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ABSTRACT OF THE DISSERTATION 

 
Deep Learning in Cancer Biology 

 

by 

 

Utkrisht Rajkumar 

 

Doctor of Philosophy in Computer Science 

 

University of California San Diego, 2022 

 

Professor Vineet Bafna, Chair 
Professor Jingbo Shang, Co-Chair

 

Deep learning methods have significantly advanced the state of computer vision 

and natural language processing. Their ability to discover intricate patterns in ever-

expanding datasets is critical in solving cancer biology problems. However, cancer 

biology poses unique challenges. Typical input data, such as tumor images and DNA 

sequences, have significantly different semantic contexts than the traditional datasets 
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used to train the deep learning methods. Thus, it is infeasible to leverage large pre-

trained networks and requires training from scratch. Moreover, these data types are 

not human readable, making it difficult to annotate the data and interpret what the 

model has learned. This thesis aims to resolve these challenges and solve three urgent 

cancer biology problems using deep learning methods. 

Cancer is mediated through various mechanisms. One such mechanism is 

circular extrachromosomal DNA (ecDNA), one of the primary drivers of oncogene 

amplification. EcDNA is prevalent across a wide variety of cancer types and leads to 

worse patient survival. Thus, there is a critical need for tools to study these genomic 

lesions. However, it is difficult to understand various facets of ecDNA just through 

sequence-based methods and requires image-based reconstructions. 

I first present ecSeg, a deep learning tool to reconstruct ecDNA in images of 

tumor cells in metaphase. EcSeg uses a fully convolutional network and traditional 

computer vision techniques to semantically segment ecDNA. EcSeg correlates these 

segmentations with amplification profiles to reveal ecDNA mechanics and their 

resistance to drug therapy. 

To translate ecSeg to clinical practice, I present ecSeg-i to resolve the ecDNA 

status of interphase cells in cancer patient tissue. Tissue images primarily contain 

interphase cells in which the DNA is loosely wound, making it extremely challenging to 

distinguish ecDNA. EcSeg-i uses a DenseNet to determine the ecDNA status and 

amplification profiles of cancer patient tissue. 

Lastly, I present DeepViFi to identify oncoviral infections in cancer genomes. 

Rapidly mutating oncoviruses, such as HPV, can infect the host and disrupt various 
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biological pathways, sometimes causing hybrid human-viral ecDNA to appear. 

DeepViFi is a transformer-based tool which uses an openset framework to embed DNA 

reads and detect oncoviral infections in next-generation sequencing data. 
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INTRODUCTION 

Deep learning methods permeate various fields of study from predicting 

meteorological events using satellite images to determining the 3D structure of proteins 

using their amino acid sequences. They can discover complex and often unknown 

patterns by leveraging ever-expanding datasets. They are composed of simple 

nonlinear functions that gradually transform the raw input into more abstract 

representations. With enough layers of transformation, these methods can learn 

remarkably complex representations.  

These qualities are desirable in solving various problems in cancer biology. In 

this thesis, I investigate cancer biology through two lenses: imaging using Computer 

Vision (CV) techniques and molecular genetics using natural language processing 

(NLP) techniques. In the first two chapters of my thesis, I study ecDNA, a key driver of 

oncogene amplification, in fluorescently stained images of tumor cells using CV. In the 

concluding chapter of my thesis, I study oncoviral infections through short-read DNA 

sequencing data using NLP.  

EcDNA are primarily found in tumor cells and are known to cause poor patient 

outcomes. Due to limitations in sequence-based methods, the primary way to 

distinguish ecDNA is through fluorescently stained images of tumor cells. EcDNA in 

images of tumor cells in metaphase appear as hundreds, sometimes thousands, of tiny 

faint DNA particles that are easily confounded with salt-and-pepper noise. It is even 

more difficult to discern ecDNA in images of cells in interphase when the DNA is inside 

intact nuclei.  
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Thus, marking true ecDNA requires extremely laborious expert annotations. 

Secondly, existing deep learning methods cannot be leveraged in this setting, because 

they are typically trained on everyday images such as hand-written numbers and pets. 

To overcomes these challenges, we built deep learning-based CV tools, trained from 

scratch on uniquely crafted datasets, to investigate ecDNA. 

In a parallel vein, oncoviruses are a family of viruses that are known to mediate 

various cancers. Rapidly mutating oncoviruses, such as the human papillomaviruses 

(HPV), can infect the host and disrupt biological pathways, sometimes causing hybrid 

human-viral ecDNA to appear. Thus, it is essential to efficiently detect oncoviral 

infections. When the viral family is known, specific sequences can be probed directly 

by searching databases of known viral sequences. However, if the viral family shows 

high divergence between members, detection based on direct sequence match can 

fail. Traditional deep learning sequence tools are unsuitable in this setting as they are 

typically trained on human language data which have significantly different semantic 

contexts than DNA sequences composed of just four characters: A, T, C, G. Thus, we 

built a deep learning-based NLP tool to understand DNA contexts and identify 

oncoviral reads belonging to diverged viral families.  

  



3 

CHAPTER 1. EcSeg: Semantic Segmentation of Metaphase Images 

Containing Extrachromosomal DNA 

1.1 Introduction 

Despite the well-recognized importance of oncogene amplification in cancer 

pathogenesis [1], the underlying mechanisms remain incompletely understood. How 

do amplified oncogenes reach such a high copy number in many tumors while still 

showing considerable cell to cell variability? Numerous mechanisms, including tandem 

duplications [2], breakage fusion breakage cycles [3], aneuploidies [1], chromothripsis 

[4], and neochromosome formation [5] events have been implicated in oncogene 

amplification but the recent discovery that extrachromosomal (ecDNA) oncogene 

amplification is common across a wide variety of tumor types [6, 7] has raised new 

interest in understanding where amplified oncogenes actually reside within the genome 

of tumor cells.   

In fact, ecDNA have long been found to occur in cancer cells studied in 

metaphase [8], referred to as double minutes (DMs), but the difficulty in linking these 

observations with modern cancer genomics led to a massive underestimation of their 

prevalence [6]. In part, the challenge has been made more difficult by the fact that the 

3D structure of DNA in an intact nucleus does not permit unambiguous localization of 

a particular gene, especially when there are many copies of that gene. Recently, 

sequence-based methods [9] have been developed to reconstruct the fine structure of 

focal amplifications, including ecDNA. However, ecDNA are known to reintegrate into 

and egress out of chromosomes based on cellular environment [10] while maintaining 

their structural features. For example, focal amplifications containing EGFR have 
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identical structures but can be extrachromosomal or integrated into non-native 

locations within chromosomes (Figure 1a-1d). Therefore, sequence-based 

reconstructions have limited power in revealing the spatial location of focal 

amplifications. 

The use of FISH probes to study amplified oncogenes in interphase nuclei often 

reveals a pattern of many FISH probe positive spots, but with limited ability to 

discriminate between their chromosomal and extrachromosomal location. During 

metaphase, the compact alignment of chromosomes enable unambiguous localization 

of specific genes within the genome and ecDNA can be detected using FISH probes. 

Moreover, the cell-to-cell variability in terms of ecDNA content and number poses 

additional challenges. 

To accurately quantify ecDNA in cells, we investigated DAPI stained images of 

cells in metaphase, when chromosomal structures are condensed and separated from 

ecDNA. However, the large class imbalance in cellular features (Figure 2a), inherently 

high noise ratio in metaphase images, small size and paucity of morphological features 

in ecDNA (particularly in comparison to chromosomes), present challenges to 

identifying and segmenting ecDNA. Moreover, we observed large variance in 

prevalence, relative pixel intensity, size, and presence of other partially burst nuclei 

across samples. It is difficult for traditional image processing algorithms with hand-

crafted features to automatically account for the high level of contextual information 

and different sources of variation between cell types and images within a cell type. 

For these reasons, computational tools for identifying ecDNA in DAPI stained 

images are limited. Figure 1e shows a patch from a DAPI stained image of a cell in 
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metaphase. An off-the-shelf method, Watershed [11] detected only 14 of 25 ecDNA.  

An earlier tool, ecDetect [7], used image processing methods, including thresholding 

and morphological operations, to detect and quantify ecDNA. The tool was optimized 

for precision and had low recall. For example, when applied to a cropped image from 

a metaphase PC3 cell-line (Figure 1e), ecDetect detected only 16 out of 25 ecDNA. 

Moreover, although the tool performs accurate segmentation of intact nuclei and 

chromosomes, it does not automatically differentiate between the two classes and 

requires further post-processing. Therefore, ecDetect cannot identify FISH stained 

homogeneously staining regions. Additionally, ecDetect often requires a manual step 

to demarcate the regions containing metaphase chromosomes. We address these 

issues in our method. 

Deep neural networks, specifically, convolutional neural networks (CNNs) have 

consistently outperformed traditional image processing algorithms on biological data 

sets [12]. By using a large number of learnable parameters, they can recognize 

complex underlying patterns in large data sets [13]. In contrast to image classification 

tasks, fully convolutional networks (FCNs) were constructed to perform pixel-wise 

classification [14]. Pixel-wise classifications allows for images to be semantically 

segmented, i.e. acquire class labels while retaining their spatial organization. However, 

ecDNA are small and irregularly shaped and can be confused with other proximal 

objects. Thus, resolving local details at a fine spatial resolution, as well as reasoning 

about categorical information based on global context is necessary to successfully 

segment ecDNA. These dual goals can be achieved using U-nets [15], a variant of 

FCNs, which gradually up-sample features and use skip connections to recover spatial 
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resolution. U-nets have become widely recognized as the common choice of 

architecture in the medical image community for their superior performance on a 

number of imaging challenges [16]. 

In this research, we developed ecSeg, a U-net based platform (Figure 1f) for 

automatically classifying DAPI signal, identifying and quantifying ecDNA, and 

incorporating FISH data to clarify the location of oncogene amplification on ecDNA and 

chromosomes. It accepts DAPI and FISH-stained metaphase images and classifies 

each image pixel into one of the following classes: Cytoplasm, Nucleus, Chromosome, 

and ecDNA (Figure 1e, right panel). Subsequently, it computes connected components 

of ecDNA pixels (Methods) to demarcate and count ecDNA. When FISH probes are 

present, it quantifies their spatial location in a separate post-processing step and 

correlates those locations with ecDNA and chromosomes. 

 

1.2 Results  

1.2.1 Network Training Procedure 

To train ecSeg, we developed and make available a unique data set containing 

ground truth labeling of nuclei, chromosomes, and ecDNA, starting from 483 unlabeled 

images of dimensions 1040 × 1392 from Turner, 2017 [7]. The ground truth labeling 

was created by multiple scientists involved in independent annotation (Methods). Due 

to the difficulty of annotating 18.9K ecDNA across 483 images, a decision was made 

early on to use a coarsely annotated data set which allowed for the possibility of a few 

missed and/or false ecDNA calls. For the training and testing of learning frameworks, 

we generated 5,949 image patches (256 × 256 each) that were cropped from the larger 
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images. We randomly split these patches into training (4760 patches) and test (1189 

patches) data sets. Importantly, in order to have higher fidelity while testing the 

network, we further annotated the test data to reduce false ecDNA calls. The test data 

was a “holdout”' set that was only used for final quantification of the model and had no 

direct effect on the training itself. 

