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ABSTRACT OF THE DISSERTATION 

 

Applications of high-throughput genome and transcriptome analysis in human disease 

by 

 

Megan So Inkeles 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2014 

Professor Matteo Pellegrini, Chair 

 

The development of gene expression profiling technology has enabled the high-throughput 

discovery of the genes and pathways that underlie disease pathophysiology and phenotype.  

This work analyzes microarray and RNA sequencing data to identify genes and functional 

pathways associated with human diseases.  In the first part, gene expression profiles derived 

from pancreatic ductal adenocarcinoma tumors are correlated to patient disease free survival 

time in order to find genes that confer a protective advantage.  Four genes found to be 

significantly correlated with disease free survival were validated in tissue using PCR.  In the 

second part, publicly available gene expression profiles for 16 skin diseases were integrated to 

build a disease classifier as well as characterize genes, functions, and pathways associated 

with each condition.  Since data was drawn from different laboratories and experiment batches, 

we used Frozen Robust MultiArray Average to normalize the data and identified disease specific 

gene signatures using a ranking algorithm.  Finally, we integrated this skin database with public 

data on interferon-regulated gene programs to find a negative inverse correlation between Type 

I and Type II interferon.  The final part of this work applies the principles of comparisons in 

multiple diseases to the problem of characterizing subtypes of one disease.  mRNA-seq 

techniques were briefly explored to probe for genes which historically have been difficult to 
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detect on microarray.  We compared microarray gene expression profiles from four subtypes of 

leprosy—lepromatous leprosy (L-lep), tuberculoid leprosy (T-lep), reversal reaction, and 

erythema nodosum leprosum—to build a proportional median-random forest classifier and 

perform functional analyses, such as weighted gene correlation network analysis (WGCNA), to 

find genes and pathways associated with each leprosy subtype.  Integrating our proportional 

median subtype signature for T-lep with the WGCNA module associated with T-lep, we 

identified MMP12 as a novel differentiator of T-lep from L-lep.  This gene was verified in tissue 

sections of leprosy using immunohistochemistry.  The use of high throughput gene expression 

profile analysis in these three projects demonstrates the versatility and utility of transcriptome 

analysis when applied to human disease systems. 

 

  



iv 

 

The dissertation of Megan So Inkeles is approved 

 

Thomas G. Graeber 

Robert L. Modlin 

Matteo Pellegrini, Committee Chair 

 

 

 

University of California, Los Angeles 

2014 

  



v 

 

Contents 
List of Figures and Tables ......................................................................................................... vii 

Acknowledgments ...................................................................................................................... ix 

Vita ............................................................................................................................................. x 

Chapter 1: Introduction ............................................................................................................... 1 

DNA and mRNA profiling methods ......................................................................................... 2 

Gene expression profile analysis strategies ............................................................................ 6 

Conclusion ............................................................................................................................12 

Chapter 2: Methods ..................................................................................................................14 

Microarray data normalization, filtering, and preparation .......................................................15 

Proportional Median ..............................................................................................................16 

Random forest classification ..................................................................................................16 

Weighted Gene Co-expression Network Analysis ..................................................................17 

Chapter 3.  Characterization of gene expression profiles from pancreatic cancer .....................19 

Introduction ...........................................................................................................................20 

Results ..................................................................................................................................22 

Discussion .............................................................................................................................24 

Methods ................................................................................................................................25 

Figure Legends .....................................................................................................................26 

Tables ...................................................................................................................................30 

Chapter 4: Comparison of Molecular Signatures from Multiple Skin Diseases Identifies 

Mechanisms of Immunopathogenesis .......................................................................................32 

Introduction ...........................................................................................................................35 

Results ..................................................................................................................................36 

Data normalization with Frozen RMA .................................................................................36 

After unsupervised gene clustering, samples segregate by disease as well as groups of 

diseases with related pathogenesis....................................................................................36 

Proportional median metric for identifying disease specific gene signatures ......................37 

Random forest classifier accurately predicts disease diagnosis .........................................37 

Functional annotation of related disease signatures using cell type deconvolution and k-

means clustering shows shared and unique mechanisms of disease .................................40 

Functional analysis of PM signatures shows enrichment for genes and pathways 

corresponding to single diseases .......................................................................................41 



vi 

 

Type I vs. Type II interferon gene programs have a negative inverse correlation across a 

spectrum of skin diseases ..................................................................................................42 

Discussion .............................................................................................................................44 

Methods ................................................................................................................................47 

Figure Legends .....................................................................................................................53 

Figures ..................................................................................................................................55 

Tables ...................................................................................................................................60 

Supplementary methods ........................................................................................................71 

Chapter 5.  Characterization and classification of leprosy subtypes ..........................................75 

Introduction ...........................................................................................................................76 

Results ..................................................................................................................................79 

Characterization of gene expression profiles in leprosy subtypes using RNA seq ..............79 

Characterization of gene expression profiles in leprosy subtypes using microarrays ..........79 

Proportional median signatures identify subtype specific genes for downstream analysis 

and random forest classification .........................................................................................80 

Random forest classifier predicts leprosy subtypes ............................................................81 

Functional analysis reveals signatures and cell types associated with subtypes ................82 

Tissue immunostaining of leprosy skin lesions shows higher expression of MMP-12 in 

tuberculoid versus lepromatous forms ................................................................................84 

Discussion .............................................................................................................................85 

Methods ................................................................................................................................86 

Figure Legends .....................................................................................................................90 

Figures ..................................................................................................................................92 

References ............................................................................................................................. 104 

 

 

  



vii 

 

List of Figures and Tables 
 

Chapter 3: 

Figure 1.....................................................................................................................................27 

Figure 2.....................................................................................................................................28 

Figure 3.....................................................................................................................................29 

 

Table 1 ......................................................................................................................................30 

 

Chapter 4: 

Figure 1.....................................................................................................................................55 

Figure 2.....................................................................................................................................56 

Figure 3.....................................................................................................................................57 

Figure 4.....................................................................................................................................58 

Figure 5.....................................................................................................................................59 

 

Table 1 ......................................................................................................................................60 

Table 2 ......................................................................................................................................61 

 

Supplementary Figure 1 ............................................................................................................63 

Supplementary Figure 2 ............................................................................................................64 

Supplementary Figure 3 ............................................................................................................64 

Supplementary Figure 4 ............................................................................................................65 

Supplementary Figure 5 ............................................................................................................66 

 

Supplementary Table 1 .............................................................................................................67 

Supplementary Table 2 .............................................................................................................68 

Supplementary Table 3 .............................................................................................................69 

Supplementary Table 4 .............................................................................................................70 

 

Chapter 5 

Figure 1.....................................................................................................................................92 

Figure 2.....................................................................................................................................92 

Figure 3.....................................................................................................................................94 

Figure 4.....................................................................................................................................94 

Figure 5.....................................................................................................................................95 

Figure 6.....................................................................................................................................96 

 



viii 

 

Table 1 ......................................................................................................................................97 

Table 2 ......................................................................................................................................97 

Table 3 ......................................................................................................................................98 

 

Supplementary Table 1 .............................................................................................................99 

 

  



ix 

 

Acknowledgments 
 

Chapter 4 is a version of a manuscript in submission with the same title. 

MSI, POS, WRS, JTE, RLM, and MP wrote and edited the manuscript.  DL built the website.  

MSI, WRS, JTE, RLM, RMBT, TGG, and MP designed the components of the analysis.  MG, 

BH, and SM provided patient samples and microarray data.  WRS performed deconvolution 

analysis.  MSI performed all other analyses. 

 

Chapter 5 is a version a manuscript in preparation. 

William Swindell performed the deconvolution analysis.  Rosane Teles performed the Ingenuity 

Pathways Analysis and the immunohistochemistry experiments.  Megan Inkeles performed all 

other analyses and wrote the manuscript. 

 

This work was funded in part by the UCLA Whitcome Pre-Doctoral Fellowship, the UCLA 

Medical Scientist Training Program, the CHANEL-CERES award and NIH/NIAMS grant P50 

5P50AR063020. 

  



x 

 

Vita 
 

Timeline 

2004-2007 Residential teaching assistant, Education Program for Gifted Youth 
summer program (Stanford University) 
Taught C++ and Java programming 
 
 

2005-2007 Undergraduate Research, Stanford University 
 
 

2006 Stanford University Undergraduate Major Research Grant 
 
 

2007 B.S., Engineering (Biomedical Informatics)  
Stanford University 
 
 

2012-2014 Whitcome Pre-Doctoral Training Program Fellowship 
  
  
 

Publications and presentations 

Inkeles MS, Scumpia Po, Swindell WR, Lopez D, Teles RMB, Graeber TG, Meller S, Homey B, 

Elder JT, Gilliet M, Modlin RL, Pellegrini M.  Comparison of Molecular Signatures from Multiple 

Skin Diseases Identifies Mechanisms of Immunopathogenesis.  In Submission 

Wheelwright M, Kim EW, Inkeles MS, De Leon A, Pellegrini M, Krutzik SR, Liu PT.  All-trans 

retinoic acid-triggered antimicrobial activity against Mycobacterium tuberculosis is dependent on 

NPC2.  J Immunol. 2014 Mar 1;192(5):2280-90. 

Marinelli LJ, Fitz-Gibbon S, Hayes C, Bowman C, Inkeles M, Loncaric A, Russell DA, Jacobs-

Sera D, Cokus S, Pellegrini M, Kim J, Miller JF, Hatfull GF, Modlin RL. Propionibacterium acnes 

Bacteriophages Display Limited Genetic Diversity and Broad Killing Activity against Bacterial 

Skin Isolates. MBio. 2012 Sep 25;3(5). 

 

Presentations and Posters 

Poster presentation at the Society for Investigative Dermatology Annual Meeting, Albuquerque, 

New Mexico (May 8, 2014). 



xi 

 

 “Skin disease bioinformatics: Molecular classification and insights into skin disease 

pathogenesis.” (May 21, 2013).  Talk given at the UCLA Dermatology Basic Sciences Research 

Symposium. 

Poster Presentation at the International Investigative Dermatology Meeting, Edinburgh, Scotland 

(May 10, 2013). 

Poster presentation at the Education Academy of Computational Life Science, Tokyo, Japan 

(Sept 5, 2012). 

“Gene expression profiles in non-melanoma skin cancer” (Feb 2, 2012). Talk given at the UCLA 

Bioinformatics Departmental Retreat  

“A microarray meta-analysis of publicly available skin disease” (Jan 23, 2012). Talk given as 

part of UCLA medical student Clinical Research Certificate program. 

 

  



1 

 

Chapter 1: Introduction 
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DNA and mRNA profiling methods  
The publication of the first draft of the human genome in 2001 was a medical and scientific 

milestone that facilitated the high-throughput study of genes and their association to disease 

(http://www.genome.gov).  Although the human genome is a finite length, the processes by 

which genes and their regulatory elements are encoded and expressed are incredibly complex.  

Over ten years later, the fields of genome analysis, genome assembly, and messenger RNA 

(mRNA) transcriptome analysis are still evolving with new tools and strategies for identifying 

genes and pathways that shed light on human disease.   

 

This work will focus on the analysis of gene-expressing mRNA.  Since strategies for mRNA 

transcriptome analysis are based on gene-encoding DNA, these methods will also be briefly 

touched upon.  Both types of analysis involve high throughput amplification and sequence 

detection, either by array hybridization or direct sequencing.  Current DNA methods primarily 

involve high throughput sequencing of nuclear DNA, whereas RNA methods involve either 

microarray characterization of gene expression or high throughput sequencing of mRNA. 

 

De novo genome assembly 

DNA sequencing describes the characterization of nucleic acids that make up a strand of 

genomic material.  Solving the sequence of an organism’s genomic DNA is an important first 

step in the high-throughput study of gene expression since it allows for the detection and 

prediction of genes and provides a reference sequence to which transcribed mRNA can be 

mapped.  Genomic sequences are also used to find point mutations and perform comparative 

studies across species, although those techniques will not be discussed here.   

 

First attempts at sequencing long strands of DNA used the Sanger method, a time-consuming 

and expensive process in which the entire sequence is determined by synthesizing sequentially 
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longer DNA fragments with differently tagged, fluorescent terminal nucleic acids (1).  A major 

breakthrough in the field came with the shotgun sequencing approach, in which long DNA 

sequences are broken into smaller fragments, which are individually synthesized and 

sequenced then reassembled in silico into a final sequence (2).  Current next generation 

sequencing technology uses this concept to concurrently sequence massive numbers of short 

fragments, typically 50 to 200 base pairs in length, yielding a total sequence length many times 

the sequence of interest.  However, both Sanger and next generation sequencing still depend 

on so-called random amplification DNA or RNA molecules in order to generate the short reads 

(“so-called” because this amplification process has been shown to favor certain sequences) (3).  

Technology is currently in development to analyze individual DNA or RNA molecules as they 

are built (“single molecule real time sequencing”), thus eliminating much of the bias and 

ambiguity introduced by fragmented, PCR-amplified sequencing (1, 4).  However, this single 

molecule technology has still not been widely used due to cost and accuracy issues. 

 

As of April 2014, tens of thousands organisms have had their genomes sequenced.  Of these, 

just under 3000 are eukaryotes, of which approximately 1000 are multicellular plants and higher 

level animals.  Genome sequences are hosted online by the NCBI 

(http://www.ncbi.nlm.nih.gov/genome) for public use by the scientific and general population.  

For organisms whose genome sequence has not yet been determined, de novo sequencing and 

assembly must be carried out.  This process involves extracting and amplifying genomic DNA 

from cells, using high-throughput sequencing to obtain enough reads that the projected genome 

length is covered approximately ten times, and using an assembly method to construct 

contiguous runs (or “contigs”) of sequence.  Finally, the reference sequence is annotated with 

genes and regulatory elements, either using known gene sequences or gene prediction 

algorithms (2). 
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Gene expression profiling 

For widely studied organisms (such as mouse, human, and Arabidopsis), well annotated 

genomes exist and are used to study complex questions about gene expression.  Although it is 

an oversimplification, levels of transcribed mRNA have been successfully used as a proxy for 

gene expression levels.  Two common technologies used to obtain a comprehensive profile of 

mRNA expression are microarrays and mRNA sequencing (RNA-seq).  Both methods utilize 

mRNA extracted and purified from samples comprised of whole cells or tissues in order to probe 

for the presence or absence of certain genomic sequences. 

 

Microarray gene expression profiling 

Microarrays were developed in the mid-1990s using the principle of single stranded DNA 

hybridization (5).  Developers pre-defined a set of sequences (called probes or probe sets) of 

interest encoding the genomic sequences of genes, pseudogenes, and microRNAs, and affixed 

these sequences to a chip, or microarray.  Sample mRNA is isolated and amplified into single 

stranded cDNA fragments that fluoresce when hybridized to probes spotted on known locations 

on the chip.  High resolution images of the chips are taken in which degree of binding is 

indicated by the brightness, or “intensity” of each spot.  Microarrays are still widely used today 

due to their reproducibility, relatively low cost, and rigorous level of standardization.  

Additionally, the fact that some of the more popular microarray products (such as Affymetrix HG 

U133 Plus 2.0) have been in use for over a decade has resulted in a large body of publicly 

available microarray data.   

