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Systems biology takes an integrative approach to connecting molecular-level 
mechanisms to cellular physiology and developmental outcomes. In metazoans, cellular 
development converges onto either a proliferative or differentiated state.  Precise 
spatiotemporal regulation of gene expression is paramount for defining cellular 
proliferation and differentiation programs. During gene expression, the genetic 
information stored in a segment of DNA is copied into a messenger RNA (mRNA). This 
“message” within the mRNA is organized as a sequence of discrete units called codons. 
Each mRNA codon is then translated by its complementary transfer RNA (tRNA) 
molecule into a protein, the molecules that ultimately shape the cellular identity and 
function.  Recently, codon identity emerged as a key regulatory grammar for post-
transcriptional control of animal gene expression. Prior work from my laboratory in 
Drosophila demonstrated that certain “optimal” codons enhanced the stability of mRNAs 
in embryonic tissue, but the stabilizing effect of these codons was attenuated in the 
differentiated embryonic neural tissue. Current models suggest that optimal codons – 
codons that are enriched in high expressed and/or stable mRNAs – are preferentially 
decoded by abundant tRNAs. tRNAs are the adaptor molecules of mRNA translation. 
Mounting evidence from genomics experiments now overrides the longstanding view of 
tRNAs as uniformly expressed housekeeping molecules. However, genome-wide tRNA 
measurements, especially in vivo data, are usually missing from codon optimality studies 
in metazoans. Hence, our understanding of tRNA regulation in normal tissue 
development remains fragmentary. The Drosophila larval central nervous system offers 
a tractable model for studying the genetic control of cell proliferation and differentiation 
because of the suite of available genetic tools that enables cell type-specific assays.  
Here I demonstrate how altered tRNA expression establishes cell-type specific codon 
optimality that dynamic programs of mRNA decay and translation efficiency in 
neurogenesis, using the Drosophila melanogaster central nervous system. 

 By quantifying the tRNA transcriptome, mRNA transcriptome, and mRNA degradome in 
neural progenitor and post-mitotic neurons, for the first time, I present evidence that 
supports the dynamic regulation of the tRNA levels and post-transcriptional modification 
across neural differentiation serves as a mechanism for coordinating the translation and 
stability of functionally related mRNAs in a codon-dependent manner. Collectively, these 
findings support a mechanistic link between translational control by tRNA and neural 
differentiation. 

Thus, my work lays the foundation for future investigations of dynamic tRNA regulation 
in cell-fate determination in other tissue types as well as in other complex animal 
models. 
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Chapter 1: Literature Review 

  
1. Evolution of Codon Usage Bias in Simple Organisms and Animals 
 
“Nothing in Biology Makes Sense Except in the Light of Evolution” -  evolutionary 
biologist Theodosius Dobzhansky (1973).  
 
Codon optimality – the principle that specific mRNA codons confer a fitness 
advantage – is a product of evolution.  Emerging evidence supports codon 
optimality as a key determinant of post-transcriptional regulation in animal cell 
development. But this was not always the case. Long-held assumptions about 
the influence of selection on animal codon usage patterns have only recently 
been challenged due to the greater availability of tissue-specific RNAseq and 
bulk tRNA measurements. Here, I review primary research that has both shaped 
and challenged our understanding of the evolutionary basis of codon usage bias 
(CUB).  
 
1.1 “Secondary genetic code”: Synonymous Codon Usage Bias  
 
All living cells operate under the central dogma of molecular biology (Crick 1970), 
the universal algorithm that specifies the flow of genetic information from nucleic 
acids to proteins. Gene expression describes the mechanisms responsible for 
transducing the biological instructions stored in DNA to direct the synthesis of 
proteins, the molecules that ultimately establish cellular identity and function. 
During gene expression, a segment of DNA – a gene – is first copied 
(transcription) into a messenger RNA (mRNA) molecule. The coding region of the 
mRNA specifies the sequence of the protein product. mRNA coding regions are 
organized as a sequence of nucleotide triplets, known as codons.  Each mRNA 
codon is then translated by its complementary transfer RNA (tRNA) molecule into 
a specific amino acid, the building block of proteins.  
 
The degenerate genetic code maps 61 codons to the 20 amino acids, such that 
18 of the 20 amino acids are encoded by two to six different synonymous 
codons.  The advent of first-generation DNA sequencing 40 years ago (Sanger et 
al., 1977; Maxam and Gilbert, 1977) led to the discovery of non-uniform usage of 
synonymous codons across genes in select bacteria and phages studied at the 
time. Post et al. provided one of the earliest discoveries of intragenomic 
synonymous codon usage variation based on their DNA sequencing of the E.coli 
88-min operon consisting of four ribosomal protein genes (Post et al., 1979).  
Although their primary goal was to uncover the regulatory elements that control 
the transcription of this essential ribosomal operon (they later concluded that 
their sequencing efforts did not answer this study's aim), they discovered that 
codon usage of those ribosomal protein genes was highly non-random and 
different from the previously sequenced β-lactamase gene(Post et al., 1979). 
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Since then, decades of genome sequencing have identified synonymous codon 
usage variation between and within genomes of most species from all kingdoms 
of life (Grantham et al., 1980; Novoa et al., 2019). Grantham et al. coined codon 
usage bias to describe the unequal distribution of synonymous codons within and 
between genomes (Grantham et al., 1980).  
Remarkably – and, at first, unexpectedly – despite not altering the protein 
sequence, numerous biochemical and genomics studies have elucidated how the 
choice of synonymous codons regulates different stages of gene expression, 
from the rate of transcription (Zhou et al., 2016),  exon splicing (Chamary and 
Hurst., 2005),  mRNA stability (Presnyak et al., 2015; Burow et al., 2018 ), mRNA 
secondary structure (Shabalina et al., 2006; Wan et al., 2014),  translation 
elongation rate via altered ribosome processivity (Tuller et al., 2010), protein 
levels (Carlini and Stephan, 2003; Spencer et al., 2012) and co-translational 
protein folding (Pechmann and Frydman, 2011; Yu et al., 2015).  
 
Mutation-Selection-Drift Theory of the Evolution of Codon Usage Bias 

 
What explains the ubiquity of synonymous codon usage preferences across 
different species? The prevailing mutation-selection-drift theory explains codon 
usage bias as an interplay between adaptive (selection for optimizing gene 
expression) and non-adaptive evolutionary processes (genetic drift and mutation 
bias)  (Grantham et al.,1980; Bulmer, 1991). The mutation-selection-drift theory 
does not mean that the influences of adaptive and non-adaptive processes are 
not mutually exclusive. Rather the extent of their contribution varies between 
species. Therefore, one of the key challenges of evolutionary biology is to 
disentangle the role of various processes in shaping genomic codon usage. In 
the subsequent sections, I review the literature on evolutionary hypotheses 
surrounding neutral directional mutation and translation selection on shaping 
codon usage bias. 
 
 
1.2 Directional mutation establishes neutral codon usage bias 
 
The mutational bias model predicts that the synonymous codon usage variation 
is explained by neutral events that result in biased patterns of nucleotide 
conversion, which in turn gives rise to genome-wide GC-compositional bias 
(Smith & Eyre-Walker, 2001). As a result, the GC-content at the silent third codon 
position (GC3) is expected to correlate with the GC-composition of non-coding 
regions (Grantham et al., 1980). GC-compositional bias is thought to arise by 
GC-biased gene conversion (gBGC), an event that increases the fixation of G 
and C alleles during meiotic recombination or biased base incorporation by DNA 
repair enzymes (Duret & Galtier, 2009; de Boer et al., 2015).  One extreme 
example of  GC-compositional bias driving codon usage patterns is observed in 
the A+T-rich Mycoplasma capricolum that has genomic GC-content of 25% and, 
unsurprisingly, 90% of its codons are  A/U-ending (Sharp et al., 1993). However, 
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it may be misleading to assume strong selection (or weak directional mutation) if 
the base composition of synonymous sites deviates from the genome-wide 
composition since mutational dynamics vary within the genome due to context-
dependent mutation probabilities (Morton, 2003; Zhu et al., 2017; Morton, 2022). 
For example, in bacteria, mutation biases vary between leading and lagging DNA 
strands. Thus codon usage was dependent upon the strand of a coding 
sequence (Romero et al., 2000). Therefore, a correlation between CUB and high 
expressed genes may reflect transcription-associated mutagenesis rather than 
selection for gene expression optimization. In mammals, the genome is 
partitioned into long variegated regions (>300kb) of distinct GC-content 
(isochores), where codon usage bias of the genes was observed to covary with 
the GC-content of the host isochore (Mouchiroud et al.,1988; Pouyet et al., 
2017).  
 
1.3 Natural Selection Shapes Codon Usage Bias to Optimize Gene Expression 
 
Evidence for selection on codon usage is primarily gleaned from biochemical and 
bioinformatic analyses in unicellular organisms. Because of the high energetic 
and fitness cost of protein synthesis, the selection model predicts that the codon 
composition of highly expressed genes is under stronger selection. It was 
observed in E.coli and S.cerevisiae  that high expressed and low expressed 
genes used distinct codon sets (Ikemura, 1982; Sharp, 1987). Ribosomal protein 
genes, the core component of every cell’s protein synthesis machinery, are often 
constitutively and highly expressed and exhibit greater codon bias than the rest 
of the genome (Sharp and Li, 1987; Rochoa, 2003). Thus, codons enriched in 
highly expressed genes are commonly referred to as “optimal codons.”  These 
observations led Sharp and Li to propose the Codon Adaptation Index (CAI), 
which measures the similarity of a gene’s codon usage bias to that of a reference 
set of ribosomal proteins. Why are ribosomal proteins (RPs) used as a reference 
set for codon optimality? This is based on the observations that: 1) ribosomes 
are the most abundant molecules in fast-growing cells (Nomura et al., 1984), 
2)RPs are more restricted in their codon bias (i.e., low sequence entropy) 
compared to the rest of the genome (Post et al., 1979), and 3) not only are RPs 
distinctly codon biased but their coding sequences exhibit a bias for codons 
matching abundant tRNAs (Ikemura 1983a).  These observations collectively 
suggest that growth is a selection pressure shaping RP codon usage. Thus, by 
quantifying similarity to ribosomal codon usage, CAI estimates the expressivity of 
a gene (Sharp and Li, 1987). Since then, CAI has been used extensively in 
microbial systems to predict mRNA levels ( Wu et al., 2005), protein expression 
levels (Lu et al., 2007), and in synthetic biology for optimization of DNA 
sequences for heterologous gene expression in microbial (Al-Hawash 2017) and 
mammalian systems (Inouye et al., 2015).  
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1.4 Co-evolution between tRNA availability and codon usage to optimize 
translation efficiency 
 
Gene expression is metabolically expensive as this process consumes ATP and 
GTP for energy and nucleotides and amino acids as building blocks in 
transcription and protein synthesis. Additionally, the bioenergetic cost of protein 
synthesis was estimated to be at least 100 times greater than transcription 
(Wagner A, 2005; Lynch et al., 2015). Thus, the selection model further posits 
that tRNA availability is the major selection pressure that shapes the codon bias 
of highly expressed genes. tRNAs decode the genetic information in mRNA 
codons to amino acids of protein sequences. Ideally, for each of the 61 sense 
codons, there should be 61 distinct tRNA anticodon types. However, nearly all 
sequenced genomes lack the full complement of 61 tRNA types because tRNAs 
often engage in wobble-decoding at the 3rd codon position. Moreover, the 
genomic dosage of different tRNAs takes on a dynamic range, from single-copy 
to even hundreds of identical or near-identical copies within the same genome 
(Marck and Grosjean, 2002; Goodenbour and Pan, 2006). As such, the prevailing 
theory is that the imbalance in the supply decoding tRNAs confers distinct 
elongation rates to codons that underlie the genome-wide distribution of 
synonymous codons [Ikemura, 1985]. Thus, optimal codons are expected to be 
cognate to abundant tRNAs, while rare codons should match low abundance 
tRNAs. Translation efficiency optimizes for two but not mutually exclusive 
parameters: translation elongation rates (speed) and translation accuracy. 
Translational efficiency is defined as the rate of protein production from mRNA. 
Translation accuracy is the rate of amino acid misincorporation (Akashi, 1994). In 
E.coli, selection for translation accuracy was inferred by substituting favored 
codons with non-favored codons, which resulted in a 10-fold increase in amino 
acid misincorporation errors (Precup et al.,1989). But most studies on translation 
efficiency focused on the rate of translation elongation than translation accuracy.  
 
Toshimichi Ikemura first provided experimental evidence for codon-anticodon co-
adaptation in shaping gene expression when he quantified relative tRNA levels in 
E.coli using two-dimensional gel electrophoresis (Ikemura 1981). This paradigm-
shifting work first elucidated the positive correlation between codon bias in high 
expressed genes and tRNA concentration, suggesting that codons have distinct 
translation elongation rates, further buttressing the selectionist model. Even so, 
translation rates were not directly measured, so it was still unknown if mRNAs 
were translated unevenly at different sites. However, a year later, Randall and 
colleagues first elucidated that elongation rates are non-uniform along the 
mRNA, based on the identification of two distinct nascent premature polypeptides 
(differed by a 1000 kDa) of maltose-binding membrane protein in E.coli. Here 
they went on to show that the presence of distinct precursor intermediates was 
not due to aberrant premature termination but was indicative of ribosomal 
pausing at different sites on the mRNA during elongation [Randall et al., 1982]. 
Later, Vavrenne and colleagues showed these paused sites correlated with a 
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short stretch of rare codons that matched rare tRNAs [Vavrenne et al., 1984; 
Vavrenne et al., 1986 ]. Collectively, these early studies demonstrated that 
codon-dependent elongation rates are modulated by their tRNA concentration.  
Since then, multiple studies that span the tree of life have identified competition 
for the limited supply of tRNAs as an evolutionary determinant of synonymous 
codon usage variation (Ikemura, 1982; Duret, 2000; Novoa et al., 2012; Wint et 
al., 2022). To quantify translation selection for tRNA availability, dos Reis et al. 
formulated the tRNA adaptive index (tAI) based on the tRNA gene copy number 
and anticodon-codon binding efficiencies of Watson-Crick and wobble 
interactions (dos Reis et al., 2004). The recurring correlation between 
transcriptome-wide codon usage and tRNA gene copy number across many 
species led to the ‘tRNA-codon coevolution” hypothesis (Bulmer,1987; Higgs and 
Ran, 2008).   
 
 
1.5 Energy Constraints on Gene Expression and Translation Selection 
 
Exponential cellular growth is linearly correlated with global protein synthesis 
rates (Scott et al., 2010).  Indeed, data from growth assays revealed that codon 
usage correlates better with tRNA gene copy in fast-growing bacteria than in 
slow-growing species (Rochoa, 2003; Wei et al., 2019). From a resource 
allocation perspective, it was proposed that translation selection on highly 
expressed genes evolved as an adaption to optimize global protein synthesis 
rates by coordinating the efficient use of ribosomes [Andersson and Kurland, 
1990] which are known to be the primary limiting factor under high growth 
conditions (Warner, 2005). Based on this model, codon optimization reduces the 
dwell time of actively elongating ribosomes, which in turn increases the turnover 
of free ribosomes to initiate translation on other transcripts. This claim was later 
validated by genome-engineering experiments in E.coli, where Frumkin and 
colleagues replaced abundant codons in all highly expressed genes with rare 
synonymous codons. They went on to measure proteome-wide changes using 
mass spectrometry which revealed a decrease in the abundance of proteins 
encoded by not only the recoded mRNAs but also the non-recoded mRNAs that 
use codons that overlap with substituted codons of the re-coded highly 
expressed genes (Frumkin et al., 2018) 
 
1.6  Evolution of Codon Usage in Animal Genomes  
 
While simpler organisms exhibit clear signatures of adaptive codon usage bias, 
the influence of translation selection in animal genomes was historically 
disputatious (Duret, 2002; Galtier et al., 2018). A major reason was the lack of 
correlation between tRNA gene copy frequency and codon bias in animals 
(Kanaya et al., 2001). Although genomic tRNA copy number scales with cytosolic 
tRNA levels in simpler organisms (Dong et al., 1996; Harismendy, 2003), recent 
developments in chromatin profiling and bulk tRNA sequencing now support 
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tissue-specific and cell-type patterns of tRNA expression sequencing (Ditmar 
2009; Gingold et al., 2014; Gogakos et al., 2017). Recent studies have 
uncovered tissue-specific patterns of codon usage in Drosophila (Allen et al., 
2022; Payne and Ponce, 2018) and humans (Kames et al., 2020). Because this 
represents a fairly recent shift in expectations, and the model organism of focus 
in my dissertation is Drosophila melanogaster, I will summarize key studies that 
supported and contradicted translation selection in drosophilids and mammals. 
 
 
Deep population genomics suggest that selection on codon usage bias was 
underestimated in D. melanogaster and Human Genome 
 
The advent of DNA microarrays in the 1990s led to an increase in the 
comparative studies of gene expression differences between species. Kanaya 
and colleagues investigated how species-specific patterns of codon usage 
correlated with tRNA gene copy number in the model animals Caenorhabditis 
elegans (nematode worm), Xenopus laevis (frog), and Drosophila melanogaster 
(fruit fly) in addition to Homo sapiens (Kanaya et al., 2001). Although they found 
that codon bias modestly correlated with levels of expression (based on 
expressed sequence tags) in both C. elegans and D. melanogaster, optimal 
codons and tRNA gene content were only positively correlated in C. elegans 
(also in Duret, 2000) but not in D.melanogaster, opposing the selectionist model 
of codon optimality. Similar analyses in the higher vertebrates, H.sapiens, and 
X.laevis, found no correlation between gene expression and tRNA gene copy 
number (based on comparing ribosomal genes with other genes) and concluded 
that translation efficiency could not explain codon usage bias in these animals 
(Kanaya et al., 2001). Later population genetics studies in Drosophila also 
supported weak or near absent selection on synonymous sites and, by 
extension, codon usage bias (Zeng and Charlesworth, 2009). However, Machado 
et al. reasoned that these previous population studies may have failed to detect 
strong selection in D.melanogaster because strong purifying selection at 
synonymous sites would produce low-frequency allele variants. So, by utilizing 
deep genomic population sequencing of two D.melanogaster populations, thus 
affording greater statistical power, they were able to identify signals ranging from 
weak to strong selection on codon usage bias (Machado et al., 2020).  
 
In mammals, notably humans, GC-compositional bias was proposed to be the 
major determinant of codon usage bias as it was observed that the GC-content at 
the wobble codon position (GC3%) correlated with the isochoric GC-content 
(Mouchiroud et al., 1988; Clay and Bernardi, 2011). However, ground-breaking 
work by Gingold et al. provided experimental evidence of translation selection in 
humans by directly quantifying the tRNA expression using microarrays across 
hundreds of proliferative and differentiated human cell lines. Here, they 
uncovered distinct proliferation-specific and differentiation-specific patterns of 
codon-tRNA co-adaptation (Gingold et al., 2014). Later, Gingold’s findings were 
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later challenged by Pouyet et al., who analyzed the proliferation and 
differentiation gene sets used in Gingold et al. and found that the GC3% of those 
genes strongly correlated with the GC-content of their isochore and their meiotic 
expression level, features that are suggestive of neutral mutation bias. They then 
went on to rule out the influence of translation selection (and all other selection 
pressures) on human genes based on the expectation that amino acids decoded 
by a single tRNA type (mono-isoacceptor amino acids), those tRNAs should be 
uniform across cell types. They reasoned that adaptation to tRNA abundance 
could not explain the observed variation of synonymous codons that encode 
these mono-isoacceptor amino acids in the cell-type specific genes (Pouyet et 
al., 2017). However, this conclusion is rather short-sighted because directional 
mutation and selection for matching codon demand with tRNA supply are not 
mutually exclusive. Nor did they consider that tRNA expression may be under 
selection to match the tissue-specific codon demand, and despite the lack of in 
vivo tRNA expression at the time, the authors argue against tRNA isoacceptor 
pools changing to match the cell-type specific codon demand. Finally a recent 
deep population genomics analysis of over 60,000 human genomes (similar to 
the approach used by Machado et al., 2020) opposes the lack of selection on 
human codon usage (Dhindsa et al., 2020). This study identified selection 
against variants that reduced codon optimality, particularly in DNA-damage repair 
genes, and synonymous mutations that reduce codon optimality occur at lower 
allele frequency than neutral variants. Additionally, they uncovered that selection 
on codon optimality was stronger in dosage-sensitive genes that are implicated in 
Mendelian diseases (Dhindsa et al., 2020). 
 
