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ABSTRACT OF THE THESIS

Experimentation with Tokenization Process of SourcererCC

By

Paridhi Sirohi

Master of Science in Software Engineering

University of California, Irvine, 2022

Professor Cristina Lopes, Chair

This thesis presents the experimentation of parameters affecting the tokenization process

of an existing code clone detection tool, SourcererCC. The SourcererCC is a token-based

clone detector that targets three clone types and exploits an index to achieve scalability to

large inter-project repositories using a standard workstation. We experiment with the three

parameters affecting tokenization: (1) threshold, (2) stop words, and (3) use of sub-tokens.

I will evaluate these three parameters’ performance with the original SourcererCC. I will be

using the metrics, precision, and recall for the evaluation. I create a web interface for the

SourcererCC and use that to conduct preliminary experiments for the parameters and find

the best results with an 80 percent threshold.

The experiments conducted for the evaluation include (1) Original SourcererCC, (2) Sourcer-

erCC with sub-tokens enabled, (3) SourcererCC CC with stop words, and (4) SourcererCC

with sub-tokens and stop words. The experiments are evaluated with a recall study using

the BigCloneEval tool and manual verification of the precision of the experiments. For the

manual verification, 150 samples are selected from each experiment, using four judges to

remove any biases. I further analyze the results achieved and the scope of future work for

this thesis.
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Chapter 1

Introduction

Tokenization is the process of dividing a stream of characters into larger units called to-

kens [4]. Tokenization has applications across multiple domains, namely data mining, ma-

chine learning, information retrieval, linguistics, compilers and statistics. In recent years, we

have seen exponential growth in the need for tokenization in computer learning models [28].

In the software engineering domain, tokenization is the first step for detecting code duplica-

tion. Reusing code is a common practice in software development. This can include copying

and using it as it is or modifying the code based on the change in the use case [22]. These

snippets of reused code create clones. Clones are similar pieces of code found within the

project or across different projects. My thesis is about studying the effects that different

tokenization approaches have on the effectiveness of code clone detection.

1.1 Background

Code clone detection focuses on identifying and labeling clones. There are mainly four types

of clones [23]:
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• Type 1: Identical code statements with differences in layout, white spaces, and com-

ments

• Type-2: In addition to conditions of Type 1, the code statements may use different

names for identifiers and literal values

• Type-3: Syntactically similar code fragments that differ at the statement level. The

fragments have statements added, modified, and/or removed with respect to each other,

in addition to Type-1 and Type-2 clone differences

• Type-4: Syntactically dissimilar code fragments that implement the same functionality

The code clone detection tool used in this thesis is SourcererCC [24]. SourcererCC is a

token-based detection tool that identifies clone types 1, 2, and 3. It uses an index to provide

scalability for detecting clones in large repositories. SourcererCC consists of two steps: (1)

tokenization of the source code, and (2) detection of clones based on token comparisons.

In code clone detection software the tokens are generated from the source code. Source code

is written to be interpreted by human programmers as well as computers [31]. This results

in code having the syntax and grammar of a programming language for the computer and

informal and formal conventions followed to make the code readable by the programmers.

This can include various formatting techniques, comments, naming identifiers, etc.

Two important parameters affect the process of tokenization for code clone detection tools,

namely: (1) generating subtokens (or not) and (2) using stop words (or not).

• Subtokens. In most programming languages, identifiers follow specific conventions,

which include camel casing [16] and underscore. A subtoken is a semantically mean-

ingful portion of the main token that can be obtained by knowing these conventions.

For example: findDifference is a token that contains two subtokens (find and differ-

ence); total marks is another token that contains two subtokens (total and marks); etc.
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Using subtokens as a parameter for tokenization can affect the effectiveness of clone

detection.

• Stop words. Stop words are high-frequency tokens that increase the percentage of

similarity but do not hold the same importance as the non-frequent words. In the case

of code clone detection, the programming language’s keywords can be used as the stop

words.

The tokenization and stop word removal is part of the preprocessing of data as depicted in

Figure 1.1.

Figure 1.1: Preprocessing of Data

SourcererCC creates partial inverted indexes on the files with the tokens generated in the

first step. The second step uses a clone-matching algorithm to find pairs of clones. During

this process, the common tokens between the two code snippets are measured in percentage.