 

Microarrays do have limitations, the most obvious of which is an inability to detect expression of 

genes or sequences not included in the set of probes.  Additionally, standard microarrays do not 
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provide information on splice variants or give quantitative measures of gene expression levels.  

Finally, there are multiple microarray platforms in common use, which makes integration of 

datasets difficult: although the set of genes represented on differing platforms is largely 

overlapping, the probes that hybridize to each gene are designed differently, and may have 

variable properties across platforms regarding binding affinity or cross-hybridization with other 

genes (6).  A 2012 study successfully combined data from multiple microarray platforms in skin 

lesional biopsy expression profiles in order to compare the interferon signatures of different 

diseases.  However, this study normalized each data set separately and compared fold changes 

over normal, an approach that is not applicable to all data sets (7). 

 

RNA-seq gene expression profiling 

RNA-seq is a newer technology that addresses many of the issues seen in microarray analysis.  

Similar to microarrays, messenger RNA is also isolated, fragmented, and randomly amplified 

into single stranded cDNA molecules.  These cDNA strands are affixed to a substrate while their 

partner strands are simultaneously and synchronously synthesized using differently colored 

fluorescent nucleotides.  A camera takes pictures of each synthesis cycle to track the sequence 

of each strand.  Although longer sequences will yield more accurate information, sequenced 

fragments ranging from 50 to 150 base pairs in length are generally a good balance between 

cost, accuracy, and sequencer error.  The major advantage of RNA-seq is that sequences are 

not constrained to a predefined set of probes as in microarrays, thus enabling additional 

analyses such as characterization of novel transcribed regulatory factors and differential 

expression of splice variants.  Additionally, quantification of gene transcript levels is possible.  

RNA-seq is gaining popularity over microarrays as it provides a more complete picture of gene 

transcription, but it is still a relatively expensive and specialized method and has yet to make 

microarray techniques obsolete.  Other downsides to RNA-seq are its more complicated 
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analysis techniques compared to microarrays, and the often prohibitively large size of its data 

sets, which can require access to high power computing clusters and specialized data storage 

systems (8). 

 

Gene expression profile analysis strategies 
Gene expression profile analysis strategies – differential expression 

The development of gene expression profiling technology has allowed for an unprecedented 

high throughput exploration of relationships between gene expression and disease phenotypes.  

A simple yet incredibly powerful analysis approach is the identification of differentially expressed 

genes.  Samples are divided into two or more groups, and tests such as the Student’s t-test or 

ANOVA are run to identify genes that are expressed at significantly higher or lower levels in one 

group.  Fold change of gene expression relative to a common control can be used to 

supplement p-values to filter for genes that are most differentially expressed.  Notably, these 

methods are optimized for tests of differential expression between two groups.  While ANOVA 

compares values from three or more groups, it only identifies genes that are differentially 

expressed in at least one group, and a post-hoc test such as Tukey’s test must be run to 

determine which group is differentially expressed.  Furthermore, there are few standardized 

methods for calculating fold changes that capture comparisons between more than two groups 

(9, 10).  

 

Gene expression profile strategies - classifiers 

Classifier training is another common use for gene expression profiles.  The most simple 

classification scheme is unsupervised hierarchical clustering, in which correlations between 

gene expression patterns are used to group samples (11).  Clustering is often used as an initial 

step to both visualize data and confirm that a robust biological signal is present in the data.  
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Data that fails to cluster properly merits further action, such as a different normalization scheme 

or filtering methods.  Clustering can also indicate whether data from different batches manifest 

significant batch effect.  Additionally, visualizing clustered genes in heatmaps can highlight 

groups of genes that are associated with each disease. 

 

Classifiers fall into two categories: binary or multi-class.  Binary classifiers distinguish between 

two phenotypes and are commonly implemented using linear classifiers (such as support vector 

machines or logistic regression), which can be conceptualized as drawing a line that divides a 

series of points into two sets (12).  Multi-class classifiers (multi-classifiers) are a more complex 

problem in which samples are divided into three or more categories.  Although some binary 

classification methods can be modified for three or more classes, there are fewer methods for 

multi-classification.  Common approaches include decision trees and random forests.   

 

All classifiers use a set of features, or sample characteristics to distinguish between phenotypes 

– in the case of gene expression profiles, features are genes or microarray probes.  Gene 

expression profiles contain on the order of 10,000 genes or probes; however, the use of tens of 

thousands of features to build a classifier can lead to overfitting, or spuriously good classifier 

performance due to artifact.  Often, this results from having many more classifier features than 

training samples (13).  Therefore, feature selection, or the inclusion of only those probes most 

informative to the classification process, is crucial to building a classifier that is not only accurate 

but widely applicable to other data sets.  Feature selection can be as simple as a gene count or 

microarray intensity threshold, or can be a complex iterative process implemented before, 

during, and after the classifier has been built.  It is crucial to separate feature selection from any 

samples used to validate the classifier, and ideal to not use phenotypic information to select 

features, as these can introduce bias in the classifier (14).   
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Molecular classifiers have enormous potential in translational medical research.  Current clinical 

diagnostic procedures rely heavily upon subjective measures such as histological observations, 

which can lead to ambiguous or inaccurate diagnoses.  Accurate classification based upon 

objective criteria such as gene expression could simplify the diagnostic process, as well as 

provide clinicians with treatment strategies.  For example, a 2009 study used microarrays to 

successfully distinguish between benign nevus, a condition that calls for watchful waiting, and 

melanoma, a neoplasm that requires immediate excision (15).  Gene expression classifiers also 

have the potential to identify biomarkers of diagnosis or prognosis, or discover genes that 

provide insight into disease pathogenesis.  However, the relationship between genes that are 

useful for classification and genes that impact disease pathogenesis is not clear.  Classifier 

based studies have yet to produce gene signatures that have directly impacted therapeutic 

practices at a level that other high throughput genomic technologies, such as cancer genome 

sequencing, have achieved (16, 17).   

 

Gene expression profile studies – functional analysis 

Historically, gene expression studies that have impacted clinical management have used high 

throughput expression profiling methods to obtain candidate gene signatures, which are then 

confirmed via previous studies, bench experiments, and patient studies.  For example, 

microarray studies of breast cancer tumor samples has helped shape the clinical management 

of the disease by identifying at least five major subtypes of breast cancer using gene expression 

signatures (18).  This is particularly useful in a heterogeneous disease like breast cancer, where 

tumor samples have a wide range of histological features and patients have variable responses 

to treatment.  Single gene biomarkers have been identified for four of these five subtypes, and 

this subtype structure has been incorporated by the Saint Gallen Consensus Conference 
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guidelines for breast cancer management since 2011 (19, 20).  In the specific subtype of 

hormone-responsive breast tumors, a 2004 study by Ma, et al. used microarrays to obtain gene 

expression profiles from hormone-responsive patients who had been treated with tamoxifen 

(21).  Profiles from patients whose breast tumors had recurred were compared with patients 

who remained disease free, and a gene signature was identified that was correlated to patient 

survival and confirmed in lesions by RT-PCR.  Further analysis of survival time allowed the 

signature to be refined to the ratio of two genes that accurately predicted patient response to 

tamoxifen treatment and advised the best course of therapy for each patient. 

 

However, individual genes that provide insight into disease phenotype are not always so easily 

identified.  In more ambiguous cases, downstream functional analysis of gene signatures can 

detect groups of genes that participate in a common molecular function or biological pathway.  

Most functional analyses involve the comparison of expected versus observed genes that are 

annotated with the same biological process or pathway, calculated using the hypergeometric 

distribution (22, 23).  Functional annotation resources such as the Gene Ontology, Kegg, and 

Biocarta store comprehensive databases of gene-function relationships, which not only facilitate 

such searches but also provide a standardized, central resource.  Free and paid services such 

as DAVID Functional Annotation and Ingenuity Pathways Analysis synthesize relationships from 

multiple annotation databases, as well as the body of scientific literature, in order to identify the 

most statistically significant enriched pathways (23-25).  Many of these services also use known 

gene interactions to build networks that visualize relationships between genes.  These 

resources enable researchers with little computational background to easily perform functional 

enrichment analyses.   
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The relationships in annotation databases and network building tools are based on known gene 

interactions from previously published data, but gene expression profiles can also be mined for 

de novo, or previously undiscovered, gene interactions.  One strategy for finding such 

connections is to compare gene expression patterns across many diseases, searching for 

genes that are consistently co-expressed.  Calculating the pairwise Pearson correlation, in 

which each gene is treated as a vector of expression values across diseases, is one such metric 

that identifies groups of genes that either all have high expression or all have low expression 

across a range of samples.  Such groups are often biologically relevant since the co-expression 

may indicate a shared pathway or upstream regulator.  Weighted Gene Correlation Network 

Analysis (WGCNA) is a commonly used tool that uses correlation to group genes, but adds a 

weighting step that gives more weight to high correlations while still considering the information 

encoded by lower correlations (26).  Importantly, by calculating gene connectivity within each 

module of highly correlated genes, WGCNA enables the construction of novel gene networks 

not based upon previously published data. 

 

Publicly available gene expression profile data 

High throughput gene expression profiling technology generates large amounts of data that can 

be re-used and re-mined in additional analyses.  Furthermore, gene expression profiling 

experiments are expensive and may require biopsy specimens from rare or difficult to obtain 

conditions.  In order to facilitate the sharing of gene expression profile data, and to encourage 

time and cost efficient scientific practices, public data repositories such as the NCBI Gene 

Expression Omnibus (GEO) were established (27).  High impact publishing groups such as 

Nature and PLoS have contributed to the body of public data by requiring authors to deposit 

data in public repositories such as GEO prior to article publication.  GEO provides standard-

format data from high throughput experiments, including microarray and RNA-seq data.  Raw 
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data files are available to download from many sets, making the information even more 

amenable to a variety of uses. 

 

There are a number of common strategies in the analysis of public data.  The simplest approach 

involves re-analyzing published data: for example, calculating differential expression using a 

sample partitioning that differs from the original study.  Additionally, data from multiple 

experiments may be combined in a meta-analysis, as in a 2013 study that integrated 5 batches 

of microarrays into a single analysis to find gene expression differences between lesional and 

non-lesional skin from psoriasis patients (28).  This combination strategy is appealing since it 

enables an increase in statistical power without the associated effort and cost of generating 

additional data.  Integration of data from the same condition and platform is usually 

straightforward, especially if sample size is sufficient or there is a common control to aid in 

normalization.  However, further considerations are necessary if data must be integrated across 

conditions, batches, or platforms. 

 

A major issue when integrating data from public sources is batch effect, or noise that is non-

random, specific to samples obtained at one time and place, and does not represent a true 

biological difference.  Batch effect has been shown to cause up to a third of the variation 

present in data from multiple sources, and can result in false identification of differentially 

expressed genes (29, 30).  Mathematical removal of batch effect can be achieved using 

software packages such as ComBat, which uses PCA-based methods to identify axes of 

greatest variation between sample, which are assumed to contain the majority of batch effect 

noise (29).  However, these methods are limited in that all batches must contain samples from 

every condition in the analysis in order to distinguish between batch effect artifact and true 
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biological effects.  For analyses containing singleton data sets, which contain only one condition 

per batch, batch effect removal is therefore not possible.   

 

The effect of combining data from different batches can also be mitigated by an alternative 

normalization scheme, such as frozen Robust Multi-Array Average (fRMA).  Instead of using 

within-set variation to build a normalization distribution, fRMA draws from a prebuilt, 

standardized external data set (31).  This method assumes that the larger sample size of the 

external data set will better capture the full spectrum of variation between gene expression 

profiles, thus minimizing the effect of between-batch differences.  Additionally, the use of the 

same external data set for normalization allows for data to be normalized separately and 

integrated at any step in the analysis, compared to traditional RMA where all samples must be 

normalized in one step.  fRMA currently only has pre-built reference datasets for three 

microarray platforms, but a 2011 release of the software allows users to create customized 

reference databases for any platform (32).  However, all data must come from the same 

platform, and the curation of such a reference database is not trivial: the original fRMA 

publication built reference databases with a balance of data from different tissue and experiment 

types, and drew from approximately 6000 public data samples (31).   

 

Conclusion 
Gene expression profiling methods have enabled the widespread discovery of genes and 

pathways associated with disease.  While analyses of gene expression profiling data have 

contributed to major advances in understanding the causes and possible treatments of human 

disease, the immense complexity of genetic information, the cost of obtaining new samples, and 

conflicting or competing analysis techniques have left many questions unanswered.   
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The dissemination of publicly available gene expression profiles has provided further options for 

researchers in the form of existing datasets that can be mined to study additional questions.  

The vast body of public gene expression profile data is ever expanding, presenting researchers 

with instant access to low cost high-throughput data on a scale beyond what is feasible for the 

average research lab.  However, the integration of public data from a variety platforms, sources, 

and batches still presents a difficulty, especially in one-off studies containing one disease state 

per batch.  While this particular problem has not been solved yet, part of this work is devoted to 

the identification of robust signals that persist beyond batch effect. 

 

Gene transcription is only one step of the process by which the information encoded in DNA 

affects biological processes and ultimately phenotypes.  Pre or post transcriptional processes 

such as epigenetic methylation of DNA or degradation of transcribed mRNA by small RNAs 

affect gene expression levels in ways that are totally invisible to those studying gene expression 

profiles.  However, gene expression profiles remain a backbone of translational research as an 

easily accessible, well developed technology that provides a comprehensive snapshot of 

cellular or tissue gene expression. 
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Chapter 2: Methods 
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Microarray data normalization, filtering, and preparation 
Data is obtained by isolating mRNA from tissue or cell samples, as described in Bleharski et al., 

2003, and hybridizing to microarrays (33).  The microarray platform used in these analyses is 

Affymetrix HG U133 Plus 2.0, a comprehensive human genome expression array that contains 

54675 probe sets representing over 20,000 unique genes, pseudogenes, and transcripts.  This 

array is one of the more commonly used microarray platforms.   

 

Before analysis can be carried out, data must be normalized to make the distribution of probe 

set intensities from each sample approximately equal.  Normalization can be accomplished by 

comparing intensity values in each microarray to itself (such as in MAS5), or to the other 

microarrays in the data set (RMA, frozen RMA).  The MAS5 algorithm is exclusive to Affymetrix 

arrays and uses the difference between perfect match (PM) and mismatch (MM) probes (i.e. 

signal and negative control, respectively) to act as an indicator of background noise and cross 

hybridization (34).  Robust Multi-array Average (RMA) is a newer technique that uses 

information from all data sets to build a background distribution that is used to correct probe set 

intensities, after which data is quantile normalized and summarized (35).  RMA does not use 

Affymetrix MM probes to perform background correction; however, expression of MM probes 

has been shown to be noisy and unreliable (34).  Frozen RMA (fRMA) uses the same principles, 

with the exception that the background distribution is generated using an external, fixed set of 

microarrays curated by the authors of the software (31).   