1.7 Summary of Evolution of Codon Usage Bias 
 
Since the discovery of codon usage bias over 40 years ago, decades of research 
reveal that, in addition to neutral mutational pressures, natural selection has 
evolved genome-wide codon usage patterns and reflects optimization of protein 
synthesis under energy constraints. Signatures of codon optimality are prevalent 
in microbial systems but historically dubious in more complex multicellular 
organisms. Because of this longstanding belief, the role of codon optimality as a 
potential regulator of animal gene expression was largely overlooked until the 
last seven years [Gingold et al., 2014]. However, the increased availability of 
tissue/cell type-specific genomic assays and deep population genomics 
sequencing now lend evidence in favor of stronger selection on animal codon 
usage than previously believed. In the next section, I will review biochemical 
studies that have advanced our view of how adaptive codon usage, i.e., codon 
optimality, influences animal gene expression and physiology. 
 
 
 
 
2. Codon optimality as a genetic determinant of animal development 
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Here, I review how genome-wide studies demonstrate the importance of post-
transcriptional control, mRNA decay, and translation,  in animal development and 
the contribution of codon optimality to these processes, with a focus on D. 
melanogaster (fruit fly)  and mammals (humans and mice).  

 
How multicellular organisms develop from a single-celled fertilized egg is the 
raison d’etre of developmental biology. Multicellularity generates two 
fundamental and distinct cellular states: proliferative and differentiated. Healthy 
tissue development requires a balance between cell proliferation and 
differentiation. Central to the process of cell lineage specification is the precise 
and dynamic remodeling of gene expression that is required to generate the 
distinct proteomic changes that, in turn, shape cellular identity and function. A 
hallmark of cell proliferation is elevated global protein synthesis as a form of 
growth adaptation compared to more emphasis on local translation in 
differentiated cells which are no longer actively dividing.  
 
Protein steady-state levels reflect a balance between mRNA synthesis and 
mRNA degradation. Regulation of gene expression is controlled at multiple 
levels.  Processes that regulate mRNA transcription, such as transcription 
factors, chromatin dynamics, and RNA polymerase activity, represent the better-
studied half of this equation. However, discordant changes between mRNA 
levels and protein abundance have been demonstrated across multiple systems 
from yeast (Liu et al., 2016) to mammals, including humans (Vogel et al., 2010; 
Swindell et al., 2015; Wang et al., 2019). For example, Schwanhausser 
measured global steady-state levels of mRNA and protein using RNA 
sequencing and mass spectrometry of mouse fibroblasts and found that mRNA 
levels explain only 40% of protein levels, leading the authors to conclude that 
mRNA decay is as important as mRNA synthesis in controlling cellular protein 
concentrations. On the other hand, coordinated changes in genome-wide decay 
rates of functionally related mRNAs have been observed across mammalian 
(Raghavan et al., 2002 ) and insect development (Thomsen et al., 2010).  For 
example, the induction of quiescence in human fibroblasts resulted in a global 
destabilization of mRNAs involved in ribosome biogenesis (Johnson et al., 2017).  
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2.1 RNA decay is a major contributor to post-transcriptional control of animal 
development 
 
RNA degradation plays a crucial role in modulating mRNA steady-state levels 
and coordinating quality control by removing defective transcripts. Genome-wide 
measurements of mRNA decay rate are typically obtained by serially quantifying 
the mRNA abundance over time using one of two strategies: 1) pharmacological 
inhibition of transcription using Actinomycin D or α-Amanitin (Friedel and Dolken, 
2009; Lugowski et al., 2018) or 2) pulse-chase methods that incorporate 
nucleoside analogs, (e.g., 4-thiouracil, 5-ethynyl uridine, 5-bromo-uridine) to 
metabolically label nascent RNA transcripts (Tani et al., 2012; Burow et al., 
2015). The maternal-to-zygotic transition (MZT), a conserved event in early 
animal embryogenesis,  represents a well-studied developmental event wherein 
differential mRNA degradation dramatically alters the transcriptome via the 
synchronized decay of maternally derived transcripts (Vastenhouw et al., 2019) 
and the activation of the zygotic genome (Sha et al., 2020).   
 
Most mRNAs in eukaryotes are degraded by the conserved exonuclease-
mediated 5’-3’ decay pathway (Mugridge et al., 2018). This multi-step decay 
process begins with the shortening of the 3’poly-A tail (de-adenylation) by the 
CCR4-NOT complex, followed by the removal of the 5’ 7-methylguanosine cap 
by the decapping enzyme complex (Mugridge et al.,2016) which then exposes 
the 5’ phosphate group that acts as the signal for the binding of the conserved 
exoribonuclease, Xrn1. Xrn1 processively degrades the mRNA in the 5’-3’ 
direction. Despite sharing a general mechanism for decay, eukaryotic mRNA 
half-lives vary widely between transcripts, as short as a few minutes to hours, 
and may extend to even more than a day (Tani et al., 2012; Burow et al., 2018). 
mRNA stability was estimated to control up to 10% of all human genes 
(Bolognani and Perrone-Bizzozero, 2008).  In addition to differential decay rates, 
mRNA stability correlates with functional category. For example, mRNAs with 
housekeeping functions tend to have long half-lives (>4 hours), whereas mRNAs 
with regulatory and cell-type specific functions exhibit shorter half-lives (<4 hours) 
(Tani et al., 2012; Schwanhäusser et al., 2013).  Collectively, these genome-wide 
studies support mRNA degradation as an essential mechanism for controlling the 
persistence of genetic information, necessitating a clearer understanding of how 
mRNA stability is developmentally regulated. 
 
2.2 Codon Optimality and post-transcriptional regulation  
 
Codon optimality broadly refers to how codon identity within the mRNA coding 
sequence (CDS) regulates the stability and elongation rates of mRNAs. Ground-
breaking work in S.cerevisiae revealed that codon optimality is a major genetic 
determinant of mRNA half-lives, wherein certain codons either stabilized ‘optimal 
codons’ or destabilized ‘non-optimal’ their mRNAs. Furthermore, causality 
between codon identity and mRNA half-lives was established by monitoring 
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changes in decay rates after re-coding with synonymous codons. To quantify this 
association, the same study proposed the Codon Stabilization Coefficient 
(CSCs), which is the Pearson’s R correlation coefficient between codon 
frequency and mRNA half-lives. They also reported that CSCs correlated with 
genomic tRNA abundance in the yeast, suggesting crosstalk between mRNA 
translation efficiency and degradation (Presynyak et al., 2015).  Since then, the 
influence of codon optimality on mRNA degradation rates has been characterized 
in several animal species under various developmental states.  
 
Maternal-to-zygotic transition represents a major developmental phase in early 
embryogenesis that is defined by the elimination of maternally deposited mRNAs 
and proteins and the de novo expression of the zygotic genome. Therefore, the 
genetic mechanisms controlling maternal RNA degradation remain an active area 
in developmental and reproductive biology. Two groups independently elucidated 
a causal link between non-optimal codon enrichment and destabilization of a 
subset of maternal mRNAs after zygote genome activation in Xenopus laevis 
(frog) and Danio rerio (zebrafish) (Bazzini et al., 2016; Mishima and Tomari, 
2016). Bazzini et al. also uncovered a similar pattern in mouse and 
D.melanogaster embryos.  CSCs also explained mRNA stability in human HeLa 
and Chinese hamster ovary cell lines (Forrest et al., 2020). Our lab elucidated 
that codon-mediated mRNA decay is a major determinant of differential mRNA 
decay in the Drosophila embryos but – for reasons unknown -  not in the 
embryonic nervous tissues, suggestive that codon optimality is context-
dependent (Burow et al., 2018).  Fragile-X syndrome (FXS) is the most common 
hereditary neurodevelopmental disorder and is caused by defects in the fragile X 
mental retardation protein, FMRP.  FRMP is a neuronally enriched RNA-binding 
protein, with dFMR1 homolog in Drosophila, that regulates different aspects of 
mRNA metabolism (reviewed in Richter et al., 2021).  Knockdown of FRMP in the 
mouse brain led to destabilization and reduced levels of FRMP- mRNA targets, 
and it was found that the target mRNAs fastest degradation rates were enriched 
with optimal codons. This led to authors to conclude that FMRP couples mRNA 
stability to codon optimality in neurons, possibly through direct interactions with 
ribosomal machinery (Shu et al., 2020). An emergent theme from these animal 
studies is that mRNAs encoding functionally related proteins that have similar 
mRNA half-lives also tend to share similar codon usage profiles. Collectively 
these findings position codon optimality as an important regulatory code 
governing the stability of functionally related genes.  
 
Codon optimality and differential mRNA translation  
 
Translation efficiency determines the rate and quality of protein synthesis. 
Translation efficiency itself is parametrized by initiation and elongation rates. 
Compared to translation initiation - the rate-limiting step of protein synthesis - 
control of elongation dynamics is less studied. Current models suggest that 
synonymous codons have distinct elongation rates, in part due to the differences 
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in the supply of cognate tRNAs. Microarray profiling in hundreds of human cell 
lines revealed that tissue-specific patterns of tRNA expression matched the 
codon demand of fate-determining mRNAs resulting in proliferation-specific and 
differentiation-specific codon usage signatures (Gingold et al., 2014). Gingold et 
al. speculated that this tissue-specific adaptation between the mRNA and tRNA 
pool served to modulate context-specific protein levels. However, direct evidence 
for codon-dependent changes in translation efficiency leading to changes in 
protein abundance during development is based primarily on cancer studies 
(Goodarzi et al., 2016; Benisty, 2020; Passarelli et al., 2022 ). A striking example 
is the oncogene KRAS, which shares 85% protein sequence similarity with the 
non-oncogenic RAS proteins, but only 15% codon similarity because its codon 
usage matches that of the proliferation-related genes. Consequently, the 
synonymous recoding of the KRAS reduced its protein abundance when 
expressed in quiescent fibroblasts compared to proliferative fibroblasts. This 
study raises the possibility that the codon usage adaptation of some oncogenes 
allows cancers to hijack the translation program of proliferative cells (Benisty et 
al., 2020) 
 
Optimal codons are expected to be rapidly decoded by the ribosomes compared 
to non-optimal codons.  Toward this end, ribosomal profiling experiments have 
yielded valuable insights into how the interplay between codon identity and 
ribosome kinetics impacts protein expression. Ribosome profiling involves the 
deep-sequencing of ribosome-protected mRNA fragments and enables the 
precise monitoring of global translation in vivo at the nucleotide resolution 
(Ignolia et al., 2009). In breast cancer cell lines, the overexpression of tRNA-Arg-
CCG and  
tRNA-Glu-UCC led to an increase in the ribosome occupancy on mRNAs 
enriched with cognate GAA and GAG codons, indicative of elevated translation 
efficiency. This was further validated by direct proteomic quantification using 
mass spectrometry that also reported elevated levels of proteins enriched with 
GAA and GAG codons (Goodarzi et al., 2016). This study demonstrates that 
tRNA measurements can be informative about the tissue-specific proteome.  
However, a caveat with these studies is that gene expression programs in 
cancer/disease states do not always mirror normal development.  
 
Codon optimality couples mRNA decay and translation efficiency 
 
In eukaryotic cells, the efficiency with which an mRNA is translated and the rate 
of its decay are intimately coupled (Wu et al., 2009;) in a complex and context-
dependent fashion (Roy and Jacobson, 2013). Translation-coupled decay is 
utilized for both mRNA quality via ribosome surveillance pathways such as No-
Go decay (NGD) and nonsense-mediated decay (NMD) that target transcripts 
with stalled ribosomes (Veltri et al., 2020) and regulation of mRNA abundance 
(Bazzini et al., 2016), with the former role being better characterized than the 
latter.  Whilst I do not directly investigate translation-coupled mRNA decay, this 
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topic is relevant for explaining our results in Chapter 2 of this manuscript, so  I 
will discuss the molecular insights we have gleaned so far regarding how codon 
optimality – the differential elongation rates of synonymous codons -  is 
transduced into a signal for mRNA degradation.  
Immunoprecipitation studies in yeast revealed that the eukaryotic conserved 
ribosome recycling protein, Dhh1p (DDX6 in humans)  preferentially associates 
with ribosomes on mRNAs with high non-optimal codon content, which suggest 
that Dhh1p senses slow-moving ribosomes and somehow directed those 
transcripts for degradation (Radhakrishnan et al., 2016). Another major 
mechanistic insight came from Buschauer and colleagues, who combined cryo-
electron microscopy and mRNA sequencing in S.cerevisiae to show that the Not5 
subunit of the CCR4-NOT complex directly binds the empty E-site of ribosomes 
that have a vacant A-site, a conformation state adopted by a ribosome that 
suggests pausing such as waiting on a low abundant charged tRNA to bind the 
A-site codon (Buschauer et al., 2020). Moreover, DDX6 is known to interact with 
the CCR4-NOT complex, so possibly both proteins act in concert at linking codon 
optimality to mRNA stability. Collectively, these two key studies establish a 
mechanistic link between COMD and the canonical 5’-3’ co-translational decay 
pathway.  
 
2.3 Untranslated regions and post-transcriptional control in animal development 
 
Much of the current knowledge on post-transcription control is based on UTR-
mediated cis-trans interactions and local secondary structure effects, so I will 
briefly highlight their roles. Sequence elements within the untranslated regions 
(UTRs) and coding regions define the post-transcriptional regulatory grammar 
that modulates mRNA stability and translation efficiency. Alternative 
polyadenylation and 3’UTR extension have been observed in both Drosophila 
and mammalian neural differentiation (Hilgers et al., 2012; Blair et al., 2016). 
Many studies show that 3’UTRs contain cis-elements that are targets for RNA 
binding proteins (RBP) and microRNAs (miRNAs) that dynamically regulate 
mRNA degradation (Zaid 1994; Dini Modigliani et al., 2014; Pereira et al., 2017 ). 
The 5’UTR serves as the entry point for ribosomes during translation initiation 
(Hinnebusch et al., 2016); thus, 5’UTR isoforms may confer differential 
translation efficiency. Additionally, the 5’UTRs of genes encoding proteins 
associated with the translation machinery and ribosome biogenesis contain 
regulatory motifs consisting of a short tract of 4-15 pyrimidine bases known as 5’ 
Terminal OligoPyrimidine (5’ TOP). 5’TOP mRNAs are targets for the nutrient-
sensing mammalian target of rapamycin complex 1 (mTORC1) signaling pathway 
to selectively modulate their translation rate under stress and diseased 
conditions such as cancers (Abraham 1998; Holland 2008). Like the 3’UTR, the 
5’UTRs also modulate mRNA trafficking in the nervous system (Merianda et al., 
2013). For example, alternative 5’UTR splicing modulates the axonal and 
dendritic trafficking of the conserved brain-derived neurotrophic factor (BDNF) 
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(Collivia et al., 2021) and neuronal nitric-oxide synthase (nNOS) mRNAs 
(Newton et al., 2003).  
 
 
 
2.4 Summary of Codon Optimality mediated mRNA regulation in metazoans 
 
Dynamic mRNA decay plays an essential role in animal development. 
Biochemical studies agree that mRNA decay is largely regulated by sequence-
encoded features, such as the 5’UTR, 3’UTR, and, most recently, the codon 
identity in the coding regions. Since the discovery of codon optimality-mediated 
mRNA (COMD) in eukaryotes less than a decade ago, subsequent works have 
established a mechanistic link between codon optimality and the canonical 5’-3’ 
co-translational mRNA decay pathway. Traditionally, translation-coupled decay 
pathways were studied in the context of quality control of aberrant mRNAs. So, it 
remains incompletely understood the extent to which decay factors that sense 
slow decoding on non-optimal codons overlap with the canonical quality control 
pathways (such as no-go decay) for clearing poorly made mRNAs or if there 
exists an alternative mechanism for sensing the reduced elongation rates on 
normal mRNAs. 
More relevant to my work is the outstanding question regarding the mechanism 
responsible for establishing the distinct and context-dependent effects of codons 
on mRNA stability in animals. The prevailing model for the origin of COMD is that 
the distinct stabilities of codons are correlated with their elongation rates which in 
turn are modulated by the abundance of cognate tRNAs. However, the cell-type 
matched and in vivo tRNA measurements are limited for animals. Although this 
model offers a temptingly straightforward explanation, still, it extrapolates from 
the tRNA-mediated codon optimality paradigm informed by studies in unicellular 
organisms [See section 1 of this chapter]. However, the evolution of 
multicellularity led to considerable divergence in the regulation of gene 
expression between unicellular organisms and metazoans [Britten and Davidson, 
1969; Carroll, 2003].  So perhaps, the alternative explanation for codon-
dependent elongation rates may be that ribosomes differentially decode codons 
by a mechanism that is independent of their tRNA concentrations. Hence, the 
proposed model of tRNA-modulated COMD, especially in vivo,  necessitates 
further investigation 
  
 
3. Primer on tRNA Biology: 
 
3.1 General biophysical properties of tRNAs 
 
tRNAs are one of the most abundant RNA molecules in the cell, accounting for 
about 8-10% of total cytosolic RNA. tRNAs are central to gene expression as 
they are the suppliers of amino acids in the protein synthesis process that 
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decodes the genetic information in mRNA to proteins.  tRNAs are short non-
coding RNAs that have an average length of 75bp after maturation. tRNA genes 
are transcribed by RNA polymerase III (POL3), a highly evolutionarily conserved 
complex. All tRNA molecules fold into a conserved secondary structure that 
takes on a conserved cloverleaf conformation consisting of 3 stem-loops: D-loop, 
anticodon loop, and T-loop (Figure 1A).  These secondary structures further fold 
and stack onto themselves, mediated by van der Waal’s forces, into the 
canonical L-shaped tertiary structure (Figure 1B). This L-shaped tertiary 
structure is the substrate for aminoacyl synthetase (AARS).  The short arm of the 
L-shape tertiary structure consists of the amino acid acceptor stem and the T-
loop, and the long arm consists of the D-loop and anticodon stem-loop. The 
compact L-shape is also stabilized by various chemical moieties that are added 
during post-transcriptional tRNA maturation. 
 
 
 
 
 
 
 
‘ 

 
 
3.2 Canonical Regulation of tRNA biogenesis 
 
In eukaryotes, POL3 recruitment to tRNA genes is mediated by two general 
transcription factors, TFIIIB and TFIIIC. All tRNA genes contain two internal 
promoters, A- and B-  boxes, which are specifically recognized and bound by a 
large multi-subunit protein complex, TFIIIC. TFIIIC recruits TFIIIB, which then 
recruits and physically binds POL3. Both in yeast and mammalian cells, TFIIIB 
consists of three subunits: POL3-specific subunit BDP1, TFIIB-related Brf1, and 
TATA-box binding protein (TBP), present also for the other two RNA 
polymerases. RNA POL3 transcriptional activity, and thus, RNA biogenesis is 
positively regulated by pro-growth and proliferative stimuli (Figure 1D) TBP and 
Brf1 are post-translationally regulated by the three conserved mitogen-activated 
kinases of the MAPK/ERK pathway:  c-JNK, ERK, p38 kinase. Negative 
regulation of POL3 by MAF1 is the best characterized. mTORC1 kinase, the 
pioneering growth factor in nutrient sensing pathways, phosphorylates MAF1 to 
its inactive form.; However, in nutrient deprivation/ stress response, mTORC1 is 

Figure 1: Transfer RNAs 

A:  Secondary tRNA Structure B)  tertiary tRNA structure C) Nomenclature of 

tRNAs reflects the fact that they are often found as multi-copy loci in the 

genome. 