In training the network, we used a weighted loss function comprised of the 

binary cross entropy (BCE) and Dice coefficient to correct for the severe class 

imbalance. We also modified the architecture and adjusted hyper-parameters to 

account for the small size and lack of discriminating features on ecDNA (Methods). To 

optimize the model, various iterations of the architecture and hyper-parameters were 

trained using the training data on 8 GeForce GTX 1080 Ti GPUs (Methods). We also 

tested with different network architectures such as U-net with multi-scale context 

aggregation using dilated convolution [17], pre-trained weights from VGG16 [18] 

trained on ImageNet, and the base U-net. The performance was optimized on a 

network with 32 filters in the first layer and doubling the number of filters in each layer, 

input image sizes of 256 × 256, and a L2 regularization parameter of 0.0001.  For the 

optimal model, we found that the loss converged after 33 epochs (Figure 2b). As the 

loss function did not provide an intuitive explanation of performance, we additionally 

used a ‘mean Intersection over Union’ (mIOU) score (Methods) to measure the fraction 

of true calls. The mIoU score showed similar convergence behavior on the training 

data (Figure 2b). 
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1.2.2 Test Set Segmentation Accuracy 

On the test data (1189 patches) ecSeg displayed good performance for each of 

the classes with mIoU scores of 0.75 for ecDNA, 0.68 for chromosomes, 0.78 for 

nuclei, and 0.97 for background (Figure 2c). Notably, 50% of the patches had an 

ecDNA mIoU score of at least 0.871 and 25% had a score of 0.938. The relatively 

worse performance for chromosomes was partially due to images in which the 

chromosomes are tightly clustered, making it difficult to differentiate them from intact 

nuclei (Figure 4). 

Although we used a pixel-based image segmentation approach, the primary 

goal of ecSeg is to detect and count ecDNA in entire images. For example, an incorrect 

pixel classification adjacent to a correctly annotated ecDNA pixel does not change the 

fact that the ecDNA was detected. Therefore, ecSeg also post-processes the output 

by computing connected components of adjacent pixels with the same class label 

(Methods). We defined true-positive or TP (respectively false-positive or FP) 

predictions as an ecDNA connected component whose centroid was within 

(respectively, outside) a pixel-distance threshold 𝛼 (=5) of a manual annotation 

(Methods). Similarly, we defined a false-negative (FN) call as a manual annotation with 

no ecSeg prediction within 5 pixels. On the test patches, the mean precision 

(TP/TP+FP) and recall (TP/TP+FN) were measured as 85% and 86% respectively. 
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1.2.3 Comparison of Segmentation Methods 

To compare against ecDetect predictions, we combined the predictions of all 

patches for an image. We plotted the precision versus recall performance of ecSeg 

for each image, along with the ecDetect predictions (Figure 2d,  

Table 2). At the image level, the mean precision and recall values were 82% 

each, in contrast with 59% and 23% achieved by ecDetect, which rarely achieved recall 

above 50%, and had a worse F1 (combined) score than ecSeg for each image (Figure 

2e). ecSeg performance varied across cell-lines (Table 3). Thus COLO205, where the 

ecDNA are notably larger in the 9 images (Figure 5) had worse performance (75% 

precision, 64% recall) compared to CA718 (84%, 90%). Moreover, in at least some 

cases, ecSeg predictions that did not match the manual annotation were in fact true 

calls as verified by external annotators who were not involved in the original annotation 

process. Similarly, a small number of manual annotations not called by ecSeg were 

truly not ecDNA (Figure 6, Figure 7). Including the totality of 483 training and test 

images, the number of ecDNA called by ecSeg were within 5% of the manual 

annotation calls in 88% of the images, validating the applicability of ecSeg in providing 

a accurate estimate of ecDNA abundance (Figure 2f). 

 

1.2.4 ecDNA Heterogeneity 

The ecDNA model of focal amplification [6, 9] suggests that ecDNA segregate 

randomly into daughter cells, driving and maintaining intra-tumoral genetic 

heterogeneity of ecDNA counts. For a sample with 𝑛 metaphase images, let 𝑛𝑖 denote 
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the number of samples with exactly 𝑖 ecDNA counts. The Shannon Entropy, measured 

using  

ℋ𝑛 = ∑ −
𝑛𝑖
𝑛
log2

𝑛𝑖
𝑛

𝑖:𝑛𝑖>0

, 

showed large variation across different cell-lines (Table 4). Noting that the entropy 

value depends upon the number 𝑛 of sampled cells (images), we also plotted the 

normalized entropy-efficiency value (
ℋ𝑛

log2𝑛
) for 40 cell-lines. Interestingly, most (21 of 

29) cell-lines whose ecDNA copy numbers exceeded 10 per cell, had entropy-

efficiency above 90% (Figure 2g, Table 4) suggesting an important role for ecDNA in 

maintaining copy number heterogeneity. 

 

1.2.5 Modeling the Effect of Environmental Changes (Drug Treatment) on ecDNA 

Activated oncogenes on ecDNA can provide a selective advantage to cells with 

higher ecDNA counts, leading to rapid proliferation of those cells and focal amplification 

[7]. However, environmental changes that restrict metabolite availability may impose a 

selective disadvantage on ecDNA containing cells. Indeed, a previous report had 

shown a dramatic decrease of ecDNA in a glioblastoma cell-line when targeted with 

the anti-EGFR drug Erlotinib (Eb), followed by a rapid increase in ecDNA upon 

withdrawal of drug treatment [10]. To test the effect of drugs and other environmental 

factors in modulating ecDNA counts, we used ecSeg to quantify ecDNA counts in cells 

prior to Eb treatment, and followed up 2 weeks, and 4 weeks after treatment. 

To quantify the effect of drug treatment, we extended earlier work that modeled 

these selective forces using a Galton-Watson branching process [19, 7] (Methods), 
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where each cell containing 𝑘 ecDNA either replicates with probability 𝑏𝑘, or dies 

(probability 𝑑𝑘 = 1 − 𝑏𝑘), to create the next generation. Positive selection was modeled 

by setting 𝑏𝑘 − 𝑑𝑘 ∝ 𝑓𝑚,𝛼(𝑘), where 

𝑓𝑚,𝛼(𝑘) = {

𝑘

𝑀𝑠
                  0 ≤ 𝑘 ≤ 𝑀𝑠

1

1+𝑒𝛼(𝑘−𝑚)
          𝑀𝑠 < 𝑘 < 𝑀𝑎

( 1 ) 

is positive, and increasing for small values of 𝑘, and decreases logistically to 0 for 

larger values of 𝑘 (Figure 3a black line). To this model, we added the effect of a drug 

targeting the protein product of the oncogene by using 𝑓𝑘 that logistically decreases to 

a negative value for increasing 𝑘 (Figure 3a blue line, Methods). 

𝑓𝑟,𝛼(𝑘) =  
𝑒𝛼(𝑘−𝑟)

1+𝑒𝛼(𝑘−𝑟)
( 2 ) 

Different choices of the decay parameters 𝑟, 𝛼 all predicted a sharp decrease in 

ecDNA per cell, and a decrease in heterogeneity (Figure 8) but show very different 

rates of decrease in ecDNA.  

On the experimental data, ecDNA counts, estimated by ecSeg, reduced 

dramatically from a mean of 50 per cell (median 26) at week 0, to 38 (median 14) at 2 

weeks, and 10 (median 1) at 4 weeks (Figure 3b,c, Table 5). The entropy efficiency of 

the cells changed from 0.98 at week 0 to 0.73 at week 4. The results closely matched 

simulations for 𝑟 = 20, 𝛼 = 0.04. While the theoretical models are admittedly simplistic, 

they showcase the power of ecSeg in inferring model parameters and providing 

quantitative comparisons of drugs used to target ecDNA. 
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1.2.6 Oncogene Amplification on HSR and ecDNA 

The tumor cell can respond rapidly to a changing environment by dynamically 

modulating RNA expression through ecDNA formation as well as reintegration of 

ecDNA as HSRs [10]. This is shown in the example of two glioblastoma cell-lines where 

EGFR amplifications occur either as ecDNA (‘ec’ cell-line), or as HSR (‘hsr’ cell-line, 

Figure 3e,f). To quantify this phenomenon, we used an EGFR FISH probe and ecSeg 

analysis to locate EGFR (Methods) in the two cell-lines. The median fraction of FISH 

signal explained by ecDNA was 0% in the hsr cell-line, but rose to 14% in the ec cell-

line (Figure 3g). In contrast, 71% (respectively, 15%) of the FISH signal was found on 

chromosomes in the hsr (respectively, ec) cell-line. The results document the ability of 

ecSeg to provide insight into potentially important biological processes. Specifically, 

they suggest that ecDNA driven amplifications, which are inherently capable of rapidly 

changing tumor copy number, can be “stabilized” by reintegrating into chromosomes, 

validating the prescient concept that ecDNA-based amplification (aka double minutes) 

is “unstable,” whereas chromosomal amplification on HSRs is stable [20].  

 

1.3 Discussion 

The finding that ecDNA-based oncogene amplification is common in cancer, 

raises some challenges for our current topological maps of cancer genes, including the 

fact that oncogene location within the nucleus could greatly impact tumor 

aggressiveness, as well as through non-chromosomal mechanisms of ecDNA 

inheritance.  Nevertheless, it is difficult with existing genomic tools to quantify the 
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extrachromosomal origin of copy number amplification. ecSeg provides a new tool for 

the research community to quantify ecDNA-based amplification at the single cell level. 

FISH based methods have been used to probe for oncogenes involved in tumor 

development, to identify cellular location of other proteins, including those involved in 

DNA repair, and for foci scoring [10, 6]. ecSeg can be used to localize the sub-cellular 

location of these proteins, helping to differentiate between intra-chromosomal and 

extrachromosomal repair mechanisms. 

Genomic tools have been invaluable for precise measurements of copy number 

amplification, but bulk sequencing does not reveal the cell-to-cell variability in the copy 

number counts. Tools for quantifying copy number heterogeneity are very limited as 

single-cell genomic analyses of copy number variation is often confounded by PCR 

mediated artifacts. Automated cytogenetic analysis allows for an automated 

measurement of heterogeneity and to understand its consequence. The ecDNA model 

of oncogene amplification suggests that ecDNA segregate 

independently into daughter cells and selection helps modulate a rapid change 

in copy number. An identical mechanism allows cells to rapidly reduce copy numbers 

under negative selection from a drug. ecSeg allows for the measurement of the rate of 

change and helps quantify the positive or negative selection strength. In summary, 

ecSeg can provide new insight into how cell to cell variability with respect to specific 

oncogenes contributes to tumor growth, progression, and drug resistance. 
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1.4 Methods 

1.4.1 Data set 

We started with a data set from Turner et al. 2017 [7]. To capture relevant spatial 

information, cells were cultured according to standard protocol, and Karyomax was 

added to enrich for cells in metaphase. Cells were collected and treated with a 0.075 

M KCl hypotonic solution for 10 minutes, followed by fixation in 3:1 methanol/glacial 

acetic acid solution. Interphase and mitotic cells were dropped onto humidified glass 

slides, and mounting medium with DAPI was applied to the slides. Cells in metaphase 

were imaged with an Olympus BX43 microscope equipped with a QiClick CCD camera. 

