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Abstract

There is a growing research interest in understanding extreme weather in the
context of anthropogenic climate change, posing a requirement for new tailored
climate data products. Here we introduce the Climate of the 20th Century Plus
Detection and Attribution project (C20C+ D&A), an international collabora-
tion generating a product specifically intended for diagnosing causes of changes
in extreme weather and for understanding uncertainties in that diagnosis. The
project runs multiple dynamical models of the atmosphere-land system under
observed historical conditions as well as under naturalised versions of those ob-
served conditions, with the latter representing how the climate system might
have evolved in the absence of anthropogenic interference. Each model generates
large ensembles of simulations with different initial conditions for each historical
scenario, providing a large sample size for understanding interannual variabil-
ity, long-term trends, and the anthropogenic role in rare types of weather. This
paper describes the C20C+ D&A project design, implementation, strengths,
and limitations, and also discusses various activities such as this special issue
of Weather and Climate Extremes dedicated to “First results of the C20C+
Detection and Attribution project”.
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1. Motivation

Over the past decade and a half, many climate researchers have perceived
a demand for better understanding of the current extreme weather hazard, as
well as of the contribution of long-term climate trends to that hazard (Stott
et al., 2013; National Academies of Sciences, Engineering, and Medicine, 2016;5

Stott et al., 2016). For lack of a better term, we will refer to both questions
as dealing with “event attribution”. The need for event attribution was first
articulated within the context of informing court decisions on tort claims (Allen,
2003; Allen and Lord, 2004; Allen et al., 2007). More recently, event attribution
has also been suggested as information required for funding decisions involved10

in the United Nations Framework Convention on Climate Change “Loss and
Damage” (L&D) activity (and other L&D activities) (Pall et al., 2011; James
et al., 2014; Boran and Heath, 2016), but the question of whether this is feasi-
ble or desirable is a topic of active discussion (Hulme et al., 2011; Hulme, 2014;
Surminski and Lopez, 2014; Huggel et al., 2015, 2016). Further motivation has15

also been the realisation that event attribution analysis leads to an improved
scientific understanding of extreme weather itself by bridging daily forecasting,
seasonal forecasting, and climate change research (Dole et al., 2011; Stott et al.,
2013; Hoerling et al., 2013). However, the biggest motivation in recent years
has been to provide information which helps the public at large to contextu-20

alise their experiences of current weather within the setting of anthropogenic
climate change (Jézéquel et al., 2018), as exemplified by the 133 studies in the
“Explaining Extreme Events from a Climate Perspective” supplements to the
annual Bulletin of the American Meteorological Society “State of the Climate
Report” since 2012 (Peterson et al., 2012, 2013; Herring et al., 2014, 2015, 2016,25

2018).
Despite this proliferation of event attribution research, there remains a

dearth of publicly available data products tailored toward general event at-
tribution analysis. Some development has been made in terms of products de-
signed for characterising recent variability and trends in extremes, such as the30

HadEX2 observational product (Donat et al., 2013) and the Twentieth Cen-
tury Reanalysis Project (Compo et al., 2011), but these have limited ability to
inform diagnosis of the underlying causes of long-term variations and trends.
A more thorough understanding requires large collections of simulations of dy-
namical climate models. These provide large samples, allowing robust statistical35

characterisation of rare extremes, and the experiment design can be formulated
specifically to diagnose causal factors external to the climate system. The most
well-known example of this type of experiment consists of the historical (run
with observed changes in greenhouse gases and other changes in atmospheric
composition, the land surface, and solar insolation for the past 150 years) and40

historicalNat (run with the anthropogenic drivers maintained at pre-industrial
values) simulations submitted to the international Coupled Model Intercompar-
ison Project (CMIP5, Taylor et al., 2012). However, the number of simulations
for any single model in CMIP5 is moderate at best, with moving windows in
time providing reasonably large sample sizes for only a few models. Further-45
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more when considering atmospheric extremes, CMIP5 models have substantial
regional biases in ocean temperatures that may have strong effects on the local
gradients required to power extreme weather. Plans for the successor project
to the detection and attribution component to CMIP5, namely the Detection
and Attribution Model Intercomparion Project (DAMIP, Gillett et al., 2016),50

do not call for a larger number of simulations, and progress in reducing biases
in ocean temperatures may only be moderate, if past progress is a guide (Flato
et al., 2013). Event attribution studies thus far have therefore either made sub-
stantial assumptions to work around these issues, or have produced bespoke
climate model output that is either not generally applicable to analysis of other55

extreme events or is not publicly accessible (e.g. Pall et al., 2011; Hoerling
et al., 2013; Schaller et al., 2016).