A B C 
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inhibited, leading to dephosphorylation of MAF1. This dephosphorylated state of 
MAF1 competitively binds to the Bfr1 subunit on TFIIIB, blocking RNA POL3 
recruitment and assembly (Wei et al., 2009; Vannini et al., 2010)  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1D POL3 Transcription of tRNA genes source: ‘tRNA dysregulation and 
diseases,’ Orellana et al., 2021 
 
Genome-wide chromatin profiling in animal cells agrees that tRNA transcription is 
developmentally regulated (Barski et al., 2010).  For example, genome-wide RNA 
POL3 occupancy is dynamically altered between the quiescent/inactive and 
proliferative states during human macrophage activation (Van Bortle et al., 2017).  

Thus, an outstanding question in tRNA biology is the mechanism of gene-specific 
regulation since all tRNA loci share the same internal promoters and general 
transcription factors. It is believed that tRNA genes are physically regulated by 
the chromatin context (Arimbasseri et al., 2016).  

 
3.3 tRNA processing and  maturation  
 
After transcription, the pre-tRNA primary transcript undergoes further processing 
in the nucleus by enzymatic cleavage at the 5’ and 3’ termini and, where 
applicable, intron-removal in the nucleus. The 5’ leader sequence (~10 bases) is 
cleaved by the ribozyme RNAase P (Carrara et al., 1989), while the 3’ trailer 
sequence (a poly-U tract) is cleaved by the endonuclease RNase Z which 
exposes the crucial 3’ AARS discriminator bases (Maraia et al., 2011). After 3’ 
cleavage, the CCA-adding enzyme (ATP (CTP): tRNA nucleotidyltransferase) 
extends the 3’ terminus with CCA, an essential recognition element for the 
AARS. The final major step of tRNA maturation involves various post-
transcriptional editing, which occurs in both the nucleus and cytoplasm. 
Approximately 10-15% of tRNA nucleotides are modified, and post-transcriptional 
modifications regulate diverse aspects of tRNA metabolism, such as structural 
stability, decoding fidelity in translation, and recognition sites for enzymes 
(reviewed in Berg and Brandl, 2021).  
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3.4  Technical Innovations in cellular tRNA quantification    
 
High-throughput sequencing of tRNAs remains an active area of innovation and 
has been pivotal in yielding fresh insights about tRNA regulation in multicellular 
development. Here, I will briefly summarize the history of tRNA quantification.  
 
The traditional approach: Inferring tRNA levels variation. 
 
The assumption that tRNA gene copy variation reasonably explains cytosolic 
tRNA levels seems to be valid for simple organisms (Ikemura 1981a; Dong 1996; 
Kanaya et al., 2001). For example, in S.cerevisae, genome-wide chromatin 
profiling of RNA POL3 binding suggests all tRNA loci are actively transcribed 
(Harismendy et al., 2003), suggesting that tRNA gene copy alone may 
reasonably approximate cytosolic tRNA levels in these simple organisms. 
However, such linear relationships may not hold true in multicellular organisms 
characterized by dynamic chromatin states. Crosslinking and 
immunoprecipitation (CLIP) sequencing of SSB, a pre-tRNA binding protein, in 
HEK293 cells suggests that 40% of tRNA loci were transcriptionally silent 
(Gogakos et al.,  2017).   
 
Microarrays enabled genome-wide profiling of cytosolic tRNAs 
 
In 1994, Affymetrix released the first commercial DNA microarray chip that, for 
the first time, enabled the profiling of thousands of mRNAs in one experiment 
(genome-wide) by using DNA probes that hybridize each cDNA in the library 
(Heather and Chain, 2016).  A decade later, Tao Pan’s lab developed the first 
microarray platform for genome-wide tRNA profiling that could distinguish 
between isoacceptors (Dittmar et al., 2005). Later on, the Pan lab uncovered 
differential tRNA expression between normal and breast cancer cell lines (Pavon-
Eternod et al., 2009). This study propelled tRNAs into the spotlight as potential 
regulators of animal development (Goodarzi et al., 2016; Gingold et al., 2014).  
However, microarray-based methods impose certain limitations: 1) they require  
knowledge of a species’ tRNA gene set beforehand due to the need for custom-
made hybridization probes 2) cross-hybridization occludes the expression of 
tRNA genes that differ by less than 5bp to 8bp (Zaborske et al., 2009) and 2) 
they have a limited dynamic range of quantification and are less  
sensitive than RNAseq (Pang et al., 2014) 
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Next-Generation High-throughput tRNA sequencing 
 
The current state-of-the-art for global tRNA profiling involves the cDNA library 
preparation designed for Illumina’s second-generation next-generation 
sequencing (NGS) platform. In general, NGS is more sensitive, less labor-
intensive (no need to design sequence-specific probes), and has higher 
discovery potential (no prior genomic data is needed) than microarrays. Nearly all 
of these tRNAseq methods share similar steps that were adapted from the 
protocol for barcoded small RNA cDNA library preparation (‘small RNAseq’)  
(Hafner et al., 2012). However, these second-generation tRNAseq protocols 
employ different biochemical approaches to address the biophysical properties of 
tRNAs that occlude adapter ligation and read-through by the reverse 
transcriptase, two essential steps for cDNA library preparation.  For example, 
Hydro-tRNAseq applies a partial alkaline hydrolysis treatment to shear the tRNA 
fragments in order to overcome the stable secondary and tertiary structures, as 
well as to break the 3’ aminoacyl-tRNA bond to enable ligation of the 3’ adapter 
(Gokagos et al., 2017). To improve readthrough by the reverse transcriptase 
(RT), some methods apply a demethylase treatment using genetically modified 
Alkb demethylase (E.coli) to remove specific methylation modifications such as 
1-methyladenosine, 6-methyladenosine, and 1-methylcytosine (Zheng et al., 
2015; Pinkard et al., 2020).  However, some modifications can be read through 
and result in non-random base misincorporations that are higher than expected 
by technical errors. Because post-transcriptional modifications are dynamic and 
essential to tRNA metabolism, these RT-misincorporation signatures can be 
identified at the post-read alignment step to make inferences about the tRNA 
epitranscriptome (Schwartz et al., 2018; Pinkard et al., 2020; Behrens et al., 
2021). 
 
Limitations of NGS tRNAseq 
 
Studies that compare tRNA sequencing protocols on specific samples found a 
modest correlation between their measurements, likely due to protocol-specific 
biases (Pinkard, 2020; Bherens et al., 2020). A common technical bias among 
tRNAseq methods is the uneven read coverage wherein there is a higher read-
depth at the 3’ end than the 5’ end, likely because the 5’end is generally more 
modified and/or structured.   Another area for growth is the development of a 
standard ‘off-the-shelf’ bioinformatics workflow for analyzing tRNAseq libraries, 
which would improve reproducibility.  Although the general steps for tRNAseq 
analysis parallel standard RNAseq - i.e., read trimming, read alignment, and 
post-alignment analysis -  the biology of tRNA requires additional steps, but 
bioinformatic approaches vary. For example, one common strategy is to collapse 
all the identical tRNA genes in the reference set to keep only unique tRNAs that 
are no more than 95% to 100% similar (Hoffman et al., 2018) while other groups 
prepare a consensus reference set and performing SNP-aware alignment 
(Behrens et al., 2021).  
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4.1 Chapter Summary and Overview 

In this review chapter, I emphasized the role of natural selection in shaping 
genomic and gene-specific codon usage patterns in service of optimizing gene 
expression, specifically post-transcriptional mRNA dynamics. As a result, the 
usage of a subset of codons improves mRNA translation and stability, and these 
codons are referred to as optimal codons. Presently, much of what we 
understand about the influence of codon optimality on gene expression 
regulation is largely informed by simpler organisms. Specific to eukaryotes, the 
interplay between codon optimality and gene expression is primarily derived from 
studies in the model fungus S.cerevisiae. In S.cerevisiae, codon bias in highly 
expressed correlates with tRNA abundance, which is indicative of selection for 
optimizing mRNA translation during protein synthesis.  As an application, this 
genomic property positioned S.cerevisiae as an attractive ‘bio-factory’  for the 
heterologous production of proteins in the biotechnology industry [Kulagina et al., 
2021]. S.cerevisiae  is one of an estimated 1.5 million fungal species [Berbee 
and Taylor, 2017]. One of the gaps that my dissertation work addresses are the 
prevalence of natural selection on codon usage patterns in other fungal clades.   

Until recently, it was assumed that the codon usage bias of metazoans is largely 
neutral, which led to the neglect of studying codon optimality as a potential 
regulatory grammar for mRNA dynamics in animal genetics. However, a handful 
of key studies that uncovered proliferation-specific and differentiation-specific 
codon usage in diverse human cell lines [Gingold et al., 2014] and codon 
optimality mediated mRNA decay (COMD), first in S.cerevisiae (Presynak et al., 
2015 ), and later in model vertebrates and invertebrates  (Bazzini et al., 2016; 
Mishma and Tomari, 2016; Burow et al., 2018) re-kindled an interest in codon 
optimality in animal development. Still, gaps remain. Among the handful of 
studies that characterized COMD in animal systems, the majority were based in 
vitro. Additionally, current models suggest that the distinct stabilities of codons 
are modulated by tRNA concentrations; however, genome-wide tRNA 
quantitation is limited in most species, more so in animals. To date, there are no 
published tRNA measurements for the model animal Drosophila melanogaster 
(fruitfly).  As a neurobiology research group, we are generally interested in the 
post-transcription control of brain development. Collectively, these factors 
motivated us to investigate the regulation of tRNAs during neurogenesis in the 
Drosophila central nervous system using next-generation sequencing 
approaches and how changes in tRNA expression contribute to dynamic codon 
optimality and gene expression programs that support neural proliferation versus 
differentiation.   

The study of the role of tRNAs and codon optimality in normal animal 
development is still in its early days. Hence, a major contribution of my 
dissertation work is establishing the Drosophila central nervous system as a 
model for studying differential tRNA regulation on cell fate determination in higher 
animals.  
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4.2 Dissertation research aims 

My dissertation research studies the contribution of tRNAs and codon usage in 
shaping gene expression programs in animal developmental Drosophila 
neurogenesis) and in fungal evolution, thus covering the representatives from 
two of the four major branches of Eukarya.  

 

In Chapter 2, I use experimental and bioinformatic approaches for investigating 
tRNA regulation in Drosophila neurogenesis. The objectives of this chapter were 
to: 

Aim 1: Measure the genome-wide tRNA repertoire in neuroblasts and 
post-mitotic neurons (addressed in Chapter 2) 

Aim 2: Determine if tRNA abundance contributes to tissue-specific codon 
optimality in neuroblasts and neurons (addressed in Chapter 2) 

 

Chapter 3 is a methods-centric extension of Chapter 2 because tRNA 
sequencing is relatively recent, so there is no standardized workflow for 
analyzing tRNAseq data. So in Chapter 3, I compared tools for differential gene 
expression analysis for tRNAseq data. The objective of this chapter was to:  

Aim 1:   Evaluate the performance of parametric and non-parametric 
methods for identifying differentially expressed tRNAs  

 

Finally, Chapter 4 involves the large-scale analysis of genomic data from over 
400 recently sequenced fungal species that are representatives of six out of the 
eight fungal phyla and eighteen taxonomic classes. The objectives of this chapter 
were to:  

Aim 1: Characterize kingdom-wide patterns of codon usage and genomic 
tRNA in Fungi  

Aim 2: Elucidate the evolutionary influences and functional implications of 
codon usage bias in Kingdom Fungi  
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Chapter 2:  Dynamic changes in tRNA expression establish proliferation- 
and differentiation-specific codon optimality in neurogenesis 

Neural differentiation 
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Background:  

Research Gap: It is largely unexplored how the genome-wide regulation of 
transfer RNA  (tRNAs) contributes to the genetic control of animal neurogenesis. 

Key concepts: Cell differentiation, neurogenesis, post-transcription, tRNAs, 
codon optimality 

Within higher animals, the central nervous system is the most complex and 
morphologically diverse organ.  Healthy brain development requires precise 
spatiotemporal control of stem cell proliferation and differentiation. Neurogenesis 
is archetypal of cell lineage specification in that the dynamic remodeling of the 
genetic landscape orchestrates the differentiation of a small pool of neural 
progenitors into manifold subtypes of post-mitotic neurons and glia. Dysregulated 
neural stem cell proliferation is implicated in tumor initiation and growth, 
particularly in pediatric brain cancers (Maurange, 2020; Azzarelli et al.,2018). 
Hence, a major challenge in neurobiology is to unravel the genetic changes 
contributing to neural cell fate.  

Regulation of mRNA is an essential aspect of gene expression as it is the mRNA 
repertoire that defines the repertoire of proteins that, in turn, establishes cellular 
identity and function. To sustain proliferation and progress through asymmetric 
cell division in a timely manner, neural progenitors must maintain high rates of 
global protein synthesis to meet their own metabolic needs in addition to 
regulating the production of differentiation-related proteins that are inherited by 
their progeny. On the other hand, post-mitotic neurons are characterized by low 
rates of global protein synthesis; instead, the polarized morphology imposes the 
need for local, activity-dependent protein synthesis at the synapses and 
dendrites (Buffington et al., 2014; Huber, 2000). Protein output is a function of 
mRNA steady-state levels. In turn, the mRNA steady-state level is dictated by the 
dynamic equilibrium between rates of synthesis (transcription) and degradation 
(Sun et al., 2012). Even so, much focus has been given to transcriptional control 
of mRNA dynamics; however, it is known that changes in transcription rate may 
be buffered against altering steady-state mRNA or protein levels (Trimmers and 
Tora, 2018; Swindell et al., 2015). Therefore, deciphering the dynamics of post-
transcriptional processes– i.e., mRNA stability and translation efficiency – paints 
a complete picture of mRNA regulation across development.  

Emerging studies support codon optimality as an influential cis-regulator of 
mRNA destruction in metazoans. Paradigm-shifting work in S.cerevisiae revealed 
that certain codons either stabilized (‘optimal codons’) or destabilized (‘non-
optimal) their mRNAs. Furthermore, causality between codon identity and mRNA 
half-lives was established by monitoring changes in decay rates after re-coding 
with synonymous codons. To quantify this association the same study proposed 
the Codon Stabilization Coefficient (CSCs), which is the Pearson’s R correlation 
coefficient between codon frequency and mRNA half-lives (Presynyak et al., 
2015). Since then, several animal studies have supported codon optimality as a 
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major genetic determinant of mRNA degradation rates. Two groups 
independently elucidated the causal link between enrichment of non-optimal 
codons and destabilization of a subset of maternal mRNAs after zygote genome 
activation in Xenopus laevis (frog) and Danio rerio (zebrafish) (Bazzini et al., 
2016; Mishima and Tomari, 2016). Reporter assays in transformed and normal 
human cell lines demonstrated that codon optimality strongly influences mRNA 
stability in a translation-dependent manner (Bazzini et al., 2019; Forrest et al., 
2020).  Using tissue-specific global profiling of mRNA decay, our lab discovered 
codon optimality as a major determinant of differential mRNA decay in the 
Drosophila embryo in vivo, a classical model for developmental biology (Burow et 
al., 2018).  In S.cerevisae, the conserved mRNA decapping factor Dhh1 was 
found to preferentially bind actively translated mRNAs enriched with slow 
decoding ribosomes (Radakrishnan et al., 2016). Ribosome profiling in yeast 
revealed a correlation between A-site occupancy – where aminoacylated tRNAs 
bind their cognate codons – and mRNA half-lives (Hanson and Coller, 2018). 
Collectively, these experiments lend evidence to how codon optimality underlies 
a general mechanism that couples mRNA stability to the translation elongation 
status. Still, evidence suggests that codon-dependent mRNA decay seems to be 
context-dependent and dynamically regulated during development. Although 
codon optimality was found to be a strong determinant of mRNA stability in 
Drosophila whole embryos, the stabilizing effect of these codons was attenuated 
– and, in some cases, reversed - in the embryonic nervous system. This led the 
authors to speculate if this developmental switch in codon-mediated mRNA 
decay is linked to altered tRNA expression upon embryonic neural differentiation 
(Burow 2018).  

Traditionally regarded as housekeeping genes, several studies now support the 
dynamic regulation of tRNAs across development states (Ditmar, 2009; Gingold 
et al., 2014; Gogakos et al., 2017). Because the genomic dosage of tRNA genes 
varies widely, current models suggest that “optimal codons” have rapid 
elongation rates because they are decoded by abundant tRNAs.  Combined 
mRNA sequencing and tRNA microarrays in hundreds of healthy and 
transformed human cell lines revealed proliferation and differentiation-specific 
signatures of codon-anticodon co-adaptation, suggesting a role for codon-
mediated translation efficiency in cell-fate determination (Gingold et al., 2014). 
Because tRNAs are central to protein synthesis, distinct tRNA profiles should be 
informative about the proteomic landscape. In their systematic study of 
metastasis in breast cancer cell lines, Goodarzi et al. combined gain/loss-of-
function of selected tRNAs and ribosome profiling to uncover concomitant 
changes between altered tRNA expression and protein elongation rates, as well 
as correlate changes in proteins enriched with cognate codons of the perturbed 
tRNAs (Goodarzi 2016). A caveat, however, is that inferences about gene 
expression programs in diseased states and cell lines may not recapitulate 
normal cellular development in vivo.  
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Recent bulk tRNA sequencing by Pinkard et al. characterized in vivo variation in 
tRNA levels between different regions of the adult mice brain (Pinkard et 
al.,2020). Ishimura et al. showed that double knock-down of neural-specific 
tRNA-ArgTCT and ribosome recycling factor Gtbp2 led to neurodegeneration in 3-
day-old mice due to increasing ribosome pausing on mRNAs enriched with the 
cognate AGA codons. Indeed, aberrant tRNA processing and metabolism are 
implicated in over 50 neurodevelopmental and neurodegenerative diseases that 
are linked to aberrations in the translation machinery (Knight et al., 2020; 
Schaffer et al., 2019).   Still, changes in the tRNA landscape in neurogenesis and 
the regulatory consequences thereof remain largely uncharacterized.  Moreover, 
most previous works profiled tRNAs under culture conditions, thus providing 
limited insights into the developmental role of tRNA variation in vivo and in non-
diseased states.  