The algorithm uses a configurable parameter, threshold, as the minimum percentage required

for two code snippets to be considered clones. As such, another important parameter for

code clone analysis of the threshold of similarity.
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1.2 Motivation

Code clone detection tools are essential for the following reasons [22]:

• Plagiarism of code: The tool helps identify the code similarity and that is helpful in

plagiarism. It can also help in law proceedings in case of copyright infringement.

• Increasing the libraries used by various languages: By analyzing large datasets of code,

one can identify the code duplicated the most and if it is a common implementation,

it can be incorporated into a library for future use.

• Bug reporting: Reusability of code is a common principle in object-oriented program-

ming. In the case of code duplications, a bug reported at one of the instances is more

likely to be a bug at the clones too. A quick code clone detection process can help in

eliminating a common bug occurring due to duplication easily.

• Detection of malicious implementation: After detecting code clones, if one of the code

fragments is a malicious implementation, one can classify all the clones as malicious

implementations.

Current code clone detection tools present two issues. Firstly, achieving the best effectiveness

of code clone detection for every new dataset requires experimentation with different param-

eters of the configurations [29]. However, there isn’t much study and analysis on how the

parameters in the configurations affect the evaluation metrics. Specifically for SourcererCC,

an investigation of the effect of subtokens and stop words has not been done yet.

Secondly, current code clone detection tools are time-consuming to set up and use. Most of

these tools require local code setup and the use of the command line [7], which limits both

the amount of experimentation and the kinds of users that can drive the tools.
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My thesis builds on these two issues. First, I present a study on the effect of subtokens and

stop words in SourcererCC. Then I explain the design and implementation of a web interface

that facilitates experimentation with configuration parameters.

1.3 Thesis Statement

The issues mentioned above in Section 1.2 spark the requirement for studying the effective-

ness that different tokenization approaches have on the results of SourcererCC. This thesis

will answer the following research questions:

• How does the use of subtokens and stop words affect the effectiveness of SourcererCC?

• Is there a compound effect in using subtokens and stop words in the effectiveness of

SourcererCC?

In order to answer these questions, I designed experiments comparing the use of SourcererCC

with and without subtokens and stop words, and I present the results here. To facilitate my

own experiments, I designed and implemented a Web interface that facilitates these experi-

ments by automating many setup and configuration steps required for running SourcererCC.

The contributions of my work are as follows: (1) my experiments show that, while the use of

subtokens and stop words, in separate, deteriorates the effectiveness of SourcererCC, their

combined use results is an improvement in recall; (2) the Web interface proved to be an

invaluable tool for my own experiments, saving me many hours of manual setup; this tool is

publicly available and can be used by others.
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Chapter 2

Literature Survey

This section covers the literature review. The literature review consists of three sections: (1)

Previous work done in code clone detection tools with an emphasis on the SourcererCC, (2)

literature review of tokenization across different domains, and (3) tokenization work done in

the field of Natural Language Processing (NLP) models.

2.1 Previous Work

Clones are called by different names in the literature. Baxter et al. [1] termed it “ identical

to another code segment.” Meanwhile, Komondoor [10] and Ducasse et al. [2] have used

“duplicate code.” Krinke et al. [17] have used the term “similar code.” For simplicity, I will

be using code clones in this thesis. Code clone detection tools have been a mature research

year for the last two decades. Ratten et al. [21] presented a survey of over seventy code clone

detection software in 2011. Roy and Chordy [23] have evaluated the benchmarks for the

last decade in 2018. Shobha et al. [3] have conducted a systematic review of the code clone

detection software based on the techniques used. The techniques used include text-based,

6



token-based, tree-based, graph-based, and hybrid.

This thesis intersects with token-based code clone detection, and I will focus on these moving

forward. We will be covering the various token-based code clone detections present today.