Substantial further progress in event attribution thus demands a new cli-
mate model product tailored specifically for the problem. What should that
product look like? There are both many conceptual and methodological differ-60

ences in what constitutes event attribution analysis (Shepherd, 2016; National
Academies of Sciences, Engineering, and Medicine, 2016). Some approaches
require a very specific experiment design (e.g. Hannart et al., 2016), but nev-
ertheless there are enough commonalities in the data requirements for most
approaches such that it should be possible to have a product that can inform65

most methods. The CMIP5-style historical and historicalNat design does so, for
instance. Methods that depend on analysis of long-term trends or the anoma-
lous magnitude in relation to normal variability can be informed by historical -
style simulations designed to simulate weather under boundary conditions that
have been experienced, usually accompanied by observational data (e.g. Dole70

et al., 2011; Hoerling et al., 2013). Methods that use a factual-counterfactual
comparison additionally require historicalNat-style simulations designed to sim-
ulate weather under boundary conditions that would have been expected in the
absence of anthropogenic interference (e.g. Stott et al., 2004; Pall et al., 2011).

Here we introduce the C20C+ Detection and Attribution (C20C+ D&A)75

project, a new public international multi-model data product specifically de-
signed to inform assessments of variability, long-term trends, and the anthro-
pogenic role in extreme weather over terrestrial areas. It should also prove
useful for understanding atmospheric variability generally. It follows the his-
torical/historicalNat format, and thus can inform a large variety of methods80

for diagnosing mechanisms and causes. Unlike CMIP5 and DAMIP, the design
uses models of the atmosphere-land system, using prescribed ocean surface and
sea ice conditions (Pall et al., 2011). This should reduce ocean biases, and the
greater computational efficiency permits large ensembles of simulations with
models at higher spatial resolution than when using dynamical ocean models.85

The project is being undertaken through the Climate of the 20th Century Plus
(C20C+) activity of the World Climate Research Programme’s CLIVAR, which
adopted the D&A project as a new focus in 2013 (as well as updating its name
from C20C, Folland et al., 2014). C20C+’s purpose is to develop understanding
of the nature of changes in atmospheric variability as well as their causes (Fol-90

land et al., 2002). The C20C+ D&A experiment design is specifically intended
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to address questions concerning:

• the characterisation of historical trends and variability in the properties of
extreme weather events, including uncertainties such as those encapsulated
through differences across models;95

• the estimation of the role of human interference in historical and current
extreme weather, including understanding of the underlying uncertainties.

This paper is part of a special issue in this journal reporting on “First results
of the C20C+ Detection and Attribution project”, and is intended as the gener-
all introductory paper for the project. Throughout this paper we will point the100

reader for further details of various topics to other C20C+ D&A papers in this
special issue and elsewhere, as appropriate. We start this paper by describing
the experiment design in Section 2. Current progress is reported in Section 3,
including details of the implementation of the experiment by each model. The
C20C+ D&A project has intentionally left room for flexibility in a number of105

aspects of the design, so details described in the section may be crucial for un-
derstanding results from comparisons across models. Section 4 presents a brief
summary of some major lessons from analyses reported in this special issue and
elsewhere, with a particular focus on indications that aerosol chemistry may be
a highly important — and uncertain — factor. Section 5 lists various activities110

being undertaken to facilitate usage of the C20C+ D&A project data, with free
widespread usage considered a vital component of the project.

2. Experiment design

The project generates large ensembles of simulations of atmosphere models
run under two types of scenarios (Figure 1), as initially tested by Pall et al.115

(2011) and since performed in a large and growing number of studies. There
is no prescribed method within the project for generating different simulations
within a given scenario. Most contributions so far have used macro- or micro-
perturbations to a given initial state. For the HadGEM3-A-N216, different
realisations of stochastic physics are the primary distinction between simula-120

tions (Ciavarella et al., 2018). While the use of atmosphere models, rather
than coupled atmosphere-ocean models, should reduce ocean biases and permit
greater computational efficiency (and hence more simulations with models at
higher spatial resolution), the lack of a dynamically interacting ocean implies
assumptions that anthropogenic climate change does not influence ocean vari-125

ability, that short-term coupled atmosphere-ocean interactions are unimportant
in production of extreme weather, and (depending to some degree on how the
simulations are analysed) that the anthropogenic climate change influence is
identical for all (relevant) forms of extreme weather (Risser et al., 2017; Dong
et al., 2017; Fischer et al., 2018).130

The “All-Hist” factual scenario mimics the CMIP5 “historical” and DAMIP
“historical” (Gillett et al., 2016) scenario, except that observed sea surface con-
ditions are prescribed rather than being calculated by a dynamical ocean model.
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Figure 1: A schematic of the experiment design of the C20C+ D&A project. For the All-
Hist scenario, an ensemble of simulations of an atmosphere/land model, each differing in the
initial state, are run forward in time with historical observed radiative forcings and ocean
surface conditions. For the Nat-Hist scenario, a similar ensemble of simulations is run, but
with anthropogenic radiative forcings set to pre-industrial values and sea surface temperatures
cooled by a space- and time-varying estimate of the warming attributable to anthropogenic
emissions.

