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Abstract

We consider the predictions of chiral perturbation theory for SU(3) breaking in weak

semileptonic and s-wave nonleptonic hyperon decays. By defining an expansion sensitive

only to SU(3) breaking, we show that the leading corrections give rise to moderate cor-

rections to SU(3) relations (<∼ 20%), even though the chiral symmetry SU(3)L × SU(3)R

appears to be rather badly broken. This explains why SU(3) fits to weak hyperon decays

work well even though chiral-symmetry breaking corrections are large. Applying these

SU(3)-breaking corrections to the analysis of the EMC data, we find that the predicted

value of 〈p|sγµγ5s|p〉 is reduced by ≃ 35%, suggesting that the “EMC effect” may be less

striking than commonly thought.
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1. Introduction

In this paper, we consider corrections to the SU(3) predictions for weak semileptonic

and s-wave nonleptonic hyperon decay rates. The SU(3) predictions are valid in the limit

where mu = md = ms (we neglect electromagnetism), and experimentally they work to

better than 20%. This remarkable agreement is certainly not due to the fact that the quark

masses are nearly equal; if they were, the π0 and η would be nearly degenerate in mass,

while we know that mη/mπ ≃ 4. Understanding why some SU(3) predictions work well

while others fail completely has been a theoretical challenge since the discovery of these

relations.

To make progress on this question it is clearly necessary to have a systematic frame-

work to study deviations from SU(3) symmetry. Chiral perturbation theory provides such

a framework, giving a rigorous expansion around the chiral limit: mu, md, ms → 0. In the

chiral limit, the octet mesons π, K, and η are massless Nambu–Goldstone bosons whose

couplings are constrained by the low-energy theorems of spontaneous symmetry breaking.

These theorems can be encoded in an effective lagrangian with a non-linearly realized

SU(3)L × SU(3)R symmetry. The lowest-order predictions of chiral perturbation theory

embody the SU(3) predictions, and deviations from SU(3) symmetry relations can be

studied by considering corrections to the chiral limit.

Chiral perturbation theory for baryons was recently reformulated by Jenkins and

Manohar using an effective lagrangian in which the baryons are treated as heavy fields

[1]. These authors computed the O(ms lnms) corrections to the hyperon weak decay form

factors [1][2] and found that corrections to the lowest-order predictions were ∼ 100%. The

logarithmically-enhanced corrections are not expected to dominate the uncalculable O(ms)

contributions in the real world. However, the large size of the logarithmically-enhanced

corrections does suggest that chiral perturbation theory is breaking down for these pro-

cesses, and makes the success of the lowest-order predictions difficult to understand. Also

puzzling is that the “corrected” predictions still fit the data well, at the price of large

shifts in the values of the couplings which define the chiral expansion. For example, in ref.

[1], the values to the axial-vector form factors including the corrections were found to give

D = 0.56, F = 0.33, while their lowest-order fit gives D = 0.80, F = 0.50.

The authors of ref. [1] propose that the breakdown of chiral perturbation theory for

baryons coupled to mesons is due to the presence of the nearby decuplet states [5]. They

find that including decuplet intermediate states reduces the size of the logarithmically-

enhanced corrections, but they still require large shifts parameters to accommodate the

data. We will not consider this point of view here.
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In this paper, we propose a well-motivated and well-defined resummation of the chiral

expansion which is sensitive only to SU(3) breaking. We compute the logarithmically-

enhanced contributions to the weak decay form factors in this expansion, and find that

all corrections are <∼ 20%. We conclude that there is no reason to believe that this SU(3)

expansion is breaking down, even though the chiral expansion does not seem to work

well. This is somewhat surprising, since both expansions are controlled by ms in the limit

ms ≫ mu, md. Our conclusion is also supported by the fact that predictions for the p-wave

nonleptonic decays, which follow from chiral symmetry but not from SU(3) alone, do not

work well.

We also apply our results to consider the effects of SU(3) breaking on the interpre-

tation of the EMC effect. We find that SU(3) breaking reduces the predicted value of

〈p|sγµγ5s|p〉 by 35%, reducing the size of the “EMC effect.”

The plan of this paper is as follows. In section 2, we briefly review the effective

lagrangian formalism we will use to carry out our computations. In section 3, we discuss

the computation of the semileptonic decay rates. In section 4, we apply our results to

the EMC data. In section 5, we discuss the computation of the nonleptonic decay rates.