Baker et al. [1] introduced Dup tool for detecting clones by line-based string matching ap-

proach. It focuses on the change of variable names by an editor. The limitation of this

approach is that it focuses on the main structure, and if the code is rewritten, it cannot

catch duplicate code. Kamiya et al. [8] focused on large-scale code, including COBOL, C,

and Java, for effectively extracting clones. Li et al. [13] introduced CP-Miner, which uses

data mining methods for detecting clones in large-scale code. Deissenboeck et al. developed

the CloneDetective tool for token-based clone detection technique by tokenization, which

uses the suffix tree method to compare and detect clones. Kawaguchi et al. [9] present

the Shinobi tool, which is implemented as a client-server structural design suffix array index

method used for token sequence. Murakami et al. [18] developed an efficient FRISC tool

using a suffix array algorithm with higher precision and recall. Sajnani et al. [24] presented

SourcererCC token-based detection tool, which uses an optimized partial index and demon-

strated scalability by IJaDataset open-source Java systems and compared it with CCFinder,

Deckard, iClones, and NiCad.

In the last six years, literature has covered implementing code clone detection tools using

machine learning and deep learning. Lie et al. [12] reviewed this literature while surveying

the application of deep learning on code clone detection between 2016 and 2020. They have

found 21 papers that implemented deep learning in code clone detection software. While

this is an exciting area, there are limitations concerning the scalability and performance of

such techniques.
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2.2 Tokenization

Grefenstette [4] defines tokenization as the first step in transforming text, and with each step,

it abstracts away the surface differences. There is vast literature present on tokenization in

the field. However, most of them are specific to the domain that tokenization is applied in. I

will be covering the literature on text mining and information retrieval systems in this section.

Vijayarani and Janani [28] define text mining as the extraction of interesting and non-

trivial knowledge from unstructured text. Manning presented the book overviewing modern

information retrieval. Ibrihicha [6] recently presented a review of research in Information

Retrieval. They describe information retrieval as a fundamental idea that has found its place

everywhere. Information retrieval systems are measured mainly using precision and recall.

2.3 Tokenization in Natural Language Processing

The intuition to have a literature survey for Natural Language Processing (NLP) is to un-

derstand how the tokenization process works for NLP models and take those insights for an-

alyzing the tokenization parameters in the code clone detection tools. Webster and Kit [30]

have examined the tokenization process in NLP by comparing the techniques used in Chinese

and English. They conclude that it is essential to include more processes for tokenization

than just using delimiters to find tokens. Mielke et al. [15] present a study of different ways

of tokenization that include multi-word vocabulary building, byte-pair encoding, and sub-

words. They conclude that there is no singular silver bullet solution for tokenization; it will

always be multiple approaches and dependent on the final model. Finally, Libovicky and

Fraser [14] used the process of starting with subwords tokenization and then fine-tuning the

character-wise process in NLP. While this process requires training a model different from

SourcererCC, it presents an exciting approach of having the character-wise overlap similarity

8



in the clone detection algorithm.
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Chapter 3

Methodology

My thesis focuses on the effects of parameters on the effectiveness of SourcererCC. This

section is divided into the setup of tools along with the web interface, the recall and preci-

sion study required for measuring the effectiveness of SourcererCC, and additional concepts

required to interpret experiments.

3.1 Setup

3.1.1 SourcererCC

SourcererCC presented in the original paper, can be run using the command line tool. In

addition, source code can be cloned from the public GitHub repository. It uses multi-

threading that is supported in Python 3.6. It consists of two steps, generating tokens and

running the clone detector algorithm. Both these steps are executed using python scripts.

First, tokens are generated that are stored with a partial index of the project files and the

tokens in a file. This file is then used as input for the clone detector python script. The final
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output is a CSV file with the clone pairs.

3.1.2 Web Interface of SourcererCC

Figure 3.1: Website Workflow

I have created a web interface in python using flask [5] that only requires the user to upload

the projects to be compared in a zip format. The first page ( 3.2) can be used to upload

the project files. The website’s backend implements both the steps the user requires to run

in the command line. The website’s workflow is shown in Figure 3.1. The final page ( 3.3)

returns the results in the format of the result pairs with the actual project and file names

for better understanding.
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Figure 3.2: First page

Figure 3.3: List of Clones
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3.1.3 BigCloneBenchEval

The BigCloneEval [27] is a framework used for evaluating the recall of a code clone detection

tool and uses the BigCloneBench database for evaluating the clones. The BigCloneBench

database is a benchmark consisting of manually validated clone pairs from 25,000 java

projects [26]. These java projects were taken from the inter-project Java repository IJa-

Dataset, which consists of 8 million clone pairs covering 43 functionalities. This database has

been used for evaluating the recall of various code clone detection tools. The BigCloneEval

is used using the command line. The commands include initializing the framework, regis-

tering the tool, finding clones with the code clone detector tool, and evaluating the tool.