Radiative and surface conditions are varied in the same way as they have in the
real world. These include greenhouse gas concentrations, tropospheric aerosol135

burdens, stratospheric ozone concentrations, stratospheric aerosol burdens, so-
lar luminosity, land use/cover, sea surface temperatures, and sea ice concentra-
tions. Some climate model simulations are run instead with aerosol precursor
emissions, calculating the burden through atmospheric chemistry modules.

The “Nat-Hist” counterfactual scenario mimics the CMIP5 “historicalNat”140

and DAMIP “hist-nat” (Gillett et al., 2016) scenario, designed to represent
how the world might have evolved in the absence of anthropogenic interference
with the climate system. Anthropogenic radiative conditions (greenhouse gas
concentrations, tropospheric aerosol burdens/emissions, ozone concentrations)
are set to circa year 1850 values, but stratospheric aerosol burdens and solar145

luminosity remain unaltered from the All-Hist scenario. The nature of land
use/cover change under the Nat-Hist scenario is ambiguous and the decision
on how to treat land use/cover change has been left at the discretion of the
participating modelling groups (Section 3).
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There are many different possibilities for the Nat-Hist ocean surface condi-150

tions (Pall et al., 2011; Christidis and Stott, 2014; Bichet et al., 2016; Schaller
et al., 2016; Stone and Pall, 2019; Sun et al., 2018). Given the nature of the
of the experiment design, it seems most sensible to retain the variability in the
observed All-Hist sea surface temperatures, to ensure that results do not depend
on a different sampling of El Niño events, for instance (Pall et al., 2011). The155

project thus adopts the practice of estimating Nat-Hist sea surface temperatures
through the use of estimates of the amount of ocean warming attributable to an-
thropogenic interference, and subtraction of those estimates from the observed
All-Hist sea surface temperatures (Figure 1). Local sea ice concentration is
nonlinearly related to anthropogenic interference, however, and so the observed160

All-Hist sea ice must be adjusted in a way that is consistent with the new sea
surface temperatures (e.g. Stone and Pall, 2019). The project intends to ex-
plore numerous plausible estimates of the attributable ocean warming. To this
end, in this special issue Stone et al. (2018) use year-to-year variations in event
attribution results based on one attributable warming estimate to determine165

deviations to that scenario estimate which are most likely to yield informative
further attributable warming patterns for use in the project.

The C20C+ D&A project is flexible in further aspects. For instance the
observationally based datasets defining the various radiative and surface condi-
tions are not specified in the protocols, and thus are likely to differ from model170

to model (Section 3). The primary reasoning for this approach is scientific: it
provides material for exploratory analyses which may identify important issues
that were not known beforehand and thus could not explicitly be built into the
experiment design. An example of how this has proved useful will be described
in Section 4.175

3. Current status

Climate models that have submitted All-Hist simulations and some form
of Nat-Hist simulations (including NonGHG-Hist simulations, representing a
world in which only historical anthropogenic greenhouse gas emissions had been
averted) are listed in Table 1. These models range from what was average180

spatial resolution in CMIP5, to the highest resolution models that contributed
historicalNat simulations to CMIP5 (approximately 9 000 km2), to much finer
resolution not yet feasible at this scale with atmosphere-land-ocean models.
Descriptions of some of these contributions are included in this special issue
(Ciavarella et al., 2018; Stone et al., 2018; Sun et al., 2018).185

Details of the historical scenarios which have currently been explored are
listed in Table 2. In keeping with the flexible design of the project, specifics of
these simulations vary from model to model Table 3. Differences include whether
prescribed aerosol burdens or emissions have been used, the data product used
for radiative and surface forcing estimates, the year used in lieu of the “circa190