To investigate how the interplay between tRNA expression and codon optimality 
contributes to proliferation and differentiation programs in neurogenesis, we 
leveraged high-throughput genomic assays and bioinformatics analysis to chart 
changes in mRNA stability and tRNA levels in vivo between populations of neural 
stem cells (neuroblasts) and post-mitotic neurons in the Drosophila larval central 
nervous system, a classical model of neurobiology. We demonstrate how cellular 
tRNA levels provide strong explanatory power for the codon stabilization 
coefficients (CSCs), thus providing evidence that the regulatory signal in codons 
is modulated by the variation in their cognate tRNA levels. We uncovered 
context-dependent codon optimality-mediated mRNA decay and translation 
efficiency, as well as functional group differences, that are oriented toward 
tissue-specific physiology. Specifically, the neuroblast tRNA pool establishes a 
codon optimality program that favors the stability and translation efficiency of 
mRNAs that are pro-proliferative (i.e., ribosome biogenesis and energy 
production); in contrast, the neuron tRNA pool supports the selective translation 
of a subset of RNA-binding proteins, many of which are known to regulate key 
neurogenic pathways, including alternative RNA splicing.  Decades of work in the 
Drosophila central nervous system have yielded unmatched insights into the 
genetic control of neural proliferation and differentiation due to the suite of 
molecular tools that enable tissue-specific manipulation.  Given that both 
translation elongation and the molecular aspect of neurogenesis (Bridi et al., 
2020) are well-conserved in metazoans, our work has implications for how the 
regulation of tRNAs drives the translation control of neural development in other 
animals. 
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RESULTS 

Figure 1: Distinct changes in the tRNA levels and post-transcriptional 
editing between neuroblasts and neurons  

The cardinal importance of translation control of gene expression to neurological 
function is underscored by the prevalence of dysregulated translation in many 
neurodevelopmental diseases (Kapur et al., 2017). tRNA availability is a major 
determinant of translation efficiency, which directly modulates protein synthesis 
(Tuller et al., 2010). However, the regulation of tRNAs in neural proliferation and 
differentiation under physiologically normal conditions hitherto has not been 
explored. Here we set out to quantify the changes in tRNA landscape in 
Drosophila neurogenesis by sequencing mature tRNAs (Gokagos et al., 2014) 
from populations of neural progenitors (neuroblasts) and post-mitotic neurons. 
Neuron-enriched brains (90-95% neurons) (Homem and Knoblich, 2012)  were 
dissected from late-stage larvae (120ALH)  ), and ectopic neuroblast brains were 
dissected from stage-matched Insc-GAL4; UAS-aPKCcaax mutants, whose neural 
progenitors can only undergo symmetric self-renewal(Lee et al., 2006). tRNAseq 
reads were aligned to a reference of high-confidence reference of mature tRNAs 
(addition of CCA added the 3’ends), in which identical sequences were collapsed 
(Methods). tRNA read counts were normalized using the trimmed mean of M-
values (TMM), and differential gene expression analysis was performed with the 
non-parametric (empirical Bayes) tool, NOISeqBio, which was shown to better 
control the false-discovery rate between biological replicates(Tarazona et al., 
2015) 

Variation in tRNA composition at the Isodecoder level 

First, we evaluated the potential regulation at the decoder level (Figure 1A).  i.e., 
tRNA genes that share the same anticodon but different sequence bodies. Here, 
we found significant differences in the levels of 11/84 nuclear tRNAs and 2/22 
mitochondrial tRNAs between neuroblasts and neurons (FDR-adjusted q-value < 
0.1; Figure 1B). Seven nuclear tRNA decoders are upregulated in neurons, with 
Pro-CGG-1-x having the greatest 2.5-fold enrichment in neurons compared to 
neuroblasts. Another neuron-upregulated Gly-GCC-1-x with a fold change of 2 
and the most significant q-value was also found to be highly expressed in the 
adult murine CNS compared to non-CNS tissues (Pinkard et al., 2020). 
Conversely, three nuclear tRNA isodecoders were significantly upregulated in 
neuroblasts, in which Arg-TCT-3-1, with a 3.7-fold enrichment, is the most 
neuroblast-upregulated isodecoder.  

Interestingly, 19 out of the 22 mitochondrial-tRNA genes have higher expression 
in the neuroblasts. This was rather surprising because mitochondrial respiration 
is believed to be suppressed in both Drosophila and mammalian stem cells, 
which rely mostly on glycolytic ATP production. However, emerging evidence 
agrees that other aspects of mitochondrial metabolism help regulate the 
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proliferation and temporal patterning of neural stem cells (Iwata et 2021; den 
Amelie, 2019).  
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Figure 1 Genome-wide tRNA sequencing in D.melanogaster larval CNS of neuron-enriched 
(‘Neuron’) and neuroblast-enriched (‘Neuroblast’) brains (n=3 replicates/cell-type). A) Heatmap 
showing cellular tRNA composition at the isodecoder (gene) level. Normalized tRNA expression 
is based on Trimmed Mean of M-values (TMM).   

B) Volcano plot shows 11 out of 84 nuclear tRNA isodecoder genes are significantly altered 
(FDR q-value<0.1) between neurons and neuroblast (red colored circles). 7 tRNA isodecoders 
were upregulated in neurons, and 3 tRNA isodecoders were significantly upregulated in 
neuroblasts. ****Gly-GCC-2-1 is highly significant (FDR q-value<0.001) but true q-value is not 
shown to avoid occluding other data points. 
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Mapping changes in the tRNA epitranscriptome between neuroblasts and 
neurons 

At the isodecoder level, we further characterized changes in the levels of tRNA 
post-transcriptional modifications between neuroblasts and neurons.  With an 
average of 15-25% of modified nucleosides, tRNA molecules bear the highest 
density of post-transcriptional modifications of all RNA types. Biochemical 
studies, primarily by mass spectrometry, have cataloged over 120 modified tRNA 
nucleosides thus far. Post-transcriptional modifications are essential to nearly all 
aspects of tRNA regulation, such as guiding proper folding of the tertiary 
structure, structural stability, fine-tuning decoding capacity and accuracy, 
aminoacylation efficiency, and acting as recognition elements for tRNA decay 
and trafficking. As a result, many modified sites are conserved across eukaryotic 
tRNAs (Figure 1C) (reviewed in Zhang et al., 2022). For example, in the adult 
mouse prefrontal cortex, the knockdown of NSUN2, which installs the 5-
methylcytosine modification at the variable loop on serval tRNAs, led to a global 
decrease in Gly-GCC tRNAs and a concomitant decrease in the translation of 
Gly-rich proteins that resulted in defective neurotransmission and increased 
seizures (Blaze et al. 2021) 

In library preparation, some tRNA modifications will arrest the reverse 
transcriptase (RT), whereas other types of modifications can be readthrough by 
the RT, either silently or resulting in non-random signatures of base 
misincorporation that is higher than expected by technical noise (Motorin and 
Marchand, 2021). Here, we take advantage of the latter behavior to profile the 
neural tRNA epitranscriptome and track changes in the levels of base editing 
across neurogenesis. Systematic analyses of next-generation sequence datasets 
(NGS) have shown that the average base substitution error rate ranges from 
0.1% to 1% (Ma et al., 2019; Stoler et al., 2021). However, to achieve a more 
robust detection of variants, we required minimum coverage of 30 reads and set 
the background substitution error based on the spiked-in RNA oligonucleotide 
because we reasoned that since the spiked-in oligonucleotide is unmodified, any 
detected base mismatch will be technical in origin. Moreover, there are distinct 
steps in tRNA sequencing library preparation compared to standard mRNAseq 
on which the aforementioned analyses on sequence error rates are based.  As 
such, we determined the variant frequency at the first 72 nucleotides for each 
isodecoder as the difference between the isodecoder base mismatch fraction and 
the highest mismatch fraction on the spiked-in oligonucleotide, which ranged 
from 1.0% to 3.3% across samples. The per base variant frequencies were then 
averaged across replicates to obtain the condition-specific variant frequencies. In 
the neuron condition, there are 1338 variant positions (>1%) out of a total of 6048 
bases over the entire sequences (Figure 1D), and in the neuroblast, there are 
1315 variant positions (>1%) out of a total 6048 bases (Figure 1E).  
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We next performed differential modification analysis. Modifications are also 
dynamically regulated in development, depending on intracellular factors such as 
the expression of the writer enzymes and the availability of certain precursor 
nutrients and metabolites (Asano et al., 2018; Schwarts et al., 2018; Frye et al., 
2016).  

We considered a tRNA site as differentially modified if it has an absolute change 
in variant frequency of at least 0.1 (10%) between neuron and neuroblast. In our 
dataset, 174 variant positions are differently modified, wherein 128 variant 
positions reported a higher level in neurons, whereas 46 variant positions were 
more edited in the neuroblast (Figure 1F). The most upregulated variant in 
neurons compared to the neuroblast is at guanine at position 27 (G27) on Ile-
AAT-1-x, having a different frequency of 0.48. G27 on tRNAs is known to carry 
the conserved modification N2N2-methyl guanosine (m2

2G)  or N2-methyl 
guanosine (m2G), deposited by eukaryotic tRNA methyltransferase 1 (Trm1) and 
is believed to stabilize the anticodon arm (Hori, 2014). Conversely, thymine at 
position 51 on Gly-GCC-2-x and thymine 58 on Asp-GTC-2-x tied for the most 
upregulated variants (0.3 difference) in neuroblast, but we cannot ascertain the 
identities of these modified nucleosides. We note, however, that these variant 
positions are adjacent to the variable loop on the T-arm, where uridine (thymine) 
bases are known to carry conserved modifications (Zhang et al., 2022).  
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Figure 1:  Estimating tRNA post-transcriptional levels based on modification-induced 
RT mismatch frequency 

C) Schematic representation of the secondary structure of tRNA with post-transcriptionally 
modified residues (source: Suzuki, 2021) Heatmap variant fractions at the first 72 nucleotides 
of the mature tRNA transcripts in D) neuroblasts and E) neurons. Minimum coverage for 
variant is 30 reads and the background substitution error was to set to the highest base 
mismatch frequency (0.01 to 0.034) of the spike-in oligonucleotide that was added to each 
sample in the library preparation step. F) Heatmap shows sequence sites with 0.1 or more 
difference in variant fractions between neuroblasts and neurons. 
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tRNA Anticodon abundance changes across neurogenesis 

Given that we are ultimately interested in the role of tRNAs in cell-type specific 
codon optimality, our analysis, hereafter, focuses on the nuclear anticodon pool.  
To quantify changes in the anticodon pool upon neural differentiation, we 
summed the reads of all tRNA isodecoders of the same anticodon and performed 
differential gene expression (Methods). 8 out of 45 tRNA anticodons differed 
significantly between the neuroblasts and neurons.  7 of the 8 differential 
expressed anticodons -  Pro-TGG, Pro-CGG, Gly-GCC, Glu-CTC, Tyr-GTA, Leu-
CAA, Arg-ACG, - were significantly upregulated in neurons; whereas only tRNA-
Ser-TGA was significantly higher in neuroblasts (Figure 1G).   
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Figure 1G:  Neural tRNA composition at the anticodon level Left: Heatmap showing the 

normalized levels of each nuclear tRNA anticodon group. Right: heatmap of the log base-2 

fold changes anticodons levels between neuroblasts and neurons. levels of 7\8 anticodon 

were significantly higher in neurons, while 1/8 anticodon was significantly upregulated in 

neuroblasts. The differentially expressed anticodons ( FDR q-value<0.1;)  are highlighted in 

red on the y-axis. 
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Figure 2:Codon optimality differs in neuroblasts and neurons and affects 
cohorts of mRNAs that regulate developmental-specific functions  

We next investigated the influence of codon-mediated mRNA decay on neural 
proliferation and differentiation. To this end, we obtained genome-wide mRNA 
decay rates from populations of neural progenitors (‘neuroblast’) and neurons by 
performing pulse-chase EC-tagging. Briefly, the larvae were fed 1 mM 5-
ethynylcytosine (EC) for a 12-hour pulse and transferred to media containing 10 
mM unmodified uridine for the following timepoints 3, 6, and 12-hour chase. After 
each chase timepoint, the total RNA was collected from the dissected brains, and 
the EC-tagged RNA was biotinylated and purified by a streptavidin pull-down and 
prepared for Illumina sequencing. mRNA decay rates were estimated by fitting an 
exponential curve through the chase timepoints (Methods). 

To measure the influence of codon usage on mRNA stability, we calculated the 
codon stability coefficients (CSC) for each of the 61 sense codons as the 
Pearson’s correlation coefficient between mRNA half-lives and codon frequency 
(Presynak et al., 2015). The neuron CSCs ranged from -0.17 to 0.24, and the 
neuroblast CSCs ranged from -0.19 to 0.19 (Figure 2A).  A positive CSC 
indicates that the codon is preferentially used in mRNAs with long half-lives (i.e., 
‘stabilizing’ codon), whereas a negative CSC indicates that the codon is 
preferentially used in mRNAs with shorter half-lives (i.e. ‘destabilizing’ codon). In 
total, 27 codons exhibit altered stabilities (absolute difference in CSC>0.05) 
between neurons and neuroblasts. We also identified 5 “neuroblast-optimal” 
codons ( CSC > 0.03 in neuroblasts and  < 0.05 in neurons and a CSC difference 
> 0.05 between cell types) , and 2 “neuron optimal” codons, defined by the 
aforementioned rule (highlighted on Figure 2A). 

 Next, we explored the biological influence of cell-type specific codon bias on 
mRNA stability. To this end, we performed gene ontology (GO) enrichment 
analysis on mRNAs from each cell type that are among the top 10% enriched 
with neuroblast-specific or neuron-specific optimal codons. ‘Cytoplasmic 
translation’ was the most significant GO category (FDR-adjusted p-value > 0.001) 
for the neuroblast-derived mRNAs enriched with neuroblast-optimal codons 
(Figure 2A). On the other hand, neuron-derived mRNAs enriched with neuron-
optimal codons reported top GO categories related to synaptic function (Figure 
2C). These trends show that codon optimality supports the stabilization of 
mRNAs that are relevant to the cell’s physiology. Nonetheless, the influence of 
codon optimality is less impactful on neuron-specific mRNA decay, based on the 
fact that the average half-lives of these mRNAs only marginally changed 
compared to when they are expressed in the neuroblasts (Figure 2C). This 
pattern of attenuated codon optimality in the larval nervous system aligns with 
Burow et al., who found that codon-mediated mRNA decay was attenuated in the 
embryonic nervous system (Burow et al., 2018). 
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Figure 2:   Distinct effects of codon-mediated mRNA decay between neuroblasts and neurons.  

A) Barplot shows the paired values of the cell-type specific codon stabilization coefficient, CSC, 
which is based on the Pearson’s correlation between codon enrichment and genome-wide half-lives 
of mRNAs measured in each cell-type. Codons with positive CSC are preferentially enriched in 
mRNAs with longer half-lives, in contrast to negative CSC codons which are used more often in 
mRNAs with shorter half-lives. On x-axis, codons highlighted in red= neuroblast optimal, and  blue 
codons = neuron optimal. Cell-type specific optimal CSCs is defined by  ( CSC > 0.03 in condition cell-
type A and  < 0.05 in condition cell-type B and a CSC difference > 0.05 between cell types) 

Cell-type specific codon optimality distinctly affect the stability of functionally related mRNAs. 
Barplots showing the cell-type specific half-lives (error bars= standard error)of  the top 5 non-
redundant gene ontology categories (all FDR adjusted p-value < 1e-5),  B)  for neuroblast and C)  
neuron mRNAs that are among the top 10% enriched in neuroblast- or neuron-specific optimal 
codons.  
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Cell-type specific differences in the relationship between codon-mediated mRNA 
decay and cellular tRNA levels  

Having observed that both tRNAs expression and the codon stabilization 
coefficients (CSCs) are altered between neuroblasts and neurons, we next 
investigated the role of tRNAs in codon-mediated mRNA stability. Experiments in 
S.cerevisiae  supports the “stabilization-by-translation” model for how codon 
usage regulates mRNA degradation, wherein optimal codons enriched in stable 
mRNAs are expected to have faster elongation rates and, therefore, less likely to 
trigger quality control factors that sense stalled ribosomes (Hanson et al., 2018; 
Radakrishnan et al., 2016).  Here, we observe a positive relationship between 
the CSCs and their cognate anticodon expression in both neuroblasts (Pearson’s 
R= 0.43, p-value=1.8e-03 ) and neurons (Pearson’s R=0.53, p-value<1.08e-04 ) 
(Figure 2D; 2E).   

Since it is widely believed that proliferation is a major determinant of codon 
optimality (Gingold et al., 2014; Rochoa et al., 2003), we were not expecting a 
stronger linear correlation between anticodon levels and CSCs neurons than in 
neuroblast (Figure 2D; 2E). However, a comparison to Watson-Crick anticodons 
fails to account for the reality that several codons are wobble translated by 
multiple tRNAs. Thus, to better reflect the total tRNA availability of a codon, we 
computed the tRNA adaptive index (tAI) that is widely used as a proxy for the 
translation efficiency of a codon, based on Watson-Crick and wobble base 
pairing (dos Reis et al., 2004). Because the original tAI relies on static tRNA copy 
number variation, we computed the cell-type specific tAI using the tRNA 
expression values, which offers a more dynamic representation of tRNA-
mediated translation regulation across neural differentiation. We also normalized 
each codon’s tAI within its amino acid family such that the most translationally 
optimal synonymous codons have a tAI equal to 1.0 (Methods). Again, we see 
that for both neuroblasts and neuron samples, there is a significant association, 
along with a large effect size, between a codon’s translation efficiency (tAI) and 
its stabilizing influence on mRNA half-lives (Welch’s T-test P < 0.001; Cohen’s 
d>0.8) (Figure 2F; 2G).  Broadly, this means that codons that are enriched in 
stable mRNAs (positive CSCs), on average, are better adapted to the cellular 
tRNA pool, based on higher median tAI, than those codons that are enriched in 
less stable mRNAs, i.e., negative CSCs. However, in neuroblasts, there is a 
stronger association between the tAI and CSCs (Cohen’s d=1.44) compared to 
the neuron population (Cohen’s d=1.00).  Notably, in neuroblasts, there are twice 
as many codons with positive CSCs that are also the most translationally optimal 
(i.e., tAI=1.0) within their synonymous group compared to codons with the 
negative CSCs.  

Since we noticed that neuroblasts exhibit a stronger association between tRNA 
availability and CSCs, we wondered if this trend is also context-dependent at the 
gene level. To monitor the relationship between mRNA stability and tRNA 
adaptiveness before and after neural differentiation, we selected mRNAs that are 
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shared between neuroblasts and neurons based on having a minimum 
expression value of TPM>1 in both cell types. For each of the shared mRNAs, 
we computed the neural-specific tAI as the geometric mean of the neural-specific 
codon tAI represented in their CDS (Methods). There is a stronger linear 
correlation between mRNA half-lives and tAIs in neuroblasts (Pearson’s R=0.38, 
P<2.16e-16) (Figure 2H). But only a weak correlation in neurons (Pearson’s 
R=0.10, P=2.72e-05) (Figure 2I). 
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Figure 2: tRNA availability explains codon-mediated mRNA decay in the Drosophila 

CNS On  

Scatterplots show a positive linear relationship between CSC and normalized anticodon 

levels in D) neuroblasts (Pearson’ R=0.45,p-value<0.01) and E) neurons (Pearson’ 

R=0.53,p-value<0.01). 