For SourcererCC, clones are generated independently and imported into the BigCloneEval

framework. The recommended configurations of the benchmark are to use minimum tokens

of 50, minimum lines to be 6, and clone matcher of 70% threshold. I have used similar

configurations. The distribution of the clone types is listed in Table 5.1.

Clone Type 1 2 Very Strongly 3 Strongly 3 Moderately 3
no of clone pairs 35787 4573 4156 14997 79756

Table 3.1: BigCloneEval Summary

3.1.4 Manual Precision study

There has been plenty of research and implementations of code clone detection tools. How-

ever, no tools are present for automating the precision evaluation of tools. In this thesis, I

have used a manual study for the experiments. I have randomly selected 150 clones for each

experiment from clone pairs generated from the reduced IJaDataset 2.0. The clones were

distributed among four judges to reduce the bias in the final result. The four judges are

clone experts and check the pairs for the same functionality.

13



3.2 Parameters

3.2.1 Threshold

The threshold for SourcererCC is set in the clone detector. The recall and precision are

sensitive to the threshold of the tool. I have experimented with various thresholds with the

original tokenizer to see the impact of the threshold on the clones detected.

3.2.2 Subtokens

The tokenization process for SourcererCC converts the files to tokens in a reduced form to

increase the tool’s scalability. I have used the naming conventions, the camel casing, and

the underscore to generate subtokens.

3.2.3 Stop Words

During the tokenization of files for SourcererCC, there is a possibility to include the stop

words in text format. All programming languages have a fixed set of keywords that will be

commonly repeated. I have used this list as the stop words in the experiments.

3.3 Additional Context

3.3.1 Overlap Similarity

SourcererCC uses overlap similarity [11] for detecting clones. The intuition behind this thesis

is to see how the selected experimental parameters can help increase the overlap similarity

14



Figure 3.4: Java keywords [25]

for better clone detection. The overlap similarity can be measured with Jaccard coefficients

[19] and cosine similarity.

Experiments conducted in this thesis can be done only on the file level. The BigCloneEval

requires clones to be presented along with the pairs’ start and end line numbers. To make

the output of SourcererCC compatible with BigCloneEval, I have processed the dataset to

convert it into functions with the start and end numbers in the file name for easy processing.

I have used the python script presented in Figure 3.5.
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def __get_start_end_for_node(node_to_find):

start = None

end = None

for path, node in tree:

if start is not None and node_to_find not in path:

end = node.position

return start, end

if start is None and node == node_to_find:

start = node.position

return start, end

def __get_string(start, end):

if start is None:

return ""

# positions are all offset by 1. e.g. first line -> lines[0], start.line = 1

end_pos = None

if end is not None:

end_pos = end.line - 1

lines = data.splitlines(True)

global last_end

last_end = len(lines)

string = "".join(lines[start.line:end_pos])

string = lines[start.line - 1] + string

# When the method is the last one, it will contain a additional brace

if end is None:

left = string.count("{")

right = string.count("}")

if right - left == 1:

p = string.rfind("}")

string = string[:p]

return string

Figure 3.5: Python Script to Split Files based on functions

16



Chapter 4

Evaluation

4.1 Experiment Procedure

For the results, I have conducted four experiments on SourcererCC. The first experiment is

with the parameter threshold in the clone detector. The subsequent three experiments are

conducted with a fixed threshold and done on the side of the tokenizer. The details of the

experiment are covered in this section.

4.1.1 Threshold

For this experiment, I have varied the threshold during a preliminary study to see how it

affects the clones detected. During this preliminary study, I hand-picked two code fragments

given to SourcererCC with 70% and 80% thresholds. To further understand how the thresh-

old affects the results, I evaluated the recall of Functionality 2 of BigCloneEval. The recall

for both thresholds was 100% for Type 1 and 98% for Type 2. This shows that the use of

a higher threshold did not have a significant effect on the recall. Also, a higher threshold

17



should help achieve better precision.