1850” for the Nat-Hist settings, and how Nat-Hist land use/cover is treated.
(Note that it has been found that the LBNL/CAM5.1 family of models did not
in fact include variations in volcanic aerosols in their simulations, contrary to
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Table 1: Models contributing to the C20C+ D&A project as of March 2019. The spatial
resolution is the global average grid cell size. Cited references describe further details of the
simulations.
Institute Model Resolution References
ARCCSS ACCESS1.3 18 000 km2 Dittus et al. (2018)
ETH CAM4-2degree 37 000 km2 Fischer et al. (2018)
LBNL CAM5.1.2-0.25degree 580 km2 Wehner et al. (2015)

CAM5.1-1degree 9 200 km2 Stone et al. (2018),
Angélil et al. (2017)

CAM5.1-2degree 37 000 km2 Wolski et al. (2014)
MIROC MIROC5 16 000 km2 Shiogama et al. (2013),

Shiogama et al. (2014)
MOHC HadGEM3-A-N216 3 600 km2 Christidis et al. (2013),

Ciavarella et al. (2018)
NOAA-ESRLandCIRES CAM4 9 200 km2 Quan et al. (2014),

Hoerling et al. (2016)
CAM5.1.1-1degree 9 200 km2 Quan et al. (2018)
ECHAM5.4 4 400 km2 Hoell et al. (2017),

Sun et al. (2018)
UCT-CSAG HadAM3P-N96 18 000 km2 Wolski et al. (2014)

claims in some papers.) All of these climate models have been run under the
standard All-Hist scenario (designated “All-Hist/est1”). Most of the models195

have also been run under the C20C+ D&A benchmark Nat-Hist scenario, des-
ignated as Nat-Hist/CMIP5-est1 (Stone and Pall, 2019). The “CMIP5-est1”
part of the label refers to the manner in which the observed ocean conditions
have been cooled in relation to the All-Hist/est1 scenario. In this case, the
estimate is based on the difference in skin temperature between the historical200

and historicalNat simulations from multiple models in the CMIP5 archive. Cur-
rently one other Nat-Hist estimate (“Nat-Hist/obs-trend-1880s-est1”, based on
extrapolation of observed trends to 1880s conditions, Sun et al. (2018), simi-
lar to the extrapolation of Christidis and Stott (2014)) has been explored with
multiple models, as well as one estimate of a world in which only anthropogenic205

greenhouse gas emissions had never occurred (“NonGHG-Hist/HadCM3-p50-
est1”, estimated from simulations of the HadCM3 climate model, Wolski et al.,
2014). The plan though is to explore many further estimates of the attributable
anthropogenic warming, with sampling methods being developed (Stone et al.,
2018). Various strengths and weaknesses of available attributable warming es-210

timates are discussed in Stone and Pall (2019).
The simulations conducted as of March 2019 are summarised in Figure 2.

Many models have a small ensemble of approximately half-century-long All-
Hist simulations for analysis of long-term trends, and a much larger ensemble
of simulations over a shorter recent period for factual-counterfactual compar-215

ison. Some models also have long ensembles in a Nat-Hist scenario, allowing
for comparison of trends in natural versus anthropogenic worlds, or providing
scenario-consistent baselines for referencing factual-counterfactual comparisons.
Continually updated lists of simulations, including available output, are pro-
vided at http://portal.nersc.gov/c20c/data.html.220
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Table 2: Scenarios currently used by submissions to the C20C+ D&A project.
Scenario Description Forcings Reference
All-Hist/est1 Observed conditions Observed histor-

ical
Stone and Pall
(2019)

Nat-Hist/
CMIP5-est1

What observed conditions
might have been with-
out human interference,
ocean cooling based on the
CMIP5 data

Anthropogenic
as pre-industrial,
natural as in All-
Hist/est1

Stone and Pall
(2019)

Nat-Hist/
CESM1-CAM5-est1

What observed conditions
might have been without
human interference, ocean
cooling based on the
CMIP5 CESM1-CAM5
data

Anthropogenic
as pre-industrial,
natural as in All-
Hist/est1

Stone and Pall
(2019)

Nat-Hist/
obs-trend-1880s-est1

What observed conditions
might have been without
human interference, ocean
cooling based on observed
trends

Anthropogenic
as pre-industrial,
natural as in All-
Hist/est1

Sun et al.
(2018)

NonGHG-Hist/
HadCM3-p50-est1

What observed conditions
might have been without
greenhouse gas emissions,
ocean cooling based on
HadCM3 data

Greenhouse
gases as pre-
industrial,
rest as in All-
Hist/est1

Wolski et al.
(2014)

4. Lessons so far

One of the biggest challenges in climate analysis is the evaluation of climate
model quality (Flato et al., 2013). The C20C+ D&A archive provides both a
more urgent requirement for effective evaluation methods and a new data set for
testing the effectiveness those evaluation methods. For instance, Angélil et al.225