No 3D imaging was performed. Our dataset contains 483 images of dimensions 

1392 × 1040 sampled from 27 different tumor cell lines. All images were stained with 

4′,6-diamidino-2-phenylindole (DAPI). DAPI is a blue-fluorescent stain that binds to any 

DNA structure represent in the sample. Thus, in our data set, it defines ecDNA, 

chromosomal, and nucleic regions. Some components in the image are also stained 

with fluorescence in situ hybridization (FISH) for specific probes on the ecDNA. 

However, we ignored the FISH signals when constructing our ground truth as (a) some 

ecDNA may not carry the probe target due to heterogeneity, and (b) not all targets are 

bound by the probe. Thus, extrachromosomal FISH signals validate ecDNA, but 

absence of FISH signals is not indicative of a lack of ecDNA. 

We cropped these 483 images into 9,660 patches of 256 × 256. Some patches 

were purely background and we only included patches with at least 1% of the total area 

being covered in DAPI. We were left with 5949 usable patches. We split this data set 
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such that 60% was used for training (3570 patches), 20% for validation (1190 patches), 

and the final 20% for reporting test results (1189 patches). 

 

1.4.2 Ground Truth Labeling 

Manual identification of ecDNA can be laborious as a single image can easily 

contain more than 200 ecDNA elements, sometimes up to ~500. Thus, we built a 

software, using off-the-shelf morphological operations, to toggle a region as being 

ecDNA or not. The ground truth was then obtained through a manual annotation 

process using that software. To reduce the annotator's work, we seeded the process 

by providing ecDetect annotations which the annotator could then toggle on or off. 

We used Otsu's thresholding to binarize the gray-scale image [21]. The adaptive 

method demarcated the nuclei and chromosomes, but the smaller and lower intensity 

ecDNA were marked as background. We smoothed the edges of the chromosomes 

and nuclei by performing an open operation, which is an erosion of the connected 

components followed by a dilation. We next used Bradley local thresholding, an 

adaptive thresholding algorithm, to perform ecDNA annotations. Bradley local 

thresholding uses a sliding average filter and checks if the brightness of the center 

pixel is T\% lower than the mean intensity of the pixels in the window. If it is lower, then 

the pixel is set to black or otherwise set to white. We used a window size of 3 × 3 pixels 

and a threshold value of T=3%. This allowed us to segment the image to a finer 

resolution with ecDNA predictions. We post-processed ecDNA segmentation by 

removing stray components that were less than 15 pixels in size, filling in any holes, 

removing spurs, and performing an open operation on each of the connected 
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components. Notably, the process missed many true ecDNA, but the coarse 

segmentation was useful for training the U-net. 

However, for the 96 test set images (1189 patches), where we needed a more 

precise accounting of false negative and false positives, we used additional annotators 

who refined the predictions by manually examining each image and correcting any 

ecDNA that were falsely classified during the coarse annotation. 

 

1.4.3 Segmentation 

Inspired by the U-Net, we used a modified fully convolutional neural network 

presented in Figure 1f. We optimized the architecture by performing grid search over 

the network's hyper-parameters. We varied the number of filters in the first layer (16,32, 

64), input patch sizes (1282, 2562, 5122) and L2 regularization (1,0.1, 0.01, 0.001, 

0.0001). We applied multi-scale context aggregation using dilated convolution [17]. We 

found that although the chromosomal IoU increased, the ecDNA precision and recall 

remained the same.  We also experimented with pre-trained weights from VGG16 

trained on ImageNet. However, because ImageNet contains images of everyday 

objects, our model had a more difficult time generalizing to the microscopy images. In 

each case, we minimized loss on the network variants using the Adam optimizer on 8 

GeForce GTX 1080 Ti GPUs.  We trained the network on the training set and used the 

validation set to evaluate loss and mIoU. The training was halted if the loss on the 

validation set did not change for 7 epochs (the ‘patience’ time). The test data was a 

“holdout” set that was only used for final quantification of the model and had no direct 

effect on the training itself. The performance was optimized on a network with 32 filters 
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in the first layer and doubling the number of filters in each layer, input image sizes of 

256 × 256, and a L2 regularization parameter of 0.0001. 

We decided not to perform any data augmentation through warping and 

stretching. The relative size and shapes of ecDNA are very critical, and often times, 

certain ecDNA are almost the size of chromosomes, such as in the COLO205 cell line 

Figure 4. Any warping and stretching could cause the ecDNA and chromosomes to be 

indistinguishable even for the human eye. Rotations were not used either as our 

images have no rotational significance. All the images were taken from a top-down 

view with no bias towards orientation. Finally, as we collected data from a large number 

of cell lines, we had sufficient variation in our dataset. 

We denoted each ground truth image as a collection of pixels 𝒫 with the goal of 

classifying the pixels into one class from 𝒞={𝑏, 𝑛, ℎ, 𝑒}, representing background (𝑏), 

nucleus (𝑛), chromosome (ℎ), and ecDNA (𝑒). The ground truth was described by a 

binary function 𝑦𝑐(𝑥) ∈ {0, 1} for all 𝑥 ∈ 𝒫, 𝑐 ∈ 𝒞. Additionally, ∑ 𝑦𝑐(𝑥)𝑐 = 1 for all pixels, 

enforcing a single class assignment. For each 𝑥 ∈ 𝒫, 𝑥 ∈ 𝒞, the network outputs a class 

score, 𝑃𝑐(𝑥) ∈ [0,1]. We trained the network to minimize a custom loss function defined 

below. 

 

1.4.4 Loss Function  

We defined loss 𝐿 as a weighted binary cross entropy (BCE) minus the 

Sorensen-Dice coefficient (Dice). Specifically, the BCE loss for class 𝑐 was computed 

using:  
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BCE[𝑥] =  −
1

𝒞
∑[𝑦𝑐(𝑥) ln (

1

1 + 𝑒−𝑃𝑐(𝑥)
) + (1 − 𝑦𝑐(𝑥)) ln(1 −

1

1 + 𝑒−𝑃𝑐(𝑥)
)]

𝑐∈𝒞

 

Similarly, we compute Dice loss as:  

Dice = [1 −
2∑ 𝑷𝒄 ⋅ 𝒚𝒄𝑐

∑ ‖𝑷𝒄‖1 + ‖𝒚𝒄‖1𝑐
] 

We used weights to boost the under-represented classes. Let 𝑛𝑏 , 𝑛𝑛, 𝑛ℎ, 𝑛𝑒  denote the 

total number of pixels belonging to each class in background, nuclei, chromosome, 

and ecDNA, respectively, for the entire training and validation dataset.  As 𝑛𝑏 ≫ 𝑛𝑛 ≫

𝑛ℎ ≫ 𝑛𝑒, we assigned weight 𝑤𝑐 to each class 𝑐 ∈ {𝑏, 𝑛, ℎ, 𝑒} as follows: 

𝑤𝑐 = max{1,
𝑛𝑛
𝑛𝑐
 } 

Correspondingly, the weight of a pixel was given by:  

𝑤𝑥 =∑𝑦𝑐(𝑥)𝑤𝑐
𝑐

 

and the net loss was computed using 

𝐿 =
1

|𝒫|
∑𝑤𝑥(BCE[𝑥] + Dice

𝑥

 

To prevent over-fitting, we trained for 45 epochs with an early stopping “patience'” of 7 

which stopped training if the loss on the Validation set did not improve for 7 epochs. 

 

1.4.5 Accuracy 

 For each class 𝑐, and threshold 𝜏 ∈ 𝒯, where 𝒯={0.05, 0.1, 0.5}, define an 

indicator 𝜃𝑐,𝜏(𝑥) = {1 if 𝑃𝑐(𝑥) ≥ 𝜏; 0 otherwise}. Define the mean Intersection over 

Union (mIoU) score across all classes as:  
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𝑀 =
1

|𝒯|
∑

1

|𝒞|
∑

𝜽𝑐,𝜏 ⋅ 𝒚𝑐

‖𝜽𝑐,𝜏 ‖1 +
‖𝒚𝑐 ‖1𝑐𝜏

 

 

1.4.6 Post-processing of Segmentation 

Post-training, the network outputs a 256 × 256 matrix 𝑂, with 

𝑂[𝑥] = argmax
c
𝑃𝑐(𝑥) 

To filter noise, we computed connected components for each class. Connected 

components are regions of adjacent pixels with the same class value. We filled all 

holes in each of the connected components such that the hole is assigned the same 

class as the surrounding pixels. We performed secondary size thresholding on the 

ecDNA elements such that all ecDNA components less than 15 pixels are marked as 

background and those greater than 125 pixels are marked as chromosomes. We also 

removed any ecDNA that were attached to the edges of chromosomes or nuclei as 

these regions are often just spurs of the larger class. 

 

1.4.7 Accuracy Metrics 

To compute component level accuracy, we computed true positive, false 

positive, and false negative rates. If the centroid of a predicted ecDNA component was 

within a 5-pixel Euclidean distance of the centroid of a ground truth ecDNA component, 

we marked this as a true positive (TP). If there are no ground truth ecDNA within that 

distance, we classified the component as a false positive (FP). We found that the 

average area of ecDNA across our entire dataset was 75 pixels and thus a distance 
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threshold of 
√75

𝑝𝑖
≃ 5 pixels ensures that ecDNA detected on the periphery of the 

boundary from the annotated center pixel is still considered a true positive. Inversely, 

if there were no predicted ecDNAs within a 5-pixel distance of a ground truth 

annotation, we classified it as a false negative (FN). We compute our precision and 

recall for each image as: 

precision=
TP

TP+FP
 

recall=
TP

TP+FN
 

We also measured accuracy using the F1 score, a harmonic average of 

precision and recall. 

F1=2×
precision ×recall

precision + recall
 

 

1.4.8 Entropy and Entropy Efficiency 

Consider a sample with 𝑛 cells. Let 𝑛𝑖 (respectively 𝑝_𝑖 =
𝑛𝑖

𝑛
 denote the number 

(respectively, fraction) of cells with 𝑖 copies. We defined heterogeneity of copy number 

using Shannon entropy: 

ℋ𝑛 = −∑𝑝𝑖 log2 𝑝𝑖
𝑖

 

The entropy efficiency, defined by 
ℋ𝑛

log2 𝑛
 normalizes the value between 0 (no 

heterogeneity) and 1 (maximum heterogeneity). 
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1.4.9 Drug Treatment Quantification 

We cultured GBM39 cells as neurospheres under serum-free conditions 

(DMEM/F12 basal media with 1X Glutamax, EGF, FGF, and heparin). Cells were 

cultured in 5 uM Erlotinib. The EGFR-containing ecDNA was quantified via ecSeg at 

0, 2, and 4 weeks. 