4.1.2 Fixed threshold with subtokens

I have chosen to conduct experiments on a fixed threshold for the following experiments.

The original evaluation of SourcererCC was done with a 70% threshold. Intuitively, since

the number of tokens will increase with subtokens. I have decided to experiment with an

80% threshold. The subtoken generation happens only on the file level.

4.1.3 Fixed threshold with stop words removal

Experiments are conducted over Java code fragments. The Java language uses 52 keywords.

These keywords can be found listed in Figure 3.4. I have used the same 80% threshold for

the stop words to maintain uniformity across the other experiments.

4.1.4 Fixed threshold with subtokens and stop words removal

The final experiment combines all three parameters identified in this thesis. A combination

of stop words and subtokens is to understand how the two might affect each other in the

clone detection process. The threshold is set to 80%.

4.2 Evaluation Metrics

I have used recall and precision to measure the quality of the clones generated by the exper-

iments.

18



4.2.1 Recall

The ratio of the retrieved relevant records to the total number of relevant records is defined

as recall. For code clone detection tools, these records are the clone pairs. I have used

the BigCloneEval to evaluate the recall on the experiments covered in Section 4.1. The

formula [20] is as follows:

NumberofClonesDetected

NumberofClones

Since the BigCloneEval consists only of valid clone pairs, the formula for the recall is just

the number of clones the tool found vs. the total number of clones. The recall helps us

understand the effectiveness of the parameters on SourcererCC.

4.2.2 Precision

The precision is the measure of how many results obtained are actually true. I have evaluated

the precision by a manual study. I have taken 150 samples of each experiment and distributed

them among clone experts to obtain the results. The formula [20] for the precision for clones

is as follows:

NumberofTrueClones

NumberofClones

The effectiveness of SourcererCC is measured using two evaluation parameters, recall, and

precision. Precision is used to understand how many clone pairs reported are valid clone

19



pairs. Recall checks how many clone pairs are correctly identified. Together, these two

parameters help us measure the effectiveness of SourcererCC. The following section presents

the results of the experiments discussed in terms of the evaluation metrics.
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Chapter 5

Results and Findings

This section covers the results of the experiments conducted on SourcererCC. These experi-

ments are conducted to evaluate the effectiveness of SourcererCC. Two chosen metrics, recall

and precision, are discussed below:

5.1 Recall

The recall for the experiments was measured on the BigCloneEval. The results are presented

in Table 5.1. The recall is reported for all clones, inter-project, and intra-project. I have

set the minimum similarity to 50% while evaluating to target Types 1,2 and 3 mainly. The

BigCloneEval evaluates the type 1, type 2, very strongly type 3 (VST3), strongly typed 3

(ST3), and moderately typed 3 clones. The recall for the Type 1,2 and VST3 are between

97-100 % leaving less scope for analysis.

To understand how it affects Type 1 and Type 2 for comparison, I have removed the datasets

for functionalities 31, 34, 41, and 44. These results are only for comparison purposes. The
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Experiment All Clones Intra-Project Inter-Project
T1 T2 VST3 ST3 MT3 T1 T2 VST3 ST3 MT3 T1 T2 VST3 ST3 MT3

Section 4.1.1 70% 100 98 93 61 5 100 99 99 86 14 100 97 86 48 5
Section 4.1.1 80 % 100 97 91 57 2 100 98 98 83 10 100 96 83 42 3
Section 4.1.2 100 99 94 59 5 100 99 99 85 13 100 98 85 46 5
Section 4.1.3 100 96 90 55 1 100 98 97 82 9 100 96 82 41 3
Section4.1.4 100 99 95 56 5 100 99 98 84 11 100 97 84 42 5

Table 5.1: BigCloneEval Recall

results are captured in Table 5.2. In the first experiment ( Section 4.1.1), 70% and 80%

resulted in Type 1 and Type 2 clones. For type 3 clones, the recall values reduced for

threshold 80%. Since SourcererCC uses overlap similarity, this effect is expected to increase

the threshold.