F,G: Boxplots show large effect size (Cohen’s d>1.0) between the stabilizing effect of 

codons and their total tRNA availability in each cell. On the y-axis is the tRNA adaptive index 

(tAI) that estimates the translation fitness or efficiency of each codon based on the 

availability of all of its cognate anticodon (both Watson-Crick and wobble pairings). For  both 

neuroblasts and neurons, codons that are enriched in stable mRNAs are, on average, better 

translated than codons enriched in less stable mRNAs (Welch’s T test, P<0.05). 
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tRNA epitranscriptome also shapes codon optimality: Inosine-34 modified tRNAs 
preferentially decode stable codons in neuroblasts 

Modification in the anticodon stem profoundly impacts tRNA decoding fidelity and 
thus overall gene expression. The editing of adenosine to inosine by adenosine 
deaminases (hetADATs)  at the wobble anticodon position of specific ANN 
tRNAs (A34-to-I34) is deeply conserved across eukaryotes. Inosine-34 
modification expands the decoding capacity of ANN tRNAs from recognizing only 
U-ending codons to decoding C-ending and U-ending codons (Rafael-Yberns et 
al., 2019). Functional studies in fungal and bacterial systems showed that usage 
of Inosine-34 codons improved translation efficiency (Novoa et al., 2012; Lyu et 
al., 2020) and evolved as a major determinant of fungal gene expressivity (Wint 
et al., 2022).  Since our previous analyses showed translation efficiency and 
mRNA stability are coupled, we wondered if inosine-34 tRNA decoding also 
contributed to codon-mediated mRNA decay in the Drosophila central nervous 
system. To this end, we compared the CSCs of the 16 codons that are decoded 
by inosine-34 edited tRNAs.  hetADAT is constitutively expressed, and indeed we 
observed the characteristic high frequency of  A-to-G mismatch (Peng et al., 
2012)  at the anticodon regions for all tRNAs that are known substrates of 
inosine-34 editing, namely:  tRNAThr(AGU), tRNAIle(AAU), tRNAPro(AGG),  
tRNAArg(ACG), tRNALeu(AAG), tRNAAla (AGC), tRNAVal(AAC), and tRNASer(AGA)  
(Figure 2J;2K). We found that Inosine-34 codons are overrepresented as 
positive CSCs (stable codons) in neuroblast (Fisher exact test P-value=6.7e-03), 
but there is no significant difference in inosine-34 codon usage for neuron CSCs 
(Fisher P = 0.07) (Figure 2L).  

H I 

Figure 2: tRNA availability explains codon-mediated mRNA decay in the Drosophila 

CNS On  

H,I: Scatterplot of gene-level tAI and mRNA half-lives. The gene-level tAI is  computed as 

the geometric mean of the tAI of all codons within the coding sequence of the mRNA. tRNA 

adaptation better explains mRNA half-lives in (H) neuroblasts (Pearson’s R=0.38, p-

value<2.16e-16)  than in I) neurons (Pearson’s R=0.10, p-value=2.7e-5) 
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 This finding parallels recent ribosomal profiling experiments in human and 
mouse embryonic stem cells (ESCs) that elucidated how self-renewing hESCs 
preferentially used inosine-34 codons for enhancing translation efficiency in 
comparison to differentiating hESCs, as well as a downregulation of hetADATs 
upon hESC differentiation (Bornelov et al., 2019). These findings raise the 
possibility that other tRNA modifications in the anticodon stem may also be 
influencing codon stabilities.  

In summary, our results support codon composition as a determinant of mRNA 
stability in neuroblasts but is weakly impacts mRNA decay in the neuron. The 
positive correlation between tRNA expression and CSCs agrees with the model 
that codon identity stabilizes mRNAs in a translation-dependent manner.  
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Figure 2: Preferential decoding of stable codons in neuroblasts by inosine-34 

modified tRNAs 

J,K: Modification heatmaps for the tRNAs that are known to be edited by hetADAT in the 

wobble anticodon position (all other variant sites are masked). Note that the Inosine-34 

signal is not precisely at base 34 because the variable bases in the anticodon stem may 

lead to an offset by 1 base pair. However, the only other modified nucleoside in the 

anticodon region is found on the uridine of specific tRNAs [Zhang et al., 2022]. 

L: Comparison of the fraction of inosine-34 decoded codons (n=16) that match positive and 

negative CSCs in neuroblasts and neurons. Inosine-34 decoded codons are significantly 

enriched with positive CSCs in neuroblasts (Fisher’s enrichment test P=6.7e-03) but in 

neurons (Fisher’s P=0.07). 
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Figure3: mRNAs expressed across neurogenesis exhibit proliferation-
specific and differentiation-specific codon usage 

An outstanding question in developmental biology is how stem cells are able to 
transcribe both pro-proliferative and pro-differentiation mRNAs whilst maintaining 
their own self-renewing phenotype. It has been shown that mammalian cells use 
distinct codon signatures in proliferation and differentiation genes, suggesting 
that codon bias may be exploited as a mechanism to distinctly co-regulate 
functionally related mRNAs (Gingold et al., 2014; Bornelov, 2019).  Given the 
distinct tRNA expression profiles of neuroblasts and neurons, we sought to 
investigate if pro-differentiation and pro-proliferation transcripts employ distinct 
codon usage signatures, as this property would make them differently regulated 
by the cellular tRNA pool, depending on whether they are expressed in neural 
progenitors or the neurons.  

We chose to focus on shared mRNAs because we wanted to monitor how the 
same set of mRNAs would be differently regulated due to the intrinsic properties 
of their coding regions.  To directly elucidate the codon usage patterns of neural 
transcripts, we selected transcripts (n=5169 on) that have a non-zero expression 
(TPM>1) in both neuroblasts and neurons and are annotated on Flybase. We 
then calculated the relative codon frequencies such that each mRNA sequence is 
represented as a 59-dimensional vector. We normalized codon frequencies 
within the amino acid groups to mitigate confounding effects due to amino acid 
usage and gene length. To visualize how transcripts are distributed based on 
codon usage, we performed principal component analysis (PCA) followed by 
unsupervised clustering using Kmeans, where the optimal number of six clusters 
was determined using the elbow method (Methods).  PCA on codon usage 
captured a total variance of 23%, with the first principal component, PC1, 
capturing 15% of the variation, and the second principal component, PC2, on 
codon usage captured 8% of the variation within the dataset (Figure 3A). 
Because PC1 captures most of the variance present in the data, we focused on 
mRNAs belonging to cluster 5 and cluster 4 that are projected at opposite poles 
of PC1, suggesting that these two mRNA sets are the most divergent in their 
codon usage. GO enrichment analysis revealed that cluster 4 mRNAs (n=373) 
are significantly enriched in growth-related terms related to ribosome biogenesis 
and energy metabolism (Figure 3B). It is noteworthy that ‘mitochondrial fusion’ is 
enriched in the ‘mitochondria’ term of Cluster 4 because the maintenance of 
fused mitochondria is essential to the proliferative capacity of stem cells, and 
disrupted mitochondrial fusion was shown to decrease self-renewal in 
mammalian and Drosophila neural stem cells (Dubal et al., 2022; Khacho et al., 
2016). On the other hand, Cluster 5 mRNAs (n=219 ) at the positive pole of PC1 
were significantly enriched with GO terms related to neural differentiation and 
neuronal function. Thus we assigned the negative pole of PC1 as capturing 
codon bias for ‘Proliferation’ and the positive pole as codon bias for  
‘Differentiation.’  
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The enrichment of ribosomal and energy metabolism-related terms in Cluster 4 
led us to calculate the popular codon bias metric, the codon adaptation index 
(CAI) (Sharp and Li, 1987). CAI quantifies the similarity of a gene’s of 
synonymous codon usage to that of a reference set of highly expressed 
ribosomal protein genes because ribosomal proteins are usually constitutively 
expressed. Moreover, it is widely believed that the CDS of ribosomal proteins is 
under strong selection because it serves as an adaptation for maintaining high 
growth rates (Rochoa, 2003). We then re-colored the PCA plot according to gene 
CAI and observed that CAI decreases going from the negative pole (‘Proliferation 
) of PC1  to the positive pole (‘Differentiation’) of PC1 (Figure 3C). The negative 
correlation between the ‘Differentiation’ pole and CAI suggests that the pro-
differentiation genes avoid using codons that are favored by natural selection for 
adaptation to high-growth conditions. We then evaluated the contribution of each 
codon to the variation represented on PC1 by analyzing the PC1 loadings and 
identified GC-content as a major influence. G/C-ending codon usage grouped 
mRNAs along the negative pole of PC1, whereas mRNAs at the positive pole 
clustered based on A/U-ending codon usage (Figure 3D). Collectively, this PCA 
analysis clearly shows that, like mammalian cells, Drosophila proliferation 
mRNAs and differentiation mRNAs are differently codons biased. Still, biased 
codon usage patterns are shaped by neutral mutation bias and natural selection 
for translation efficiency (Sharp et al., 2010), the latter of which we will 
interrogate in the next section.  
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Figure 3: Divergent codon usage patterns between proliferation- and differentiation-

related mRNAs expressed across neurogenesis. We identified shared mRNAs (n=5169 

transcripts) based on their non-zero expression (TPM>1) in both neuroblasts and neurons.  

A) PCA on their normalized codon frequencies (5169 x 59 matrix) captured a total variation of 

23%, with the 15% variance captured by the first principal component, PC1. The unsupervised 

clustering by kmeans  grouped the shared mRNAs into 6 clusters.  

B) Shared mRNAs in clusters 4 and 5, both projected at opposite poles of PC1, were selected 

for gene ontology (GO) analysis. Bar plots show the top 20 GO terms for Cluster 4 mRNAs 

(n=373) and Cluster 5 mRNAs (n=219).  

C) PCA plot from (A) recolored by each mRNA’s Codon adaptation index (CAI), which 

measures codon bias of a gene based on its similarity to the synonymous codon usage of a 

reference set of genes that are constitutively and highly expressed in growth conditions.  

 D) Barplot showing the PC1 loading values which measures each codon’s influence (direction 

and magnitude) on the variation captured by PC1. Bars for G/C-ending are colored in orange 

and bars for A/U-ending codons are colored in blue. 
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Figure 4: Differential tRNA expression establishes neural-specific 
translation dynamics  

Having uncovered distinct codon usage patterns between proliferation and 
differentiation promoting mRNAs, we next monitored changes in codon-
dependent translation efficiency, which we estimate based on the cell type-
specific gene tRNA adaptive index (tAI). Experiments, from bacteria to yeast to 
mammals, have demonstrated how the direct perturbation of tRNA levels led to 
concomitant global changes in ribosome decoding rates and protein levels, thus 
providing concrete evidence that the tRNA landscape can be informative about 
the proteomic changes (Frumkin et al., 2018; Torrent et al., 2018; Goodarzi et al., 
2016). Hierarchical clustering of shared neural mRNAs shows changes in tAI 
values based on the cell type. To gain insights into the physiological relevance of 
these changes, we highlighted the top 3 shared mRNAs with the greatest altered 
translation efficiency (tAI) in both directions (Figure 4B). Here, the top 3 mRNAs 
with the greatest decline in tAI after neurogenesis all encode large ribosomal 
protein subunits. In contrast, the top 3 mRNAs with the greatest improvement in 
neuron tAI — namely, caz, eIFH4, and Ars-2 —  encoded highly conserved RNA-
binding proteins. For example, the greatest increase in tAI encodes caz, which is 
essential for motor neuron development and is also the functional ortholog of the 
human RNA-binding protein fused-in-sarcoma (FUS), whose mutations are the 
primary cause of amyotrophic lateral sclerosis (Lou Gehrig’s disease). 

Immediately from the heatmap, we noticed three distinct changes in translation 
adaptiveness (Figure 4A). Firstly, there is a conspicuous subset of mRNAs 
showing increased tAI by the neuron tRNA pool (blue in neuroblast and red in 
neuron). Thus we selected these ‘neuron-up’ mRNAs based on the top 10% 
difference in tAI (neuron-tAI - neuroblast-tAI). These neuron-upregulated mRNAs 
(n=517) are enriched with biological GO terms related to neural differentiation, 
such as ‘axonogenesis’ and ‘dendrite morphogenesis’ (Figure 4C; bottom 
panel). We also examined mRNAs that maintain similar high and low tAI across 
cell types. mRNAs that maintained a high tAI between neuroblasts and neurons 
(tAI>0.6 in both cell types) are more heterogenous top GO terms, having a 
combination of constitutive cellular processes (“housekeeping functions”) like 
‘protein complex assembly’ and also nervous system related (Figure 4C; top 
panel). Interestingly, we noticed that the mRNAs (n=411)  that maintained a low 
tAI (neuron-tAI<0.5 and neuroblast-tAI<0.5 and non-overlapping with the 
previous mRNA sets)  were as purely enriched for differentiation and 
neurogenesis, similar to the ‘neuron up’ group (Figure 4C; middle panel).   

 

 

 

 



54 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

A 

B 

Figure 4: Altered tRNA pool changes the translation fitness of mRNAs across 

neurogenesis. 

 A: Hierarchical cluster heatmap comparing the cell-type specific tRNA adaptive index (tAI), a 

proxy for translation fitness for the cellular tRNA pool, for the mRNAs (n=5169) that are 

shared across neurons and neuroblasts (TPM>1). Highlighted are the 3 emergent patterns of 

tAI changes: “neuron-enhanced” mRNAs (top 10% of mRNAs with higher neuron-tAI than 

neuroblast-tAI; highlighted in yellow box ), “shared-high” mRNAs (green box) that maintain a 

high tAI in both neurons and neuroblasts  (neuron-tAI and neuroblast tAI >0.6 ) , and “shared-

low” mRNAs (orange box) that maintained a low tAI in neuroblasts and neurons (neuron-

tAI<0.5 and neuroblast-tAI <0.5). 

B: The top 3 shared mRNAs with the largest change in translation efficiency (tAI) in both 

directions 

C: Biological GO analysis showing the top 10 significantly enriched terms for each of the 3 

clusters of mRNAs defined in (A). Summarily, both the “neuron-enhanced” (n=517 mRNAs; 

top panel) and the “shared-low” mRNAs (n=411 mRNAs; middle panel ) encoded functions 

related to neural differentiation. In contrast, the GO for “shared-high” mRNAs (n=965 mRNAs; 

bottom panel) are heterogenous with the top 2 terms related to ‘housekeeping functions’.  
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Distinct influence of  natural selection between DNA-binding and RNA-binding 
pro-differentiation mRNAs by the neuron tRNA pool 

In the previous section, the pro-differentiation mRNAs exhibited two distinct 
responses to changes in tRNA levels in neural proliferation and neural 
differentiation. For one group, their codon-dependent translation efficiency (tAI) 
was enhanced by the neuron tRNA, whereas the other group’s tAI is refractory 
and instead maintained a constitutively low tAI between neuroblasts and 
neurons. This suggests that these mRNAs operate under distinct regulatory 
codes –i.e., codon dependent vs. codon independent.  

We hypothesized that the subset of pro-differentiation transcripts that maintained 
a low tAI after neural differentiation (‘constitutively low’) is reflective of weaker 
translation selection compared to the pro-differentiation transcripts (‘neuron-up’) 
that exhibited enhanced tAI post-differentiation. Codon bias is a composite of 
neutral and adaptive evolutionary forces. A standard way of teasing a part of the 
influence of natural selection on coding sequences is to compare the tAI to the 
effective number of codons (ENC), a widely used metric that quantifies the 
deviation from equal synonymous codon usage (Wright 1990). The ENC values 
of genes range from 20 (extreme codon bias due to one codon type per amino 
acid) to 61 (no bias, equal usage of synonymous codons). Basically, the ENC 
was inspired by population genetics methods to measure the homozygosity of a 
class of synonymous codons.  A significant anti-correlation is indicative that tRNA 
availability has evolutionarily shaped the variation in codon bias (dos Reis et al., 
2002). The ‘neuron-up’ transcripts show strong and significant for translation 
selection (Pearson’s R= -0.44, P=1.9e-26), but the sign (Pearson’s R= -0.02, 
P=0.6) of translation selection among the ‘shared low’ subset (Figure 4D). We 
repeated this comparison using the neuroblast-specific tRNA availability, which 
attenuated the selection signal (Pearson’s R= -0.39, P=1.5e-20) for the ‘neuron-
up’ mRNAs (Figure 4C). This suggests that it is the neuron tRNA repertoire that 
is selectively driving the translation adaptation of this subset of pro-neurogenic 
mRNAs. 

Would we have been able to detect these distinct evolutionary patterns in the 
nervous system had we relied on the traditional tRNA gene copy number to 
estimate tRNA abundance? For the longest time, it was believed that the 
influence of selection is very weak or even absent on the genome-wide codon 
usage patterns of animals, a viewpoint largely informed by the lack of correlation 
between frequently used codons (i.e., codon bias) and tRNA gene frequency in 
model animal species (Kanaya et al., 2001). When we repeated the same 
analysis instead using tRNA copy number frequency (static) to compute the gene 
tAI, the signal for natural selection was lost. Instead, the codon bias of the 
‘shared low’ mRNAs was positively correlated with the gene copy number tAI 
(Figure 4F). This specific analysis underscores the importance of making 
inferences based on direct tRNA measurements rather than gene copy numbers, 
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which does not capture the reality of tissue-specific variation in tRNA composition 
in animals. 

 Next, we investigated if the difference in regulatory code –  i.e. ‘codon-
dependent vs. no codon-dependent  – is reflective of the distinct pathways they 
are potentially involved in. To this end, we performed Molecular GO Molecular 
enrichment.  Both sets of mRNAs encoding nucleic acid and protein-binding 
domains indicate that these encode regulatory proteins. However, the ‘Neuron 
up’ mRNAs were more enriched from RNA-binding and protein-binding domains 
(Figure 4G). In contrast, the ‘shared low’ mRNAs were most significantly 
associated with DNA-binding (Figure 4H).  These results raise further questions 
about the purpose of regulating RNA-binding proteins, as opposed to DNA-
binding proteins, via tRNA-mediated codon optimality. 
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Figure 4: Pro-differentiation mRNAs that encode regulatory proteins evolved separate 

regulatory codes in the nervous system 

D,E: pro-neural differentiation mRNAs exhibit distinct evolutionary signatures. On the x-axis 

is the effective number of codons, ENC that measures the deviation from equal synonymous 

usage of genes. Correlation between ENC and tAI indicates the influence of translation 

selection on codon usage bias. D) There is stronger signal for selection by the neuron tRNA 

pool than  E) neuroblast tRNA pool. F) However, estimating tRNA availability using the 

traditional tRNA copy number does not produce a signal for selection on the ‘neuron up’ 

mRNAs 

G,H: Molecular GO analyses shows that the mRNAs that exhibit increase their tAI by the 

neuron tRNA pool (‘neuron up’) tend to encode RNA-binding domains, in contrast to the 

enrichment of DNA-binding domains among the mRNAs whose tAI remained constitutively 

low throughout neurogenesis (‘shared low’) . 
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Interaction between altered tRNA expression and mRNA levels establishes 
tissue-specific translation dynamics 

Lastly, we decided to take a systems-based approach to more realistically model 
how the interaction between tRNA and mRNA dynamics upon neurogenesis may 
lead to global changes in translation efficiency using a supply-demand 
framework. At the systems level, translation efficiency is regulated to ensure that 
the translation machinery (supply) can precisely fulfill the demands of protein 
synthesis to meet the cell’s requirements. For a more systems-based 
representation of how anticodon-codon balance may control translation 
dynamics, we adopted the approach of (Pechmann and Frydman, 2013) to 
compute the tissue-specific translation efficiency of each shared transcript as the 
geometric mean of the ratio between codon-tAI (i.e., supply of cognate 
anticodons) and the codon frequencies weighted by mRNA expression, as this 
accounts for the fact that total codon demand is a function of mRNA abundance 
(Methods). Thus, the supply-demand ratio (SDR) integrates information from 
codon frequencies (static), tRNA abundance, and mRNA abundance (dynamic). 
A recent study of translation adaptation in normal and tumor human tissues 
showed that the SDR of a gene better correlated with the protein-to-mRNA ratios 
compared to tAI only (Hernandez-Alias et al., 2020). 

We monitored changes in translation efficiency, as measured by the supply-

demand ratio (SDR), after differentiation by computing the difference in SDR 

(ΔSDR) between neuroblast-specific SDR and neuron-specific SDR. As such, a 

positive ΔSDR signifies an improvement in translation efficiency post-

differentiation. The ΔSDR values ranged from -0.23 (worst adapted to neuron 

translation) to 0.44 (best adapted to neuron translation) with and median of 

0.033.  Previously, we showed that proliferation-specific codon usage correlates 

with the CAI. We wondered how these sequence-intrinsic properties correlated 

with changes in translation efficiency in post-mitotic neurons. We found a 

significant negative correlation between post-differentiation ΔSDR and CAI  

(Pearson’s R=-0.34, p-value<2.16 e-16) (Figure 4I). This relationship indicates 

that after neural differentiation, mRNAs that are enriched in the pro-proliferation 

codon usage are less optimized for translation by the neuron tRNA pool. 

