertise.

Measuring the number of MEND reads in a dataset is specific
to the alignment parameters and gene model. We use Gencode
v23, which is inclusive, defining >60,000 genes. By default, the
aligner we use, STAR, defines reads that map to as many as 20
positions as mappable. If we changed our pipeline, asking STAR
to exclude reads mapping to >2 positions and using a more con-
servative gene model with 30,000 genes, the same dataset would
have fewer MEND reads owing to the loss of reads that map to
too many places or map only to regions newly defined as non-
exonic.

In addition to being sensitive to reference files, MEND counts
are slow to compute, increasing the duration of our RNA-
Seq pipeline by 50%. It would be valuable to create a faster
utility that takes raw reads rather than aligned reads as in-
put. The reference-dependence could also be addressed by in-
cluding a default set of references, with support for alternate
ones.

Researchers planning RNA-Seq experiments look for guid-
ance on how much sequencing their experiment requires. For
comparing gene expression measurements between datasets,
ENCODE recommends a minimum of 30 million mapped reads
[3]; the GEUVADIS consortium study had a minimum goal of 20
million reads [4]. However, of the 2,078 datasets in this study
with >30 million mapped reads, 16% contain <25% informative
(MEND) reads. We speculate that these guidelines were not in-
tended to include those datasets, some of which measure <100
genes. Because the median fraction of MEND reads in our survey
was 50%, we recommend that a user who, e.g., wants to follow
the ENCODE recommendation of a depth of 30 million mapped
reads ensure that they have ≥15.5 million MEND reads (a dataset
with 30 million mapped reads typically has 1 million additional
unmapped reads). A total of 13% (261) of the datasets in our
study that satisfy the ENCODE guideline have <50% MEND reads;
6% (134) have <10% MEND reads.

On the basis of these results, we recommend that (i) pub-
lications reporting the results of an RNA-Seq study with gene
expression applications should report the depth of sequence as
the number of MEND reads present in each dataset; (ii) sen-
sitivity studies should include read type fractions and report
on the relationship between MEND reads and the measured
outcome; and (iii) sequencing depth recommendations should
be based on MEND reads rather than total or total mapped
reads.

Availability of Supporting Source Code and
Requirements

Project name: MEND QC
Project home page: https://github.com/UCSC-Treehouse/mend
qc
Operating system(s): Platform independent
Programming language: Bash and R
Other requirements: Docker
License: MIT
RRID:SCR 020934

Data Availability

Accession numbers, clinical data, and read counts for 2,179 pub-
licly available, bulk RNA-Seq datasets are in Supplementary Ta-
ble S1. The sequence data are controlled access and can be re-
quested via the accession numbers at the repositories in Supple-
mentary Table S2. Code snapshots and tabular data are available
from the GigaScience GigaDB repository [36].

Additional Files

Supplementary Table S1. Accession numbers, clinical data, and
read counts for 2,179 publicly available, bulk RNA-Seq datasets.
The accession numbers are the definitive sources; the DOI links
to citations are provided for convenience.
Supplementary Table S2. Sequence data repositories, URLs, and
abbreviations.
Supplementary Table S3. Cohort names, code, repositories, and
dataset counts.

Abbreviations

CDS: coding sequence; DOI: digital object identifier; EGA: Euro-
pean Genome-Phenome Archive; GEUVADIS: Genetic European
Variation in Disease; GTEx: Genotype-Tissue Expression; IQR: in-
terquartile range; med.: median; MEND: Mapped, Exonic, Non-
Duplicate; QC: quality control; RNA-Seq: RNA sequencing; SRA:
Sequence Read Archive; UTR: untranslated region; VCPU: virtual
central processing unit.

Ethics

The UCSC Institutional Review Board (IRB) has determined that
our use of previously released sequence data does not constitute
human subject research, and therefore does not require an IRB
review.

Competing Interests

The authors declare that they have no competing interests.

Funding

This study was funded by American Association for Cancer
Research NextGen Grant for Transformative Cancer Research
Award (O.M.V.), Emily Beazley Kures for Kids Fund St. Baldrick’s
Consortium Grant, Alex’s Lemonade Stand Foundation for Child-
hood Cancer Research, Unravel Pediatric Cancer, Team G Child-
hood Cancer Foundation, California Initiative to Advance Preci-
sion Medicine, Live for Others Foundation, The Schmidt Futures
Foundation (D.H.). D.H. is a Howard Hughes Medical Institute In-
vestigator. O.M.V. holds the Colligan Presidential Chair in Pedi-
atric Genomics.