 

Before analysis, normalized data must be filtered to remove low intensity probes.  Historically, 

using a flat threshold of mean intensity greater than 100 has yielded satisfactory results, based 

on the assumption that measurements below this threshold are unreliable and may be noisy.  A 

more inclusive scheme for data sets with multiple conditions retains out probe sets with intensity 

greater than 100 in any one condition.  More rigorous methods can be used to filter, including 
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filtering by probe variance or using detection call rates from the microarray.  Microarray 

experiments are performed under the assumption that only a minority of probes will be 

differentially expressed, therefore a large minority of probes may be discarded in the filtering 

process (36).  Final data processing steps may be taken after filtering, such as normalizing each 

probe by its mean intensity across all samples, or log transforming the data. 

 

Proportional Median 
When comparing three or more conditions, conventional methods such as fold change are not 

sufficient to capture relationships.  We used the proportional median (PM) metric to identify 

probe sets that had relatively higher expression in one condition compared to two or more other 

conditions.  Like fold change, PM is calculated for each probe set in each disease.  The PM of 

probe X in disease Y is equal to the median intensity of X across the samples in Y, divided by 

the median intensity of X across all samples in all conditions.  This yields a list of values for 

each disease, which can then be sorted in descending order.  It is important to note that PM 

values should be considered relative to each other within a disease, but not compared across 

diseases.  Rather, PM can be used to rank probe sets within a disease, after which probe sets 

can be referred to by rank in subsequent analyses. 

 

Random forest classification 
Random forest (RF) is a classification method that can be used high-dimension data for which 

there is a large feature space, include those for which there are more features than samples.  

For classification using a training set consisting of microarrays, the RF algorithm builds a user-

defined number of decision trees, each using a randomly selected subset of the training 

samples and a randomly selected subset of probe sets.  A random subset of samples is used to 

train each tree, with the remaining samples (termed “out of bag”) used to assess tree 
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performance.  For each tree, a random subset of probe sets is selected to build that decision 

tree.  Out of bag or test samples are evaluated by each decision tree independently and 

majority voting determines the aggregate classification (37, 38). 

 

For this work, we performed feature selection using PM.  We calculated PM values for each 

disease, ranked probes by PM, and took the top 25 probes.  We used the unique set of these 

genes as input for our classifier. 

 

Weighted Gene Co-expression Network Analysis 
Weighted Gene Co-expression Network Analysis (WGCNA) is an analysis technique developed 

by the Horvath lab at UCLA and available as an R package (26).  WGCNA takes a gene 

expression profile as input and detects modules of genes that share similar expression patterns.  

WGCNA is similar to traditional clustering analyses in that nodes (genes or probe sets) are 

treated as vectors of expression values for all samples in the analysis.  Pairwise correlation 

between nodes is computed and stored in a similarity matrix.  WGCNA then computes an 

adjacency matrix from the similarity matrix based on a weighted soft thresholding scheme, 

where each value in the similarity matrix is raised to a power supplied by the user.  The power 

can be selected empirically, and the WGCNA package provides functions to estimate suitable 

values.   

 

Once modules are constructed, module eigengenes are calculated for each module by taking its 

first principle component.  These eigengenes are used as representatives that capture gene 

expression in the entire module.  Additionally, intramodular connectivity is calculated for all 

genes within each module by correlating a particular gene’s expression to its module 

eigengene.  The genes with highest intramodular connectivity will typically have functional 
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annotations that reflect the biological pathways enriched in that module (39).  Module 

eigengenes can also be correlated to a binary matrix representation of sample phenotype 

(where a sample has a ‘1’ value for its phenotype and ‘0’ values for all other phenotypes) to 

identify modules that are significantly correlated with specific phenotypes.  Finally, gene 

networks are constructed for the most highly connected genes in each module by displaying 

their topological overlap, which is a measure that identifies the number of shared connections 

between pairs of genes (26, 40)
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Chapter 3.  Characterization of gene expression profiles from 

pancreatic cancer 
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Introduction 
Human pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive form of cancer 

with a high mortality rate and limited options for treatment.  As the tenth most common cancer 

diagnosis, PDAC contributes the fourth highest number of annual cancer deaths, not only 

indicating a heavy disease burden, but also representing a disproportionate mortality rate 

compared to other malignant cancers (41).  The current five year survival for PDAC is less than 

4% (42). 

 

Multiple factors contribute to the high mortality rate in PDAC.  On an anatomical level, the 

pancreas sits in close proximity with vital organs and blood vessels that provide an easy path of 

metastatic spread.  Additionally, the placement of the pancreas in the dorsal portion of the 

abdomen prevents early stage tumors from being physically palpated or visualized unless 

specific imaging tests are run.  PDAC tumors tend to be asymptomatic until the disease has 

reached a very late stage, and even these late stage symptoms can be non-specific.  Finally, for 

reasons unknown to researchers, PDAC spreads aggressively such that even early stage 

tumors may have already spread to vital organs such as the liver or lung.  These factors make 

the detection of PDAC in its early stages especially difficult (41). 

 

Currently, the only treatment for PDAC that has a significant improvement in survival is surgical 

excision of all lesions.  However, this is only a viable therapeutic option in early stage tumors.  

Due to the factor stated above, 85% of patients present with tumors in the metastatic stage, for 

which surgical resection is not a possibility.  Furthermore, only 20% of patients survive five 

years past surgical treatment, perhaps due to the presence of undetectable micro-metastases 

(43).  Despite decades of research, the causes and mechanisms of PDAC are still unclear to 

clinicians and scientists, and few advances have been made in its treatment.  In this chapter, we 

investigated genes that are associated with survival in patients diagnosed with PDAC.  Using 
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microarrays performed on surgically removed tumors from patients with varying survival times, 

we identified genes that were significantly correlated to survival time.  We used gene expression 

profiles derived from two sets of microarray data: flash-frozen PDAC samples, and formalin-

fixed, paraffin-embedded (FFPE) samples.   
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Results 
We worked with two sets of gene expression profiles obtained from de-identified surgical biopsy 

samples of human PDAC tumors for the preliminary portion of this project: one set from 42 

flash-frozen tumors, and one set from 30 formalin fixed, paraffin embedded (FFPE) tumors.  

Both batches of data were derived using the Affymetrix HG-U133 Plus 2.0 microarray platform.  

The first set of experiments we analyzed was derived from flash-frozen PDAC tumors, which 

were obtained from collaborators in the Hong Wu lab (Department of Molecular and Medical 

Pharmacology, UCLA).  The goal of this analysis was to identify genes that are correlated with 

disease free survival times (DFS).  The microarrays were normalized using RMA (Robust Multi-

array Average) and filtered at a mean raw intensity of 100, since intensity measurements below 

this level tend to be unreliable (44).  We used a Cox proportional hazards regression test to 

determine which genes were correlated with DFS, and conducted random permutations to find 

genes that were significant according to a false discovery rate (FDR) of 5%.  Only about 20 

genes were found to be significantly associated with survival time, perhaps due to the small 

range of survival times (Figure 1).   

 

To address the issues with the narrow range of survival times, we used an FFPE set of PDAC 

microarray data, which were generated by a second collaborator, David Dawson (Department of 

Pathology, UCLA).  Although mRNA in FFPE tissue can suffer from degradation, it is still an 

appealing alternative over snap-frozen as researchers typically have more ready access to 

FFPE specimens from a wide range of clinical histories.  The 30 tumor samples Dr.  Dawson 

selected represent a larger spread of DFS (Figure 1).   

 

The data was normalized using RMA, genes were filtered with a mean intensity less than 100, 

and a Cox regression analysis with random permutations was performed to find genes that were 

significantly associated with survival above a 5% FDR.  From this analysis, 37 significantly 
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associated genes were found, four of which our collaborators validated via quantitative 

polymerase chain reaction (qPCR) in a separate group of 31 FFPE PDAC samples (Table 1).  

These validated genes were KRT10 (keratin 10), SLC20A1 (solute carrier family 20, member 1, 

a phosphate carrier), SIRT5 (sirtuin 5), and PHLDA2 (pleckstrin homology-like domain, family A, 

member 2), and while none of these have an established link to pancreatic cancer, they function 

in processes such as cell structure, metabolism, and epigenetic regulation of gene expression 

(45-48).  Additionally, PHLDA2 is located on a tumor suppressor locus, 11p15.5 (48, 49).   

 

Patients were separated into two groups, “low survival” and “high survival,” based on the clinical 

knowledge of our collaborators.  Hierarchical clustering of patients and heatmap visualization of 

gene expression, both for all 37 differentially expressed genes and for the four experimentally 

validated genes, effectively separated patients into high and low survival groups (Figure 2).  For 

each of the four validated genes, Kaplan-Meier curves were drawn, which split patients between 

those with gene expression higher (blue) or lower (red) than the median (Figure 3).  Although 

the number of patients is not large enough to calculate robust statistics, there is a clear 

separation between survival times according to gene expression of these four genes.   
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Discussion 
Despite major advances in the field of cancer treatment, PDAC remains a devastating diagnosis 

for the overwhelming majority of patients.  The combination of patient presentation in the later 

stages of disease and the particularly aggressive nature of the tumor contribute to its 

extraordinarily low five year survival rate, even in patients eligible for surgical treatment.  In this 

brief analysis, we were able to identify 37 genes significantly associated with PDAC survival 

time, including four that were validated in independent lesions via qPCR.   

 

These pancreatic tumor samples were obtained from patients who present with surgically 

resectable lesions who represent only a small portion of the total patients diagnosed with PDAC.  

However, the applications of this study are not limited to early stage patients.  The lack of fully 

representative PDAC mouse models and the fact that patients with late stage disease are rarely 

operated upon make these early stage tumors the most viable option to study lesional gene 

expression profiles (50, 51).  Identifying genes associated with survival time can give insight into 

the pathophysiology of PDAC, potentially providing insight into such big-picture questions as 

how lesions arise and why the tumors are particularly aggressive.  Furthermore, genes that 

contribute to longer DFS times could provide biomarkers of protection, or novel targets for 

therapy.   

  



25 

 

Methods 
Lesional samples of pancreatic ductal adenocarcinoma were obtained from surgically resected 

specimens.  All samples came from patients eligible for surgical treatment of PDAC (i.e., no 

distant metastases).  42 samples were flash frozen immediately after excision, and 30 samples 

were obtained from archival FFPE samples.  For each sample, corresponding patient data such 

as sex, age, tumor stage, and disease free survival (DFS) were collected.  Patients were de-

identified before RNA was extracted and gene expression profiles were derived via HG U133 

Plus 2.0 Affymetrix microarrays.  qPCR validation was carried out using the 30 FFPE samples 

by our collaborators.   

 

Samples were normalized using RMA implemented in the Matlab statistics toolbox.  Data was 

filtered at a mean normalized intensity of at least 100 in each gene.  Cox tests were performed 

on the 30 FFPE samples using gene expression values and right censored DFS, and a 

permutation analysis with 1000 permutations was carried out to adjust for a false discovery rate 

of 5%.  Clustering and heatmap visualization was performed using the Clustergram functionality 

in Matlab.  Kaplan-Meier curves were drawn by calculating the empirical cumulative  distribution 

function (ecdf() in Matlab), using gene expression and right censored DFS from the 30 FFPE 

samples.   
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Figure Legends 
Figure 1. Boxplots of disease free survival (DFS) for flash frozen and formalin-fixed, 

paraffin-embedded (FFPE) pancreas tumor samples. Boxplots show disease free survival 

time for all patients from which tumors were taken, separated by batch of data.  The bottom and 

top edges of the boxes denote the 25th and 75th percentile, respectively; the middle bar 

denotes the median 

 

Figure 2.  Heatmaps of genes in PDAC tumors significantly associated with disease free 

survival time.  A cox test with random permutations was performed to identify genes 

significantly associated with disease free survival time in 30 PDAC FFPE tumors.  A clustered 

heatmap of gene expression segregates patients into high survival time (samples labeled “H”) 

and low survival time (samples labeled “L”) all 37 genes identified by cox regression (A) and in 

four genes validated by qPCR (B).  Samples are shown on the X axis, and genes on the Y axis. 

 

Figure 3.  Kaplan-Meier curves for genes associated with PDAC survival time.  Kaplan-

Meier curves were drawn to show differences in disease free survival for patients with high 

expression of each gene (blue) versus low expression (red) in four genes: SLC20A1 (A), KRT10 

(B), SIRT5 (C), and PHLDA2 (D).  Disease free survival is shown in months on the X axis, and 

percentage of patients alive at that time point is shown on the Y axis.  Plots are right censored 

to account for patients who were still alive at the time of the study.  
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Tables 
 

Table 1. Differentially expressed probe sets from PDAC.  Cox regression was performed to 

identify genes significantly associated with disease free survival time using gene expression 

profiles derived from 30 FFPE samples of PDAC.   P-values were calculated using random 

permutations.  Table continues on next page. 

Table 1 

Probe Set ID Gene Symbol P-value Cox Score 

1555847_a_at LOC284454 0.002479 4.181493 

205075_at SERPINF2 0.002751 -3.95961 

229112_at SIRT5 0.009003 -3.53477 

209069_s_at H3F3B 0.002664 3.528287 

210633_x_at KRT10 0.006582 -3.51858 

201055_s_at HNRNPA0 0.003421 -3.30874 

201920_at SLC20A1 5.49E-05 3.221104 

210183_x_at PNN 0.008889 3.165033 

204106_at TESK1 0.008377 -3.02575 

242644_at TMC8 0.007954 -2.86055 

203402_at KCNAB2 0.004273 -2.75377 

216190_x_at ITGB1 0.006715 2.682047 

203693_s_at E2F3 0.00505 2.58083 

220104_at ZC3HAV1 0.002692 2.569461 

209695_at PTP4A3 0.004402 -2.4177 

209803_s_at PHLDA2 0.004642 2.266736 

214953_s_at APP 0.004736 2.171862 

213428_s_at COL6A1 0.006686 2.162502 
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202425_x_at PPP3CA 0.003867 2.147291 

229448_at LASS1 0.007097 -2.01492 

201829_at NET1 0.003527 1.931678 

214368_at RASGRP2 0.002564 -1.86437 

201286_at SDC1 0.006043 1.731349 

223617_x_at ATAD3B 0.009448 -1.71537 

238869_at --- 0.009118 1.682259 

220430_at GRRP1 0.006017 -1.56053 

230494_at --- 0.007283 1.528856 

237159_x_at AP1S3 0.00682 1.41077 

213503_x_at ANXA2 0.007987 1.360014 

1567219_at --- 0.009351 1.358106 

225239_at --- 0.00966 1.207571 

211509_s_at RTN4 0.009551 1.170515 

228617_at XAF1 0.004465 1.070455 

201889_at FAM3C 0.005237 0.994979 

209135_at ASPH 0.005139 0.957955 

203074_at ANXA8 /// 

ANXA8L1 /// 

ANXA8L2 

0.006878 0.840354 

212097_at CAV1 0.004835 0.782334 
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Chapter 4: Comparison of Molecular Signatures from Multiple Skin 

Diseases Identifies Mechanisms of Immunopathogenesis 
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Abstract 

The ability to obtain gene expression profiles from human disease specimens provides an 

opportunity to identify common and distinct mechanistic pathways.  However, multi-disease 

comparisons have been limited by the absence of data sets spanning a broad range of 

conditions.  Our objective was to perform a concurrent study of multiple diseases in a single 

tissue in order to gain insight into disease pathogenesis.  We performed an integrative analysis 

of publicly available microarray data from skin biopsy specimens comprising 16 conditions.  