Next, to assess the biological relevance of the change in supply-demand balance 
upon neural differentiation, we performed GO analysis on the shared mRNAs 
among the top and top 10% of the ΔSDR values. mRNAs (n=436) with the most 
improved translation supply-demand post-differentiation yielded GO terms that 
purely relate to neurogenic development ( (Figure 4J; top panel). cabeza (caz) 
shows the greatest improvement in post-differentiation translation efficiency by a 
factor of 78% and 8.5 standard deviations from the mean. Caz is an RNA-binding 
protein that is essential for motor neuron development.  Interestingly, caper, the 
conserved neuron-enriched alternative splicing factor, is among the top 
transcripts enhanced translation efficiency by the neuron tRNA pool. Conversely, 
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the mRNAs that experience the greatest decline in translation supply-demand 
balance encoded both growth-related functions, such as ribosome’ and ‘energy,’ 
and neurogenic functions,  such ‘axon development.’(Figure 4J; bottom panel). 
The greatest decline (by a factor of 14%)  in neuron translation efficiency is the 
encodes lethal (3) 80Fj  ( l(3)80Fj ), the mammalian ortholog GCN1 (Figure 4I). 
Notably, GCN1 is the activator of the well-characterized GCN2 (general control 
nonderepressible 2), the master regulator of protein homeostasis in the highly 
conserved eukaryotic integrated stress response. Although the precise role of 
GCN1 is less characterized, it was shown that knock-out GCN1 (but not knockout 
of GCN2) in mouse embryos led to growth retardation, increased mortality, and 
cell cycle arrest, suggesting that GCN1 is essential for normal cell growth 
independent of its role in the  GCN2-mediated stress response (Yamazaki et al., 
2020).  While this set of analysis appears redundant with the former ΔtAI analysis 
(Figure 4C), it is nonetheless noteworthy that ΔSDR values (which incorporates 
mRNA expression) recapitulated the GO results of the ΔtAI (only tRNA levels) 
values because it demonstrates that it is the regulation of tRNA levels that 
dominates the dynamic translation programs in development, without necessarily 
requiring major shifts in mRNA abundance. This may partially explain whys 
mRNA steady-state levels are only moderately correlated with protein abundance 
(Buccitelli and Selbach, 2020).  Altogether, these results suggest that tRNA 
dynamics alter the translation program in a manner that supports the tissue type-
specific phenotypes in neural proliferation and differentiation.  
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Figure 4: Altered tRNA pool changes the translation fitness of mRNAs across 

neurogenesis 

I) Scatterplot highlights the negative relationship (Pearson’s R=-0.34, P<2.16e-16) between 

the post-differentiation change in translation supply-to-demand ratio (ΔSDR) of mRNAs, a 

proxy for translation efficiency described in the article, and the codon adaptation index 

(CAI), which was previously shown to correlate with proliferation-specific codon usage 

signatures 

J) Biological GO enrichment of the mRNAs in top 10% most improved in translation supply-

demand balance, ΔSDR, in the neurons (top panel) and mRNAs in the bottom 10% of 

post-differentiation ΔSDR (bottom panel). 

I J 
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Figure 5. Global codon usage patterns correlate with tRNA not just in time 
but also in space 

As a final piece of analysis, we investigate positional-dependent effects on 
genome-wide spatial tRNA availability and CSCs to highlight more complex 
patterns of codon optimality. Across many species, including Drosophila 
melanogaster, computational analyses of genome-wide codon usage and tRNA 
gene copy number identified an evolutionarily conserved pattern, wherein the first 
10-15 codons at the 5’terminus, on average, have lower tAI values (Tuller et al., 
2010). Ribosomal occupancy patterns in S.cerevisiae later validated the 
accumulation of slow codons at the mRNA 5’terminus (Tuller et al., 2010a). Since 
codon ramps were initially inferred based on tRNA gene copy frequency, we 
wanted to explore if our experimentally determined tRNA abundance also 
generated this ‘ramp’ pattern. For the shared mRNAs in neuroblasts and 
neurons, we observed a ramp pattern due to low CSCs and tAI values in the first 
10 codons (Figure 5A;5B); however, the 3’ end used more optimal codons 
(Figure 5C; 5D). This spatial correlation further supports that tRNA availability 
constrains codon stabilities since our previous results show that codons with low 
tAI are also likely to be less stable. A similar positional bias was observed at first 
and last 50 codons of the open reading frames (ORFs) of maternal mRNAs in 
zebrafish embryogenesis, in which the 5’ terminus codons were enriched with 
rare codons (low CAI) and the 3’ codons were more optimal (higher CAI). 
Moreover, the synonymous substitution of 3’ termini codons with non-optimal 
codons (lower CAI) of an EGFP reporter construct led to an increase in 
degradation (Mishma and Tomari, 2016). 

Interaction between translation efficiency and local mRNA secondary structure at 
the 5’ and 3’ termini 

The precise purpose of the selection on position-dependent codon bias remains 
elusive but appears to be context-dependent. Regarding selection for translation 
efficiency, two main reasons are proposed:  1) codon ramps promote efficient 
ribosome allocation (fewer ribosomal collisions) and fidelity of translation 
initiation, i.e., sufficient time for the pre-initiation translation complex (PIC) to find 
the start codon, thereby reducing the cost of mistranslation errors (Frumkin et al., 
2017)   2) ramps, generally slow codons, influence co-translation protein folding 
(Tuller et al., 2010b; Pechmann and Frydman, 2013). In S.cerevisiae, the assay 
of over 30,000 variants of the first 10 codons (excluding the AUG start codon)  of 
a green fluorescent protein (GFP) reporter showed that the codon ramps 
modulate protein yield(Osterman et al., 2020). Alternatively, the 5’ and 3’ codons 
may reflect selection against a stable local secondary structure (Goodman and 
Church, 2013). Local mRNA structure is predicted to be antagonistic to 
translation efficiency (Tuller et al., 2010b).  

To further investigate the relationship between these 5’ and 3’ codon biases and 
local secondary structure in the neural mRNAs, we computed the minimum free 
energy, ΔG, of the first 93bps (i.e., 30 codons) of each of the shared mRNAs 
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using the RNAfold package with default settings (Lorenz et al., 2011). A more 
negative ΔG represents a more stable predicted RNA structure. Then we 
examined the association between cell type-specific translation efficiency (SDR) 
according to the SDR deciles and the 5’/ 3’ termini ΔG. As predicted, we found a 
significant negative association between the mRNA’s translation efficiency and 
the stability of the secondary structure, with a stronger effect at the 3’ terminus 
for both the neuron-specific and neuroblast-specific SDR (Figure 5E-H). In other 
words,  the best translationally adapted mRNAs tend to have a weaker 3’ 
terminal secondary structure. We further found that, on average, the local 
structure a the 3’ terminus is less stable than at the 5’ terminus (Kolmogorov 
Smirnov test, P=9.2-16)  (Figure 5I). Using reporter variants in E.coli, Frumkin et 
al. identified that the utilization of a strong secondary structure at the 5′ ends of 
the ORF could reduce fitness cost in protein synthesis (Frumkin et al., 2017). 
Taken together, this suggests that local mRNA secondary may also be 
influencing codon usage bias and, therefore, mRNA decay and translation 
dynamics in the Drosophila nervous system.   
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Figure 5: Position-dependent codon optimality and local mRNA secondary structure in 

neural shared mRNAs 

A-D: For the mRNA shared between neuroblasts and neurons, the first 10 codons at the 

5’terminus have, on average, lower tAI and CSC values compared to the codons at the 

3’terminus.  

E-H: Local mRNA secondary structural stability, ΔG, at the first and last 93nt in each mRNA 

was calculated using the RNAfold package with default settings. The more negative ΔG, the 

more stable the local structure. Overall, the mRNA’s translation efficiency negatively 

correlates with local structuredness, with stronger effect at the 3’ end of the mRNAs.  I) On 

average, the 3’ local secondary structure of mRNAs is less stable than the 5’ secondary 

structure. 
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Discussion: 

For the first time, we monitored the in vivo regulation of transfer RNAs (tRNA) 
and codon optimality dynamics in the most complex yet well-studied animal 
organ system, which is also well-conserved at the molecular and genetic levels. 
Here, we integrated data from genome-wide measurements of tRNA and mRNA 
pools to elucidate the regulatory role of codon identities on the post-
transcriptional programs in neural progenitors (neuroblasts) and post-mitotic 
neuron representatives of proliferation and differentiated states. Codon optimality 
describes how codon identities constrain the fate of mRNAs in distinct ways.  We 
identified distinct codon usage between stable and unstable transcripts in each 
cell type in support of codon optimality-mediated mRNA decay. We also 
observed several codons that changed their stabilizing properties between 
neuroblasts and neurons, which is indicative that codon optimality is dynamically 
regulated in development. In both neural cell types, stable mRNAs are enriched 
with cell-type specific optimal codons, and the mRNA function tends to align with 
the phenotype of the cell, consistent with observations in the Drosophila 
embryonic tissue (Burow et al., 2018). A major goal of this study was to address 
the basis of cell-type specific codon optimality. Although it is speculated that 
differential tRNA abundance establishes codon optimality, most animal studies 
lack cellular tRNA measurements. For the first time in an animal nervous system, 
we used high-throughput sequencing to map changes in the tRNA transcriptome 
and epitranscriptome in vivo between the proliferative and differentiated stages of 
neurogenesis. Our bioinformatics analyses reveal that the stabilizing effect of 
codons positively correlates with the cellular tRNA levels in neuroblasts and 
neurons, but the effect at the gene level attenuates in neurons. To investigate 
how codon optimality and tRNAs contribute to the dynamic translation programs 
in neurogenesis, we analyzed the codon usage patterns of mRNAs that are 
expressed in both neuroblasts. Like human cells (Gingold et al., 2014; 
Hernandez-Alias, 2020), Drosophila mRNAs involved in neural proliferation and 
differentiation exhibit distinct codon usage profiles, with strong GC-bias in the 
proliferation-oriented transcripts. Importantly, the codon usage of proliferation-
oriented mRNAs makes them better adapted for translation by the neuroblast 
tRNA pool but less efficiently translated by the neuron tRNA pool upon 
differentiation. We show that although several pro-differentiation mRNAs are 
expressed in the neuroblasts, they have been distinctly shaped by natural 
selection for enhanced translation by the neuron tRNA pool. Altogether, our 
findings position codon optimality, as established by tRNA variation,  as an 
influential genetic determinant of Drosophila neurogenesis as it establishes a 
mechanism that would enable coordinated regulation of functionally related 
mRNAs via the sharing of distinct codon profiles that, in turn, similarly constrains 
their dynamics upon cellular changes that are oriented toward the phenotype of 
the cell. Both early neurogenesis and translation elongation are well conserved 
between animals. Therefore our findings have implications for other metazoan 
systems. 
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Key Finding #1: tRNA-mediated changes in codon optimality supports 
proliferation and differentiation in the nervous system in distinct ways 

A major goal of this study was to determine how context-dependent codon 
optimality is established during cell development. Codon-optimality mediated 
mRNA decay (COMD) which is a more recent mechanism of codon optimality. By 
superimposing data from independently obtained genome-wide measurements 
based on tRNA sequencing, mRNA sequencing, and mRNA decay in genetically 
identically neural populations, our findings demonstrate a global link between 
codon usage and tRNA availability, both on a frequential and spatial basis. 
Moreover, the variation in cellular tRNA availability (tAI) provided strong 
explanatory power for the differences in CSCs, as evidenced by the large effect 
size (Cohen’s d>1.0).  

The general mechanism that emerged from the study is that while the NB 
transcribes both pro-proliferation and differentiation mRNAs, the phenotypic 
impact of pro-differentiated mRNAs is likely suppressed/attenuated, in part 
because the codon usage of differentiation mRNAs makes them poorly adapted 
for translation by NB tRNA pool. However, after neurogenesis, the codon usage 
of a subset of pro-differentiation mRNAs, many of which are RNA binding 
proteins,  are a better match to decoding by the neuron tRNA pool, thus 
experiencing a boost in their translation efficiency that may lead to proteostatic 
changes to establish developmental reprogramming. Nonetheless, codon 
optimality in these neural populations manifests in distinct and dynamic ways 
across development, in part due to the cell type-specific tRNA repertoires and 
physiology. Our results parallel a recent study in the mouse immune system that 
profiled changes in the tRNA and mRNA expression during antigenic activation of 
mouse T cells and demonstrated coordinated changes that promoted the up-
regulation of T-cell proliferation mRNAs, after which the tRNA levels relaxed 
upon differentiation back to the basal level (Rak et al., 2021). 

1.1 tRNA expression in neural progenitors supports proliferation by upregulating 
ribosome biogenesis and global translation  

A small pool of nearly homogenous populations of neural progenitors must 
repeatedly divide to generate orders of magnitude more neuron and glial cells. 
The significant and strong association between tRNA levels and codon usage in 
explaining both codon-optimality mediated mRNA decay (COMD) and the 
variation in codon-dependent translation adaptiveness of mRNAs in Drosophila 
larval neuroblasts (NB) aligns with observations in proliferative systems, from 
bacteria (Rochoa et al.,), to fungi (Presynak et 2015; Tuller et al., 2010; Wint et 
al., 2022) to mammalian stem cells (Bornelov et 2019; Forrest et al., 2020) and 
the Drosophila embryos (Burow et al., 2018). Collectively, these data support the 
widely accepted ‘stabilization-by-translation’ model where variation in tRNA 
expression confers distinct elongation rates to their cognate codons such that 
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optimal codons are more rapidly translated and thus less likely to recruit decay 
and recycling factors that are known to target stalled or paused mRNA-bound 
ribosomes (Radakrishnan et al., 2016; Buschauer et al., 2020). 

The commonality between these studies and our present work, based on the GO 
functional analysis, is that tRNA-mediated codon optimality supports cell 
proliferation by upregulating ribosome biogenesis and cytoplasmic translation, 
which is indicative of the cellular need to sustain the accumulation of biomass 
and repeated rounds of cell division. It is well understood that the availability of 
free ribosomes, i.e., capacity for protein synthesis,  is the primary limiting factor 
in actively dividing cells. On average, 20% of gene expression (up to 60% at the 
log phase in budding yeast) is invested in making ribosomal proteins and other 
core components of the translation machinery, thus enabling the synthesis of 
other proteins (Liebermeister et al., 2014; Warner et al., 2000). Thus, codon 
optimality represents a deeply conserved regulatory code for establishing gene 
expression programs under proliferative conditions. 

1.2 tRNA-mediated codon optimality supports neuronal maturation by selectively 
upregulating the translation efficiency of regulatory proteins involved in 
neurogenic pathways such as RNA splicing 

Here, we discuss the most interesting and novel set of results that emerged from 
the study in the neuron population. But first, the field has long appreciated the 
influence of codon optimality on post-transcriptional mRNA fate in proliferative 
conditions, especially in simpler organisms. Our contribution on this front was to 
present concrete evidence that it is the dynamic variation in cellular tRNA levels 
that both installs and transduces the distinct regulatory signals of the codon 
features in the coding region of mRNAs, especially in complex animals where 
codon optimality was long believed to be nearly absent. Thus, we do not find it 
surprising that a strong signal for tRNA-mediated codon optimality exists in the 
Drosophila larval neuroblasts because, broadly speaking, cell proliferation is 
oriented towards a rather general objective: produce lots of proteins to grow and 
exponentially increase the number of cells. 

1.3 Codon-mediated mRNA decay is weaker in the post-mitotic neurons 
compared to neural progenitors. 

If codon optimality is an adaptation of high-growth states (Gingold et al., 2014), 
then we expect codon optimality to minimally contribute to the genetic control of 
the development of differentiated tissues. Indeed, the previous work from our lab 
supported this view when it was observed that the effect of codon optimality on 
mRNA decay attenuates in the Drosophila embryonic nervous system, although 
their qPCR method – unlike this tRNA sequencing - failed to identify significant 
changes in the tRNAs between the whole embryos and the embryonic CNS. Still, 
we observed a similar but more complicated pattern in our present profiling of the 
larval CNS. Intriguingly, the variation in stabilizing effects of codons is nearly as 
strongly by neuron-specific tRNA availability  (Cohen’s d=1.0) as observed in the 
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neuroblasts (Cohen’s d=1.44). Initially, this result looked encouraging. Yet, unlike 
in neuroblasts (Pearson’s R=0.38****), the influence of codon optimality on mRNA 
stability unexpectedly did not persist to the gene level in neurons (Pearson’s 
R=0.1**).  So again, like Burow et al., 2018, we return to the question that 
motivated this research: why does the regulation of mRNA decay by codon 
optimality attenuate after neural differentiation? Our analysis of codon-dependent 
translation dynamics may have given us the answer.  

1.4 Neuron tRNA pool promotes differentiation by enhancing the translation of 
RNA-binding proteins that promote miRNAs which potentially override codon-
optimality-mediated mRNA stability 

Although eukaryotic translation and mRNA decay are coupled since they share 
the same interaction on the mRNA, they are nonetheless still distinct pathways. 
We decided to explore not only the role of tRNA regulation in shaping specific 
mRNA decay programs but also the potential role of tRNA dynamic on differential 
mRNA translation. We chose to focus on shared mRNA transcripts, thereby 
holding constant the coding region (and thus codon usage) in order to observe 
how their translation dynamics would be altered by tRNA levels. 

Differentiation is the inverse of proliferation, and the evolution of functional and 
morphological specialization necessitates distinct regulatory pathways. One-way 
animals achieve tissue-specific programs is via the regulation of RNA-binding 
proteins. Our data show that mRNAs encoding RNA-binding and protein-binding 
domains, i.e., post-transcriptional regulatory proteins – dominate the cohort of 
transcripts that likely experience enhanced translation by the neuron tRNA pool 
by virtue of their codon usage profiles. Regulatory networks mediated by RNA-
binding proteins play a crucial role in nervous system development and 
maintenance, especially by generating functional diversity via alternative RNA 
splicing.  Additionally, both the insect and mammalian nervous systems 
selectively express longer 3' UTR isoforms, compared to the rest of the body, via 
alternative polyadenylation (APA) (Blair et al., 2017; Oktaba et al., 2017). Many 
studies show that 3’UTRs contain cis-elements that are targets for RNA binding 
proteins (RBP) and microRNAs (miRNAs) that regulate mRNA degradation (Zaid, 
1994; Dini Modigliani et al., 2014; Pereira et al., 2017 ) and neuronal subcellular 
mRNA trafficking and localization (Meer et al., 2012; Tushev et al., 2018; Bauer 
et al., 2019). 