Section 6 contains our conclusions.

2. The Effective Lagrangian

In this section, we briefly review the effective lagrangian we use to carry out the

computation. The notation and conventions we use are the same as those of ref. [7]. We

briefly review the formalism here for completeness. The reader familiar with this formalism

is urged to skip to section 3.

2.1. Mesons

The field

ξ(x) = eiΠ(x)/f , (1)

is taken to transform under SU(3)L × SU(3)R as

ξ 7→ LξU † = UξR†, (2)

where this equation implicitly defines U as a function of L, R, and ξ. The meson fields are

Π =
1√
2







1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K
0 − 2√

6
η






. (3)
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Since we are interested in matrix elements of the vector- and axial-vector Noether

currents, we add source terms

δL = VµJV
µ +AµJA

µ (4)

by defining the covariant derivatives

Dµξ ≡ ∂µξ − iℓµξ, Dµξ
† ≡ ∂µξ

† − irµξ
†. (5)

(Note that (Dµξ)
† 6= Dµξ

†.) Here,

rµ = Vµ +Aµ, ℓµ = Vµ −Aµ. (6)

The effective lagrangian is most conveniently written in terms of

Vµ ≡ i

2

(

ξDµξ
† + ξ†Dµξ

)

, Aµ ≡ i

2

(

ξDµξ
† − ξ†Dµξ

)

, (7)

which transform under local SU(3)L × SU(3)R as

Vµ 7→ UVµU
† + iU∂µU

†, Aµ 7→ UAµU
†. (8)

The covariant derivative

∇µAν ≡ ∂µAν − i[Vµ, Aν], (9)

transforms under local SU(3)L × SU(3)R as

∇µAν 7→ U∇µAνU
†. (10)

The chiral symmetry is broken explicitly by the quark masses. (We neglect the effects

of electromagnetism in this paper.) We will ignore isospin breaking, so that the quark

mass matrix is taken to be

Mq =





m̂
m̂

ms



 . (11)

It is convenient to define the even- and odd-parity fields

M ≡ 1

2

(

ξ†Mqξ
† + h.c.

)

7→ UMU †, (12)

P ≡ 1

2i

(

ξ†Mqξ
† − h.c.

)

7→ UPU †. (13)

The simple transformation rules of the fields defined above makes it easy to write

down the effective lagrangian. For example, the leading terms can be written

L0 = f2 tr(AµAµ) + af3 trM. (14)
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2.2. Baryons

Because we are interested in processes with characteristic energy much smaller than

baryon masses, the baryons may be treated as heavy particles [3][1]. The basic idea is to

write the baryon momentum as P = Mv+ k, where M is the common baryon mass in the

SU(3) limit and v is chosen so that all of the components of the residual momentum k are

small compared to hadronic scales, Λ, for the process of interest. The effective lagrangian

is then labelled by v and is written in terms of fields B satisfying the positive energy

condition /vB = B, and whose momentum modes are the residual momenta of the baryons.

This explicitly removes M as a kinematic scale in the problem.

The octet baryon fields B transform under SU(3)L × SU(3)R as

B 7→ UBU †. (15)

Explicitly, we have

B =







1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

2
Λ n

Ξ− Ξ0 − 2√
6
Λ






. (16)

The lowest order terms in the effective lagrangian involving baryon fields are

L = tr
(

Biv · ∇B
)

+ 2D tr
(

Bsµ{Aµ, B}
)

+ 2F tr
(

Bsµ[Aµ, B]
)

+ σ tr (M) tr
(

BB
)

+ bD tr
(

B{M,B}
)

+ bF tr
(

B[M,B]
)

,
(17)

where the spin matrix is given by

sµ ≡ 1

2
(γµ − /vvµ)γ5, (18)

and the covariant derivative acts on B as in eq. (9).