Individual samples clustered by disease, from which disease-specific gene signatures were 

identified and validated using a random forest classifier that accurately predicted the diagnosis 

of publicly and prospectively collected samples.  In one sample, the molecular classifier differed 

from the initial clinical diagnosis and correctly predicted the eventual diagnosis as the clinical 

presentation evolved.  Unsupervised hierarchical clustering of assembled gene expression 

profiles yielded distinct disease groups according to common cellular and molecular pathways.  

Finally, when the expression of Type I versus Type II interferon (IFN) regulated gene programs 

was integrated with the skin database, a significant inverse correlation between IFN−β and 

IFN−γ programs was found across all conditions.  Our study provides an integrative approach to 

the study of gene signatures from multiple skin conditions, providing insight into disease 

pathogenesis.  
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Introduction 

 

Gene expression profiling technology, such as microarrays, provides the opportunity to identify 

disease specific genes and pathways.  The NCBI Gene Expression Omnibus (GEO)  is a 

community resource of publicly available data from multiple diseases, including less common 

diseases studied in specific laboratories (27).  The ability to mine data from GEO provides a 

tremendous opportunity to compare gene expression profiles across multiple diseases.   

 

Using GEO data, disease profiles have previously been compared across multiple data sets by 

normalizing to controls within each set; however, this practice limits the use of available data to 

those containing equivalent control profiles (7, 52).  To overcome this limitation, data integration 

from multiple sources, particularly those from experiments containing a single disease, can be 

achieved with Frozen Robust Multi-array Average (fRMA), which normalizes samples to a 

standard reference set of microarrays, eliminating the need for control samples in each data set 

(31).  Here we present a study that uses this approach on gene expression profiles derived from 

skin biopsy specimens. The skin represents an ideal organ to study molecular signatures at the 

site of disease due to the ease of access for lesional biopsies and its diverse manifestations of 

pathology.  We assembled a database of publicly available skin microarray samples 

representing 16 inflammatory, infectious, and neoplastic conditions.  This database was used to 

construct a classifier, perform functional analyses to identify representative pathways, and 

establish a spectrum of differentially expressed Type I vs. Type II interferon gene programs 

across these diseases.   
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Results  

Data normalization with Frozen RMA 

We searched the NCBI Gene Expression Omnibus (GEO) for microarray experiments 

performed on human skin samples associated with a dermatological disorder 

(www.ncbi.nlm.nih.gov/geo) (27).  Data files for microarray analysis of 311 skin biopsy samples 

were downloaded, representing 16 conditions from 15 experiments and 14 laboratories 

(methods, Table S1).  All samples used the Affymetrix HG U133 Plus 2.0 platform.  In order to 

analyze this data as a single set, Frozen RMA (fRMA) was used to normalize samples (31).  

Normalized data from all series showed comparable probe set intensity distributions (Figure 

S1). 

 

After unsupervised gene clustering, samples segregate by disease as well as groups of 

diseases with related pathogenesis 

In order to determine whether the batch effects within a given disease were smaller than the 

differences between diseases, trees of filtered gene expression profiles were constructed for 

both samples and diseases (Figures 1, S2).  Remarkably, we found that in diseases in which 

there were multiple batches of microarrays from different sources, including psoriasis, atopic 

dermatitis and leprosy, the batches from the same disease nearly always clustered together, 

despite coming from independent data sets (Figure 1).  Furthermore, five batches of normal 

skin, each obtained from healthy control subjects from different laboratories, clustered together 

with little differentiation by batch.  However, batch effects were not completely eliminated as 

samples from specific diseases often separated by lab or experiment.  Furthermore, there were 

isolated cases of individual samples clustering with the incorrect disease (represented as a leaf 

with a different color than its neighbors in Figure 1).  Squamous cell carcinoma (SCC) and basal 

cell carcinoma (BCC) samples from a single lab were split into two groups, with 17 samples 

clustering on the same branch as psoriasis and seven clustering in close proximity to irritant and 
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allergic conditions.  Overall, these results suggest that the fRMA approach used in this context 

allows us to minimize the effect of batch and allow true disease signatures to predominate.  

 

When the higher-level structure of the tree was examined, we found that branches of the tree 

could be annotated as disease groups with related pathogenesis.  These distinct groups were 

categorized according to the following descriptions: i) keratinocyte proliferation and neoplastic 

growth (psoriasis, and approximately half the SCC and BCC samples), ii) wound (post-operative 

wound, burn), iii) normal, iv) allergic (allergic contact dermatitis, atopic dermatitis), v) malignant 

(mycosis fungoides, melanoma); and, vi) infectious (leprosy, chancroid).  These relationships 

are consistent with those seen in the unrooted disease tree, which was built with one leaf per 

disease by averaging distances between all pairs of samples (Figure S2).   

 

Proportional median metric for identifying disease specific gene signatures 

Gene signatures were identified for each disease in order to build a disease classifier and 

perform downstream functional analysis.  We developed the “proportional median” (PM) metric 

to identify highly expressed gene probe sets for each disease.  The PM of a microarray probe 

set X in disease Y represents how highly expressed X was in Y, compared to all other diseases.  

Probe sets were ranked by PM for each disease, yielding 16 individual lists that corresponded to 

relative gene expression levels associated with each disease.  Because lowly ranked genes 

often have low intensity and tend to be noisier than those with higher ranks, subsequent 

analysis utilized genes with high PM values (53, 54).  

 

Random forest classifier accurately predicts disease diagnosis 

We built a random forest multi-classifier using our disease expression profiles to predict disease 

status based on the expression of a limited number of signature genes (37).  Briefly, the random 
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forest algorithm selects subsets of samples and genes to iteratively build multiple, parallel 

decision trees.  The combination of random subset selection and iteration reduces the effect of 

noise and outliers on classifier training.  In addition, cross-validation is built into the classifier 

training process by testing each decision tree with samples not used to build that tree.  We used 

this classifier to assign each sample to one of the 16 conditions.   

 

The classifier was trained on a list of PM-filtered probes, which we found improves classifier 

accuracy (13).  Classifier training with 100 trees produced an error rate of 4.5% (Figure S3).  

Classifier performance for each disease was assessed by sensitivity, specificity, precision, and 

F1 score, a measure of accuracy equivalent to a weighted average of sensitivity and precision 

that has values between 0 (poor accuracy) and 1 (perfect accuracy).  Sensitivity values ranged 

from 0.86 and 1.00 (mean 0.96) and specificity values ranged from 0.99 to 1.00, which 

corresponds to an average of 96% of disease samples being accurately classified and 99% of 

negative classifications being correct.  The range of F1 scores was from 0.86 to 1.00 (mean 

0.96) (Table S2). We also performed three-fold cross validation, which yielded aggregate F1 

scores from 0.75 to 1.00 (mean 0.96) (Table S3).   

 

To assess the classifier’s robustness to overfitting and its ability to generalize, two-fold cross 

validation with separation by batch was carried out.  We separated data into two groups of 

approximately equal size: in multi-batch conditions (leprosy, psoriasis, atopic dermatitis, and 

normal), data was separated according to batch; otherwise, data was randomly and equally 

partitioned.  Two independent classifiers were built, each trained on one of the partitioned sets 

and tested on the other.  PM values used in feature selection were computed only from one 

group of data to ensure that test data did not bias the classifier.  Diseases which were 

separated by batch had F1 scores between 0.90 and 0.95 (mean 0.92), and diseases which 



39 

 

were randomly separated had F1 scores between 0.71 and 1.00 (mean 0.92), indicating little 

loss of accuracy with batch separated cross validation (Table 1). 

 

To evaluate the classifier’s performance on data not used for any of the previous analyses, we 

tested the 16 disease classifier trained on all data using gene expression profiles derived from 

additional skin biopsy specimens.  These additional gene expression profiles were not included 

in the feature selection and training steps of this classifier.  We generated 26 de-identified gene 

expression profiles derived from biopsy specimens of leprosy, psoriasis, atopic dermatitis, and 

normal skin. We also found public data for 168 gene expression profiles derived from biopsy 

specimens of psoriasis, atopic dermatitis, and melanoma (Table S4).  The classifier was used to 

assess these 194 validation samples, yielding an overall sensitivity of 0.93, specificity of 0.99, 

and F1 statistics between 0.76 and 1.0 (Table 2).  

 

Upon follow-up of the patients from whom we had collected samples, we discovered that one 

that was clinically diagnosed with atopic dermatitis, which we classified as psoriasis, had an 

unusual presentation. This patient had a history of an atopic diathesis including hay fever, 

increased total IgE levels as well as elevated levels of the eosinophilic cationic protein.  The 

patient presented clinically with chronic dermatitis on the palms of the hands, as well as on the 

plantar side of the feet.  Furthermore, inflammatory skin lesions on the arms and other locations 

were clinically diagnosed as atopic dermatitis, consistent with the atopic diathesis, and a sample 

was obtained for the present study.  However, later the patient developed inflammatory plaques 

on the lower back, which were clinically diagnosed as psoriasis.  Both atopic dermatitis and 

psoriasis were considered as a diagnosis for this patient at various stages; however, the co-

occurrence of atopic dermatitis and psoriasis is rare, perhaps due to the opposing 

immunopathogenic mechanisms for the two diseases (55-57).  Although we cannot be certain of 
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the initial diagnosis, our molecular classifier correctly predicted the diagnosis as the clinical 

course evolved.   

 

Functional annotation of related disease signatures using cell type deconvolution and k-

means clustering shows shared and unique mechanisms of disease 

Using cell-type specific gene signatures developed in previous work by Swindell, et al., the 

relative enrichment of each cell type signature was assessed in each disease, and subjected to 

hierarchical clustering using Euclidian distance (Figure 2) (58, 59).  We found that leprosy, 

sarcoidosis, chancroid, Stevens Johnson syndrome and mycosis fungoides were characterized 

by high levels of lymphocytes (T, NK, and B cells), macrophages and dendritic cells.  However, 

in our original tree (Figure 1) mycosis fungoides did not cluster with these diseases, suggesting 

that despite the similarity of their cell types, mycosis fungoides must be distinct based on other 

factors.  The absence of enrichment of T cells in psoriasis and atopic dermatitis only indicates 

that these diseases have a relatively lower T cell signature compared to the other conditions. 

 

We used pathway analysis of gene signatures to further investigate common pathways within 

each disease group.  For each group of diseases in Figure 1, combined gene signatures were 

constructed and evaluated for enriched functional terms.  The P values associated with each 

term were then subjected to k-means clustering (Figure 3).  Significantly enriched terms support 

previous findings in the literature: allergic diseases are enriched for “cell-cell adherens junction” 

(p-value 8.93x10-03), and hyperproliferative/neoplastic diseases are enriched for keratinocyte 

and epithelial cell development (p-value 2.47x10-09) (60, 61).  Wound, malignant, and infectious 

groups share overlapping enriched GO terms, associated with response to wounding (Figure 3). 
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Functional analysis of PM signatures shows enrichment for genes and pathways 

corresponding to single diseases 

In order to assess the relevance of individual disease PM signatures, additional pathway 

analysis was performed on the 250 probe sets with the highest PM values for each disease.  

DAVID and Ingenuity Pathways functional analyses of each individual disease signature often 

showed a correspondence to the disease of origin (data not shown).  For example, Ingenuity 

Pathways Analysis of the melanoma PM signature revealed a significant enrichment of “biologic 

functions” relevant to melanocyte development and disorders (“differentiation of melanocytes,” 

“Waardenburg’s syndrome,” and “albinism”; p-values of 4.4x10-09, 5.6x10-09, and 4.7x10-08, 

respectively) and cancer (“cancer” and “proliferation of cells”; p-values of 3.0x10-06 and 5.6x10-

08, respectively), as well as a significant enrichment of the “canonical pathway” “Melanocyte 

Development and Pigmentation Signaling” pathway (p-value 9.2x10-05) (Figure 4C) (25).  As a 

resource for the community, we have developed a web-based visualization tool 

(http://pathways-pellegrini.mcdb.ucla.edu/goTeles/dot_plot.html) that plots the expression of a 

gene in every microarray sample within our database; shown are two melanocyte development 

genes (Figure 4A,B). 

 

Network analysis of the PM signatures was carried out using Ingenuity Pathways Analysis to 

visualize connected genes and pathways in each disease and further evaluate the functional 

significance of our signatures.  Notably, a psoriasis network showed connections between 

TCN1, OASL, and SPRR3 (Figure S4).  TCN1 and OASL are among the genes most 

consistently and strongly elevated in psoriasis lesions, and while both genes are expressed by 

keratinocytes, they are also expressed at appreciable levels in neutrophils. OASL, moreover, is 

potently induced by interferon (IFN)−γ and encodes a protein involved in anti-viral responses 

(62, 63). The psoriasis network identified here appears to provide a cellular nexus that connects 
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key elements of psoriasis pathogenesis, including differentiation-associated pathways, IFN-

directed responses, and infiltrating inflammatory cells such as neutrophils. (59, 64-67).   

 

Moreover, cell type specific deconvolution analysis of the psoriasis PM signature revealed gene 

expression patterns consistent with the presence of neutrophils in psoriasis lesions, with 80 of 

the top 250 probe sets by PM (32%, p<10-10) significantly enriched in neutrophils (Figure S5).  

This supports recent work suggesting that IL17A-producing neutrophils may be as abundant in 

psoriasis lesions as IL17A-producing T cells, and a recent GWAS study highlighting the genetic 

contribution of innate immunity to this disease (68, 69).  Furthermore, neutrophils are known to 

be a histological marker of psoriasis, specifically located in epidermal microabscesses in 

disease lesions (70, 71).  The gene interactions identified here for psoriasis demonstrate the 

ability to identify cell type-specific pathways within a particular disease. 

 

Type I vs. Type II interferon gene programs have a negative inverse correlation across a 

spectrum of skin diseases 

Type I and Type II interferons (IFN) have opposing immunoregulatory roles in human disease, 

and previous work has shown different diseases or subtypes of disease to exhibit a range of IFN 

responses (7, 72). IFN−γ(Type II IFN) is involved in macrophage activation to fight bacterial 

infection, and is opposed by IFN−α/β (Type I IFN), which combats viral infection.  Because the 

IFNs are weakly detected on microarrays, we used Type I and Type II-specific induced 

transcriptional profiles of human peripheral blood mononuclear cells to infer the expression of 

IFN signatures (72, 73).  Since Type I and Type II IFN programs overlap in their downstream 

targets, care was taken to utilize genes that were exclusively regulated by either IFN−β or 

IFN−γ.  Integration of the IFN gene expression profiles with our data set containing 16 different 

skin conditions demonstrated a significant, inverse correlation between IFN−β and IFN−γ 

regulated genes across all skin diseases studied, with high IFN−β scores corresponding to low 
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IFN−γ scores and vice versa (r=-0.66, p-value=0.006), underscoring the opposing roles of IFN−β 

and IFN−γ in skin disease (Figure 5).  The Stevens Johnson syndrome samples, which were 

obtained from blister fluid rather than full thickness biopsies, had the most positive IFN−β profile 

and most negative IFN−γ profile.  Nevertheless, even if these samples were omitted, the anti-

correlation between IFN−β vs. IFN−γ profiles was still significant (r=-0.53, p-value=0.04).   
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Discussion  

 

Insights into disease pathogenesis obtained by comparison of gene expression profiles are 

often limited because these comparisons are performed between either two different diseases 

or one disease versus healthy controls, and therefore cannot identify distinct and common 

mechanisms of pathogenesis.  Here, we performed a cross-disease analysis of molecular 

profiles from multiple skin diseases.  Using fRMA, it was possible to assemble a database of 

gene expression profiles from 311 samples spanning 16 conditions and visualize disease 

relationships on a hierarchical clustering tree. Remarkably we found that samples of a particular 

disease that were taken from different batches colocalized to the same branch.  This was 

particularly striking in the case of normal skin, where five batches of samples taken from healthy 

control subjects not only clustered on the same branch, but were arranged with little 

differentiation by batch. 