 

1.4.10 Evolutionary Model for ecDNA Driven Copy Number 

Consider an initial population of cells, with each cell carrying 𝑘 ≥ 0 copies of an 

oncogene on ecDNA. We modeled the population using a discrete generation Galton-

Watson branching process [19]. In this simplified model, each cell in the current 

generation containing 𝑘 amplicons (amplifying an oncogene) either dies with probability 

𝑑𝑘, or replicates with probability 𝑏𝑘 to create the next generation. We set the selective 

advantage  

𝑏𝑘
𝑑𝑘
= {

1 + 𝑓𝑚,𝛼(𝑘), 0 ≤ 𝑘 < 𝑀𝑎

0, otherwise
  

𝑑𝑘 = 1 − 𝑏𝑘 

In other words, cells with 𝑘 copies of the amplicon stop dividing after reaching 

a limit of 𝑀𝑎 amplicons. Otherwise, they have a selective advantage for 0 < 𝑘 ≤ 𝑀𝑎, 

where the strength of selection (𝑏𝑘 − 𝑑𝑘 ∝ 𝑓𝑚,𝛼(𝑘)) is governed by parameters 𝑚,𝛼. 

Initially, the selective advantage increases with increasing copies, but later diminishes 

due to increasing metabolic load. We modeled this by defining 
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𝑓𝑚,𝛼(𝑘) =

{
 

 
𝑘

𝑀𝑠
,   0 ≤ 𝑘 ≤  𝑀𝑠

1

1 + 𝑒𝛼(𝑘−𝑚)
,   𝑀𝑠 < 𝑘 < 𝑀𝑎

 

Here, parameters 𝑚 and 𝛼 are the ‘mid-point’, and ‘steepness’ parameters of 

the logistic function, respectively. Initially, 𝑓𝑚,𝛼(𝑘) grows linearly, reaching a peak value 

of 𝑓𝑚,𝛼(𝑘) = 1 for 𝑘 = 𝑀𝑠. As the viability of cells with large number of amplicons is 

limited by available metabolites [22], 𝑓𝑚,𝛼(𝑘) decreases logistically in value for 𝑘 > 𝑀𝑠 

reaching 𝑓𝑚,𝛼(𝑘) → 0 for 𝑘 ≥ 𝑀𝑎. We model the decrease by a sigmoid function with a 

single mid-point parameter 𝑚 s.t. 𝑓𝑚,𝛼(𝑚) =
1

2
. The ‘steepness’ parameter 𝛼 is 

automatically adjusted to ensure that max{1 − 𝑓𝑚,𝛼(𝑀𝑠), 𝑓𝑚,𝛼(𝑀𝛼)} → 0. We empirically 

chose 𝑀𝑎 = 20, 𝑚 = 100, 𝛼 = 0.1 to match a mean copy number of 50 ecDNA per cell 

observed prior to drug treatment. 

The addition of a drug targeting the oncogene provides a disadvantage 

(negative fitness) to cells carrying extra copies of the oncogene. Therefore, after drug 

treatment, we used the selective function 

𝑓𝑟,𝛼(𝑘) = −
𝑒𝛼(𝑘−𝑟)

1 + 𝑒𝛼(𝑘−𝑟)
 

𝑓𝑟,𝛼(𝑘) provides negative selection pressure causing a steep decline in the average 

number of ecDNA per cell. We simulated the effect of the drug using 𝑟 ∈

{5, 20, 50, 100}, 𝛼 ∈ {0.07, 0.04, 0.03}. Figure 8 shows the values for 𝛼 = 0.04. We 

observed that 𝑟 = 20, 𝛼 = 0.04 best matched the empirical observations with Eb 

treatment (Figure 3d). 
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1.4.11 FISH Analysis 

ecSeg also incorporates FISH analysis. It allows the user to specify the color of 

the FISH signal used to illuminate the gene of interest and the intensity threshold 𝑇 

(𝑇 = 120 by default). It then extracts binary images highlighting only the pixels that 

have the minimum intensity in the appropriate color channel and additionally marks the 

pixels as either ecDNA or chromosomes. ecSeg outputs a table containing the total 

number of FISH pixels, the fraction of FISH pixels that are also marked as ecDNA, and 

the fraction marked as chromosomal for each image in the user-specified file path.  
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1.6 Appendix 

Figure 1: Detecting ecDNA in DAPI-Stained Images. (a and b) Copy number 
amplification of EGFR in a glioblastoma cell line due to extrachromosomal DNA 
(ecDNA) formation. (c and d) Copy number amplification of EGFR in a glioblastoma 
cell line with no ecDNA. Note that the sequence-based reconstruction does not 
distinguish between ecDNA (a) and homogeneously stained regions (c). (e) 
Identification of ecDNA in DAPI-stained images of cells in metaphase. Although a FISH 
signal for EGFR is also shown, only the DAPI signals are used for calling ecDNA using 
the Watershed method, ecDetect, manually annotated ground truth, and ecSeg. (f) A 
neural network architecture for semantic segmentation of the pixel into ecDNA, 
chromosomes, nuclei, and background, as described in methods.  
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Figure 2: ecSeg performance and applications. (a) pie-chart showing class 
imbalance. (b) Loss and mIoU on validation data as a function of training epochs. Only 
the loss function is used for training. (c) mIoU score distributions for ecDNA, 
chromosomes, nuclei, and background on test data. (d) Precision versus Recall for 
ecDetect and ecSeg on test data. Each point represents a complete image. (e) F1 
score comparison between ecSeg and ecDetect on test data. Notably, while the 
ecDetect F1 scores rarely exceed 0.5 due to low recall, ecSeg F1 scores are generally 
above 0.75. (f) Distribution of Discrepancy in ecDNA counts ((ecSeg count - ground 
truth counts) / ground truth counts) shows a slight over-estimate for ecSeg, with 90% 
of the calls being within 5%. (g) Entropy efficiency for 40 cell lines. 
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Figure 3: ecSeg applications. (a) The black line shows the growth rate 𝑏𝑘 − 𝑑𝑘 for 
ecDNA driven amplification (parameters 𝛼 = 0.1,𝑚 = 100), which rises initially and 
slowly decreases to 0. The effect of a drug on growth rate (blue line) is modeled using 
a negative selection function 𝑓𝑟,𝛼(𝑘) for parameters 𝛼 = 0.4, 𝑟 = 20. (b) Simulated 

changes in the mean copy number and Shannon entropy (c) as a function of time, 
when the drug is applied at day 400 with 𝛼 = 0.04, 𝑟 = 20. (d) Reduction of ecDNA 
counts in glioblastoma cell-line GBM39 upon Erlotinib treatment. Black lines inside the 
violin plots show sample means while white circles and box plots show the median and 
the middle 50th percentile. The blue line shows mean values of the simulation from 
panel b (shaded region). The mean, median counts per cell were (50,26) at week 0, 
(38,14) at week 2, and (10,1) at week 4, consistent with the theoretical model. (e) A 
glioblastoma cell-line with EGFR proto-oncogene (stained using green FISH signal) 
found in homogeneously stained regions (HSR) (f) A glioblastoma cell-line with EGFR 
found on ecDNA. (g) Percentage of FISH signal on ecDNA in the ec and HSR cell 
lines. 
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Figure 4: Incorrect classification of chromosomes as nuclei in COLO205. (a) 
DAPI of original image from cell line COLO205. (b) Ground truth annotation with intact 
nuclei, chromosomes, and ecDNA being represented by red, blue, and black, 
respectively. (c) Segmentation map. COLO205 tumor cell remain tightly clumped even 
after the nucleic membrane has disintegrated. The network mis-classifies these 
chromosomes as nuclei due to the tight clustering. Related to main Figure 2b.  
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Figure 5: Incorrect detection of large ecDNA in COLO205. (a) DAPI of original 
image from cell-line COLO205. (b) Ground truth annotation with intact nuclei, 
chromosomes, and ecDNA being represented by red, blue, and black, respectively. (c) 
ecSeg Segmentation map. (d,e,f) Crops of DAPI, ground truth annotation, and ecSeg 
segmentation. In COLO205, replicating ecDNA structures (double minutes) often 
closely resemble chromosomes, making it difficult to identify. These structures are 
marked as chromosomes in both the ground truth and the segmentation map. Related 
to main Figure 2b. 
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Figure 6: Incorrect false negative calls in cell line CA718. (f) is burst nucleus, but 
appears to show as ecDNA when zoomed in, and was marked as ecDNA during human 
annotation. ecSeg correctly annotates it as a nucleus identifying a mistake in the 
human annotation. Related to main Figure 2b.  
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Figure 7: Incorrect annotation of ecDNA in cell line CA718. (a) DAPI of original 
image from cell-line CA718. (b) Ground truth annotation (c) ecSeg Segmentation map 
(d,e,f) Crops of DAPI, ground truth annotation, and ecSeg segmentation. Blue circles 
denote false positives, red circles are true positives, and green circles are false 
negatives. As can be verified by looking at the DAPI image, many of the annotated 
false positives are actually true ecDNA with low-intensity DAPI signals. These ecDNA 
were missed during the ground truth annotation. False negatives are rare, and often 
indicate a problem with the ground truth annotation, as shown in Figure 6. Related to 
main Figure 2d. 
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Figure 8: Simulating the impact of drug on ecDNA counts and heterogeneity. 
Column I shows the modeled growth rates 𝑏𝑘 − 𝑑𝑘 as a function of ecDNA count (𝑘) 

for untreated (black line) and drug-treated (blue) lines, for 𝛼 = 0.04, and 𝑟 ∈
{5,20,50,100} (rows A-D). Columns II and III show simulated changes in the mean copy 
number and Shannon entropy as a function of time, when the drug is applied at day 
400.  Upon drug application, the ecDNA counts and heterogeneity both decline in a 
manner dependent upon the strength of selection modeled using 𝛼, 𝑟. Panel B.II (𝑟 =
20, 𝛼 = 0.04; shaded region) best fit the experimental data of GBM cells treated with 
Erlotinib (related to main Figure 2h). 
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Table 1: Performance on different neural architectures. The table reports (1) mIOU 
scores of ecDNA, chromosomes, nuclei, and cytoplasm, and (2) precision and recall 
scores for ecDNA for each variant of neural architecture tested. Related to Figure 2a, 
b, c.  

Table 2: Precision and recall scores for ecSeg and ecDetect on entire data set. 
The table reports (1) the precision and recall scores for ecSeg and ecDetect, (2) ground 
truth ecDNA counts per image, and (3) the predicted numbed of ecDNA from ecSeg 
for each of the 483 images in the data set. Related to Figure 2f.  