3. Semileptonic Decays

In this section, we consider the ∆S = 1 semileptonic decays of hyperons. These decays

are governed by the form factors

〈Ba|JV
µc(0)|Bb〉 = u(pa)

[

fabc
1 (q2)γµ +

ifabc
2 (q2)

Ma +Mb
σµνq

ν +
ifabc

3 (q2)

Ma +Mb
qµ

]

u(pb), (19)

〈Ba|JA
µc(0)|Bb〉 = u(pa)

[

gabc1 (q2)γµγ5 +
igabc2 (q2)

Ma +Mb
σµνγ5q

ν +
igabc3 (q2)

Ma +Mb
γ5qµ

]

u(pb), (20)
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where q ≡ pa−pb. In the SU(3) limit mu = md = ms, the form factors at zero momentum

transfer are determined in terms of two parameters, D and F : f2(0) = f3(0) = g2(0) =

g3(0) = 0, the f1(0) are SU(3) Clebsch–Gordan coefficients, and the g1(0) are simple linear

combinations of D and F (see below). We consider the form factors at zero momentum

transfer because the masses of the baryon octet become degenerate in the SU(3) limit, so

the q2 dependence of the form factors is higher order in the SU(3) expansion.

We will study deviations from the SU(3) limit using chiral perturbation theory. The

contribution of the form factors f3 and g3 is suppressed by the electron mass, and can

be safely neglected. The corrections to f1 and the values of f2 and g2 are O(ms) and

are not calculable in chiral perturbation theory. The corrections to f1 are O(ms) and are

calculable due to the Ademollo–Gatto theorem; numerically, they are <∼ 5% [6][7]. The

corrections to g1 are O(ms lnms), and are therefore formally the largest corrections in the

chiral expansion. We therefore focus on g1 for the remainder of this section. In ref. [1],

these corrections were computed, and were found to be ∼ 100%.∗

Aside from the distinction between SU(3) and chiral symmetry breaking, our calcu-

lation differs from that of ref. [1] only in that we keep mπ 6= 0. The π corrections are

expected to be only ∼ 20% of the K and η corrections, but setting mπ = 0 systematically

increases the amount of predicted SU(3) violation.

We write

gabc1 (0) = αc
ab +

1

16π2f2
βc
ab, (21)

where the lowest-order results are

αc
ab = Ddcab + Ff c

ab, (22)

where dcab and f c
ab are the symmetric and antisymmetric structure constants of SU(3),

respectively. Specifically,

α1+i2
pn = D + F,

α1+i2
ΛΣ−

=
2√
6
D,

α4+i5
pΛ = − 1√

6
(D + 3F ),

α4+i5
ΛΞ−

= − 1√
6
(D − 3F ),

α4+i5
nΣ−

= D − F,

α4+i5
Σ0Ξ−

=
√
2α4+i5

Σ+Ξ0 =
1√
2
(D + F ).

(23)

∗ An earlier calculation [4] which found smaller corrections is incorrect.
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The leading chiral corrections are

β1+i2
pn = −(D + F )(2D2 + 4DF + 2F 2 + 1)m2

π ln
m2

π

µ2

− 1

6
(13D3 −D2F + 3D + 3DF 2 + 3F + 33F 3)m2

K ln
m2

K

µ2

− 1

3
(D + F )(D − 3F )2 m2

η ln
m2

η

µ2
, (24)

β1+i2
ΛΣ−

= − 2

3
√
6
D(7D2 + 3F 2 + 3)m2

π ln
m2

π

µ2

− 1√
6
D(3D2 + 13F 2 + 1)m2

K ln
m2

K

µ2

− 4

3
√
6
D3 m2

η ln
m2

η

µ2
, (25)

β4+i5
pΛ =

3

8
√
6
(3D3 + 27D2F +D + 25DF 2 + 3F + 9F 3)m2

π ln
m2

π

µ2

+
1

12
√
6
(31D3 + 15D2F + 9D + 9DF 2 + 27F + 297F 3)m2

K ln
m2

K

µ2

+
1

24
√
6
(D + 3F )(19D2 − 30DF + 27F 2 + 9)m2

η ln
m2

η

µ2
, (26)

β4+i5
ΛΞ−

=
3

8
√
6
(3D3 − 27D2F +D + 25DF 2 − 3F − 9F 3)m2

π ln
m2

π

µ2

+
1

12
√
6
(31D3 − 15D2F + 9D + 9DF 2 − 27F − 297F 3)m2

K ln
m2

K

µ2

+
1

24
√
6
(D − 3F )(19D2 + 30DF + 27F 2 + 9)m2

η ln
m2

η

µ2
, (27)