Authors’ Contributions

Analysis and manuscript authorship: H.C.B., J.M.R., M.A.C.,
L.T.M., D.K.A.T.
MEND pipeline development and integration and manuscript re-
view: R.C., D.L.L., J.V.
Data access, data processing, and manuscript review: K.L., E.T.K.,
L.S., J.P., A.G.L., and I.B.
Funding, scientific oversight, and manuscript review: D.H.,
S.R.S., and O.M.V.

https://github.com/UCSC-Treehouse/mend_qc
https://scicrunch.org/resolver/RRID:SCR_020934


Beale et al. 7

Acknowledgements

We acknowledge the work of all our colleagues at the UC Santa
Cruz Genomics Institute; the Computational Genomics Lab has
provided an invaluable base for this work, allowing us to analyze
large datasets relevant to pediatric cancer research. We thank
Alejandro Sweet-Cordero and Alex G. Lee for valuable feedback
on MEND analysis. We thank the many researchers who shared
their sequence data [37]. Finally, we honor and thank all the chil-
dren and adults who consented to donate their data to advance
cancer research.

References

1. Marioni JC, Mason CE, Mane SM, et al. RNA-seq: an
assessment of technical reproducibility and compari-
son with gene expression arrays. Genome Res 2008;18:
1509–17.

2. Mortazavi A, Williams BA, McCue K, et al. Mapping and quan-
tifying mammalian transcriptomes by RNA-Seq. Nat Meth-
ods 2008;5:621–8.

3. ENCODE Project Consortium. Encode Standards,
Guidelines and Best Practices for RNA-Seq. 2011.
https://www.encodeproject.org/documents/91494746-0ff
e-4931-b219-a09802ce1cfa/@@download/attachment/RNA s
tandards v1 2011 May.pdf. Accessed 2021 February 22.

4. ’t Hoen PAC, Friedländer MR, Almlöf J, et al. Reproducibility
of high-throughput mRNA and small RNA sequencing across
laboratories. Nat Biotechnol 2013;31:1015–22.

5. Bray NL, Pimentel H, Melsted P, et al. Near-optimal
probabilistic RNA-seq quantification. Nat Biotechnol
2016;34(5):525–7.

6. Li B, Dewey CN. RSEM: accurate transcript quantification
from RNA-Seq data with or without a reference genome.
BMC Bioinformatics 2011;12:323.

7. Klepikova AV, Kasianov AS, Chesnokov MS, et al. Effect of
method of deduplication on estimation of differential gene
expression using RNA-seq. PeerJ 2017;5:e3091.

8. Fu Y, Wu P-H, Beane T, et al. Elimination of PCR duplicates in
RNA-seq and small RNA-seq using unique molecular identi-
fiers. BMC Genomics 2018;19(1):531.

9. Parekh S, Ziegenhain C, Vieth B, et al. The impact of ampli-
fication on differential expression analyses by RNA-seq. Sci
Rep 2016;6, doi:10.1038/srep25533.

10. Vaske OM, Bjork I, Salama SR, et al. Comparative tu-
mor RNA sequencing analysis for difficult-to-treat pediatric
and young adult patients with cancer. JAMA Netw Open
2019;2:e1913968.

11. Faust GG, Hall IM. SAMBLASTER: fast duplicate mark-
ing and structural variant read extraction. Bioinformatics
2014;30:2503.

12. Wang L, Wang S, Li W. RSeQC: quality control of
RNA-seq experiments. Bioinformatics 2012;28(16):
2184–5.

13. Treehouse Childhood Cancer Initiative. ucsctreehouse/bam-
mend-qc - Docker Hub. https://hub.docker.com/r/ucsctreeh
ouse/bam-mend-qc/. Accessed 2020 August 21.

14. Treehouse Childhood Cancer Initiative. Count Mapped, Ex-
onic, Non-duplicate (MEND) reads in RNA-Seq data. CodeO-
cean. 2020. http://dx.doi.org/10.24433/CO.3151742.v1. Ac-
cessed 2020 August 24.

15. Treehouse Childhood Cancer Initiative. mend qc. https://gi
thub.com/UCSC-Treehouse/mend qc. Accessed 2020 August
21.

16. Treehouse Childhood Cancer Initiative. Treehouse Public
Data. https://treehousegenomics.soe.ucsc.edu/public-data.
Accessed 2020 August 10.

17. Vivian J, Rao AA, Nothaft FA, et al. Toil enables reproducible,
open source, big biomedical data analyses. Nat Biotechnol
35:3142017.

18. Martin M. Cutadapt removes adapter sequences from
high-throughput sequencing reads. EMBnet J 2011;
17:10.

19. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultra-
fast universal RNA-seq aligner. Bioinformatics 2013;
29:15.

20. Treehouse Childhood Cancer Initiative. Pipelines. https://gi
thub.com/UCSC-Treehouse/pipelines. Accessed 2020 August
21.
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