 

Our approach demonstrates that a multi-disease classifier can be built from disparate public 

data sources comprising over a dozen different conditions in a single tissue.  We built this 

classifier from disease specific gene signatures, and found that it was accurate and robust to 

batch effect, maintaining mean sensitivity above 0.88 and mean specificity close to 1.00 for 

three classification schemes (aggregate, three-fold cross validation and two-fold cross validation 

separated by batch). The potential utility of molecular classification over the classic clinical 

criteria was demonstrated by the correct classification of an ambiguous case of psoriasis.  Gene 

expression profiles have previously been used in classifier studies, but these typically involve 

only one or two groups of conditions (18, 74-76).  Comparison of gene signatures in lesions 

from multiple diseases has been more limited, even in skin disease in which biopsy specimens 

are more readily accessible.  A multi-disease classifier using epithelial cells from patients with 

psoriasis, atopic dermatitis, allergic contact dermatitis, and irritant contact dermatitis was 
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constructed, although this would be limited to diseases which had epidermal involvement (77).  

Our work expands this principle to a wide range of both inflammatory and neoplastic diseases, 

and demonstrates the potential value of this approach in comparing diverse conditions.  This 

approach can be expanded to include a more diverse spectrum of diseases, as more data is 

publicly available, allowing for the comparative study of diseases for which skin biopsy 

specimens may not be widely available.   

 

We also analyzed this data by three supervised approaches: analysis of cell type signatures, 

Gene Ontology pathways (GO term enrichment), and interferon response signatures.  Together, 

these bioinformatic analyses provided insight into the distinct and related pathogenesis of the 

diseases.  For example, hierarchical clustering of gene expression profiles revealed that leprosy 

and chancroid were located on the same branch which we termed “infectious” based upon their 

known etiologies.  In the deconvolution analysis of cell type signatures, both diseases were 

characterized by the enrichment of similar lymphoid (CD3+, CD4+, CD8+, regulatory T cells, B 

cells) and myeloid (monocytes, macrophages, dendritic cells, neutrophils) expression profiles.  

Furthermore, Gene Ontology enrichment analysis identified the terms “lysosome”, “T cell 

differentiation” and “leukocyte adhesion”.   

 

In studying the interferon responses across different pathologic processes, we focused on gene 

expression for genes regulated exclusively by IFN−β (Type I) or IFN−γ (Type II IFN).  Type II 

IFN is necessary to fight intracellular bacteria and linked to Th1 mediated inflammatory 

conditions both in the skin and systemically (78, 79).  It has become increasingly clear that Type 

I vs. Type II IFN responses are cross-regulatory (78, 80-82).  An earlier multi-disease 

comparison found that the magnitude of an IFN gene signature distinguished different 

inflammatory skin diseases, but could not distinguish between the Type I vs. Type II IFN 
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patterns (7).  Our own data demonstrated an inverse correlation between IFN−β vs. IFN−γ gene 

programs in leprosy lesions, which in the present study has been expanded to reveal an anti-

correlation of Type I and Type II IFN responses across a wide range of skin diseases of different 

etiologies (72).   

 

The present findings provide a rationale for further investigations to determine how these 

different IFN programs contribute to the pathogenesis of these diseases and identify treatment 

targets.  The spectrum of IFN−β vs. IFN−γ gene program expression in the skin diseases 

studied here is consistent with current practices in treatment of skin disease.  Typically, Type I 

IFN exhibits anti-proliferative effects, and is used to treat neoplasms, such as melanoma and 

BCC, which have a negative Type I IFN score.  It should be noted that IFN−γ has been used to 

treat acute atopic dermatitis, even though chronic atopic dermatitis lesions, as studied here, 

express IFN−γ consistent with our findings (83-87).  Anti-IFN−γ has also been shown in 

preliminary studies to have a positive effect on Th1-mediated autoimmune skin diseases, 

including psoriasis, which we found had a high Type II IFN score (79).  The integrative analysis 

of interferon signatures in a diverse spectrum of skin conditions supports the value of the 

concurrent analysis of multiple disease gene expression profiles to gain insight into the 

pathogenesis of skin disease.   
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Methods 

 

Microarray acquisition, normalization, and filtering 

Data was obtained from the NCBI Gene Expression Omnibus (GEO) as described in 

supplemental methods and Table S1 (http://www.ncbi.nlm.nih.gov/geo/) (27).  All data was 

normalized using the Frozen Robust Multiarray Average (fRMA) method and low signal probe 

sets were removed at a cutoff of a mean intensity of at least 15 in any disease.  To reduce 

platform biases, only Affymetrix HG U133 Plus 2.0 arrays were used. 

 

Additional validation samples were obtained by collecting biopsy specimens from patients with 

atopic dermatitis, normal skin, psoriasis, and leprosy.  The samples were coded to remove 

patient identifying information before transport to the laboratory.  Gene expression profiles were 

derived via mRNA microarrays, using the Affymetrix HG U133 Plus 2.0 platform as previously 

described and will be deposited to NCBI GEO (33).   

 

Clustering 

Unsupervised hierarchical clustering was used to group the normalized, filtered expression 

profiles using Matlab, Archaeopteryx and Hypertree programs (88, 89).  Distances were 

calculated as one minus the Pearson correlation between two samples.  A full rooted tree with 

one sample per leaf was built using UPGMA on the distances, and an unrooted tree with one 

leaf per disease using the average correlation distance between all samples of two diseases.  . 

 

Proportional median 

Probe sets were ranked using the Proportional Median (PM), which we define as the median 

intensity of a probe set within one disease divided by the median intensity of the same probe set 

across all samples.  For each disease, probe sets were ranked in descending order by PM.   
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Random forest classifier 

A random forest classifier was built using the Matlab TreeBagger class (see supplemental 

methods for full description).  The classifier feature space was reduced by selecting the 25 

probe sets with the highest PM values across the training set for each disease, and taking the 

unique combined set of these lists.   

 

Three-fold cross validation was carried out on all diseases but Stevens Johnson Syndrome, 

which was excluded since its sample size was too small to be partitioned into three groups.  

Training data was randomly separated into three partitions of approximately equal size, and 

three classifiers were iteratively built on two thirds of the data and tested on the remaining third.  

PM values were recalculated within the training set for each classifier iteration, for the selection 

of the top 25 probe sets from each disease.  Performance statistics were calculated by 

aggregating true positive, true negative, false positive, and false negative counts from all 

classifiers’ predictions 

 

Two-fold cross validation with batch separation was carried out by building two independent 

classifiers built using approximately half the data.  Where applicable, data was partitioned by 

batch such that each classifier was trained on only one batch of data, otherwise, data was 

randomly divided equally.  As in cross-validation, PM values were recalculated for the training 

data for each data partition.  Testing was performed on the batch of data not used to build the 

classifier, and performance statistics were calculated in aggregate as in cross-validation. 

 

Validation was carried out on independent microarray data sets of atopic dermatitis, normal 

skin,  psoriasis, melanoma, and leprosy as described above.  These microarray samples were 
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not used in classifier feature selection (i.e. PM calculation) or training.  After discovery of a 

misdiagnosed patient, samples were reclassified and one sample was subtracted from atopic 

dermatitis and one was added to psoriasis.  Performance was assessed as described for the 

batch classifier, by aggregating and counting using these modified values. 

 

Pathway analysis 

The 250 probe sets with the highest PM value for each disease were selected for pathway 

analysis using Ingenuity Pathways Analysis (http://www.ingenuity.com) and DAVID Functional 

Annotation Analysis (http://david.abcc.ncifcrf.gov/), using the top 250 probe sets by PM from 

each disease signature (23-25).   

 

Cell-type specific signature enrichment 

Cell-type specific expression profiles for 24 cell types were calculated as previously described 

and is described in more detail in the supplemental methods (59).   

 

Group signatures 

Probe set signatures from multiple diseases were integrated into five group signatures, based 

on our tree (Figure 1).  The groups were hyperproliferative/neoplastic, wound, allergic, 

malignant, and infectious.  Only individual samples that actually colocalized on the tree were 

used for group signature calculations; for example, the BCC and SCC samples adjacent to the 

psoriasis samples were used to calculate the hyperproliferative/neoplastic signature.  For each 

group, PM was calculated for samples in each disease as described above.  Probe sets were 

assigned a rank based on PM (with rank=1 assigned to the probe set with the highest PM 

value), and the mean rank and value for each probe set was calculated across all diseases in a 
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group.  Group signatures were comprised of probe sets that had both a mean PM rank in the 

top 5% of all filtered probes, as well as an average PM value greater than or equal to 2.0.   

 

Gene Ontology (GO) enrichment was performed via DAVID Functional Annotation Analysis of 

the group signatures.  Enriched annotation terms were filtered for GO terms that passed a false 

discovery rate (FDR) of 5% to create “GO signatures”.  GO terms were clustered using k means 

clustering (k=8) of FDR values, which were displayed using a heat map.   

 

IFN profile integration 

Lists of probe sets either up or down regulated by IFN−β and IFN−γ  were obtained as described 

previously in Teles, et al. (72).  These lists were converted to gene names and filtered to 

eliminate any genes that were regulated by both IFN−β and IFN−γ.  For genes corresponding to 

multiple probe sets, the probe set with the highest mean expression across all diseases was 

selected.  Each list was filtered for genes showing the most differential expression across all 

skin samples by calculating the variance of gene intensity and selecting the 30 highest variance 

genes from each list.  We chose to use 30 genes because this was the length of the smallest of 

the four lists.   

 

IFN−β and IFN−γ scores were computed for each disease by first ranking all filtered microarray 

genes by intensity and computing the rank of each IFN-regulated gene in relation to all others in 

that same disease.  The mean rank across all diseases was computed for each IFN-regulated 

gene, and a delta-rank was assigned to each IFN-regulated gene, in each disease, by taking the 

signed difference between the rank in that disease and the mean rank.  The overall IFN−β and 

IFN−γ score was computed for each disease by subtracting the sum of down-regulated IFN 
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delta means from the sum of up-regulated IFN delta means, and a straight line was fitted to the 

plotted scores. 
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Figure Legends 

Figure 1. Unsupervised hierarchical clustering tree of 311 skin samples.  Normalized, 

filtered microarray data was clustered using Pearson correlation distance and displayed in a 

tree using average distance.  Each terminal leaf in the tree represents a biopsy sample and is 

colored according to disease, with colored bars to the right representing the majority disease 

diagnosis.  Samples that clustered apart from other samples of the same diagnosis can be seen 

a leaf that differs in color from its neighbors.  Numbers following disease name labels denote 

batches of the same disease, and lists of numbers following a disease name denote multiple 

batches clustering to the same tree branch with little or no differentiation by batch.  Brackets to 

the far right delineate biological groups of neighboring diseases. 

 

Figure 2. Cell-type specific signature enrichment.  For each of 24 cell-type specific 

signatures, log fold changes were calculated per disease, with each fold change representing 

the enrichment for a particular cell type signature in that disease.  Fold change vectors were 

clustered using Euclidean distance and displayed in a heatmap, where rows correspond to 

diseases and columns correspond to cell type.  Note that enrichment scores are relative across 

each cell type.  Black triangles denote FDR < 0.05 and directionality of fold change. 

 

Figure 3. Functional annotation and k-means clustering of group signatures.  Group 

signatures were annotated with enriched Gene Ontology (GO) terms, and the false discovery 

rate (FDR) for each GO term was clustered using k-means clustering (k=8) and visualized in a 

heatmap, where rows correspond to GO terms and columns correspond to disease groups.  

Each gray bar represents the log10 FDR for a particular GO term in a particular disease group.  

Colored bars to the right demarcate clusters of GO terms, and a summary of terms and p-values 

are provided for each color bar. 
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Figure 4. Visualization of melanoma proportional median (PM) signature.  A,B.  

Visualization of raw intensities for MITF and TYR, two genes in the melanocyte development 

pathway.  Each black circle represents an intensity value on a microarray for the specific probe 

set named.  Red lines show median intensity values for each disease.  Disease abbreviations 

are as follows: lepromatous leprosy (LLP), tuberculoid leprosy (TLP), reversal reaction leprosy 

(RR), erythema nodosum leprosum (ENL), chancroid (CH), mycosis fungoides (MF), sarcoid 

(SAR), Stevens Johnson Syndrome (SJS), psoriasis (PS), allergic contact dermatitis (ACD), 

irritant contact dermatitis (ICD), atopic dermatitis (ATD), burn (BU), acute wound (WA), post-

operative wound (WPO), melanoma (MEL), basal cell carcinoma (BCC), squamous cell 

carcinoma (SCC), normal skin (NS).  C.  Visualization of melanocyte development pathway in 

Ingenuity Pathways analysis.   Red genes indicate presence in a 250 probe set PM melanoma 

signature, with darker red denoting higher PM values.  This signature was significantly enriched 

for the melanocyte pathway (p-value = 9.19x10-05). 

 

Figure 5. Type I and II interferon program cross-regulation.  IFN−β and IFN−γ scores were 

calculated as the mean difference in delta ranks of genes specifically regulated by IFN−β or 

IFN−γ for each disease, relative to mean ranks across all diseases.  Intuitively, high scores for 

each type of IFN represent high expression of IFN-stimulated genes, low expression of IFN-

repressed genes, or both, such that placement on each axis shows the magnitude of expression 

of IFN−β or IFN−γ gene programs.   The plot shows a significant negative inverse correlation 

(r=-0.66, p-value=0.006).  Removing the outlier Stevens Johnson syndrome, the correlation 

remains significant (r=-0.53, p-value=0.04). 
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Figure   5 
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Tables 

Table 1. Two-fold cross validation, with separation by batch where applicable.   

Table   1 

Condition Sensitivity Specificity Precision F1 

Leprosy* 0.86 1.00 0.97 0.91 

Psoriasis* 0.96 0.97 0.94 0.95 

Chancroid 1.00 1.00 1.00 1.00 

Allergic contact 

dermatitis 
0.78 1.00 1.00 0.88 

Irritant contact 

dermatitis 
1.00 1.00 1.00 1.00 

Atopic dermatitis* 0.95 0.99 0.88 0.91 

Burn 1.00 1.00 1.00 1.00 

Acute wound 0.83 1.00 1.00 0.91 

Post-operative wound 1.00 1.00 1.00 1.00 

Mycosis fungoides 1.00 1.00 1.00 1.00 

BCC 0.87 1.00 0.93 0.90 

Melanoma 0.86 0.98 0.67 0.75 

SCC 0.60 1.00 0.86 0.71 

Sarcoidosis 1.00 1.00 1.00 1.00 

Stevens Johnson 

syndrome 
0.80 1.00 1.00 0.89 

Normal skin* 0.96 0.98 0.84 0.90 

*Denotes diseases separated by batch  
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Table 2. Classifier performance on external validation data.   