(2016) compare return value estimates from C20C+ D&A models and various
reanalysis products and find that over much of the world’s land areas the reanal-
ysis products are in more disagreement with each other than the C20C+ D&A
models are with each other, suggesting that current reanalysis products are in-
adequate to serve a simple role in model evaluation for the purposes of event230

attribution. In this special issue, Ciavarella et al. (2018) continue the devel-
opment of model evaluation tools through separate examination of predictable
and unpredictable components of interannual variability. However, Herger et al.
(2018) note that the dominant contribution to uncertainty in risk-based event
attribution analyses may in fact be from the long-term change attributable to235

anthropogenic emissions, which are poorly constrained by the available observa-
tional record (Lott and Stott, 2016), rather than from climatological statistics,
as has hitherto been assumed (Bellprat and Doblas-Reyes, 2016). Evaluation
of relevant aspects of model quality remains a challenge for event attribution
study.240

The C20C+ D&A archive provides material for understanding the relative
contributions of a number of sources of uncertainty in estimates of various
aspects of extreme weather. For instance, in this special issue, Dittus et al.
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Table 3: Radiative and surface boundary conditions for the various simulations submitted to
the C20C+ D&A project as of March 2019. Non-bold entries indicate the usage of prescribed
concentrations (or optical depth, where noted) for radiative forcings, while bold values indicate
the usage of prescribed emissions or that the process is simulated interactively as part of the
model. Subscripts denote the years used for repeated use in the Nat-Hist simulations (note
that “1880s” technically refers to 1879-1889). The “RCP” column indicates the RCP scenario
used for any time-evolving anthropogenic forcings.

Institute/Model Scenario RCP Radiative forcings Surface forcings
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ARCCSS/ACCESS1.3 All-Hist/est1/v1-0 RCP8.5 MS LB,LK LB,LK Sim CE JH SH,JH — HN HN

ETH/ All-Hist/est1/v1-0 RCP8.5 MS LE LE LE LB,LK WL AM HF HN HN
CAM4-2degree Nat-Hist/CMIP5-est1/v1-0 RCP8.5 MS1850 LE1855 LE1855 LE1855 LB,

LK1855

WL AM HF HN-SP HN-SP

LBNL/ All-Hist/est1/v1-0 RCP8.5 MS LE LE LE LB,LK WL — HF1850 HN HN
CAM5.1.2-0.25degree Nat-Hist/CMIP5-est1/v1-0 — MS1850 LE1855 LE1855 LE1855 LB1855,

LK1855

WL — HF1850 HN-SP HN-SP

LBNL/ All-Hist/est1/v2-0 RCP8.5 MS LE LE LE LB,LK WL — HF HN HN
CAM5.1-1degree Nat-Hist/CMIP5-est1/v2-0 RCP8.5 MS1850 LE1855 LE1855 LE1855 LB,

LK1855

WL — HF HN-SP HN-SP

Nat-Hist/CESM1-CAM5-est1/v1-0 RCP8.5 MS1850 LE1855 LE1855 LE1855 LB,
LK1855

WL — HF HN-
SPC

HN-
SPC

LBNL/ All-Hist/est1/v1-1 RCP4.5 MS LE2000 LE2000 LE2000 LB,LK WL — HF HN HN
CAM5.1-2degree NonGHG-Hist/HadCM3-p50-est1/v1-1 RCP4.5 MS1850 LE2000 LE2000 LE2000 LB,

LK
WL — HF HN-

HC
HN-
HC

MIROC/ All-Hist/est1/v2-0 RPC4.5 MS LE LE Sim KN C5 SH HC Ha Ha
MIROC5 Nat-Hist/CMIP5-est1/v1-0 — MS1850 LE1850 LE1850 Sim KN1850 C5 SH HC1850 Ha-SP Ha-SP

MOHC/ All-Hist/est1/v1-0 RCP4.5 MS Sv BB Sim CE C5,JH SH,SJ MJ,KB Ha Ha
HadGEM3-A-N216 Nat-Hist/CMIP5-est1/v1-0 — MS1850 Sv1850 BB1850 Sim CE1850 C5,JH SH,SJ MJ1850,

KB1850

Ha-SP Ha-SP

NOAA-ESRLandCIRES/ All-Hist/est1/v1-0 RCP6.0 MS LB LB LB EW LR AM HF,LO HH HH
CAM4 Nat-Hist/obs-trend-1880s-est1/v1-0 RCP6.0 MS1880s LB1880s LB1880s LB1880s EW1880s LR AM HF,LO HH1880s HH1980s