One mechanism of post-transcriptional regulation is 3’UTR-mediated mRNA 
destabilization via microRNAs (miRNA) that bind sites in the 3′ UTRs. So longer 
3UTR isoforms are expected to have more miRNA binding sites (Bae et al., 
2020). In our dataset, among the top 5 largest improvements in post-
differentiation translation efficiency (tAI) is the Ars-2 transcript (Arsenic 
resistance protein 2), a highly conserved gene that directs miRNA biosynthesis 
and maturation and directly binds to the CBP80 and Drosha complexes (Gruber 
et al., 2009; Gruber et al., 2011). Recently, in zebrafish embryogenesis, it was 
shown that miRNA antagonizes the stabilizing effect of optimal codons in quasi-
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dosage dependent manner. In this study, the researchers constructed reporter 
transcripts with varying degrees of codon optimality and found that miR-430/-427 
destabilizing activity was strongest on transcripts with moderate codon optimality 
but less efficacious on transcripts with more extreme bias in codon optimality. 
Even more relevant to our findings, they also observed that, across a hundred 
maternal mRNAs, the enrichment of miRNA sites increases, and the stabilizing 
effect of codon optimality decreases  (Medina-Muñoz et al., 2021). To put this all 
together, our results suggest that neuronal tRNA expression supports the 
enhanced translation of RBP, potentially increasing their protein output and thus 
their regulatory activities, one of which is the upregulation of 3’UTR-mediated 
mRNA stability that overrides the influence of codon optimality.  Our findings 
raise the question of tRNA regulation in other differentiated tissues employs a 
similar mechanism of selective translation regulation of regulatory proteins, which 
in turn drives a developmental signal cascade leading to phenotypic changes. It 
would be interesting to see if this mode of tRNA-mediated regulation exists in the 
mammalian brain; however, to date, there are only two published in vivo 
tRNAseq from the mammalian CNS, both in mouse models (Blaze et al., 2021; 
Pinkard et al., 2020) 

From the perspective of translation adaptation, we imagine that neuronal tRNA 
expression must balance the up-translation of regulatory genes with the down-
translation of ribosomal genes, but not beyond a certain threshold since post-
mitotic neurons still need to maintain constitutive protein synthesis and thus 
ribosomal biogenesis. This may explain why the post-differentiation increase in 
tAI of the top 3 mRNAs (all RBPs) is larger than the post-differentiation decrease 
in tAI of the top 3 mRNAs (all ribosomal proteins) (Figure 4B).   

What is the benefit of regulating cell development post-transcriptionally, 
particularly at the layer of mRNA translation? Because protein synthesis is the 
direct output of translation, the potential advantage of regulating mRNA fate at 
the stage of translation provides a faster way of modulating protein levels 
compared to more upstream control at the level of transcription. Borrowing from 
principles of computer information retrieval, translation regulation vs. 
transcriptional regulation is analogous to how access from RAM storage 
(translation) enables faster CPU computations (conversion of mRNA to protein) 
compared to loading instructions directly from disk storage (transcription). 
Nevertheless, the coding regions of mRNAs are under different functional 
constraints as well as different evolutionary pressures, and so only a subset of 
regulatory genes can benefit from improved translation efficiency due to changes 
in tRNA expression after neurogenesis. We showed that the mRNAs enriched in 
DNA-binding domains (DBPs) were refractory to codon-dependent translation 
efficiency by the neuron tRNA pool and also lacked a signal for translation 
selection by the cytosolic tRNAs. Thus, we wonder if there is any physiological 
purpose/advantage for the differential regulation of RBPs and DBPs in nervous 
system development. 
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Figure 6: Model of tRNA dynamics contributes to proliferation and differentiation 

programs in Drosophila larval neurogenesis: 

General Model: tRNA regulation establishes cell-type specific codon optimality that 

facilitates coordinated regulation of functionally related mRNAs via the sharing of distinct 

codon profiles that similarly constrains their dynamics upon changes in tRNA levels in a way 

that is oriented toward the phenotype of the cell. 

Neuroblast-specific tRNA  repertoire establishes Neuroblast-specific codon optimality that 

regulates mRNA stability and translation efficiency of primarily ribosomal and energy 

metabolism mRNAs. 

Neuron-specific tRNA repertoire supports the translation efficiency of pro-neurogenic 

mRNAs, including regulatory RNA-binding proteins that upregulate alternative RNA splicing 

as well as increased 3’UTR-mediated cis-trans interactions, which we speculate is one of the 

factors that partially explain the attenuation of codon optimality mediated decay in neurons. 

 

 

Neural differentiation 
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Key Finding 2: Distinct variation in tRNA expression at different functional 
layers 

 

2.1 Gene-specific regulation of tRNA isodecoders remains unsolved 

Similar to tRNA sequencing in mammalian tissues (Pinkard et al., 2020), we 
observe that there is greater variation at the tRNA isodecoder level (greater 
range in fold change) compared to the anticodon level (smaller fold change 
range). This suggests that individual tRNA isodecoders are differently regulated. 
Still, the mechanisms by which identical tRNAs are distinctly regulated remain an 
open question because all tRNA loci share the same transcription machinery 
(RPOL3-TFIIIB-TFIIIC) and conserved internal promoters, known as A/B-box 
sequences.  General tRNA biogenesis is majorly regulated via mTORC pathway, 
the conserved nutrient-sensing, and growth pathway in eukaryotic cells, by 
modulating the phosphorylation status of MAF1, the negative regulator of RPLO3 
(Arimbasseri et 2016)   

Interestingly, 45 % of Drosophila melanogaster tRNA loci are nested within the 
introns of longer protein-coding genes. A similar fraction is observed in mice and 
humans (Sagi et al., 2016). So, it is possible that transcriptional interference 
between RNA POL2 and RNA POL3 may also regulate the expression of specific 
‘nested’ tRNA loci. Chromatin profiling experiments demonstrated how the 
presence of nested mammalian interspersed repeat (MIR) loci, also RPOL3 
transcribed, led to the downregulation of its host protein-coding gene due to 
transcriptional interference (Yeganeh et al., 2017). So it is also possible that 
nested tRNAs are regulating their host protein-coding genes. One way of 
investigating this mechanism of tRNA loci regulation is via CRISPR/Cas9-
mediated deletion of the nested tRNA loci.  

2.2 Dynamic changes in the tRNA epitranscriptome  

Variation in the tRNA epitranscriptome provides another layer of information 
about tRNA regulation. Dysregulation of tRNA modifying enzymes is increasingly 
identified as a driver of human diseases, most observed in neuro-pathologies 
and cancers, such as mutations in PUS3, ADAT3, WDR4, NSUN2, and FTSJ1 
enzymes (Blaze et al., 2021; Blanco et al., 2020; Delaunay et al., 2022; reviewed 
in Suzuki, 2021). In addition to discovering changes in tRNA levels, we inspected 
the modification profiles of the tRNA isodecoder and were able to identify 
modification signatures at conserved positions in the tRNAs. Many tRNA 
modifications are involved in housekeeping functions, such as stabilizing the 
secondary and tertiary tRNA structure. Hence, as expected, most modification 
frequencies did not change between the neural cell types. Still, we detected a 
total of 3% of sequence variants that exhibited at least a 10% difference between 
conditions.  
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2.3 Is the neuroblast tRNA epitranscriptome adapted for translation speed at the 
cost of translation fidelity? 

What can our modification results reveal about cell-type specific tRNA 
adaptation? We speculate, based on two lines of evidence from our data, that the 
neuroblast (NB) tRNA epitranscriptome indicates a specific adaptation for 
translation speed. Under conditions of high growth, a proliferative cell may have 
to make a trade-off between translation accuracy and speed (Hausser et al., 
2019; Wohlgemuth, 2011).  Firstly, our data shows that Inosine-34 (I34) edited 
tRNAs significantly contribute to neuroblast-specific codon optimality but not in 
neurons. Especially, codons decoded by I34-tRNAs are enriched in the 
‘Proliferative’ codon usage signature that we identified, and I34-tRNAs 
preferentially decode stable codons in the NB. The I: C wobble anticodon-codon 
pairing is weaker than the G: C bond due to one less hydrogen bond but still 
appears to be as robustly decoded (Hoernes et al., 2018). However, a weaker I: 
C bond would facilitate easier dissociation of the anticodon-codon pair at the 
ribosomal E-site, thus promoting faster translocation of the ribosome along the 
mRNA sequence. Secondly, we observed that the conserved G27 
methylguanosine position on Ile-AAT-1-6 is strongly hypomodified in NB 
compared to neurons. This is rather interesting because Ile-AAT also bears the 
inosine-34 modification, and its cognate codon, AUC, is shown to be the most 
influential feature on the ‘Proliferation’ axis of the PCA performed on the shared 
neural mRNAs (Figure 3C). Hypomodifications on the anticodon stem are 
predicted to destabilize the anticodon-codon stacking and lead to ribosome 
frameshifting errors which may result in premature translation termination  
(Mordret et al., 2019). However, a less rigid anticodon-codon pairing may 
potentially benefit faster ribosome translocation, albeit at the cost of more 
mistranslation errors. Interestingly, ‘response to misfolded protein’ and ‘cellular 
response to oxidative stress’ were among the top 20 Biological GO terms for the 
mRNAs selectively using the ‘Proliferation’ codon usage program, which exhibits 
better translation adaptation in NB.  Taken together, perhaps the NB has 
mechanisms in place to ameliorate the proteotoxic stress arising from increased 
translation errors whilst benefiting from faster translation and, thus, increased 
availability of free ribosomes. In contrast, it is widely known that neurons are 
more sensitive to the accumulation of misfolded proteins because, unlike NB, 
neurons cannot dilute toxic metabolites by means of cell division. 

 

3. Study Limitations 

Several factors may explain why there is an incomplete relationship between our 
tRNA abundance and CSCs. The most straightforward reason is the lack of 
charged tRNA quantification since it is the concentration of aminoacylated tRNAs 
that ultimately dictates the codon decoding rates. We also lack information about 
the tRNA decay rates, which also contribute to tRNA steady-state levels. 
Secondly, from the standpoint of the genome-wide profiling of mRNA decay 
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rates, it is likely that the chase time points (3hr, 6hr, 9hr, 12 hr) would not be able 
to detect a strong signal if any, of mRNAs with shorter half-lives. Forrest et al. 
also observed that amino acid usage also contributes to mRNA stability. 
However, in our analyses, we normalized away amino acid effects so as not to 
confound our results on codon optimality. Therefore, further exploration of the 
role of amino acid usage and free amino acid levels may provide a more 
complete picture. However, it must be noted that codon optimality is not 
predicated perfect correlation between tRNAs and codon usage because codon 
usage patterns are shaped by both natural selection and neutral forces, albeit at 
varying degrees of influence (dos Reis et al., 2004) 

Inferring tRNA modification status based on RT-induced mismatch during 
sequence offers limited detection and is likely biased towards simple methylated 
nucleosides since they provide a less steric hindrance to readthrough by the RT. 
As such, this method is less likely to detect bulkier adducts as they would lead to 
increase RT-arrest and falls of. Moreover, the partial alkaline treatment specific 
to this method of tRNA library preparation may remove or alter the detection of 
some modifications. The better alternative for measuring tRNA modifications is 
mass spectrometry.  

One major assumption we made is that the enhanced adaptation to the cellular 
tRNA pool maps proportionally to the change in protein abundance. While we do 
expect some agreement between changes in decoding rates by tRNAs and 
protein output (Goodarzi et al., 2016), there remains still additional steps 
involving the post-translation maturation of proteins. Genome-wide proteomic 
measurements would clarify the precise relationship between tRNA-mediated 
translation adaptation and upregulation of protein synthesis.  
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Concluding Remarks and Future Directions 

My dissertation research contributes to the emerging field of how codon usage 
bias intersects with tRNA dynamics, i.e., codon optimality, to exert post-
transcriptional control cell-fate determination. Specifically, this work positions 
tRNA regulation, and thus regulation of translation elongation, as a crucial 
checkpoint in cell development.  Based on our data, we propose the model that 
neuronal tRNAs contribute to the regulation of cell differentiation by enhancing 
the translation, in a codon-dependent manner, of RNA-binding proteins that are 
crucial regulators of neurogenic development, such as alternative RNA splicing 
and axonogenesis. Moreover, several of the fly RNA-binding proteins are also 
functional orthologs in the human nervous system, including those implicated in 
neurological and neurodevelopmental disorders. This raises the possibility that 
the selective translation of regulatory RNA-binding proteins may explain the 
pervasiveness of defective tRNA metabolism in many neurodegenerative 
diseases.  

The methods and analysis framework in service of this research question aptly 
represent the zeitgeist of  “-omics” biological research. Advances in high-
throughput molecular assays mean that for a given experiment, we are likely to 
measure many more data points/ observations than the research questions we 
have. Additionally, the exponential growth in computing power and storage 
enables the curation and access to petabytes of experimental data, thus creating 
opportunities to drive in silico research and yield novel insights beyond the 
purpose for which they were initially generated.  In this study, we greatly benefit 
from the gene ontology information that has been curated from thousands and, in 
the case of D.melanogaster, decades of high-throughput functional studies. The 
richness and diversity in experimentally generated data also underscore the 
benefit of using model organisms, such as Drosophila melanogaster, to study 
basic biology. 

Proposed future directions to the ‘Neural tRNA Dynamics’ story: 

1) Elucidate the mechanism by which tissue-specific tRNA expression arises by 
assaying changes in tRNA transcription via RNA POL3 profiling and post-
transcriptional dynamics, e.g., tRNA turnover. Given that tRNA post-
transcriptional modifications are dynamically regulated, as my work alludes 
to, then a complete modification profiling by mass-spectrometry may yield 
insights into gene-specific or isodecoder-family-specific regulation of 
cytosolic tRNAs.  

2) Experimentally validate causality between altered tRNA levels and mRNA 
decay through perturbation of specific tRNAs – such as the post-
transcriptional knock-down of tRNAs via RNA-interference  - and monitor 
concomitant changes in mRNA decay and translation dynamics. Also, 
examine changes in neural morphology via fluorescent imaging since my GO 
analyses of the codon-optimality responsive mRNAs showed strong 
enrichment for axon and synaptic growth.  
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3) Test the proposed model that tRNAs in neural differentiation upregulates 
3’UTR and, by extension, miRNA activities that lead to overriding codon 
optimality mediated mRNA decay. One method is to manipulate the codon 
optimality of the predicted codon-dependent responsive RBPs.  As an 
example, Ars-2, the crucial regulator of miRNA biogenesis, is predicted by 
our dataset to be one of the most responsive to codon-dependent translation 
regulation. To this end, one could leverage Drosophila genetics to ‘knock in’  
(Bosch et al., 2020) synonymously recoded variants of Ars-2, with varying 
degrees of codon optimality, fused with a reporter tag, e.g., GFP. And then 
monitor the protein signal of the recoded Ars-2 variants and assay genome-
wide changes in miRNAs (Sabin et al., 2009; Hafner et al., 2011) and mRNA 
decay rates.  
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Materials and Methods: 

1. Experimental preparation  

Sample collection of Drosophila melanogaster larval brains 

Flies were raised at 23-25oC.  Whole brains were dissected from late-stage 
larvae (120 hours after larval hatching) of wild-type flies (Oregon-R-P2), and 
transgenic ectopic-neuroblast mutants (UAS-aPKCcaaxx Insc-Gal4) flies.  A total 
of 3 biological replicates were obtained for each genotype.  

tRNA sequencing (adapted from Gogakos et al., 2017 with minor changes) 

All reagents should be RNAse-free. Isolate total RNA using standard Trizol 
extraction. Perform RNA quality control using 1% Agarose gel and nanodrop. 
Use the appropriate combination of synthetic RNA oligonucleotides, at lengths 
19nt, 24nt, 35nt, 45nt, 61nt, 70nt, and 85nt, as size markers to guide size 
selection after each gel run. All adapters, primers, and size markers were 
purchased at Integrated DNA Technology (IDT). 

Resolve 20ug of total RNA on a 15% denaturing Urea-SDS PAGE (Invitrogen) 
and excise gel that spans 60-100nt. Let gel rotate overnight in 350ul of 0.3M 
sodium acetate. Elute the RNA in 100% isopropanol and 1ul LPA on ice for 1 
hour. Microcentrifuge at 20,000g to collect RNA. Perform 2 rounds of ethanol 
wash using 500ul 80% ethanol at 7500g for 5 minutes. Resuspend RNA in 12ul 
of RNAse-free water and subject it to a partial alkaline hydrolysis using 15uL-
buffer of 100mM Na2CO3 and 100mM NAHCO3 at 90oC for 12 minutes (be as 
exact as possible). Resolve the hydrolyzed RNA on a 15% TBE Urea-denaturing 
SDS-PAGE gel (Invitrogen) and recover bands between 19-45nt. 
Dephosphorylate the hydrolyzed RNA using 10U calf intestinal phosphatase 
(New England Biolabs). Heat inactivate at 75oC for 15 minutes. Perform 3’ 
ligation by using 2ul of 10mM barcoded 3’adapter (26nt), 2ul of 10x truncated 
RNA Ligase2 (NEB), 6ul of 50% DMSO and 25% v/v PEG. Incubate the reaction 
at 16C for 6 hours and then overnight on the ice at 4oC. Heat inactivate at 75oC 
for 15 minutes. Rephosphorylate using 4ul of 10x T4 Polynucleotide Kinase 
(NEB), 6ul of 5mM ATP, and 2ul of 1mM DTT at 37oC for an hour. Note the high 
concentration of ATP also inhibits the RnL2. Heat inactivate at 75oC for 15 
minutes. Perform ethanol-salt precipitation by adding 200ul of 100% ethanol and 
6ul of 3M sodium acetate, and 1ul LPA. Store on the ice at -20oC for at least 2 
hours. Microcentrifuge at 20,000g to collect RNA. Perform 2 rounds of ethanol 
wash using 500ul 80% ethanol at 7500g for 5 minutes. Elute and Resuspend in 
9ul of RNAse-free water. Perform 5’ligation by adding 1ul of 10x RNA ligase 1, 
2ul of Ligase Buffer, 2ul of 10mM ATP, 6ul of 50% DMSO, and 2ul of 10mM 
5’adapter (26nt) at 250C for 2 hours. On a 15% TBE Urea-denaturing SDS-PAGE 
gel (Invitrogen) and recover bands between 71nt and 120nt, corresponding to the 
ligated products. Prepare cDNA libraries as described in (Gogakos et al., 2017), 
with one exception of using 4ul of 10mM of DNTP instead of the 10ul and 



76 
 

 

 

perform PCR amplification for 15 cycles. PCR amplified cDNA was sequenced 
on Illumina Novaseq6000.  

Metabolic RNA labeling via pulse-chase EC-tagging and time course mRNAseq 

5-EC was synthesized as previously described (Hida et al., 2017). For pulse-
chase experiments, larvae were fed 1 mM EC for a 12-Hour pulse, and then 
transferred to media containing 10 mM unmodified uridine for the 3, 6, and 12-
hour chase. A 6-hour collection of larvae was collected and left at  25°C until they 
were fed 1 mM 5EC at 72 hours after larval hatching (ALH) for 12  hours. After 
this pulse, larvae continued eating excess uridine until dissections were done at 
the final 12-hour chase time point at 96 hours ALH. Total RNA was extracted 
from crudely dissected central nervous system tissue using Trizol. A total of 25 
μg of RNA was biotinylated using Click-iT Nascent RNA Capture reagents 
(ThermoFisher) and purified on Dynabeads MyOne Streptavidin T1 magnetic 
beads  (ThermoFisher), as previously described ((Hida et al., 2017). After the 
final wash, beads containing captured RNA were used to make RNA Sequencing 
libraries using the Ovation® SoLo RNA-Seq System kit. 