Table 3: Performance on test data set. Precision and recall scores from ecSeg and 
ecDetect for the 7 cell lines in the test set. Related to Figure 2d,e. 

Table 4: Entropy. The entropy and entropy efficiency for all cell lines present across 
the entire data set (training, validation, and test). Related to Figure 2g. 

Table 5: Drug treatment ecDNA counts. Sheet 1 has raw ecDNA counts for both 
control and case for week 0,2, and 4. Sheet 2 has the entropy values for the cases in 
week 0, 2, and 4. Related to Figure 3d, e, f, g. 

 

Please see the Supplemental Files for Deep Learning in Cancer Biology.  
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CHAPTER 2. Pan-Cancer Analysis of Oncogene Amplification in Interphase 

Cells 

2.1 Introduction 
 

Oncogene amplification is a key driver of cancer pathogenesis. Focal 

amplifications can occur as chromosomal homogeneously staining regions (HSR) or 

as extrachromosomal DNA (ecDNA). Amplified ecDNA is present in more than 20 

different cancer types and occur especially frequently in glioblastoma, sarcoma, and 

esophageal carcinoma [7, 23]. Importantly, these focal amplifications are associated 

with worse patient outcomes [23]. Thus, there is an urgent need for methods and tools 

to investigate focal amplifications, like ecDNA, in tumor cells.  

Sequenced-based methods such as AmpliconArchitect [9] and 

AmpliconReconstructor [24] aim to reconstruct these focal amplifications. However, 

ecDNA may integrate into and egress out of chromosomes in response to the cellular 

environment [10] while maintaining their features. Thus, focal amplifications can be 

ecDNA or HSR, but can have nearly identical structures. This makes it difficult for 

sequence-based methods to capture the dynamic nature of ecDNA and the 

amplification mechanism of a cell’s present state.  

Image-based reconstructions are currently the canonical way of determining the 

amplification mechanism of a cell’s present state. EcDNA can be visually identified in 

fluorescently stained images of tumor cells in metaphase. They appear as hundreds, 

sometimes thousands, of tiny faint DNA particles detached from chromosomes. 

Rajkumar et al. developed ecSeg, a deep learning tool, to semantically segment 
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ecDNA in metaphase cells and correlate the segmentations with amplification profiles 

to reveal ecDNA mechanics. However, capturing cells in metaphase requires (live-)cell 

imaging and is typically performed on cultured cell lines. In clinical practice, however, 

cells are harvested from patient tumor tissue and contain interphase cells in which the 

DNA is loosely wound and inside an intact nuclear membrane. This makes it extremely 

challenging to discern ecDNA even for a trained eye.  

In this work, we discern HSR and ecDNA amplifications using the unique 

fluorescent staining patterns of interphase nuclei. We present ecSeg-i, a deep 

learning-based tool to cytogenetically determine the amplification status of interphase 

cells. We perform a pan-cancer study to reveal the amplification profiles across 14 

tumor types, including 32 cell lines and 4 patient tumor tissue types. We first show that 

ecSeg-i achieves an F1-score of at least 0.88 in determining the amplification status of 

interphase cells. We then present critical use cases of ecSeg-i such as quantifying the 

amplification heterogeneity between HSR and ecDNA amplified cell lines. 

 

2.2 Methods 

2.2.1 Dataset Overview 

We obtained images from 14 different tissue types using three different image 

acquisition protocols which we denote as cultured cell, tissue model, and patient tissue 

(Figure 9b). We detail the protocols in the Image Acquisition Protocols section (2.2.7). 

We obtained 450 tissue model images, 257 cultured cell images, and 57 patient tissue 

images. We generated the tissue model and cultured cell images from 32 unique cell 

lines (Figure 9c). We collected the 57 tissue images from patients with esophageal 
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cancer (ESC), head and neck squamous cell carcinoma (HNT), non-small cell lung 

carcinoma (LUC), and non-small cell lung carcinoma squamous (LUM) (Figure 9c). 

For several cell lines, we targeted more than one oncogene. For example, we 

probed for FGFR2 and MYC oncogene for the H716 cell line (Figure 9c). Each 

oncogene in each cell line has unique amplification profiles. Accordingly, we treated 

each unique cell line - oncogene pair as a separate sample. In total, we evaluated 39 

unique cell line - oncogene pairs. 

 

2.2.2 Ground Truth Labeling 

We used whole genome sequencing (WGS) to identify the amplified oncogene 

in the cultured cell and tissue model cell lines. We then probed for these amplified 

genes using fluorescence in situ hybridization (FISH) probes and produced metaphase 

spreads to identify whether the oncogene was amplified on ecDNA or HSR. We 

grouped the cell line-oncogene pairs into either ec-amplified (ec-amp), HSR-amplified 

(HSR-amp), or no-amplification (no-amp). All the nuclei belonging to a particular cell 

line have the same label as their parent cell line. For example, we labeled all the cells 

in the COLO320HSR cell line as HSR-amp.  

 

2.2.3 Training and Test Split 

We split the tissue model images into 75% (343) for training and 25% (98) for 

testing (Figure 9e). However, we split the cultured cell images into 50% (118) for 

training and 50% (119) for testing (Figure 9e). We note that COLO320DM is a unique 

hybrid cell line that contained amplification on ecDNA and HSR. Hence, we did not use 
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any of the COLO320DM images (61 tissue model and 20 cultured cell images) for 

training. We treated COLO320DM as a special hold test set. We also treated the 57 

patient tissue images as a hold test set (Figure 9e). 

 

2.2.4 Pre-process 

We pre-processed the images by delineating each individual intact nucleus in 

the image. We used a package called NuSeT [25] to identify and segment each 

nucleus. NuSeT utilizes multiple neural networks to identify and separate each 

nucleus, even in dense, overlapping clusters. We drew a bounding box around each 

unique nucleus, cropped the bounding box, and resized the crop to a 256 × 256 patch 

(Figure 10). We gathered 41698 nuclei from the 461 training images and 25672 nuclei 

from the 217 test images (Figure 9d-e). 

 

2.2.5 Architecture 

The backbone of ecSeg-i is DenseNet-121 [26]. Densenet-121 is a 121 layered 

convolutional neural network (CNN). The feature maps of all previous layers are 

concatenated and fed as input to the current layer, making it densely connected. The 

primary benefit of this dense connection is that it enables deeper layers to reuse 

features learned in earlier layers without having to relearn them. Consequently, a 

DenseNet uses fewer parameters than an equivalent vanilla CNN.  

DenseNet-121 is composed four dense blocks containing, 6, 12, 24, and 16 

convolutional blocks, respectively. Each convolutional block is composed of 6 

sequential operations: batch normalization (BN), a rectified linear unit (ReLU), 1 × 1 



39 

convolution, BN, ReLU, and a 3 × 3 convolution. The dimensions of all the feature 

maps within a dense block are kept the same (i.e. no down-sampling) but the number 

of filters increases by a growth factor 𝑘. This makes it practical to concatenate the 

feature maps instead of summing them.   

We use a growth factor of 𝑘 = 32. Each convolutional block adds 32 additional 

feature maps. In total, DenseNet-121 has one 7 × 7 convolutional layer, 58 3 × 3 

convolutional layers, 61 1 × 1 convolutional layers, 4 averaging pooling layers, 1 max 

pooling layer, and one fully connected layer.  

The original DenseNet-121 used a final classification layer containing 1000 

output nodes as it was trying to classify 1000 classes. In this work, we use a final 

classification layer containing 3 output nodes corresponding to the three output 

classes: ec-amp, HSR-amp, and no-amp.  

 

2.2.6 Training Procedure 

We trained the ecSeg-i on 4 GeForce GTX 1080 Ti GPUs using the Adam 

optimizer with a learning rate of 0.0001. We used a patience criterion of 7. If the loss 

did not improve for 7 epochs the training was halted. We minimize the cross-entropy 

loss function to train our network. We trained the network for 200 epochs and found 

that the model converged after 120 epochs.  

 

2.2.7 Image Acquisition Protocols 

To generate the cultured cell images, we arrested the cells by treating with 

Colcemid (Karyomax) at a final concentration of 0.1𝜇g/mL for 1-5 hours. Cells were 
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collected, washed with PBS and re-suspended in 75𝜇M KCl for 10-15 minutes at 37 

°C. The hypotonic buffer reaction was quenched by adding an equal volume of 

Cornoy’s Fixative (3:1 Methanol:Glacial Acetic Acid). Cells were centrifuged, washed 

and re-suspended in Cornoy’s fixative three more times. Cells were re-suspended in 

100-400𝜇L of Cornoy’s Fixative and dropped onto non overlapping sections of 

humidified slides. Slides were equilibrated in 2xSSC and dehydrated in an ascending 

alcohol series of 70, 85, and 100 percent ethanol for two minutes each. The appropriate 

DNA FISH (Empire Genomics) probe was added to the sample and placed on a 75 °C 

slide moat for 3-5 minutes to melt the DNA. Probe hybridization occurred at 37 °C in a 

humidified slide moat for 4 hours to overnight. Slides were washed for two minutes 

each in 0.4xSSC and 2xSSC/0.1% Tween20. Slides were stained with DAPI and 

washed in 2xSSC and ddH2O. Slides were mounted with mounting media (Prolonged 

Gold or Vectashield). Cover slips were sealed with clear nail polish to prevent drying 

of the sample. We captured the images using a 63x objective on either an Olympus 

BX43 wide field fluorescent microscope or a Leica Thunder Imager.  

The tissue model images were collected using Y protocol. CytoCell Tissue 

Pretreatment Kit (LPS 100, Oxford Gene Technology IP Ltd.) was used for heat 

pretreatment of Formalin-Fixed, Paraffin Embedded (FFPE) tissue prior to 

Fluorescence in situ Hybridization (FISH). All FISH Probes were purchased from 

Empire Genomics Inc. FFPE slides were baked at 50 °C overnight, deparaffinized 

three times with xylene (1330-20-7, Millipore Sigma) for 10 minutes each, and 

immersed in 100%, and 70% Ethanol (64-17-5, VWR International LLC.) respectively 

for 2 minutes each. After washing in water for 2 minutes, the slides were incubated in 
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pretreatment solution at 100 °C for 40 minutes. Slides were dehydrated in a graded 

ethanol series of 70%, 85% and 100% and air dried. Then 10 µL of probe mixture was 

applied to the hybridization area, cover-slipped and sealed with CytoBond coverslip 

sealant (2020-00-1, SciGene Corp.). Slides were incubated in ThermoBrite System 

(Abbott) at 80 °C for denaturation and hybridized at 37 °C for 16 hours. After gently 

removing the coverslip sealant, the slides were immersed in 2x SSC/0.1% Tween20 

(V4261, Promega Corp.) for 3 minutes in the dark. The coverslips were slipped off the 

slides while still in the SSC buffer. Next, slides were washed in 0.4X SSC solution at 

73 °C for 2min, transferred to water for 1 minutes, air dried in darkness, and stained 

with DAPI (DFS500L, Oxford Gene Technology IP Ltd.), and cover slipped. FISH 

results were examined with Keyence fluorescence microscope (bz-x800 model, 

Keyence Corp.).  