NOAA-ESRLandCIRES/ All-Hist/est1/v1-0 RCP6.0 MS Sv BB Sim LB,LK WL AM HF HH HH
CAM5.1.1 Nat-Hist/obs-trend-1880s-est1/v1-0 — MS1880s Sv1881 BB1881 Sim LB1881,

LK1881

WL AM HF1881 HH1880s HH1980s

NOAA-ESRLandCIRES/ All-Hist/est1/v1-0 RCP6.0 MS TGclim TGclim TGclim CE — TGclim H1992 HH HH
ECHAM5.4 Nat-Hist/obs-trend-1880s-est1/v1-0 — MS1880s TGclim TGclim TGclim CE1880s — TGclim H1992 HH1880s HH1980s

UCT-CSAG/ All-Hist/est1/v2 RCP4.5 MS LB — — — — — — HN HN
HadAM3P-N96 Nat-Hist/CMIP5-est1/v2 RCP4.5 MS1859 LB — — — — — — HN-SP HN-SP

All-Hist/est1/v1-0 RCP4.5 MS — — — — — — — HN HN
NonGHG-Hist/HadCM3p-p50-est1/v1-0 — MS1859 — — — — — — — HN-

HC
HN

Greenhouse gases:

MS: Meinshausen et al. (2011)

Sulphate aerosol (tropospheric):

LB: Lamarque et al. (2010)
LE: Lamarque et al. (2012)
LK: Lamarque et al. (2011)
Sv: Smith et al. (2011)
TGclim: Tanre et al. (1984) climatology

Black and organic carbon aerosol:

BB: Bond et al. (2007)
LB,LK: Lamarque et al. (2010) and Lamarque et al. (2011)
LE: Lamarque et al. (2012)
TGclim: Tanre et al. (1984) climatology

Dust and sea salt aerosol:

Sim: Simulated by model
LE: Lamarque et al. (2012)
TGclim: Tanre et al. (1984) climatology

Ozone:

CE: Cionni et al. (2011)
EW: Emmons et al. (2010)
KN: Kawase et al. (2011)
LB,LK: Lamarque et al. (2010) and Lamarque et al. (2011)
LE: Lamarque et al. (2012).

Solar luminosity:

C5: http://solarisheppa.geomar.de/cmip5
JH: Jones et al. (2011)
LR: Lean et al. (2005)
WL: Wang et al. (2005)

Volcanic aerosol:

AM: Ammann et al. (2003) (none from 2009)
JH: Jones et al. (2011)
SH: Sato et al. (1993)
SJ: Stott et al. (2006)

Land use/cover:

H1992: Hagemann (2002) (for April 1992-March 1993)
HC: Hurtt et al. (2009)
HF: Hurtt et al. (2006)
LR: Lawrence et al. (2011)
MJ,KB: Meiyappan and Jain (2012) and Klein Goldewijk et al. (2011)

SSTs and SICs: Sea surface temperatures and sea ice concentrations

Ha: HadISST1 (Rayner et al., 2003)
Ha-SP: Ha with the Stone and Pall (2019) “Nat-Hist/CMIP5-est1” adjustment
HH: Hurrell et al. (2008)
HN: HH updated with NOAA OI.v2 (Reynolds et al., 2002)
HN-HC: HN with the Wolski et al. (2014) “NonGHG-Hist/HadCM3-p50-est1” adjustment
HN-SP: HN with the Stone and Pall (2019) “Nat-Hist/CMIP5-est1” adjustment
HN-SPC: HN with the Stone and Pall (2019) “Nat-Hist/CESM1-CAM5-est1” adjustment
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Figure 2: List of simulations submitted to the C20C+ D&A project as of March 2019. Lines
indicate the duration of an ensemble of simulations on a nonlinear horizontal axis. The
number of simulations in each ensemble is printed on top of the line, with the thickness of the
lines nonlinearly related to the ensemble size. Many ensembles are being continually updated
as observed sea surface conditions become available, and further Nat-Hist experiments and
models are anticipated in the future.

(2018) examine the role of ocean surface conditions in temperature and precip-
itation extremes, measured according to a number of different metrics, across245

C20C+ D&A models. Wehner et al. (2018) compare the role of atmosphere
model selection, aerosol forcing implementation, location and event rarity in es-
timating the anthropogenic contribution to 3-day-average maximum daily tem-
perature. Similarly, Mukherjee et al. (2018) use both CMIP5 and C20C+ D&A
simulations for a similar investigation of extreme precipitation over India as a250

function of climate model selection, location, and event rarity. Meanwhile, Kim
et al. (2018) and Sun et al. (2018) examine the role of anthropogenic emissions
in specific extreme weathers that were recently experienced.