Table   2 

Condition Sensitivity Specificity Precision F1 

Leprosy  3 1.00 1.00 1.00 1.00 

Psoriasis 3, 4, 5, 6, 7 0.97 0.97 0.99 0.98 

Atopic Dermatitis 3, 4 0.80 0.98 0.73 0.76 

Melanoma 2 0.90 1.00 1.00 0.95 

Normal 6, 7 0.89 0.98 0.73 0.80 
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Supplementary Figures 

Figure S1. Normalized distribution of fRMA normalized microarrays.  Boxplots of the 311 

skin microarrays used in this analysis.  Each boxplot represents the intensity values for a single 

microarray. The line bisecting each boxplot represents the median microarray intensity value, 

and the bottom and top of each box denotes the 25th and 75th quartile, respectively. 

Figure S2. Unrooted unsupervised clustering tree of 16 skin conditions.   Normalized, 

filtered microarray data was clustered using correlation as in Figure 1, and the average distance 

between all pairs of diseases was calculated.  The tree was generated using the UPGMA 

method.  Each leaf represents one disease, and distances between leaves are 1-correlation of 

disease expression profiles between all samples of two diseases. 

Figure S3. Error rate for number of trees.  Error rate was measured as a percentage for each 

number of trees by assessing out of bag predictions for accuracy.  The plot shows the error rate 

at each value, and shows a stabilization of error rate at 5% once the number of trees used in 

this study is reached. 

Figure S4. Psoriasis signature network.  Pathways were constructed using the top 250 probe 

sets by PM in Ingenuity Pathways Analysis.  Genes in the top 250 PM list for psoriasis are 

colored shades of red, with darker colors denoting higher PM values.  Solid lines are direct 

connections and dotted lines are indirect connections. 

Figure S5. Cell-type specific deconvolution of psoriasis signature.  Cell type specific 

signatures were calculated for 24 different types of immune cells, and the relative expression of 

each probe set in the psoriasis PM signature was calculated for each cell type relative to all 

others.  Each row in the heatmap represents a probe set in the top 250 probe sets by PM for 

psoriasis.  Each column represents a cell type.  Each box in the heatmap indicates fold change 

of that probe set in cell types relative to a reference set of 23 other cell types.  Black arrows 

indicate FDR < 0.05, with orientation indicating directionality.  
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Supplementary Figure 1 
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Supplementary Figure 2 

 

Supplementary Figure 3 
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Supplementary Figure 4 
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Supplementary Tables 

Table S1. Description of the skin samples used in this study to build the classifier and 
perform functional analysis 

Supplementary Table 1 

Disease Number lesional 
samples GEO accession # Reference(s) 

Psoriasis 1
1 58 GSE13355 Nair et al., Nat Genet 2009 and  

Swindell et al., PLoS One 2011 
Psoriasis 2

2 33 GSE14905 Yao et al., PLoS One 2008 

Leprosy 1* 24 GSE17763 Montoya et al., Cell Host Microbe 2009 

Leprosy 2* 13 GSE16844 Lee et al., J Infect Dis 2010 
Chancroid 6 GSE5547 Humphreys et al., Infect Immun 2007  

Allergic contact dermatitis 9 GSE6281 Pederson et al., J Invest Dermatol 2007 
Irritant contact dermatitis  11 GSE18206 Clemmensen et al., J Invest Dermatol 2010 

Atopic dermatitis 1
3
§ 9 GSE16161 Guttman-Yassky et al., J Allergy Clin 

Immunol 2009  
Atopic dermatitis 2§ 13 GSE32924 Suarez-Farinas et al., J Allergy Clin 

Immunol 2011 
Burn

4 9 GSE8506 N/A 

Acute wound
5 6 GSE28914 Nuutila et al., Wound Repair Regen 2012  

Post-operative wound
5 11 GSE28914 Nuutila et al., Wound Repair Regen 2012  

Mycosis fungoides 22 GSE12902 van Doorn et al., Blood 2009 

Basal cell carcinoma
6 15 GSE7553 Riker et al., BMC Med Genomics 2008 

Melanoma
6 14 GSE7553 Riker et al., BMC Med Genomics 2008 

Squamous cell carcinoma
6 10 GSE7553 Riker et al., BMC Med Genomics 2008 

Sarcoidosis 15 GSE32887 Judson et al., J Am Acad Dermatol 2012  

Stevens-Johnson syndrome 5 GSE13726 Chung et al., Nat Med 2008 

Normal skin 1
1 6 GSE13355 Nair et al., Nat Genet 2009 and  

Swindell et al., PLoS One 2011 
Normal skin 2

2 6 GSE14905 Yao et al., PLoS One 2008 

Normal skin 3
4 3 GSE8506 N/A 

Normal skin 4
3
§ 9 GSE16161 Guttman-Yassky et al., J Allergy Clin 

Immunol 2009  
Normal skin 5 

4 GSE7553 Riker et al., BMC Med Genomics 2008 
 

1
, 

2
, 

3
, 

4
, 

5
,
 6

,
7
: each  from the same experiment and lab 

*, §, †, ‡: each from the same lab 
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Table S2. Classifier internal validation performance.  Sensitivity, specificity, and precision 

were calculated using “out-of-bag” predictions obtained during classifier training.  

Supplementary Table 2 

Condition Sensitivity Specificity Precision F1 

Leprosy 0.97 1.00 0.97 0.97 

Psoriasis 0.97 0.99 0.97 0.97 

Chancroid 1.00 1.00 1.00 1.00 
Allergic contact 
dermatitis 1.00 1.00 1.00 1.00 

Irritant contact dermatitis 1.00 1.00 1.00 1.00 

Atopic dermatitis 0.95 1.00 0.95 0.95 

Burn 1.00 1.00 1.00 1.00 

Acute wound 1.00 1.00 1.00 1.00 

Post operative wound 1.00 1.00 1.00 1.00 

Mycosis fungoides 0.96 1.00 0.96 0.96 

BCC 0.93 1.00 0.93 0.93 

Melanoma 0.86 0.99 0.86 0.86 

SCC 0.88 1.00 0.88 0.88 

Sarcoidosis 1.00 1.00 1.00 1.00 
Stevens Johnson 
syndrome 1.00 1.00 1.00 1.00 

Normal skin 0.87 0.99 0.87 0.87 
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Table S3. Classifier three-fold cross-validation performance.  Three-fold, leave-one-out 

cross validation was performed on the data using the original dataset randomly partitioned into 

three sets of approximately equal size.   

Supplementary Table 3 

Condition Sensitivity Specificity Precision F1 

Leprosy 1.00 1.00 1.00 1.00 

Psoriasis 0.98 0.98 0.95 0.96 

Chancroid 1.00 1.00 1.00 1.00 
Allergic contact 
dermatitis 0.89 1.00 1.00 0.94 

Irritant contact dermatitis 1.00 1.00 1.00 1.00 

Atopic dermatitis 1.00 1.00 0.96 0.98 

Burn 1.00 1.00 1.00 1.00 

Acute wound 1.00 1.00 1.00 1.00 

Post operative wound 1.00 1.00 1.00 1.00 

Mycosis fungoides 1.00 1.00 1.00 1.00 

BCC 0.93 1.00 0.93 0.93 

Melanoma 0.86 1.00 1.00 0.92 

SCC 0.60 1.00 1.00 0.75 

Sarcoidosis 1.00 1.00 1.00 1.00 
Stevens Johnson 
syndrome 1.00 0.99 0.90 0.95 

Normal skin 1.00 1.00 1.00 1.00 
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Table S4. Description of the skin samples used in this study to perform classifier 

validation.  Note that numbers and symbols from S1 are the same as in S4. 

Supplementary Table 4 

 

Disease Number lesional 
samples GEO accession # Reference(s) 

Leprosy 3
7

* 9 N/A N/A 

Psoriasis 3† 5 N/A N/A 

Psoriasis 4§ 85 GSE30999 Suarez-Farinas et al., J Invest 
Dermatol 2012 

Psoriasis 5‡ 14 GSE34248 Bigler et al., PLoS One 2013 

Psoriasis 6‡ 24 GSE41662 Bigler et al., PLoS One 2013 

Psoriasis 7‡ 15 GSE41663 Bigler et al., PLoS One 2013 

Atopic Dermatitis 3† 4 N/A N/A 

Atopic Dermatitis 4§ 16 GSE36842 Gitler et al., J Allergy Clin Immunol 
2012 

Melanoma 2 10 GSE31879 N/A 
Normal 6† 4 N/A N/A 

Normal 7
7

* 5 N/A N/A 
 

 

  

1
, 

2
, 

3
, 

4
, 

5
,
 6

,
7
: each  from the same experiment and lab 

*, §, †, ‡: each from the same lab 
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Supplementary methods 
Data acquisition 

A text search for “skin” was performed, and experimental series that contained microarrays from 

skin disease states were downloaded (64, 65, 90-102).  All microarray data was derived from 

lesional skin biopsies, with the exception of SJS, which comprised lesional blister fluid.  The 

series were additionally filtered for those utilizing the Affymetrix HG U133 Plus 2.0 platform in 

which raw CEL files were provided.  We identified and downloaded 311 relevant skin samples 

spanning 15 diseases as well as normal skin.  In some instances, multiple batches of the same 

disease were obtained, (designated as nx where x denotes the batch).  The samples included 

psoriasis, n = 91 (n1 = 58, n2 = 33); leprosy, n = 37 (n1 = 24, n2 = 13); H ducreyi infection 

(chancroid), n = 6; allergic contact dermatitis, n = 9; irritant contact dermatitis, n = 11; atopic 

dermatitis, n = 22 (n1 = 9, n2 = 13); burn, n = 9; acute wound, n = 6; post-operative wound, n = 

11; mycosis fungoides, n = 22; basal cell carcinoma, n = 15; squamous cell carcinoma, n = 10; 

melanoma, n = 14; cutaneous sarcoidosis, n = 15; Stevens-Johnson syndrome, n = 5; normal 

skin, n = 28 (n1 = 6, n2 = 6, n3 = 3, n4 = 9, n5 = 4) (Table S1).  Normal skin was defined as skin 

taken from a healthy patient, and all normal skin samples came from a series that also 

contained lesional samples.  102 normal skin samples were available for download (n1 = 64, n2 

= 22, n3 = 3, n4 = 9, n5 = 4); to avoid bias due to disparate sample sizes, only six samples from n1 

and n2 were used in this analysis.  Validation samples were obtained by collecting biopsy 

specimens from patients with atopic dermatitis (n3=3), normal skin (n6=4, n7=5), psoriasis (n3=5), 

and leprosy (n3=9); in addition, publicly available sets of psoriasis (n4=85, n5=14, n6=24, n7=15), 

atopic dermatitis (n4=8), and melanoma (n2=10) were downloaded (Table S5) (65, 66, 103) 

 

 

Normalizing and filtering 
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Data was normalized using the Frozen Robust Multiarray Average (fRMA) normalization method 

(31).  While frozen RMA is not a method for removing batch effects, it allowed the normalization 

of all samples to similar distributions and in this case, rendered the intra disease batch effects 

generally smaller than the inter disease differences.  Traditional batch effect removal software 

was not appropriate for this analysis since such methods typically require all experimental 

conditions to be represented in each batch (30).  Additionally, low intensity data was filtered by 

removing any probe sets that did not have a mean intensity of at least 15 in any disease.  

Filtering cutoffs were determined by comparing the intensity distribution from fRMA to that from 

standard RMA normalization using the same batch of data. 

 

Online visualization tool 

A Matlab standalone executable was built using Matlab Compiler Runtime (MCR).  This 

executable is hosted by an Apache server and coordinates user input and output via HTML and 

Perl scripts.  The tool is available at http://pathways-

pellegrini.mcdb.ucla.edu/goTeles/dot_plot.html 

 

Random Forest Classifier 

The random forest algorithm builds a user-defined number of decision trees, each using a 

randomly selected subset of the training samples and a randomly selected subset of genes.  A 

subset of samples is used to train the tree, with the remaining samples (termed “out of bag”) 

used to assess tree performance.  Samples are evaluated by each decision tree independently 

and majority voting determines the final classification.  Cross validation is built into the classifier 

training process, so that the internal tree performance assessment may be determined.  

Matlab’s TreeBagger class was used to build the classifier, with the oobError() and oobPredict() 

functions to characterize overall classifier performance and individual disease performance 
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statistics, respectively.  Performance statistics for specific diseases were calculated by counting 

true positives, true negatives, false positives, and false negatives for out-of-bag predictions 

separately for each disease (i.e., each true positive was also counted as a true negative for all 

other diseases, and each false positive was also counted as a false negative for the true 

diagnosis disease).  One instance of our classifier was built and used for all subsequent tests. 

 

Cell-type specific signature enrichment 

Briefly, 687 publicly available microarray samples on the Affymetrix HG U133 Plus 2.0 platform 

were selected as being representative of specific cell types, with the number of samples per cell 

type roughly equal.  A moderated t-test and fold change criteria were employed to identify cell 

type specific signatures, by finding the 250 genes that were most significantly enriched in 

samples of one cell type, as compared to samples of the other 23 cell types.   

 

Cell-type specific enrichment was calculated for each skin condition using an adapted 

methodology from Swindell, et al (59).  For each skin condition, a signature score was 

calculated based upon the 250 genes identified for a given cell type. For each gene, the fold-

change between the gene’s expression in one condition relative to all others was calculated, 

yielding a set of 250 log-transformed fold-change estimates, i.e., FC1, FC2, …, FC250. To 

calculate the signature score, we then obtained the weighted arithmetic mean of the 250 fold-

change estimates. Weights were equal to the square root of the genes rank, such that greater 

weight was assigned to genes most specifically expressed by a given cell type (i.e., lowest p-

value; moderated t-test), with less weight assigned to genes less specifically expressed by a 

given cell type. This procedure was repeated with respect to each disease and each of the 24 

cell types.  Within each cell type, enrichment scores for each disease were calculated relative to 
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all others.  Mean fold change vectors for each disease were then clustered based on Euclidian 

distance. 
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Chapter 5.  Characterization and classification of leprosy subtypes 
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Introduction 
Leprosy, a disease caused by infection with the intracellular bacteria Mycobacterium leprae, has 

affected humans for millennia: evidence of M leprae infection has been found in archaeological 

samples from the 1st century AD (104).  While leprosy remains a rare diagnosis in countries like 

the United States, the disease is endemic to populations in underdeveloped countries—

particularly South America, Asia and Africa (105).  In all its forms, leprosy can cause permanent, 

debilitating nerve damage (106).  Furthermore, leprosy carries an enduring social stigma, 

putting patients at risk for reduced access to treatment and social marginalization (107). 

 

Beyond its historical, clinical, and social context, leprosy is a fascinating model of the human 

immune response to pathogens, since patient responses to M leprae fall on a spectrum.  On 

one end, the tuberculoid form of the disease (T-lep) has one skin lesion from which bacterial 

organisms cannot be cultured.  T-lep lesions are characterized histologically as granulomatous 

and usually self-resolve, although permanent nerve damage can still result from these lesions.  