 

2.3 Results 

2.3.1 Test set Accuracy 

We validated ecSeg-i on 10292 nuclei from the 118 cultured cell and 98 tissue 

model images. Out of the 10292 nuclei, the test set contained 1985 nuclei with no-

amp, 3579 nuclei with ec-amp, and 4728 nuclei with HSR-amp. The model obtained 

an F1-score of 0.92, 0.88, and 0.88 on the no-amp, ec-amp, and HSR-amp nuclei, 

respectively (Figure 11). 
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2.3.2 Cell Line Analysis 

We evaluated ecSeg-i on the test images for each cell line - oncogene pair. 

EcSeg-i detected > 75% of the cells as having ec-amp in all the ecDNA cell lines, >

85% of the cells as having no-amp in all the no-amp cell lines, and > 50% of the cells 

as having HSR-amp in 19 out of 21 HSR cell lines.  

We obtained 1596 intact nuclei from the 81 COLO320DM images. COLO320DM 

is a unique hybrid cell line which not only contains ec-amplified cells but also HSR-

amplified cells.  Although we did not know a priori the exact ratio of ec-amp to HSR-

amp to no-amp nuclei, we expected majority of the cells to contain amplification on 

ecDNA.  We found that 75% of the cells contained amplification on ecDNA and 23% of 

the cells contained amplification on HSR. This is consistent with our expectations 

(Figure 11c).  

 

2.3.3 Cell Line Evolution 

We used ecSeg-i to determine if the amplification mechanism changes for a cell 

line as the cells continue to replicate and evolve. We took GBM39HSR as an exemplar. 

We evaluated the amplification mechanism on 76 GBM39HSR nuclei collected ‘early’ 

in the cell passage and 24 nuclei collected at a ‘later’ stage in the cell passage. EcSeg-

i classified 80% of the ‘early’ cells as HSR-amp but only 37% of the ‘late’ cells as HSR-

amp (Figure 12e). This shows that indeed amplification on ecDNA can start to reappear 

even in HSR cell lines as the cell line continues to evolve. 
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2.3.4 Cell-line Amplification Analysis 

One primary use case of ecSeg-i is determining the amplification heterogeneity 

interphase cells. We used ecSeg-i to evaluate the heterogeneity between ec-amp, 

HSR-amp, and no-amp cells. We computed the heterogeneity using two metrics. First, 

we computed the copy number signal per cell by counting the total number of pixels 

stained with the color of the oncogene probe divided by the total number of DAPI pixels. 

We divide by the total number of DAPI pixels as a way of normalizing for the size of 

the cell. Second, we computed the number of oncogene blobs per cell by counting the 

number of distinct connected components stained with the color of the oncogene 

probe. 

We evaluated the copy number signal for ec-amp and HSR-amp cells in the 

COLO320DM cell line. We labeled all cells that had an ec-amp probability of 0.9 or 

greater as ecDNA-amp cells. Similarly, we labeled all cells that had an HSR-amp 

probability of 0.9 or greater as HSR-amp cells. We found that ecDNA-amp cells had 

significantly greater heterogeneity (Figure 12a).  

We also evaluated the copy number signal for all the ec-amp, HSR-amp, and 

no-amp cells in the test set and found that there exists significant difference in 

amplification heterogeneity between HSR-amp and ec-amp cells. HSR-amp cells had 

a mean copy number of 7 per cell (Figure 12b). However, cc-amp cells had a mean 

copy number signal of 15 per cell (Figure 12b), confirming Kim et al.’s findings that 

ecDNA cells have greater amplification heterogeneity than HSR cells [23]. 

There was also significant difference in the number of oncogene blobs between 

ec-amp and HSR-amp cell lines. Ec-amp cells had a mean number of oncogene blobs 
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of 9 per cell, while HSR-amp cells had a mean number of oncogene blobs of 3 per cell 

(Figure 12c).  

Lastly, in Figure 12d we show the mean copy number signal and the copy 

number signal variance of all HSR-amp and ec-amp cell lines. Although there is visual 

separation between the two classes, there exists several ec-amp images with low 

mean and variance while there also exists HSR-amp images with high mean and 

variance. This indicates that although heterogeneity is an important distinguishing 

feature of ecDNA and HSR cells, it is not a perfect discriminator. Thus, a tool with 

deeper capabilities, such as ecSeg-i, is required. 

 

2.3.5 Quantifying Multiple Oncogenes in a Single Cell 

Another critical use case of ecSeg-i is cytogenetically reconstructing the 

amplification profile of multiple oncogenes within the same cell. For example, we 

tracked the amplification profile of FGFR2 and MYC within the same cell for all cells in 

the H716 cell line. The mean and median copy number signal of FGFR2 is 0.35 and 

0.24, respectively (Figure 12). However, the mean and median of MYC copy number 

per cell is 0.25 and 0.16, respectively (Figure 12). There also existed regions with both 

FGFR2 and MYC amplification which are cytogenetically seen with a yellow color 

(FGFR2-green and MYC-red). We show that different oncogenes have significantly 

different amplification profiles within the same cell.  
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2.3.6 Patient Tissue Results 

We used ecSeg-i to determine the amplification status on 57 patient tissue 

images across four tumor types. In Figure 13a, we show an example of an ESC tissue 

image. Patient tissue images typically consist of greater variance in the number of cells 

containing each amplification mechanism, unlike pure ecDNA or HSR cell lines. We 

show that there exist cells with clear ec-amp, HSR-amp, and no-amp signals (Figure 

13a bottom-row).  

We found that 2114 cells out of 6020 cells (35%) in LUC contained amplification 

on ecDNA (Figure 13b). As expected, LUC also contained the greater heterogeneity in 

the copy number signal and number of oncogene blobs per cell (Figure 13c-d). 

However, ecSeg-i classified less than 25% of the cells in LUM, ESC, and HNT as ec-

amp. Likewise, there was less heterogeneity in copy number signal and number of 

oncogene blobs for each of these tissue types. 

 

2.4 Discussion and Conclusion 

Cytogenetically identifying the amplification mechanism in interphase cells is an 

important and incompletely understood problem. Although sequence-based methods 

can reconstruct focal amplifications, they cannot fully capture the dynamic nature of 

ecDNA and the amplification mechanism of a cell’s present state. Image-based tools 

can accurately reconstruct ecDNA in fluorescently stained images of cells in 

metaphase in which the ecDNA is clearly visible as tiny DNA particles floating 

separately from the chromosomes. However, this requires (live-)cell imaging and is 

difficult to perform on patient tissue images. Patient tissue images primarily contain 
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densely clustered interphase cells, where the DNA is inside an intact nuclear 

membrane and loosely wound. This makes it extremely challenging to discern ecDNA 

even for a trained eye.  

To enable investigation of ecDNA in clinical settings, we present ecSeg-i, a deep 

learning-based tool, to cytogenetically identify ecDNA and HSR amplifications in 

interphase cells. We show that ecSeg-i achieves nearly 0.9 F1 score in determining 

the amplification mechanism across 39 unique cell line – oncogene pairs. We then 

demonstrated various use cases of ecSeg-i such as capturing the evolution of 

GBM39HSR cells, amplification heterogeneity between ec-amp, HSR-amp, and no-

amp cell lines, and reconstructing the amplification profile of multiple oncogenes within 

a single cell. Most importantly, we show that ecSeg-i accurately quantifies the 

amplification mechanism of patient tissue images from various tumor types.  
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2.6 Appendix 

Figure 9: Data Overview. (a) Examples of interphase cells with no-amp, ec-amp, 
HSR-amp. (b) Types of tissue separated by image acquisition protocols denoting the 
number of unique cell lines and patient tissue. (c) Number of images for each cell line 
and patient tissue type. (d) Total number of nuclei across all the images from each 
image acquisition protocol. (e) Training and test split for each acquisition protocol. 
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Figure 10: ecSeg-i Pipeline. The top row shows the ecSeg-i pipeline. We feed the 
tissue images to NuSeT which crops out each nucleus and feeds to ecSeg-i. EcSeg-i 
then determines the amplification mechanism probability for each nucleus. EcSeg-i 
uses DenseNet-121 as its backend. 
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Figure 11: Test set Accuracy. (a) F1-score on test set, where 𝑛 is the number of cells 
in each class.  (b) Distribution of cells predicted as no-amp, ec-amp, and HSR-amp in 
COLO320DM, a hybrid cell line. (c-e) Distribution of cells predicted as no-amp, ec-
amp, and HSR-amp across all HSR, no-amp, and ecDNA cell lines. 
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Figure 12: Amplification Heterogeneity. (a) Amplification heterogeneity presented 
as copy number signal between cells predicted as ec-amp and HSR-amp. (b) Cell level 
copy number signal across all cell lines separated by ec-amp, HSR-amp, and no-amp. 
(c) Heterogeneity presented as number of oncogene blobs in each cell across all cell 
lines. (d) Image-level mean and variance of copy number signal for ec-amp and HSR-
amp images. (e) Number of cells predicted as no-amp, ec-amp, and HSR-amp for 
GBM39HSR cells collected at different stages in the cell passage. (f) Copy number of 
signal and number of oncogene blobs for FGFR2 and MYC oncogene for each cell in 
H716.  
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Figure 13: Patient Tissue Results. (a) Image of esophageal tumor tissue with 
examples of cells various amplification mechanisms. (b)  Distribution of cells based on 
their predicted amplification mechanism. (c) Distribution of copy number signal per cell. 
(d) Distribution of number of oncogene blobs per cell. 
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CHAPTER 3. DeepViFi: Detecting Oncoviral Infections in Cancer 

Genomes using Transformers 

 

3.1 Introduction 

Viral infections in (human) hosts are pervasive and occur through a variety of 

mechanisms. Viral genomes may be encoded using RNA (e.g., Hepatitis C Virus, 

influenza viruses, Coronavirus) or DNA (e.g. Hepatitis B, Papilloma virus) [27]. 

Retroviruses like HIV convert their RNA genomes into DNA and then back into RNA 

for transcription [28]. In all cases, the virus utilizes the host machinery to express viral 

genes and allow the virus to replicate in the host. Viral infections are directly 

responsible for many human diseases, and new strains may lead to epidemics or 

pandemics when introduced into an immunologically naive population. Thus, rapid 

detection of a viral infection is important. 

When the viral family is known, specific sequences can be probed directly by 

searching databases of known viral sequences. If the viral family shows high 

divergence between members, detection based on direct sequence match can fail. 

Here, we address the following question: if training sequences from a diverged 

oncoviral family are provided, can we learn a latent representation of the sequence 

that allows us to determine if a query sequence belongs to that viral family without a 

database search. 