One property of event attribution estimates that has been highlighted by the
C20C+ D&A simulations is a potentially important role for a feedback involving255

aerosol forcing. Some areas can exhibit anthropogenically driven attributable
increases in the frequency of cold events or decreases in the frequency of hot
events in Nat-Hist simulations relative to All-Hist simulations (Angélil et al.,
2016; Wehner et al., 2018). These areas are also notable for high anthropogenic
aerosol burdens, such as eastern Asia (Ma et al., 2017; Kim et al., 2018), and260

so far have only been found in a model driven by emissions of aerosol precur-
sors (rather than directly through time-averaged burdens) which can interact
with the meteorology. Figure 3 shows a particular example for the middle of
the southern dry season over the Democratic Republic of the Congo. In the
MIROC5 model, the long tail of 5-day cold events in July 2015 in the All-265

Hist/est1 simulations shrinks in the Nat-Hist/CMIP5-est1 simulations, and in
fact shrinks so much that it overwhelms the effect of the mean coolling: the simu-
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Figure 3: Frequency distributions of 5-day mean near-surface air temperature in July 2015 over
the Democratic Republic of the Congo in All-Hist/est1 (historical) and Nat-Hist/CMIP5-est1
(naturalised historical) simulations. The LBNL/CAM5.1-1degree distributions are computed
from 350 (All-Hist) and 200 (Nat-Hist) simulations, the MOHC/HadGEM3-A-N216 distribu-
tions from 105 and 105 simulations, and the MIROC/MIROC5 distribution from 160 and 150
simulations.

lations suggest that anthropogenic emissions made cold events more likely. This
property holds for other years as well. In contrast, the frequency distributions
from the CAM5.1-1degree simulations lack a long cold tail, and the difference270

between the two scenarios is a simple 1.5◦C mean coolling. Why the difference?
It may be due to interactions between aerosol processes and the meteorological
state. Emissions of organic aerosol precursors (and, at much lower magnitude,
black carbon aerosol precursors) are especially strong in the areas of south-
ern D.R. Congo and northern Angola experiencing their dry season, and these275

are advected north over the D.R. Congo (Figure 4). The aerosol burdens, and
anthropognic change, are similar in the CAM5.1-1degree and MIROC5 simula-
tions, but the CAM5.1-1degree burdens are prescribed and unable to interact
with the meteorology; in contrast, the MIROC5 simulations simulate aerosol
processes based on precursor emissions, and thus can interact with the meteo-280

rology. This aerosol hypothesis is currently based mostly on the match between
areas of high aerosol burdens and areas with unusual attributable extreme tem-
perature changes in the MIROC5 simulations. Even if the aerosol hypothesis is
demonstrated in a detailed model experiment and analysis, we should caution
that aerosol modelling is still in an early stage of development and the robust-285

ness of any aerosol feedback is uncertain; indeed, the difference between the
frequency distributions in the HadGEM3-A-N216 simulations, which are also
based on aerosol precursor emissions, do not show the same effect (Figure 3).

5. Community engagement

The decision to perform simulations under the C20C+ D&A project is pred-290

icated on an expectation that the data will be rich in information for a variety
of purposes, many anticipated by the contributing groups as outlined in this
paper and, hopefully, many that are as yet unanticipated. However, the volume
of data produced by the C20C+ D&A project currently exceeds 3PB and is con-
tinually growing. In order to justify its purpose, therefore, the project needs to295
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Figure 4: Mean organic aerosol burden in July 2015 in the MIROC5 All-Hist/est1/v2-0 sim-
ulations (left) and the All-Hist/est1/v2-0 burden minus the burden in the Nat-Hist/CMIP5-
est/v1-0 simulations (right). Values are for column-integrated burdens, shown with a base-2
logarithmic scale, and are from 160 (All-Hist) and 150 (Nat-Hist) simulations. Burdens are
only plotted over land areas.

leverage the analysis personnel, skills, tools, and other resources of the weather
and climate research community at large. Consequently, a major emphasis of
the project involves facilitating access and analysis of the data. This is being
accomplished through a number of efforts.