β4+i5
nΣ−

= − 1

24
(35D3 + 23D2F + 9D + 33DF 2 − 9F − 123F 3)m2

π ln
m2

π

µ2

− 1

12
(31D3 − 53D2F + 9D + 57DF 2 − 9F − 51F 3)m2

K ln
m2

K

µ2

− 1

24
(D − F )(11D2 − 6DF + 27F 2 + 9)m2

η ln
m2

η

µ2
, (28)

β4+i5
Σ0Ξ−

= − 1

24
√
2
(35D3 − 23D2F + 9D + 33DF 2 + 9F + 123F 3)m2

π ln
m2

π

µ2

− 1

12
√
2
(31D3 + 53D2F + 9D + 57DF 2 + 9F + 51F 3)m2

K ln
m2

K

µ2

− 1

24
√
2
(D + F )(11D2 + 6DF + 27F 2 + 9)m2

η ln
m2

η

µ2
. (29)

Here µ is an arbitrary renormalization scale. The µ dependence of these results is cancelled
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by the µ dependence of O(ms) terms in the effective lagrangian such as

c(µ)

Λ
tr
(

BMs ·AB
)

. (30)

If we take µ ≃ Λ, there are no large logarithms in the higher order coefficients, and the

correction is dominated by the logarithmically enhanced terms (computed above) near the

chiral limit. In the real world these logarithms are not very large, but we expect that the

logarithmic terms will give a good indication of the actual size of the corrections.

In the SU(3) limit, using (24)–(30) we find

gcab(0) = D′dcab + F ′f c
ab, (31)

where

D′ = D − 3

2
D(3D2 + 5F 2 + 1)

m2

16π2f2
ln
m2

µ2
,

F ′ = F − 1

6
F (25D2 + 63F 2 + 9)

m2

16π2f2
ln
m2

µ2
,

(32)

and m is the common meson mass.

This shows that for purposes of evaluating SU(3) breaking in semileptonic hyperon

decays, it is misleading to present the results in terms of D and F defined in the effective

lagrangian eq. (17), since large corrections to D and F do not necessarily correspond to

large SU(3) breaking. We therefore consider an expansion in D′ and F ′, where m is chosen

to be some appropriate average meson mass (see below) treated as O(ms) for purposes of

power counting. This expansion can easily be made well-defined to all orders, for example

by defining the relations eq. (31) to be exact in the limit where all mesons have a common

mass m.

The parameter m in eq. (32) is a redundant parameter in this expansion analogous to

the renormalization scale µ in conventional perturbation theory. In a world where the quark

mass differences are small compared to the average quark mass, it is clear that m should be

chosen to be close to the average meson mass. In our world, SU(3)-breaking quark mass

differences are of order ms, and it is not clear á priori how to choose m. We simply choose

m in order to minimize the corrections to the lowest-order results. This choice is justified

á fortiori by the fact that we obtain a reasonable value for m (≃ 300 MeV), and by the

fact that the corrections expressed in terms of D′ and F ′ are small. This is a non-trivial

feature of the logarithmically-enhanced corrections, since both SU(3) and chiral symmetry

breaking are controlled by the same parameter, namely ms.

The large corrections to the lowest-order results in terms of D and F indicate that chi-

ral perturbation theory is breaking down for this process. However, we wish to emphasize
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that this breakdown of chiral perturbation theory does not necessarily imply a breakdown

of the expansion in terms of D′ and F ′. In (17), D and F have an absolute physical

significance in terms of the couplings of the light mesons to baryons in chiral perturbation

theory. In contrast our parameters D′ and F ′ are defined through SU(3) relations.

In order to determine D′ and F ′ we performed a fit to the decay rates and asymmetry

data quoted by the Particle Data group [8]. Because we expect that higher-order terms in

the chiral expansion give corrections of order

m2
K

16π2f2
∼ 0.25, (33)

we have increased the uncertainties on the measured values of g1 by 20%. (More informa-

tion about our fit is presented in appendix A.) Fitting to the lowest-order results gives

D = 0.85± 0.06, F = 0.52± 0.04, (34)

with χ2 = 6.1 for 9 degrees of freedom. (Recall that D′ = D, F ′ = F at lowest order.)

Using m = 260 MeV and µ = mρ, the corrections to g1(0) for all decay modes are less

than 20%, and we obtain the best-fit values

D′ = 0.87± 0.06, F ′ = 0.53± 0.04, (35)

with χ2 = 6.3.