Specifically, we take the Papilloma virus (PVs) as an exemplar of a diverged 

oncoviral family. Human Papillomaviruses (HPV), especially HPV16 and HPV18 are 

important mediators of cervical and oropharyngeal cancers [29, 30, 31]. HPV mediated 



56 

oropharyngeal cancers are reaching epidemic proportions, accounting for nearly 5% 

of all cancers [32]. In 2017, cervical cancer was the second most common cause of 

cancer related death for women across the world. Other Papilloma viruses (PVs), albeit 

less well understood, have also been implicated in human diseases including skin 

warts and rare diseases such as epidermodysplasia verruciformis. Furthermore, there 

is huge diversity of PVs with hundreds of strains identified [33].  

Given its clinical importance, many tools have been developed to identify viral 

sequences in human cancer sequencing data [34, 35, 36, 37, 38], as well as tools 

focused on detecting integration into the host genome which is known to increase 

pathogenicity [39]. Even these specialized methods have suboptimal sensitivity for 

highly diverged sequences [40, 38]. To address this, ViFi [38] utilized an ensemble of 

hidden Markov models to identify viral sequences with high sensitivity. ViFi is sensitive 

but slow and the high runtime is especially burdensome for analyzing large datasets. 

More importantly, ViFi requires specialized training, including phylogenetic 

reconstruction followed by construction of an ensemble of hidden Markov models for 

each sub-family.  

While other classification-based approaches might be utilized, we also consider 

that human (host) genome samples often contain significant numbers (up to 5%) of 

uncharacterized microbial sequences [41]. Therefore, a strict classification-based 

learning using a ‘closed set’ approach might not work. Her, we present DeepViFi, a 

Transformer-based pipeline, to identify oncoviral reads in an open-set learning 

framework.  We show that at 90% precision, DeepViFi achieves 90% recall and is 

better than other neural network-based tools that use a ‘closed-set’ approach. 
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Additionally, we demonstrate DeepViFi's efficacy in identifying HPV reads and the viral 

sub-family of the infecting strain in 9 oropharyngeal tumor NGS datasets. Finally, 

DeepViFi can be retrained for other viral families without the need for the host, or 

contaminant genomes. 

 

3.2 Related Works 

Recently, deep learning tools have made tremendous progress in various 

biological applications such as protein folding [42], variant detection [43], and cell 

segmentation in images [15]. DeepVirFinder [44] and ViraMiner [45] leverage 

supervised learning with convolutional neural networks (CNNs) to address the 

kingdom-membership problem, with the goal of identifying viral sequences in 

metagenomic samples. They make the ‘closed-set’ assumption that the training and 

test sequences have the same label space. 

In a different setting, DNABERT [46] uses the transformer architecture [47] to 

analyze human DNA contigs and produce latent representations of features on the 

human genome. These representations can be used for various downstream tasks 

such as predicting promoter regions and identifying transcription factor binding sites. 

However, DNABERT cannot be readily applied to short reads as it was trained on large 

contigs and tokenized at 3,4,5,6-mer level. Finally, it was trained only on human DNA. 

In this paper, we apply a similar framework to address the family-membership question 

for viruses using short read sequences. 
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3.3 Method 

3.3.1 Overview 

DeepViFi consists of three components: a transformer to produce latent 

representations of NGS short-reads, a random-forest (RF) model to classify the viral 

status of the latent representations, and a LightGBM model to identify the sub-family 

of the viral latent representations (Figure 14).  

 

3.3.2 Method Details 

Input Pre-processing. Given a read 𝑟 of 𝑛 base pairs, we tokenize each base-

pair as a token, which empirically works better compared to tokens of larger substrings. 

We encode each token using the following mapping function 𝑡 ∶  (𝐴, 𝐶, 𝐺, 𝑇, 𝑁) →

(0, 1, 2, 3, 4) to obtain an encoded read vector 𝒕𝑟 ∈ ℝ
𝑛×1 for each read 𝑟, where row 𝑖 

represented an encoding of the 𝑖-th token. We additionally define a vector, 𝒑 =

(1, 2, … , 𝑛 − 1, 𝑛) ∈ ℝ𝑛×1, to encode the position of each base pair in 𝑟.  

Transformer with Self-attention Heads. DeepViFi utilizes a transformer to learn 

embedding matrices 𝚳t, 𝚳p ∈ ℝ
1×𝑑, where the embedding dimension 𝑑 is a user-

defined parameter, to obtain a dense representation combining 𝒕𝑟 and 𝒑. The initial 

encoding, denoted by 𝚾(0) ∈  ℝ𝒏×𝒅, is obtained using 

𝚾(0) ∈ 𝒕𝑟𝚳t + 𝒑𝚳p. 

The transformer architecture has ℓ = 8 encoders and ℎ = 16 attention heads per 

encoder, where ℓ and ℎ are hyperparameters. Each encoding-layer 𝑖 (1 ≤  𝑖 ≤  ℓ) 



59 

transforms the input 𝚾(i−1) (where 𝚾(0) is the initial input encoding) from the previous 

layer to 𝚾(i) using self-attention heads as follows.  

We denote 𝚾(dropping the super-script) as the input to the encoders. We denote 

the weights of an attention head as W Q, W V, W K, without additional subscripts, for 

ease of exposition. 

Let V=XWV denote a learned representation of the input where WV ∈ ℝ
𝑑×

𝑑

ℎ. The 

transformer outputs Z = SV.  Each resulting token 𝒗𝒌 is mapped to 𝒛𝒌 = ∑ 𝑆𝑘𝑗𝒗𝒋𝑗 , where 

∑ 𝑆𝑘𝑗𝑗 = 1. Intuitively, 𝑆𝑘𝑗 corresponds to the importance or attention of 𝑗-th token for 

the 𝑘-th token. To compute S, we use the following: 

1) Q = X W Q, where Q ∈ℝ𝑛×
𝑑

ℎ, W Q ∈ ℝ
𝑑×

𝑑

ℎ 

2) K = X W K, where K ∈ℝ𝑛×
𝑑

ℎ, W K ∈ ℝ
𝑑×

𝑑

ℎ 

3) D = 
Q K

T

√
𝒅

𝒉

; D ∈ ℝ𝑛×𝑛 

4) S = Softmax(D)  

where the Softmax operator is applied along the row dimension with 𝑆𝑖𝑗 =
𝑒
𝐷𝑖𝑗

∑ 𝑒𝐷𝑖ℓ ℓ
 so 

that 0 ≤ 𝑆𝑖𝑗 ≤ 1 for all 𝑖, 𝑗, and ∑ 𝑆𝑖𝑗 = 1𝑗  for all 𝑖. 

The ℎ outputs are concatenated and transformed using a dense-layer and 

supplied to a final feed-forward network to produce the input for the next encoder. The 

output of the final encoding layer (𝚾(ℓ) ∈ ℝ𝑛×𝑑) represents a transformation of the 

original input read 𝑟. The complete architecture is shown in (Figure 17). 
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Random Forest Classification of Viral Reads. We used a random forest model 

to determine if the read was PV positive or negative by classifying its latent 

representation from the transformer (Figure 14a). Specifically, we used an ensemble 

of 500 individual decision trees. Each individual tree outputs a class (HPV+ or HPV-) 

prediction of the input. The class with the most votes is the final prediction. 

LightGBM for Viral Sub-family Classification. We used a LightGBM model to 

further segregate the detected viral-reads into sub-families after experimenting with 

other classification methods, including a RF model (Figure 14a). We finetuned the 

hyperparameters and found that a tree depth limit of 5 and the maximum number of 

leaves of 31 worked best. The model classified the latent representation of reads into 

one of Alpha, Beta, Gamma, or ‘Other.’ 

 

3.4 Training and Inference 

We trained the transformer using the masked language modeling paradigm. 

Random tokens are masked or replaced in the input and the transformer computes the 

likelihood for each token (A,T,C,G,N) in each position. We appended a fully connected 

layer with Softmax activation to the final encoder to produce  

O = Softmax(𝚾(ℓ)WO)  

where O ∈ℝ𝑛×5 represents the likelihoods of each basepair at each position. The 

ground truth to the model is the unmasked read. We computed the loss by comparing 

the predicted tokens and the ground truth. 

Masking. For masking a viral read of 150bp, we randomly chose 20% (30 

positions) of the tokens for a masking procedure. Of these 30 chosen positions, we 
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replaced 80% (24) of the tokens with a [MASK] token, 10% (3) with a random token, 

and 10% (3) with the original token (i.e. no change). Had we replaced all 20% of the 

to-be-masked tokens with a [MASK] token, the encoder would have learned to only 

observe the [MASK] tokens and assumed that all non-masked tokens were correct. 

Hence, we replaced some of the to-be-masked tokens with a random or original token, 

forcing the encoder to keep a distributional contextual representation of every input 

token.  

Hyper-parameter optimization. We optimized for the spare categorical Cross-

Entropy loss function using the Adam optimizer with a dynamic learning rate [47]. We 

trained on 8 GPUs for 150 epochs with early stopping with a patience of 10 epochs. 

We experimented with various other masking ratios. We masked 30% of the input 

sequence. However, this did not significantly change our loss convergence. We also 

tried masking contiguous regions in the input sequence instead of selecting random 

positions. In this case however, the loss did not converge despite experimenting with 

very low learning rates. When 30 base pairs (20%) of the sequence were contiguously 

masked, the network did not have enough context with the remaining 120 base pairs 

(80%) to accurately predict the continuous missing sequence. We also experimented 

with tokenizing 2-mers and 3-mers instead of single base pairs. In both experiments, 

the loss never converged despite various network configurations and learning rates.   

We experimented with different values of the hyper-parameters ℓ ∈ {6,8,10}, 𝑑 ∈

{128, 256, 384}, and ℎ ∈ {8, 16}, and empirically settled on ℓ = 8, 𝑑 = 256, ℎ = 16. 

Inference. For inference, we removed the final fully connected layer from the 

transformer and used the output of the final encoder (𝚾(ℓ)) as the latent representation 
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of the input sequence. Recall that 𝚾(ℓ) ∈  ℝ𝒏×𝒅, where we chose 𝑛 = 150 and 𝑑 = 256. 

For inference, we averaged the latent representation along the column dimension to 

produce a single vector of dimensionality 256. We treated this vector as the final latent 

representation of the input read.  

 

3.4 Dataset Generation 

In a typical NGS experiment, bacteria and fungi can contaminate the target 

sequenced human and viral reads [48]. It is not possible currently to model all the 

contaminants, and instead we used an ‘open-set’ approach.  Specifically, we trained 

DeepViFi exclusively on viral reads but tested on unseen classes such as contaminant 

and human reads. 

 

3.4.1 Training Set. 

We completely separated training and testing data by restricting training to 

reads generated from 337 PV reference genomes identified prior to 2018 from PaVE 

[49]. The training reference PV genomes ranged in length from 6953-8607 bp. We 

simulated reads of length 150 bp at 0.5 × coverage, resulting in 1,145,800 reads.  