Lepromatous leprosy (L-lep) is the other end of the spectrum, where patients have multiple, 

bacteria-rich lesions which can get progressively worse without treatment.  The mechanism of 

these divergent responses can be traced back to the initial immune response to M leprae: T-lep 

corresponds to a Th1, cell-mediated immune response, whereas patients with L-lep develop a 

Th2, or humoral, immune response (108).   

 

This response spectrum is continuous and fluid, such that patients can present as “borderline” 

tuberculoid or lepromatous (usually corresponding to the bacillary index, or the amount of 

bacteria present in lesions).  Additionally, patients can spontaneously transition from L-lep to a 

T-lep state, which is termed reversal reaction (RR).  Finally, patients (usually with L-lep) can 

develop a concurrent inflammatory reaction called erythema nodosum leprosum (ENL), which is 

characterized by systemic inflammation and subcutaneous nodules (93, 109).  These borderline 



77 

 

and overlying conditions represent additional opportunities to characterize human immune 

states. 

 

Since these divergent immune programs arise in reaction to the same pathogen, host gene 

expression must play some role in determining the clinical course of leprosy.  Previous studies 

used microarrays to compare gene expression profiles derived from leprosy lesions in order to 

identify genes and pathways associated with each subtype.  Most notably, the presence of an 

IL-10 induced phagocytic pathway in L-lep and a vitamin D-induced antimicrobial response in T-

lep indicate mechanisms of differing immune programs (92).  More recent work has indicated a 

pattern of negative inverse correlation in Type I versus Type II interferon (IFN) regulated gene 

programs that corresponds to leprosy subtypes (72).  Lesions from patients with L-lep, T-lep, 

and RR were scored based on the expression of genes regulated by either IFN-γ or IFN-β.  L-

lep had high IFN-γ and low IFN-β scores, whereas T-lep and RR lesions had low IFN-γ and high 

IFN-β scores.  However, these microarray studies were unable to capture certain key cytokines 

and molecules that had previously been verified in lesions using PCR.  In particular, cathelicidin 

(CAMP) was transcribed at levels too low for detection, and IFN-β was either also transcribed at 

too low a level or its presence was too transitory to be measured by microarray (72, 73). 

 

The various forms of leprosy also enable the study of disease subtypes.  In Chapter 2, we built 

a disease classifier that diagnosed individual diseases.  The analysis of a diverse range of 

diseases can be relatively straightforward when the diseases have significantly different 

pathophysiological bases.  Disease subtypes also have variations in pathophysiology, but on a 

more subtle level, since they may share a common pathogen or disease mechanism.  

Developing a disease subtype classifier could be a first step in building a useful clinical 
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diagnostic tool, as well as a means to identify genes associated with each subtype and provide 

insight into disease pathogenesis.   

 

In this analysis, we studied gene expression profiles from lesional biopsy samples of leprosy 

that were derived using microarray and mRNA sequencing technology.  We used RNA-seq 

expression profiles to identify genes and pathways associated with two leprosy subtypes, in 

particular those genes that were not detectable on microarray platforms.  We also used multiple 

batches of microarray gene expression profiles to perform a concurrent analysis of four leprosy 

subtypes in which we constructed a leprosy subtype classifier and used the proportional median 

ranking metric to build subtype specific gene signatures.   
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Results 
 

Characterization of gene expression profiles in leprosy subtypes using RNA seq 

We obtained gene expression profiles from messenger RNA-seq data from four leprosy skin 

biopsy specimens: one L-lep, two T-lep, and one RR.  Samples were mapped to a reference 

human genome using TopHat and gene expression was quantified using Cufflinks.  Differential 

expression analysis corresponded well with previous microarray studies of gene expression 

differences in L-lep versus T-lep.  However, these gene lists did not offer insight beyond 

previous microarray studies of differential expression. 

 

Since an initial differential expression analysis did not provide additional information into 

divergent leprosy subtype programs, we focused on the analysis of genes that could not be 

measured using microarray technology.  Of particular interest was cathelicidin (CAMP), an 

antimicrobial peptide upregulated in T-lep that could not be quantified on a microarray yet was 

confirmed to be present in T-lep lesions by other methods (92).  We were able to detect CAMP 

in T-lep lesions using RNA seq, with a representative T-lep lesion showing an RPKM of 1381.9.  

CAMP was present in RR lesions at a lower rate (RPKM=659.9).  Surprisingly, CAMP was also 

present in L-lep lesions, although at a lower RPKM of 268.9 (Figure 1).  However, IFNB1 and 

IFNA, two cytokines that were undetectable on microarray gene expression profiles, were also 

not detected on RNA-seq of L-lep lesions, where they are known to play a role in pathology 

(data not shown).  Thus, while RNA seq can pick up the expression of some low count genes 

not seen on microarray, others remained elusive.   

 

Characterization of gene expression profiles in leprosy subtypes using microarrays 

Since microarrays have proven to be a reliable measure of leprosy gene expression profiles 

(with a few noted exceptions), and since we had access to a large, pre-existing data set of 



80 

 

lesional leprosy gene expression profiles derived via microarray, the rest of this chapter 

therefore focuses on the analysis of microarray data.  Lesional biopsy samples of the following 

leprosy subtypes were obtained: lepromatous leprosy (LL, n=6), tuberculoid leprosy (TL, n=10), 

reversal reaction (RR, n=7), and erythema nodosum leprosum (ENL, n=7).  Gene expression 

profiles were derived via Affymetrix HG U133 Plus 2.0 microarrays and normalized using frozen 

RMA (fRMA).   

 

Similar to previous results, hierarchical clustering of gene expression profiles demonstrated 

separation of the leprosy samples into three groups: LL, ENL, and TL/RR (Figure 2).  The 

tuberculoid and reversal reaction forms of the disease clustered homogenously and we were 

unable to separate the two forms by clustering.  ENL formed a separate group that was equally 

dissimilar to both LL and TL/RR.  There were a few exceptions to this clustering pattern.  

Notably, one ENL sample clustered with the TL/RR group, and one TL sample clustered with 

the ENL group.  Additionally, three samples (1 TL, 1 RR, and 1 ENL) did not cluster with any 

group. 

 

Proportional median signatures identify subtype specific genes for downstream analysis 

and random forest classification 

In order to identify genes that were highly expressed in one subtype relative to all others, we 

calculated proportional median (PM) values for all filtered probe sets in every subtype.  Briefly, 

PM is a metric developed previously that acts as a fold change for comparing three or more 

conditions.  The PM is calculated for each probe set in each disease by dividing the median 

expression of that probe in that disease by the median expression of that same probe across all 

diseases.  Thus, PM calculation allowed the ranking of probe sets according to relative 

expression in one subtype compared to all others.   
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To detect pathways associated with each subtype, we performed functional annotation analysis 

of the top 250 genes of each PM signature using the gene annotation tools DAVID and 

Ingenuity Pathways Analysis (24, 25).  Notably, the probe set with the highest PM in TL 

corresponded to the gene MMP12.  Matrix metalloproteinases (MMPs) such as MMP-2 and 

MMP-9 have an established role in the formulation of granulomas, which are a hallmark of the 

tuberculoid form of leprosy (110).   

 

Random forest classifier predicts leprosy subtypes 

A random forest classifier was trained on the leprosy subtype gene expression profiles.  To 

perform feature selection, we used PM signatures to filter for the most informative features for 

each subtype.  Using the unique set of the 25 probe sets with highest PM for each subtype, we 

built a classifier and measured performance by calculating sensitivity, specificity, precision, and 

F1 score, which is a composite statistic that combines sensitivity and precision and ranges from 

0 (completely inaccurate) to 1 (perfect accuracy).  The PM-random forest classifier had an 

overall accuracy of 87%, with F1 scores ranging from 0.77 to 1.0 (Table 1).  Our classifier was 

able to effectively differentiate between TL and RR within the training set, although there was 

still evidence of overlap, with one sample each of TL and RR being diagnosed as the other.  

However, there was also an equivalent amount of overlap between ENL and TL/RR subtype 

classification (Table 2).   

 

We validated our classifier using 22 independent samples that were not used in the PM 

calculation, feature selection, or classifier training steps.  We obtained these validation samples 

from publicly available microarray data (6 ENL and 7 LL) and by obtaining de-identified leprosy 

skin biopsy specimens and deriving gene expression profiles via microarrays (3 LL, 3 TL, and 3 

RR) (93).  Our classifier identified 68% of these samples correctly; however, nearly a third of the 
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mis-classifications were TL samples classified as RR.  When TL and RR are counted as a 

combined group (as they were shown to be indistinguishable according to hierarchical 

clustering), the classifier validation accuracy increases to 77% (Table 3).   

 

Functional analysis reveals signatures and cell types associated with subtypes 

In order to identify genes and pathways associated with leprosy subtypes, as well as discover 

novel connections between genes, we performed WGCNA on the filtered gene expression 

profiles in our leprosy subtype training set.  WGCNA uses correlations to place genes into 

modules – similarly to a traditional clustering analysis – but raises each correlation to a power, 

thus lending more weight to strong, more reliable correlations while still factoring in weaker 

correlations (26).  WGCNA analysis identified 21 modules of associated genes.  To determine 

which modules were associated with each subtype, we performed module eigengene correlation 

to our samples by coding traits as a sparse binary matrix of zeroes and ones: each sample had 

a value of ‘1’ for its corresponding subtype and ‘0’ for all other subtypes (Figure 3).   

 

Only one module, ‘magenta’, was significantly correlated to T-lep (correlation=0.39, p-

value=0.03).  This module contained 387 genes and notably contained the probe set 

corresponding to MMP12, which was the top gene for T-lep by PM.  Analysis of the genes 

contained in the ‘magenta’ module by Ingenuity Pathways Analysis showed connections 

between MMP12 and genes such as SMAD3, SMAD7, VEGF, and PLAUR, which are active in 

tissue remodeling and angiogenesis, which is consistent with the granuloma formation that is 

characteristic of the tuberculoid form of leprosy (Figure 4) (109, 111-114).  Angiogenesis in 

leprosy has mostly been studied in the context of L-lep, and has been correlated to lesional 

bacillary index (115).  However, more recent literature supports the formation of new blood and 

lymphatic vessels equally across the leprosy subtypes, especially in reactional states such as 
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RR and ENL.  Furthermore, lymphangiogenesis, for which VEGF is also a marker, is present at 

a higher level in the tuberculoid states of the disease (116, 117).    

 

The WGCNA analysis identified six modules significantly associated with ENL.  Using DAVID 

functional analysis, we found that two of these modules, brown and tan, were significantly 

enriched for the Gene Ontology (GO) term “cell adhesion” (FDR 4.25x10-24 and 0.058, 

respectively).  Additionally, three other modules (green, yellow, and turquoise) were significantly 

enriched for the InterPro protein cadherin, which functions in cell-cell adhesion (FDR 1.03x10-5, 

2.92x10-5, and 0.00114, respectively).  The tan module was also enriched for blood vessel 

development (FDR 1.18x10-8), and the brown module had an abundance of genes involved in 

epidermis development (FDR 1.03x10-15).  Histologically, ENL is characterized by a thickening 

of the epidermis, which is supported by these functional pathways (118).  Additionally, the 

enrichment for cell adhesion pathways has previously been reported and may be associated 

with lymphocyte or neutrophil recruitment to ENL lesions (93, 118).  

 

There were five WGCNA modules significantly associated with L-lep.  The salmon and blue 

modules were enriched for terms consistent with the phagocytic program characteristic of L-lep, 

such as “lysosome” (salmon: FDR 0.0434, blue: FDR 1.60x10-39) and “vacuole” (blue: FDR 

5.91x10-34) (92).  The royal blue module contained a significant number of genes involved in 

immunoglobulin pathways (FDR 3.77x10-13).  This is consistent with reports that L-lep lesions 

often have a humoral, B cell component (119). 

 

In order to determine whether expression of these pathways was due to enrichment of a 

particular cell type, we performed cell type specific deconvolution on our leprosy subtype gene 

expression profiles (Figure 5).  Although findings for T-lep and RR were nonspecific, the cell 
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types enriched in ENL and L-Lep supported the findings from WGNCA.  ENL was significantly 

enriched for a gene signature derived from lymphatic and blood vessel endothelial cells, as well 

as enriched for CD34+ cells, which are involved in cell adhesion (120).  L-lep showed significant 

enrichment for the phagocytic macrophage, dendritic cells, and monocytes, which was 

consistent with WGCNA findings.  Although the enrichment was not significant, L-lep also 

showed its third strongest enrichment for B cells, which was supported by pathways analysis of 

the WGCNA royal blue module showing an enrichment for immunoglobulin encoding genes. 

 

Tissue immunostaining of leprosy skin lesions shows higher expression of MMP-12 in 

tuberculoid versus lepromatous forms  

MMPs are known to be involved in granuloma formation, inflammation, and more specifically, 

the tuberculoid form of leprosy.  Therefore, we investigated MMP12 further as a novel marker of 

tuberculoid leprosy via immunohistochemistry staining of fresh frozen leprosy tissue sections.  

Tissue was H&E stained to visualize cells and skin structure.  We used antibodies for MMP-12 

to probe for the presence of the protein in three samples each of L-lep, T-lep, and RR.  We also 

probed for the presence of CD3 to ascertain binding of the antibodies, as well as IgG1 to probe 

for nonspecific binding.  We selected representative examples of each subtype and antibody 

(Figure 6).  Positive staining for MMP-12 was detected in T-lep and RR but not L-lep or ENL, 

confirming its ability to differentiate between the tuberculoid/reversal reaction morphologies and 

the lepromatous form.   
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Discussion 
Leprosy has been well studied as a model of innate and adaptive immunity, making it an 

appealing model to train a disease subtype classifier.  Furthermore, pathway and cell type 

enrichment has not yet been studied across four leprosy subtypes.  We first performed a brief 

investigation of RNA-seq in two subtypes, L-lep versus T-lep, as a tool to detect genes that are 

expressed at low levels or are otherwise undetectable using microarrays.  Then, we shifted our 

focus to the use of microarray gene expression profiles across all four subtypes.  Using PM and 

a random forest classifier, we were able to successfully classify RR, L-lep, T-lep, and ENL in our 

original training set and an independent validation set.  We supplemented analysis of the PM 

signatures for each subtype with WGCNA and cell type specific deconvolution.  Using these 

analysis methods, we were able to identify a number of pathways associated with each subtype 

that support current knowledge of the disease, such as cell adhesion pathway in ENL and tissue 

remodeling in T-lep.  Finally, we used a synthesis of our PM and functional analysis methods to 

identify a novel marker of T-lep that we confirmed in leprosy lesional tissue sections.     
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Methods 
Leprosy RNA sequencing 

These lesions were obtained from a leprosy clinic in Brazil, and shipped to the United States as 

flash-frozen, OCT-embedded blocks.  mRNA was extracted directly from the lesions, and cDNA 

libraries were built using a slight variation on the standard Illumina protocol: to adjust for the 

lower cell density in tissue samples, an additional filtering step was implemented to prevent 

mRNA loss.  The L-lep sample was sequenced on an Illumina GA IIx machine and the rest of 

the samples were sequenced on an Illumina HiSeq machine, resulting in approximately four 

times more reads in the latter samples (Table S1).  Additionally, the T-lep and RR cDNA 

libraries were built from mRNA that was approximately ten times more concentrated than the 

mRNA used to build the L-lep library. 