4. SU(3) Breaking and the “EMC Effect”

SU(3) breaking is important for determining the value of various strange-quark matrix

elements of nucleons. In this section, we briefly present the predictions of the expansion

discussed in section 3 to the extraction of the matrix element

∆s(Q2) ≡ 〈p, s| sγµγ5s|Q2 |p, s〉, (36)

where |p, s〉 is a proton state with spin s. The unexpectedly large value of this matrix

element extracted from analysis of EMC data [10] is often called the “EMC effect” and

has attracted a good deal of attention in the theoretical literature [11].

Combining a (rigorous, QCD-derived) sum rule with isospin invariance allows us to

derive the relation
∫ 1

0

dx g1(x,Q
2) =

1

36

[

3gA + 5(∆u+∆d− 2∆s) + 12∆s(Q2)
]

×
[

1− αs(Q
2)

π
+O(α2

s )

]

+O(Λ2/Q2),

(37)
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where gA ≃ 1.25 is the nucleon axial coupling. The left-hand side extracted (with extrap-

olation) from the EMC data is 0.126 ± 0.018 [10], where we have added systematic and

statistical errors in quadrature. We have

∆u+∆d− 2∆s = (3F −D)

[

1 +
1

16π2f2
γ

]

, (38)

where

γ = 3(D + F )2 m2
π ln

m2
π

µ2
− 1

6
(9 + 7D2 − 18DF + 27F 2)m2

K ln
m2

K

µ2

− 1

3
(D − 3F )2 m2

η ln
m2

η

µ2
.

(39)

Expressing the results in terms of D′ and F ′ and using our best-fit values, we obtain

∆s = (−0.13± 0.07)Mp,

∆u+∆d+∆s = ( 0.12± 0.19)Mp,
(40)

whereas we obtain ∆s = (−0.20± 0.06)Mp and ∆u+∆d+∆s = (0.06± 0.18)Mp if we do

not include SU(3)-breaking corrections.

We may not trust the predicted SU(3) breaking in eq. (39) quantitatively, since O(ms)

corrections are not included. However, it is worth noting that the corrections we have

computed significantly reduce the value of ∆s, suggesting that the “EMC effect” may be

less striking than commonly thought.

5. Nonleptonic Decays

In this section, we consider nonleptonic decays as another application of the formalism

discussed in section 3. We will find that our results tell much the same story as the

semileptonic decays: there are large corrections to the lowest-order predictions of chiral

symmetry, but corrections to SU(3) relations are <∼ 10%.

We consider only the predictions for the s-wave nonleptonic decay amplitudes here,

since the chiral perturbation theory predictions for the p-wave amplitudes do not follow

from SU(3) alone. The effective ∆S = 1 lagrangian at the weak scale can be written

L∆S=1 =
4GF√

2
VudV

∗
us(qLγ

µS1qL)(qLγµS2qL), (41)

where

q =





u
d
s



 , S1 =





0 0 1
0 0 0
0 0 0



 , S2 =





0 0 0
1 0 0
0 0 0



 . (42)
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We follow standard practice and assume the dominance of the ∆I = 1
2 amplitudes. We

therefore add to the effective lagrangian the terms

δL∆S=1 = hD tr(B{H,B}) + hF tr(B[H,B]), (43)

where

H ≡ ξ†S2S1ξ 7→ UHU †. (44)

Previous authors [2] have also included a term which is higher order in the derivative

expansion on the grounds that its coefficient, hπ , as measured in ∆S = 1 kaon decays is

larger than expected by dimensional analysis. We choose to work to a consistent order

in the chiral expansion and will neglect this term. The enhancement of hπ is attributed

to the ∆I = 1
2 rule which may be violated in these decays (see below), making special

treatment of this term somewhat suspect. Also, we have no information about other

higher order terms which could also have anomalously large coefficients. In any case,

we are interested primarily in the question of the size of SU(3) violation, and barring

accidental cancellations, we expect that the logarithmically-enhanced corrections to give a

good indication of the size of the corrections.

The s-wave decay amplitude for Ba →Bbπ can be written as

Ms = GFm
2
π ūaAabub, (45)

where Aab is the dimensionless s-wave (parity violating) amplitude as defined in ref. [8].