While only the viral reads were used in the transformer to generate latent 

representations, we also used a negative dataset for training the random-forest 

classifier. In keeping with the open-set paradigm, we used 5,000 randomly generated 

reads for the negative set, but tested using real contaminant reads that were not part 

of training. These reads were combined with 5,000 HPV reads and used for 

classification using random forests. 
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We further classified the 337 pre-2018 references into alpha, beta, gamma, and 

“other” categories and randomly generated 6808, 4324, 5980, and 10856 reads, 

respectively. The imbalance in reads reflects the uneven number of references in each 

category. 

 

3.4.2 Test Set. 

We exclusively used PV genomes from PaVE deposited on or after 2018 for 

testing. We simulated reads from each test genomes and generated 4 test sets. Each 

test set contained reads from 10 viral strains with similar genomic distances from the 

training genomes. We labeled the test sets as easy, intermediate, hard, and non-

human, based on their increasing genomic distance from the training genomes. To 

maintain an open set paradigm, we added contaminant and human reads to each test 

set. We randomly chose the contaminant and human reads from known contaminant 

and human genomes. The contaminant and human reads are considered non-viral.  

We evaluated the LightGBM model on the 318 post-2018 references. We 

generated 0 Alpha, 150 Beta, 1200 Gamma, and 570 ‘other’ reads. There were an 

uneven number of references for each category in the post-2018 strains. Notably, there 

were no alpha strains in this (realistic) test set which also represents a harder scenario 

as alpha strains are the easiest to identify. To rectify the balance, we also evaluated 

subfamily classification on HPV-mediated tumor patient data, where the alpha 

subfamily was over-represented.  
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3.4.3 HPV Mediated Primary Oropharyngeal Cancer Samples. 

We also evaluated on 9 oropharyngeal tumor samples from a recent study by 

Pang et al. [50], where the HPV status for each sample was previously determined. 

Each sample was HPV-16 positive and contained on average 800 million reads. After 

alignment filtering, each sample contained approximately 11.5 million reads on 

average. The ratio of viral to non-viral reads in each sample was .7% on average. 

 

3.5 Results 

3.5.1 Method Comparisons 

We compared DeepViFi against ViraMiner, DeepVirFinder, ViFi, and an off-the-

shelf seq2seq model (Figure 15a). DeepViFi achieved a precision-recall AUC of 0.94, 

0.94, 0.91, and 0.16 for detecting HPV reads on the easy, intermediate, hard, and non-

human test sets, respectively. We retrained DeepVirFinder and ViraMiner model on a 

custom training set before evaluation (Methods). Despite retraining, ViraMiner and 

DeepVirFinder both achieved an AUC value of less than 0.5 on all 4 test sets 

(Methods). 

We also trained and tested an off-the-shelf seq2seq model using eight 

bidirectional long short term memory (LSTM) encoders [51]. Similar to the transformer, 

the seq2seq model also generates latent representations which we used to detect viral 

sequences. We found that although the seq2seq model outperforms DeepVirFinder 

and ViraMiner on the easy and intermediate test set it still performs worse than 

DeepViFi. It also underperforms DeepViFi on the hard and non-human test sets (Figure 

15a).  
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On the other hand, ViFi had high precision and recall values, achieving (0.996, 

1.0), (0.996, 0.983), (0.996, 0.992), and (0.991, 0.481) on the intermediate, validation, 

difficult, and non-human test sets. ViFi utilizes HMM ensembles to learn 

representations that lead to highly accurate classification. While ViFi consistently 

achieved the highest accuracy, it also required prior construction of a phylogeny of the 

PV family, followed by a selection of clades to make an ensemble of HMMs. Therefore, 

DeepViFi reduces some major bottlenecks of ViFi: computational resources, expertise 

in setup/execution, and difficulty in repurposing to other applications---while 

maintaining comparable accuracy. 

Sub-family Classification Accuracy. We trained sub-family identification by using 

a LightGBM classifier on the learned representations. The training data had 6,808, 

4,324, 5,980 and 10,856 reads, respectively, in the four classes. We used a 70/30 split 

into training and validation, and the F1-score (harmonic mean of precision and recall) 

to measure accuracy of sub-family classification. The accuracy on the validation data 

was high at 0.88, 0.82, 0.83, and 0.9 for the four sub-families. 

In contrast, the test dataset (drawn from strains discovered after 2018) had 0, 

150, 1200, and 570 reads in the four classes, which did not match the training 

distribution. Nevertheless, the LightGBM achieved an overall F1-score of 87%, with 

accuracies of 0.63, 0.87, and 0.93 on Beta, Gamma, and Other classes.  
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3.5.2 Qualitative Analysis 

At large genomic distances, viral reads are far enough apart that they cannot 

be distinguished from random reads, based solely on percent identity. HMMs address 

this by assigning different weights to different genomic locations. To understand what 

DeepViFi is learning, we plotted the distribution of the starting positions of all HPV 

reads in the easy testset (Figure 15c; top-panel) and compared them to the distribution 

of start positions of the viral reads that were separated from non-viral reads---

specifically, reads that had first PC value greater than 1, second PC value > 0, and 

third PC value > 2 (Figure 15c; bottom-panel). The sharp distinction between the two 

plots suggests that the discriminating reads are drawn from specific locations of the 

HPV genome. 

We then tested if the representations learned by DeepViFi could distinguish 

between PV sub-families Alpha, Beta, Gamma, and `Other'. A PCA plot of the latent 

representations labeled by viral sub-family showed 4 visually distinct (although not 

linearly separable) clusters for each sub-family (Figure 15d).  

 

3.5.3 Detecting HPV in Oropharyngeal tumor samples.  

The tumor WGS (whole genome sequencing) experiments contained ∼800M 

paired-ends per sample on the average and were available in the form of mappings to 

the human genome using the Burrows-Wheeler Aligner (BWA) [52]. All tumor samples 

were positive for HPV-16, which belongs to the Alpha subfamily of HPV. We filtered 

reads where both ends mapped to human sequence, and ran DeepViFi on the 

remaining reads using ViFi results as the ground truth. Each read from the paired-end 
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was analyzed separately. For the 9 samples, we achieved an average precision-recall 

AUC of 0.90723. 

DeepViFi also classified over 90% of the reads as belonging to the Alpha 

subfamily in each of the samples. The results are consistent with HPV-16 infection as 

HPV-16 belongs to the Alpha family. As low levels of other strains might be present, it 

was not possible to tell if the small number of misclassifications were due to 

classification error or the presence of other strains.  

We performed PCA on the non-human reads in sample T49 to visualize if the 

representations of the HPV reads mapped to the same latent space as the 

representations of viral reads from the simulated test sets (Figure 16b). We 

demonstrate that representations were well separated from other reads and had a third 

PC value > 2, consistent with PC representations of the test sets. 

DeepViFi took 12 hours to process 2 million reads on a CPU with 16 GB of 

memory. The time reduced to 50 minutes on a single Titan X GPU with 12 GB of 

memory. This was a significant speedup over the 48 hours taken by ViFi. 

 

3.5.4 Detecting HBV in tumor samples. 

As an additional exemplar, we also trained and evaluated DeepViFi to detect 

HBV reads. We trained the DeepViFi pipeline on 73 known HBV genomes. We then 

evaluated the pipeline on three HBV-negative and three HBV-positive tumor samples. 

DeepViFi detected less than 30 reads as viral per million on the HBV negative samples. 

However, it detected more than 100 reads as viral per million on the HBV positive 

samples. 
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3.6 Discussion and Conclusion 

The identification of genomic sequences from a taxonomic group is an important 

problem that is not completely addressed. With highly diverged sequences, sequence-

based database search methods may not work. Hidden Markov models improve 

sensitivity by focusing the scoring on specific, conserved positions. However, they are 

a challenge to build, as they require extensive feature engineering that have to be 

tuned for each taxonomic group. Therefore, HMMs are not widely utilized, and 

sequence-based searches continue to be widely used. 

Recently, deep learning methods have provided many breakthroughs, 

especially in vision and natural languages. Once an architecture is specified, the 

training does not require domain specific expertise, making them very attractive for 

multiple tasks. Here, we show that the taxonomic family identification is not successful 

using a closed-set modeling with neural architectures, because most real-life examples 

provide instances of open-set learning.  

In the context of viral family identification, we achieved very significant 

improvements by employing a transformer to learn latent representations of PV 

sequences. While our results easily outperformed closed-set learning using CNNs, 

they were still lower in sensitivity to a carefully trained ensemble of HMMs. This 

suggests that additional training using better sampling of the PV sequences is needed 

to improve representations.  

Along the same vein, we can also group the methods surveyed in this paper as 

supervised and semi-supervised methods. The CNN based methods used here 

represent end-to-end supervised methods while seq2seq and DeepViFi represent 
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semi-supervised methods. The supervised methods prioritize learning a classifier 

based primarily on the annotations to differentiate inputs. Meanwhile, the semi-

supervised methods learn features to characterize the input. We show that simply 

learning a classifier is insufficient for problems such as identifying viral sequences in 

NGS data. Our results also match earlier observations on supervised and semi-

supervised methods [53]. 

The representations of the viral sequences were so well separated from the 

other sequences that a simple, random-forest classifier was sufficient to identify viral 

reads. However, sub-family classification is a harder problem, and we had to use more 

sophisticated gradient boosting methods to achieve good results.  

In summary, DeepViFi provides a framework for rapidly learning of 

representations from families, and a fast test for quickly and accurately identifying the 

target sequences in a larger dataset. The methods presented here are easily adaptable 

to a multitude of viral families and likely to help with many tasks, including identification 

of novel, pathogenic viruses, and removal of contaminant reads from whole genome 

sequencing runs. DeepViFi is available at https://github.com/UCRajkumar/DeepViFi.  
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3.8 Appendix 

 

Figure 14: DeepViFi pipeline. The input to DeepViFi is DNA sequencing short reads. 
The transformer produces latent representations of the reads. These latent 
representations are fed to a random forest to determine if the read is HPV positive. 
The latent representations of the HPV positive reads are fed to a lightGBM model to 
determine their HPV subfamily. 
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Figure 15: Test Set Performance and Analysis. (a) Precision-recall curves 
comparing different methods on the four test datasets. (b) PCA plot of latent 
representations of easy test set. (c) Read start locations of viral reads in easy test set. 
The top panel shows the start locations of all viral reads in the easy set. The bottom 
panel shows the start locations of the subset of viral reads that were highly separable 
in the PCA plot; i.e. the transformer was most confident of these reads as HPV 
fragments. 
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Figure 16: Tumour Sample Analysis. (a) Precision-recall curves for detecting HPV 
reads in tumor samples. (b)  PCA of latent representations of T49 reads. 
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Figure 17: Detailed architecture of DeepViFi transformer. Left panel presents the 
training pipeline for DeepViFi's transformer. Right panel presents the inference pipeline 
of the transformer.  
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