For experiment 2 ( Section 4.1.2), I received the best results for recall. Type 1 and Type 2

perform 9% and 5% better. However, since the code clone detection tools are very susceptible

to configurations, it is possible to achieve the maximum result for all the experiments in the

case of Type 1 and Type 2. For the Type 3 clones, it increases the recall for VST3, but

similar trends are not observed with ST3 and MT3. This trend is justifiable as only the

overlap similarity increases, but that does not affect these types of clones.

For experiment 3 ( Section 4.1.3), the recall metric reflects our hypothesis in the preliminary

results. As the standard tokens reduce but the threshold is high, the experiment performs

worse than the original SourcererCC. This issue is combated in the fourth experiment. The

experiment 4 ( Section 4.1.4) configuration affects the VST3 clones the most by showing an

increase of 10% from the original results.
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Experiment All Clones Intra-Project Inter-Project
T1 T2 VST3 ST3 MT3 T1 T2 VST3 ST3 MT3 T1 T2 VST3 ST3 MT3

Section 4.1.1 70% 50 72 42 30 1 74 78 42 16 1 45 39 42 57 6
Section 4.1.1 80% 50 72 41 24 0 74 78 42 13 0 45 38 39 46 2
Section 4.1.2 59 77 54 25 1 87 81 66 22 1 54 54 43 33 35
Section 4.1.3 48 71 36 11 0 72 78 41 8 0 44 34 32 17 1
Section 4.1.4 58 74 51 21 1 85 79 63 17 1 53 43 42 28 2

Table 5.2: BigCloneEval Recall without Functionalities 31,34,41,44

5.2 Precision

The results are reported in Table 5.3. The precision for threshold 70 ( Section 4.1.1) was

reported in the original paper as 91%. I have achieved a precision of 91 % with a threshold

of 80 ( Section 4.1.1). The precision for the subtokens ( Section 4.1.2) experiment matches

the expectations of it being lower than the original experiment. However, the precision for

the stop words experiment (Section 4.1.3) was also lower. One possible reason can be that

the study was done on Java files, and Java is a syntactically typed language. The removal of

keywords has resulted in reducing the overlap of the tokens. This reduction shows that stop

words alone do not help with precision. I have achieved 91% precision in the stop words and

subtokens experiment (Section 4.1.4).

Experiment Precision
Section 4.1.1 91
Section 4.1.2 87
Section 4.1.3 84
Section 4.1.4 91

Table 5.3: Precision

During the study, all the judges noticed that the false positives in the case of experiment 4

(Section 4.1.4) were the hardest to find as the clones were syntactically similar. However,

the difference was in the actual functionality of code fragments. This issue falls outside the

domain of SourcererCC as it is a syntactically dependent clone detection tool.
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Chapter 6

Conclusion and Future Work

In this thesis, I have looked at the interactions between the various parameters that affect

the metrics for code clone detection tools.

Using a web interface for code clone detection tools will benefit everyone. It can also help by

providing uniformity across different studies. I conclude that subtokens and stop words help

achieve better precision and recall. However, the use of subtokens also increases false positive

results. The use of stop words helps combat the precision loss caused by the subtokens. Also,

the two configurations together help achieve better results.

6.1 Threats to Validity

I have identified the following threats to our approach:

• Recall Study: The difference in configurations helps attain close to 100% recall for

Type 1 and Type 2. While this is a comparative study, the experiment is conducted to

show how it differentiates; using parameters might not be helpful for a system already
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achieving 100

• Manual sampling of Precision Study: The samples are randomly selected but can only

reflect one section of the dataset. Since the datasets are vast, the actual precision

might be different from the one observed in this study.

6.2 Future Work

The future work for this thesis can include experimentation in the direction of NLP models. A

few concepts, such as building vocabulary and word embeddings, can be used to understand

how it affects the code clone detection tools. In addition, this direction can help identify

Type 4 pairs that work on the same functionality.

I have experimented with the SourcererCC. Other clone detection tools available in the

literature may behave differently. Experimentation with other code clone detection tools is

one direction in which affect of configurations on code clone detection tools can be evaluated.

These studies will also help build an understanding of how the evaluation of tokenization

can be done.
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