Assuming the ∆I = 1
2
rule, there are three isospin relations among the seven decay

amplitudes that have been measured:

√
2A(Σ+→ pπ0)−A(Σ+→nπ+) +A(Σ−→nπ−) = 0, (5%)

A(Λ→ pπ0) +
√
2A(Λ→nπ0) = 0, (1%)

A(Ξ−→Λπ−) +
√
2A(Ξ0 →Λπ0) = 0. (8%)

(46)

The experimental deviation from these relations is shown in parentheses. (Details on the

data and fits can be found in appendix B.)

These “isospin” relations do not work significantly better than the SU(3) relations (see

below), suggesting that the ∆I = 1
2 rule may not be accurate for these decays. However,

since we are interested primarily in the size of SU(3) violation, it is sufficient to assume

the ∆I = 1
2 form eq. (43) for the lagrangian.

The predictions for the remaining independent s-wave amplitudes are

Aab = αab

[

1 +
1

16π2f2
(βab + ǫ)

]

, (47)
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where α is the lowest-order prediction, and β and ǫ are the corrections. ǫ contains pion

wavefunction renormalization and renormalization of fπ. These effects are the same for all

decays, and therefore do not affect the SU(3) predictions. We will not need the explicit

expressions for these corrections.

The tree-level results for the four independent amplitudes are

αnΣ+ = 0,

αnΣ− = −hD + hF ,

αpΛ =
1√
6
(hD + 3hF ),

αΛΞ− =
1√
6
(hD − 3hF ),

(48)

At lowest order we can eliminate hD and hF to obtain an SU(3) relation among the

three non-vanishing amplitudes: the Lee–Sugawara relation

∆LS ≡ 3√
6
AnΣ− +ApΛ + 2AΛΞ− = 0. (49)

(This relation is often written including a term proportional to AnΣ+ .)

The leading chiral corrections are

βnΣ+ = 0, (50)

βnΣ− =
1

24

[

7(hF − hD) + hD(51D2 − 6DF + 27F 2)

− hF (3D
2 − 54DF + 27F 2)

]

m2
π ln

m2
π

µ2

+
1

12

[

5(hD − hF ) + hD(39D2 − 30DF + 27F 2)

− hF (15D
2 − 54DF + 27F 2)

]

m2
K ln

m2
K

µ2

+
3

8
(hD − hF )(1 + 3D2 − 6DF + 3F 2)m2

η ln
m2

η

µ2
, (51)

βpΛ =
1

24
√
6

[

7(hD + 3hF )− hD(171D2 − 162DF + 27F 2)

− hF (81D
2 + 54DF + 81F 2)

]

m2
π ln

m2
π

µ2

+
1

12
√
6

[

−5(hD + 3hF ) + hD(9D2 − 90DF − 27F 2)

− hF (45D
2 + 54DF + 81F 2)

]

m2
K ln

m2
K

µ2

− 1

8
√
6
(hD + 3hF )(3 +D2 + 6DF + 9F 2)m2

η ln
m2

η

µ2
, (52)
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βΛΞ− =
1

24
√
6

[

7(hD − 3hF )− hD(171D2 − 162DF + 27F 2)

+ hF (81D
2 − 54DF + 81F 2)

]

m2
π ln

m2
π

µ2

+
1

12
√
6

[

−5(hD − 3hF ) + hD(9D2 + 90DF − 27F 2)

+ hF (45D
2 − 54DF + 81F 2)

]

m2
K ln

m2
K

µ2

− 1

8
√
6
(hD − 3hF )(3 +D2 − 6DF + 9F 2)m2

η ln
m2

η

µ2
. (53)

Defining h′
D and h′

F in analogy to D′ and F ′ we obtain from (50)–(53)

h′
D = hD − 1

2

[

hD(1 + 13D2 + 9F 2) + 18hFDF
] m2

16π2f2
ln

m2

µ2
,

h′
F = hF − 1

2

[

hF (1 + 5D2 + 9F 2) + 10hDDF
] m2

16π2f2
ln

m2

µ2
.

(54)

A fit to the data using the lowest-order predictions gives

hD = −0.55± 0.32, hF = 1.37± 0.17, (55)

with χ2 = 0.06 for 1 degree of freedom. To account for the theoretical error due to O(ms)

terms in the expansion we have again added 20% in quadrature to the experimental errors

before doing the fit. With only one degree of freedom the errors quoted should be taken

as indicative only, but it is clear that the lowest-order predictions fit the data well.