First, all output of the simulations (and a number of the inputs too) have300

been placed on a public data portal accessible through http://portal.nersc.gov/c20c/data.html.
All models have recorded a large set of monthly two-dimensional and three-
dimensional output for the atmosphere, while many have done so for the land
surface too. Many models have also recorded a large set of daily two-dimensional
and three-dimensional variables, as well as a small set of 3-hourly two-dimensional305

variables, while a small subset have included 3-hourly 3-dimensional variables for
at least some simulations. Because of the large data volume, larger and less-used
files are stored on a tape system while smaller, more frequently accessed files
are stored on a disk system. Information on how to access these files, and the
status of data publication, is given at http://portal.nersc.gov/c20c/data.html.310

Data is made freely available, with no registration required, and is subject to
the Creative Common License v2.0 (http://creativecommons.org/licenses/by-
nc-sa/2.0/) unless otherwise noted.

Data from some simulations are available through other data archives around
the world as well. A subset of monthly data is also available through the NOAA315

Earth System Research Laboratory FACTS site (http://www.esrl.noaa.gov/psd/repository/facts).
In particular, this facility allows online visualisation, visual comparison, and
limited analysis.

An additional facilitation effort has been a pair of “hackathons” (Stone et al.,
2017). These have been week-long meetings of researchers who conducted the320
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project and researchers interested in data analysis, hosted on-site of the data
portal and with access to the computational facilities of the National Energy
Research Scientific Computing Center (NERSC). This special journal issue is
another element in facilitating research with C20C+ D&A data which was pro-
posed in the first hackathon.325

C20C+ D&A is also engaging with other international efforts in order to
develop further understanding of the climate system. For instance, recognising
that DAMIP is expected to provide limited material for analysis of extreme
weather, C20C+ D&A will serve as a kind of “global probability downscaling”
tool, using estimates of attributable ocean warming obtained from DAMIP mod-330

els to produce alternate estimates of the Nat-Hist scenario of what the world
might have been like in the absence of human interference (Gillett et al., 2016).
Overlap of the All-Hist/est1 reference scenario with other projects, such as the
AMIP experiment of CMIP6 DECK (Eyring et al., 2016) and the AMIP20C ex-
periment of the Global Monsoons Modeling Intercomparison Project (GMMIP,335

Zhou et al., 2016), will hopefully facilitate cross-project investigations.
More relevant for understanding climate change risk, the “Half an Additional

degree of warming, Prognosis and Projected Impacts project (HAPPI, Mitchell
et al., 2017) is performing a similar experiment to C20C+ D&A except examin-
ing potential worlds that are 1.5◦C and 2.0◦C warmer than pre-industrial, with340

the intention of informing negotiations following from the 2015 conference of the
parties to the United Nations Framework Convention on Climate Change. There
is a large overlap between contributing groups and members, the experiment de-
sign of the factual “All-Hist/est1” reference scenario is shared, and HAPPI also
uses the C20C+ D&A portal for dissemination of model output. Together the345

two projects provide estimates of weather hazards for natural (similar to pre-
industrial), recent/current, 1.5◦C, and 2.0◦C worlds, with warmer worlds also
planned, thus providing material for quantification of the weather hazard com-
ponent of the “Reasons for Concern for Risks Associated with Extreme Weather
Events”, a summary measure used in the past few assessment reports of the In-350

tergovernmental Panel on Climate Change (Oppenheimer et al., 2014).
Finally, C20C+ D&A overlaps with various initiatives to develop operational

event attribution systems. For instance, the HadGEM3-A-N216 simulations
were performed as part of the EUCLEIA project (https://eucleia.eu), in which
the Hadley Centre’s HadGEM3-A-N216-based attribution system was set up to355

run on a seasonal cycle in a manner similar to a seasonal forecasting system. The
follow on project EUPHEME (https://eupheme.eu) is now taking a step further
and moves towards a prototype service, using scientific information from the
attribution system to develop attribution ”products” for a range of stakehold-
ers. The HadAM3P-N96, CAM5.1-2degree, and CAM5.1-1degree simulations360

were performed as part of the Weather Risk Attribution Forecast effort, testing
workflows for systematic pro-active event attribution forecast services (Lawal
et al., 2015). The CAM4, CAM5.1.1-degree, and ECHAM5.4 simulations were
performed as part of NOAA’s Facility for Climate Assessments (FACTS).
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6. Conclusion365

The C20C+ D&A project represents a novel tool for understanding changing
risks under past and current (and, through overlap with the HAPPI project, fu-
ture) anthropogenic climate change, by providing large samples of atmosphere/land-
surface climate model data at high frequency resolution. This special issue of
Weather and Climate Extremes lays out details of the C20C+ D&A project, its370

implementation using various climate models, and a collection of analyses that
take advantage of its unique properties. The broader research community is in-
vited to make use of the data resource and to advise further on future directions
for the project.
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