 

The analysis pipeline was identical for each of the four samples.  First, sequenced reads were 

parsed and assessed for quality.  Quality was determined according to a number of criteria 

including average Phred quality scores at each position in the read, read duplication, and 

presence of Illumina adaptor sequences.  Reads with drop-offs in Phred quality were trimmed to 

remove positions with particularly low quality scores.  Next, the trimmed reads were mapped to 

the Hg18 build of the human genome using TopHat, a short read mapper that performs gapped 

alignments to a reference genome (121).  Mapping statistics were compared across samples to 

confirm that they were roughly equivalent (Table S1).  Additionally, meta-gene plots were 

generated to confirm the absence of 3’ bias. 

 

The mapped reads were assembled into transcripts using Cufflinks (122).  Rather than simply 

counting reads that map to genes, Cufflinks adjusts for reads that map to multiple locations, as 

well as for gene length.  Thus, while gene expression in mRNA-seq experiments is usually 

represented as Reads Per Kilobase of exon model per Million mapped reads (RPKM), Cufflinks 
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uses the value Fragments Per Kilobase of exon model per Million mapped reads (FPKM) (123).  

FPKM can be thought of as a statistical estimate of RPKM, given that some reads map 

ambiguously.  Using Cufflinks, FPKM was calculated for every gene in the Hg18 annotation.  

Additionally, RPKM counts were calculated using the HTSeq package in Python (124).  Cufflinks 

tends to filter out transcripts that it deems “low-count” (125).  Since a major focus in this study is 

low-count genes, we also visualized the mapped reads on the UCSC genome browser, and 

used this to follow up with a list of low-count genes that were relevant to either L-lep or T-lep, 

according to a review of innate immunity in leprosy (108, 126).   

 

Microarray, normalization, and clustering 

Skin lesional biopsy specimens were obtained from patients with the following leprosy subtypes 

(“training set”): lepromatous leprosy (n=6), tuberculoid leprosy (n=10), reversal reaction (n=7), 

and erythema nodosum leprosum (n=7).  mRNA was extracted from lesions and gene 

expression profiles were derived via Affymetrix HG U133 Plus 2.0 microarrays as previously 

described in Bleharski, et al (33).  Additional data for validation (“validation set”) was obtained 

from a second batch of skin lesional biopsy specimens (lepromatous leprosy: n=3; tuberculoid 

leprosy: n=3; reversal reaction: n=3) and publicly available data on NCBI GEO (GSE16844; 

lepromatous leprosy: n=7; and erythema nodosum leprosum: n=6) (93). 

 

Data were normalized using frozen RMA and filtered at a mean intensity of at least 150 in any 

one subtype.  Filtered data were used in the proportional median signature, classifier, clustering 

and WGCNA analyses.  Hierarchical clustering was performed using correlation distances and 

the “amap” package in R. 

 

Proportional median signatures 
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The proportional median (PM) metric was defined as the median intensity of a probe set within 

one leprosy subtype divided by the median intensity of the same probe set across all samples.  

PM values were calculated for each subtype using the training set and ranked according to 

highest PM. 

 

Random forest classifier 

A random forest classifier was built from the training set using the Matlab TreeBagger class.  

PM values were used to select the most informative features for each subtype by using the top 

25 probe sets by PM to build the classifier.  True positives, false positives, and false negatives 

were calculated directly from out-of-bag predictions separately for each subtype.  True 

negatives for a particular subtype were calculated from true positives of all other subtypes (i.e., 

a true positive for subtype A counted as a true negative for subtype B).   

 

Cell type specific signature enrichment 

Cell specific enrichment was calculated on the training set using an adapted methodology from 

Swindell, et al (59).  Using 250 gene signatures for each cell type, signature scores were 

calculated for each subtype based on the weighted arithmetic mean of the fold-change between 

a particular gene’s expression in one subtype relative to all others.  Weights were assigned 

based on how specific each gene was to the particular cell type.  Within each cell type, 

enrichment scores for each disease were calculated relative to all others.  Mean fold change 

vectors for each disease were then clustered based on Euclidian distance. 

 

Weighted Gene Correlation Network Analysis 

Weighted Gene Correlation Network Analysis (WGCNA) was performed on filtered gene 

expression profiles of the training set (‘wgcna’ package in R) (26).  Automatic network 
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construction was carried out with a power of 14 and a minimum module size of 50.  For each 

module, networks were constructed using the topological overlap matrix.  The top 50 probes 

from each network were selected by filtering by kME (intramodular connectivity) and converted 

to gene names before displaying.  Networks were built using VisANT.  Module correlation to 

leprosy subtypes was calculated by computing the correlation of each module eigengene to a 

binary matrix of traits which corresponded to individual subtypes.  Correlation and significance 

calculations, as well as heatmap display, were calculated using built-in functions from the 

‘wgcna’ R package. 

 

Tissue Immunostaining 

Frozen tissue sections were blocked with normal horse serum before incubation with MMP-12 

monoclonal antibody (mAb) and isotype control for 60 min, followed by incubation with 

biotinylated horse anti-mouse IgG for 30 min.  Slides were counterstained with hematoxylin and 

mounted in crystal mounting medium (Biomeda, Foster City, CA) and were visualized using the 

ABC Elite system (Vector Laboratories, Burlingame, CA).  Skin sections was examined using a 

Leica microscope (Leica, Heidelberg, Germany). 
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Figure Legends 
Figure 1.  UCSC Genome Browser view of cathelicidin expression (CAMP) in L-lep, T-lep, 

and reversal reaction (RR).  RNA-seq gene expression profiling was performed on leprosy 

samples from L-lep, T-lep, and RR.  Counts were normalized to counts per million mapped 

reads and visualized on the UCSC Genome Browser.   Shown are the reads mapping to the 

gene CAMP. 

 

Figure 2.  Hierarchical clustering of leprosy subtypes.  Microarray gene expression profiles 

derived from L-lep, T-lep, RR, and ENL skin lesional biopsy specimens were subjected to 

unsupervised hierarchical clustering.  Clustering distance was calculated by correlation of 

filtered gene expression profiles.  Trees were built using average linkage distance. 

 

Figure 3.  Weighted Gene Co-expression Network Analysis (WGCNA) of leprosy 

subtypes.  WGCNA was performed on leprosy microarray gene expression profiles in order to 

find modules of significantly correlated genes.  A.  WGCNA dendrogram showing relationships 

of probe sets and modules.  Each leaf on the dendrogram is a microarray probe set, and the 

module it belongs to is shown on the color bar below.  Leaves further down on the dendrogram 

represent more closely connected modules.  B.  Correlation of module eigengenes (MEs) to 

leprosy subtypes.  Modules are shown on the Y axis, labeled with the number of probe sets in 

each module.  Correlation is shown for each square in the heatmap, with p-value below in 

parentheses.   

 

Figure 4.  Ingenuity Pathways Analysis network of MMP12 connections in WGCNA 

magenta module.  The 387 probe sets in the WGCNA magenta module (associated with T-lep) 

were converted to gene names using Ingenuity Pathways Analysis and visualized in a network 
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using known connections.  The genes with direct connections to MMP12 were isolated into a 

separate network. 

 

Figure 5.  Cell Type Specific Deconvolution.  Cell type specific enrichment was calculated 

using 24 different cell types.  Using signatures characteristic of each cell type, log fold changes 

were calculated per leprosy subtype, where each fold change represents the enrichment for a 

particular cell type signature in that subtype.  Fold change vectors were clustered using 

Euclidean distance and displayed in a heatmap, with rows corresponding to leprosy subtypes 

and columns corresponding to cell types.  Note that enrichment scores are relative across each 

cell type.  Black triangles denote FDR < 0.05 and directionality of fold change. 

 

Figure 6.  MMP-12 immunostaining in T-lep, L-lep, RR, and ENL.  Frozen sections of leprosy 

lesions were stained with H&E and then incubated with antibodies for MMP-12, CD3 (positive 

control) and IgG1 (negative control).  Three sections of each subtype were stained; shown are 

representative pictures of each subtype at 10x magnification. 
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Figure    5 
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Figure    6 
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Tables 

Table 1.  Leprosy subtype classifier internal performance.  

Table    1 

Sens Spec Prec F1 

L-Lep 1.00 1.00 1.00 1.00 

T-Lep 0.90 0.90 0.82 0.86 

RR 0.71 0.96 0.83 0.77 

ENL 0.86 0.96 0.86 0.86 

 

 

Table 2.  Actual diagnosis versus predicted classification in leprosy subtype classifier 

training set.   

Table    2 

Training Actual –ENL Actual – L-Lep Actual – RR Actual – T-Lep 

Predicted - ENL 6 0 0 1 

Predicted - L-Lep 0 6 0 0 

Predicted - RR 1 0 5 1 

Predicted - T-Lep 0 0 1 9 
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Table 3.  Actual subtype versus predicted subtype for independent validation leprosy 

samples.  Samples which were not used at any step in the classifier training were run through 

the classifier.   

Table    3 

 

  
Validation  Predicted-ENL 

Predicted-L-

Lep 
Predicted-RR 

Predictedl 

T-Lep 

Actual-ENL 6 0 0 0 

Actual-L-lep 0 6 3 1 

Actual-RR 0 0 3 0 

Actual-T-lep 0 1 2 0 
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Supplementary Information 

Table S1.  Mapping statistics for leprosy RNA-seq 

Supplementary Table   1 

 

  

sample name 

Illumina machine 

used Read length # of reads % mapped % mapped uniquely 

L-Lep Ga IIx 75 37568548 83.24 53.84 

T-Lep 1 HiSeq 100 117904034 83.24 55.91 

T-Lep 2 HiSeq 100 125313580 87.14 58.74 

RR HiSeq 100 115103849 84.36 59.46 
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Chapter 6: Conclusion 

Gene expression profiling has become a common first step in the exploration of genes and 

pathways that contribute to human disease phenotypes.  Their power lies in the ability to obtain 

a comprehensive picture of gene expression in any sample using methods that are fast and 

economically feasible.  As a result of the widespread use of such technology, the body of private 

and public gene expression profile data has exploded, providing exciting opportunities to re-

analyze the data and obtain new information in an even more efficient, cost-effective way. 

 

The first section of this work was a brief study of microarray gene expression profiles in 

pancreatic ductal adenocarcinoma (PDAC).  The study of PDAC remains problematic due to a 

lack of lesional biopsy specimens, especially those from patients with terminal disease.  

Currently, surgically removed tumors in patients without evidence of metastasis comprise the 

majority of tissue available for study.  However, correlates of disease free survival found in 

these patients are still useful as potential targets for therapy or biomarkers for disease 

prognosis.  Furthermore, the majority of surgical patients experience disease recurrence, 

implying that micro-metastases were present at the time of surgery and making these gene 

expression profiles directly relevant to more advanced cases (127).   

 

Access to more PDAC samples and more sophisticated analysis techniques such mRNA 

sequencing are two strategies for the next steps in this analysis. A variety of PDAC microarray 

data sets are freely available on NCBI GEO, including primary tumors, metastatic tumors, 

xenografts of human PDAC tumors in mice, and stromal tissue (tissue surrounding primary 

tumors).  These data could be integrated with new or existing data to yield large data sets that 

have an enhanced ability to explore genes and pathways associated with disease prognosis.  

On the high throughput sequencing front, alterations in PDAC genomic content were 
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characterized and RNA-seq gene expression profiles derived for a few tumors in a 2012 study 

(128).  However, RNA sequencing has only been carried out on a small scale on tumors taken 

from actual surgical cases versus mouse xenografts and cell lines (129, 130).  RNA-seq is 

particularly useful in the context of cancer gene expression profiles since it captures quantitative 

levels of gene expression as well as differential isoform expression and intronic regulatory 

elements.   

 

The analysis strategy for the first chapter of this work is representative of the majority of current 

gene expression profile analyses: samples from two conditions are compared to find 

differentially expressed genes.  Typical studies involving three or more conditions compare each 

condition in a pairwise fashion to a common control.  However, many diseases—particularly 

those that manifest in the same tissue—have shared or interconnected pathophysiology, such 

that a multi-disease analysis would yield more information than a series of pairwise 

comparisons.  The second chapter of this work focuses on techniques for simultaneously 

comparing gene expression profiles derived from lesional biopsy samples of a range of human 

diseases in a single tissue.  Skin was chosen as the tissue of interest since a wide range of 

disease lesions manifest in skin and are readily accessible for biopsy excision.  The backbone 

of these analyses is the successful integration of data from multiple batches, since the range 

and number of biopsy specimens studied far exceeds the resources of most investigators.  

Although batch effect is a concern in these data, we took advantage of data set features such 

as large sample size, independent, external validation, and robust algorithms like rank-based 

proportional median in order to identify strong biological signals.   

 

This work has numerous opportunities for expansion.  The most straightforward next step would 

be the integration of additional gene expression profiles—both increasing the sample size of 
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diseases currently in the data base and adding new diseases.  For the problem of disease 

classification, careful consideration would be necessary for partitioning new samples into 

current training and test sets.  While our multi-disease classifier had good performance both in 

the training set and for five externally validated conditions, it lacked independent validation sets 

for a majority of conditions.  Therefore, although an increase in sample size should increase 

classifier accuracy, any new samples for diseases already in the data base would be prioritized 

to the validation set.  The addition of new samples could be expedited by the inclusion of more 

microarray platforms, or even the integration of RNA-seq gene expression profiles with those 

derived via microarray.  However, gene expression can be unstable between microarray 

platforms, making direct comparison of gene intensities a theoretical issue that has yet to be 

solved (6, 131-133).  The integration of RNA-seq and microarray data is another area of active 

research that has been investigated with mixed results (134, 135). 

 

The final section of this work examined the problem of classification and gene expression profile 

analysis in the context of multiple subtypes from one skin disease, leprosy, in which a range of 

patient immunological responses contribute to a disease with a spectrum of phenotypes.  Many 

of the analysis techniques from the general skin disease analysis were applicable to the 

problem of leprosy subtypes.  Indeed, using approaches including proportional medians, 

random forest classification, and cell type specific deconvolution, we were able to successfully 

classify leprosy subtypes as well as identify immunological and structural differences in gene 

expression that gave rise to the various disease phenotypes.  This work provided a proof of 

concept that the subtler variations in disease subtypes can be identified using multi-disease 

comparison techniques, and future steps include the exploration of these methods in other skin 

diseases with variable subtypes such as psoriasis, or even infectious diseases like tuberculosis 

which has latent and active forms. 
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The development of high throughput gene expression profiling opened a window into the inner 

workings of tissues and cells.  This view is, at times, bafflingly complex.  Adding to this 

complexity are the myriad platforms and methods by which gene expression profiles may be 

obtained, resulting in a large collective body of transcriptome data that is too often underutilized.  

While simple, universally accepted methods will never exist for the integration of all types of 

genomic or transcriptomic data, one can leverage large sample size and robust biological 

signals in order to make the science of gene expression profile analysis more streamlined and 

efficient. 
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