Expressing our results in terms of h′
D and h′

F and taking µ = mρ and m = 320 MeV,

we find that all the logarithmically-enhanced SU(3) corrections are less than 10% and the

fit still works well:

h′
D = −0.56± 0.40, h′

F = 1.31± 0.18, (56)

with χ2 = 0.30. Thus there is every indication that the SU(3) expansion is well-behaved.

This is to be contrasted to the chiral expansion, in which corrections to the individual

decay amplitudes are ∼ 50%.

Chiral symmetry also gives a prediction for the p-wave decay amplitudes which does

not follow from SU(3) alone. These predictions do not work well [2], supporting our

conclusion that SU(3) may be a better symmetry than chiral symmetry.

Including the corrections for the best fit h′
D and h′

F the Lee–Sugawara relation becomes

∆LS = 0.29± 0.13, (57)
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which is to be compared with the experimental value of −0.23 ± 0.03. The expected size

of the O(ms) contributions is ∼ 0.4, so the fact that the predicted sign of ∆LS is wrong

does not imply that our expansion is breaking down.

6. Conclusions

We have investigated the question of SU(3) breaking for weak hyperon decays in the

context of chiral perturbation theory. One major difference between our work and previous

work is that we have emphasized that large explicit chiral symmetry breaking does not

necessarily imply large SU(3) breaking. We have found that SU(3) breaking is less than

20%, which is what is expected on the basis of dimensional analysis. Although we cannot

conclude from our analysis that the expansion is under control, there is no sign that it is

breaking down, unlike the usual chiral expansion.

We also used this expansion to analyze the “EMC effect,” and showed that the SU(3)-

breaking corrections reduce the extracted value of the matrix element 〈p|sγµγ5s|p〉 by 35%.

Appendix A. Fit to Semileptonic Decays

In this appendix, we present some details of the fit to semileptonic hyperon decays

used in this paper. We use both decay rate and asymmetry data taken from the most

recent Particle Data Group (PDG) compilation [8]. For the asymmetry data, we directly

use the average values for gA/gV quoted by the PDG. To convert the decay rates into

values for g1, we keep the full kinematic dependence on the baryon masses, since these

effects turn out to be numerically important. The data we use is displayed in table 1.

lifetime asymmetry

n → p 1.323± 0.003 1.257± 0.003

Σ− →Λ 0.609± 0.029 0.62± 0.44

Λ → p −0.972± 0.018 −0.879± 0.021

Σ− →n 0.442± 0.021 0.340± 0.017

Ξ− →Σ0 0.96 ± 0.19 ——

Ξ− →Λ 0.473± 0.026 0.306± 0.061

Table 1: Values for g1(0) extracted from 1992 PDG

The decay rate and asymmetry determinations of g1 are inconsistent if we assume

only the errors quoted by the PDG. This is either a symptom of systematic errors in

the experiments or an indication that higher-order corrections are important. We expect

13



that higher order terms in the chiral expansion will give rise to ∼ 20% corrections, and

so we added this amount in quadrature to all the quoted errors to take into account the

theoretical uncertainty. When we do this, all the errors on all determinations have a sizable

overlap, and reasonable fits are obtained (see the text).

Appendix B. Fit to Nonleptonic Decays

In this appendix, we give some details about the data used to fit the s-wave nonleptonic

decay amplitudes. The decays have s- and p-wave components with a possible relative

phase, and so in principle three pieces of information are required to extract the s-wave

amplitudes. We used the total lifetime and the asymmetry parameter α quoted in the 1992

PDG [8], and neglected final-state phase shifts. This is consistent since final-state phase

shifts are higher order in the SU(3) expansion. Table 2 shows the amplitudes obtained in

this way.

Decay A
Λ → p 1.43± 0.01

Λ →n 1.04± 0.01

Σ+ →n 0.06± 0.01

Σ+ → p 1.44± 0.05

Σ− →n 1.88± 0.01

Ξ0 →Λ 1.51± 0.01

Ξ− →Λ −1.98± 0.01

Table 2: Values for s-wave amplitude A from 1992 PDG

Just as for the semileptonic decay amplitudes, we increased the errors on the A by

20% to account for the theoretical uncertainty arising from O(ms) corrections. When this

is done, the data is consistent, and good fits are obtained (see text).
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