2.  Statistical and Bioinformatics Analysis  

tRNA data sequencing analysis  

Raw sequencing reads were processed using cutadapt (v3.7) to trim adaptor 
sequences and remove reads shorter than 12bp. Custom reference 
D.melanogaster tRNA transcriptome was generated by collapsing identical 
mature tRNA sequences from gtRNAdb (genome release 6.40) and adding a 
CCA at the 3’ end of each sequence. tRNAseq reads were mapped to the 
reference tRNA transcriptome using subread-align (v.2.01; Liao et al.,2013) with 
the following parameters ‘-t 1 -T 64 --multiMapping  -B 5 -m 3 -I ’, allowing up to 3 
mismatches and report the first 5 multi-mapped reads. Although bowtie2 is more 
popular in published tRNAseq studies, we found that subread is more consistent 
at assigning and handling multi-mapped reads (See Chapter 3 Methods for more 
details). For quality control, only aligned reads with MAPQ>=10 were retained. 
Read count summary was performed using subread’s featureCounts, in which 
multi-mapped reads were fractionally split between their references. NOISeqBio 
in R(v.3.6)  was used to perform read count normalization (TMM) and batch 
correction, and differential gene expression analysis. NOISeqBio uses non-
parametric Bayesian methods to estimate differentially expressed genes in 
biological replicates and reports a q-value that is statistically equivalent to the 
Benjamini-Hochberg  FDR. Although it recommends a threshold q-value of 0.2, 
we used a q-value of 0.1 instead. See Chapter 3 for more details on NOISeqBio 
performance. 

 Hypothesis testing and data visualization 
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 All subsequent statistical tests and visualization were performed in python3 
(v3.8) using the following packages: scipy, sklearn, pandas, matplotlib, seaborn, 
and statsmodel.  

 

Gene Ontology analysis 

Biological and molecular GO analysis was performed using FlyEnrchr 
(https://maayanlab.cloud/FlyEnrichr/) 

3. Codon Optimality Metrics 

Codon Stabilization Coefficient, CSC 

CSCc =  Pearson’s R (codon frequencyc , mRNA half-lives)  

tRNA adaptive Index (tAI) 

The tAI of a codon was calculated according to dos Reis 2004, using the 
normalized tRNA expression levels (TMM) instead: 

i. tAIc = ∑1:j ( (1- scj)*tRNA TMMcj  )   

Translation adaptive index of a codon c, tAIc, is the weighted sum of all its j 
decoding tRNAs that read with an anticodon-codon binding affinity scj 

The tAI of a gene is the geometric mean of the tAI values of the codons in its 
coding sequence. 

                  tAIg  = (Π tAIc) 1/L 

Normalized Codon Frequency (RSCU) 

Relative synonymous codon usage (RSCU) is the ratio of observed usage to the 
expected uniform usage within its amino acid class. RSCU is invariant to 
sequence length or amino acid composition. The RSCU of the 59 degenerate 
codons was computed using custom python3 scripts 
(https://github.com/rhondene/Codon-Usage-in-Python)  according to (Sharp and 
Li,1987). Six-fold amino acids (Leucine, Serine, Arginine) were split into 2-fold 
and 4-fold codon groups.  

Translation Supply Demand Ratio (SDR)  

i. Firstly, the codon-level translation supply-demand ratio (SDRc) was 
calculated as  

SDRc =  tAIc / (  ∑(mRNA_exprs*normalized codfreqc)normalized for amino  acid ) 

 

ii. Then the mRNA level  supply-demand, SDR, was calculated as the 
geometric mean of the codon SDR values:  

SDRg  = (Π SDRc) 1/L 

https://maayanlab.cloud/FlyEnrichr/
https://github.com/rhondene/Codon-Usage-in-Python
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The effective number of codons  and Codon Adaptation Index  

The effective number of codons (N), which measures the degree of synonymous 
codon bias of gene or genome, and CAI were computed from coding sequences 
using DAMBE (Xia, 2017). 
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Chapter 3: Parametric and Non-Parametric Estimation of Differential tRNA 
expression analysis 

Background 

High-throughput RNA sequencing remains the technique of choice for estimating 

genome-wide levels of gene expression. In a typical bulk RNAseq experiment, 

RNA molecules are extracted from a biological sample (usual tissues), sheared 

into smaller fragments, reverse transcribed into cDNA, and amplified. These 

cDNA fragments are sequenced, often generating millions of sequenced reads 

per sample. The expression of a genomic feature (gene, transcript, etc.) is 

estimated based on the number of reads mapped to that region. Thus, RNAseq 

characterizes the biological status of the profiled tissue by providing a snapshot 

of the transcriptome. In comparative RNAseq experiments, the primary 

motivation is to associate changes in gene expression to the distinct biological 

outcomes between two or more conditions, e.g., healthy vs. diseased tissue A vs. 

tissue B. Because the distribution of mapped reads is due to both biological and 

technical variability, a central goal of RNAseq analysis is to determine those 

genomic features that are biologically differentially expressed between 

conditions.  

General formulation of modeling RNAseq count data 

Methods for gene expression estimation usually represent RNAseq input data as 

a count matrix. Let there be N samples (or replicates) per biological condition and 

a total of G genes (features/variables) in the reference genome. Thus, the entire 

RNAseq count dataset is an NxG matrix, where Rgi denotes the number of reads 

that maps to a gene g from sample i. To allow for direct comparison between 

samples, the mapped read counts are normalized prior to DGE estimation [Dillies 

et al.,2013; Evans and Stoebel, 2018].  

Parametric modeling of RNAseq count data using the negative binomial 

distribution 

Parametric-based methods infer differential gene expression by assuming that 

the input read counts  Rgi is drawn from a specific parametric distribution D. 

Because RNAseq experiments generate count data, continuous distributions 

such as the normal distribution are not suitable; instead, parametric methods 

model count data using discrete distributions, such as the Poisson and Negative 

Binomial. However, because the mean read count from biological replicates is 

smaller than the variance, the negative binomial is widely adopted for regression 

of count responses. As such, the negative binomial (NB) model is used by the 

two most common parametric tools for differential gene expression analysis, i.e., 

DEseq2 [Love et al., 2014] and edgeR [Robinson and Oshlack, 2010]. Both 



89 
 

 

 

methods perform univariate negative binomial regression on each gene to 

estimate the gene count Rgi (response variable) [Equation 4.1]. 

Rgi ~ NB(μgi, ϕ g)   [Eq. 4.1]    

μg is the normalized mean gene counts for a sample i. Importantly,  ϕ g  is the NB 

dispersion parameter that describes the biological variability of the gene, and this 

parameter is estimated during model fitting. After model fitting, parametric tests 

such as the Wald’s or Fisher’s exact test is employed to test for significantly 

differentially expressed genes.  

Non-parametric methods for estimating RNAseq gene expression 

Non-parametric approaches to DGE analysis do not assume the underlying 

distribution to model the count data but build an empirical distribution from the 

count data [Li and Tibshirani, 2013; Tarazona et al., 2015 ]. Here, I summarize 

the non-parametric tool, NOISeqBio, which is optimized specifically for biological 

replicates [Taranoza et al., 2015].  

Let RA
g and RB

g
  represent the counts of a gene in two distinct biological 

conditions, A and B.  NOISeqBio quantifies differential expression based on the 

two statistics: the log fold change, Lg, and the absolute difference, Dg, of the 

normalized mean gene counts [Equation 4.2 ].  

Lg = log2 (RA
gi / RB

gi), log ratio   Eq. 4.2 

Dg = |RA
gi - RB

gi|, absolute difference 

 

The Lg and Dg values are corrected for biological variability (L*, D*) and pooled 

together to compute the differential expression parameter, ϴ. They consider the 

probability distribution of ϴ as a mixture distribution of genes with an altered 

expression between conditions, fa, and genes with an invariant expression 

between conditions, fo (null). [Equation 4.3] 

 

ϴ = (L* +D* )/2  

f(ϴ) = pofo(ϴ) + pafa(ϴ),   Eq 4.3 

 

Where po is the probability of non-differential expression between conditions and 

pa is the probability that a gene is differentially expressed. To build a null noise 

distribution, the null scores, ϴo,  are estimated using the assumption that there is 

no change in expression between conditions. The probability density functions of 

fo((ϴ) and fa (ϴ) are estimated using Gaussian kernel density estimator 

[Taranoza et al., 2016].  

Finally, given a gene with ϴ, the posterior probability of differential expression is 

computed using Bayes’ rule [Equation 4.4]. According to a proof formulated by 
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Efron et al. (2001), q=1- pa(ϴg) mathematically approximates the Benjamini-

Hochberg false-discovery rate (FDR). 

pa(ϴg) = 1- [ po  (fo(ϴg)/ fa(ϴg) ) ] Eq. 4.4 

 

Performance of parametric and non-parametric methods for DGE analysis 

All RNAseq methods were developed with messenger RNAseq data in mind but 

are readily adopted for small RNAseq and tRNAseq gene expression analysis. 

Most published tRNAseq analyses utilize DEseq2, although it has not been 

tested if tRNAseq datasets are a good fit for the negative binomial model. 

Moreover, there are thousands of mRNA types (features) compared to a couple 

of hundred tRNA genes in the animal genomes. That is, a tRNAseq dataset has 

much fewer features than a mRNAseq dataset. Altogether, these factors 

motivated me to compare the performance of the parametric negative binomial 

model (DEseq2) and non-parametric data-adaptive method NOISeqBio on my 

tRNAseq count data derived in Chapter 2 of this thesis. There is no ground truth 

to determine which approach is more accurate in reality; however, I perform 

goodness-of-fit tests to the negative binomial distribution to gain insights into the 

extent to which my tRNAseq count data deviates from expectation.  
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Materials and Methods: 

Neural tRNAseq samples 

3 biological replicates of neuron-derived tRNAs and neuroblast-derived tRNAs 

were prepared from D.melanogaster larval brains using the HydrotRNAseq 

protocol as outlined in the Methods section of Chapter 2 of this dissertation.  

Read alignment with subread versus bowtie2 

Libraries were aligned to mature tRNA transcriptome using subread aligner (Liao 

et al., 2013). On a technical note, I compared the performance of bowtie2 

(Langmead and Salzberg, 2012), the most widely used aligner in tRNAseq 

studies, and subread. Specifically, I became interested in how both aligners 

handled multimapping reads because of the nature of tRNA gene families, 

wherein non-identical isodecoders (same anticodon but different sequence body) 

and isoacceptors (same amino acid but different anticodon) may still share 

identical sub=sequences.  

Both aligners are comparable in the total reads mapped; however, I find that 

subread is more consistent in assigning multimapped reads as well in handling 

multimapped reads from the SAM file. Regarding the multimapping mode using 

the -k parameter for reporting the k best alignments, the bowtie2 documentation 

states, “Bowtie 2 does not "find" alignments in any specific order, so for reads 

that have more than N distinct, valid alignments, Bowtie 2 does not guarantee 

that the N alignments reported are the best possible in terms of alignment score.” 

(source: http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#k-mode-search-

for-one-or-more-alignments-report-each).  Moreover, bowtie2 provides minimal 

information about multimapped reads as it only assigns reads a MAPQ score of 0 

or 255.  In contrast, subread’s alignment strategy is explicitly designed to handle 

multimapping based on its ‘seed and vote’ strategy; wherein, if there are n best 

alignments of a read, then the read is assigned to those locations, and you can 

use the -B to control the final number of alignments to report in the SAM file. In 

comparison, subread provides a straightforward way to identify and retrieved 

multimapped or uniquely mapped reads using the ‘NH:i:n" and “HI:i:n” SAM tags. 

Finally, subread has a dedicated ‘small RNAseq’ alignment mode which was 

designed with microRNAs in mind, and the average read lengths of micro-

RNAseq overlap with the read lengths in this tRNAseq protocol since 

HydrotRNAseq was adapted based on the small-RNAseq protocol for microRNAs 

(Hafner et al., 2011).  

 

 

 

http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#k-mode-search-for-one-or-more-alignments-report-each
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#k-mode-search-for-one-or-more-alignments-report-each
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Read Count Normalization 

For quality control, alignments with MAPQ>=10 are retained in the input for read 

count summarization using featureCounts(Liao et al., 2013). Multimapped reads 

were proportionally assigned to their references. DESeq2 uses performs count 

normalization using its median-of-ratios in which counts are divided by sample-

specific size factors that are determined by the median ratio of gene counts 

relative to the geometric mean per gene.  

NOISeqBio includes three commonly used normalization methods: RPKM, TMM, 

and Upper Quartile. For this tRNAseq dataset, the type of normalization did not 

affect the results, so I chose the TMM (Trimmed Mean of M-values; Robinson 

and Oshlack, 2010).  

Differential gene expression analysis  

Differential gene expression analysis by DESeq2 was performed using the 

default settings, which include fitType =‘parametric’ to estimate the negative 

binomial dispersion parameters. To control for batch effects, the date of 

preparation for each library was included  as a factor in the design matrix: 

DESeqDataSetFromMatrix(countData=countData,colData=metaData, 

design=~Exp_date+Tissue) 

In NOISeqBio, batch correction was performed using the ARSyn method by 

supplying the date of library preparation, similar to DESeq2. Then differential 

gene expression analysis by was performed with the default settings. q=0.9 was 

chosen as the cut-off probability for differential expression since the FDR 

adjusted p-value of DESeq2 equals 0.1, and for NOISeqBio, 1-q is equivalent to 

the Benjamini-Hochberg FDR value.  

Goodness-of-fit test for the negative binomial distribution.  

The  Pearson chi-squared goodness-of-fit test is often employed for discrete 

distributions such as Poisson and binomial, where the variance is a function of 

the mean. However, the assumptions of Pearson chi-squared goodness of fit do 

not extend to negative binomial regression because of the additional dispersion 

parameter (Pierce and Schafer, 1986; Mi and Schafer, 2015). To assess how 

well the tRNAseq fits the negative binomial model, I used the tweeDEseq 

package in R (Esnaola et al., 2013) to perform goodness-of-fit tests of each tRNA 

gene to the Poisson-Tweedie (PT) family of distributions. The PT distributions 

include Poisson, negative binomial, and Polya-Aeppli (geometric Poisson). 

tweeDEseq estimates the parameter of each PT distribution using iterative 

Newtonian maximum likelihood estimation. Each tRNA gene is a 1x6 dimensional 

vector of the DESeq2 normalized counts.  
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Quantile-quantile plots using the DESeq2 estimated dispersion parameter. 

As a complementary approach, I used the probplot() function from the scipy.stats 

package (v1.90) in python3 (v3.8) to generate quantile-quantile plots for each 

tRNA gene-based the negative binomial dispersion parameter estimated by 

Deseq2 fitting.  The n and p parameters required for the negative binomial option 

in  scipy.stats.probplot were computed as follows:  

σ 2 =  μ + ϕ μ2 

p= μ / σ 2 

n = μ2 / ( σ 2 – μ)  

where ϕ is the DESeq2 estimated dispersion parameter,  σ 2 is the variance, μ is 

the DESeq2 mean normalized counts (per condition), n is the number of 

successes, and p is the probability of success.  
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Results: 

Here, I sought to compare the number of differentially expressed genes (DEGs) 

from my neural hydrotRNAseq dataset (n=106 genes) that are determined to be 

differentially expressed by DESeq2 (parametric negative binomial) and 

NOISeqBio (non-parametric) (Figure 1A, 1B). Using an FDR-adjusted p-value 

threshold of 0.1, DESeq2 reported a total of 5 genes as differentially expressed, 

whereas NOISeqBio reported 13 genes are differentially expressed (threshold 

probability q=0.9). Arg-TCT-3-1 is the only DEG detected by DESeq that overlaps 

with NOISeqBio DEGs (Figure 1C). Interestingly, all the tRNAs identified by 

DESeq2 as DEG are single-locus genes. Recall that many tRNA genes bear 

multiple identical loci throughout the genome. Thus the reference transcriptome 

for this study is built by collapsing identical tRNA sequences.  

Most tRNA gene counts do not fit the negative binomial distribution 

Most tRNAseq studies are interested in the abundance of nuclear tRNA genes 

for downstream analyses. DESeq2 reported only 1 nuclear tRNA as DEG in 

comparison to NOISeqBio, which yielded 11 nuclear tRNAs as DEG. So, I 

wondered about the extent to which tRNA gene counts fit the negative binomial 

distribution, and its poor fit may explain why DESeq2 failed to identify more 

nuclear tRNAs as DEG. To this end, I performed goodness-of-fit tests for each 

tRNA gene, based on the DESeq2 normalized counts, to the Poisson-Tweedie 

(PT) family of distributions for modeling count data [Esnaola et al.,2013]. Briefly, 

this method applies maximum likelihood estimation of the shape parameter for 

the negative binomial, Poisson, and Poyla-Aeppli (geometric Poisson). 10 out of 

the 106 tRNA genes fit the negative binomial distribution (p-value>0.2). The 

Poisson distribution was the best fit (i.e., highest p-value) for Arg-TCT-3-1, the 

only nuclear tRNA that is DEG by DESeq2. In total, 90 genes either could not 

converge to a shape parameter, or they converged but did not fit either of the PT 

distributions (Figure 1D). Notably, 10 out of 11 nuclear tRNAs that are DEG by 

NOISeqBio did not fit either of the PT distributions. 

Finally, as a qualitative evaluation of goodness-of-fit to the negative binomial, I 

used the dispersion parameters estimated by DESeq2  to construct a quantile-

quantile plot for each of the 11 nuclear tRNAs that are DEG by NOISeqBio, 

which also includes Arg-TCT-3-1 that is reported as DEG by DESeq2. Quantile-

quantile plot is a graphical method for evaluating if data conforms to a reference 

distribution. The closer the data points are to the 45o line, the more similar the 

dataset is to the reference distribution. Between conditions, Arg-TCT-3-1 and 

Ser-TGA-1-1 are the most consistent in their closeness to the reference line 

(Figure 1E, 1F) 
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Discussion: 

Here, I compared parametric and non-parametric methods for determining 

differential gene expression from tRNAseq data comprising biological replicates 

and tested the assumption that tRNAseq count data conforms to the negative 

binomial distribution that is widely used by popular differential gene expression 

tools such as DESeq2. Maximum likelihood estimation could only fit 10/106 tRNA 

genes to the negative binomial model. Only 1 nuclear tRNA gene was 

differentially expressed by DESeq2, compared to 11 nuclear tRNA genes by 

NOISeqBio, a non-parametric method that does not make underlying 

assumptions about the data. I believe these results may be informative for the 

implementation of tRNAseq bioinformatics pipelines. 

In general, a large number of hypothesis tests (one per gene/transcript) is 

performed in a single RNA-Seq study. Thus, a longstanding statistical challenge 

of modeling RNAseq data is the curse of dimensionality, i.e., limited statistical 

power to detect truly differentially expressed genes because of the simultaneous 

regression fitting on hundreds or thousands of genes (features) from a small 

number of sample replicates. Increasing the sample size increases statistical 

power; however, due to the cost and labor of RNAseq library preparation, many 

studies are limited to 3-5 replicates per condition. NOISeqBio reported more 

nuclear tRNAs as differentially expressed (n=11) compared to DESeq2 (n=1). 

The advantage of parametric-based methods is that even with a small sample 

size, they demonstrate robust statistical power for estimating differentially 

expressed genes [Yu et al., 2020 ]. However, previous studies have shown that 

the violation of the distributional assumptions leads to poor performance and 

reduced sensitivity, especially if there are outliers [Li and Tibshirani, 2013] and 

genes with low count [Bullard et al., 2010]. Therefore, the reliability of parametric-

based methods for DGE is heavily influenced by the kind of parametric statistical 

model. So perhaps, the low number of differentially expressed tRNAs by DESeq2 

is due to the generally poor fit of the count data to the negative binomial model. 

On the other hand, successful convergence of the iterative maximum likelihood 

estimation is influenced by the type of optimization algorithm and thus may affect 

the results of the goodness-of-fit tests.  

Still, no ground-truth tRNAseq dataset is available, so it remains uncertain which 

differential gene expression tool is more accurate. Nevertheless, I draw on two 

key bioinformatics studies that compared the performance of popular parametric 

and non-parametric tools, inclusive of DESeq2 and NOISeqBio, on mRNAseq 

datasets comprising biological replicates. Importantly, both studies had access to 

ground-truth datasets for evaluating the sensitivity (fraction of true DEG that is 

identified as DEG) and precision (fraction of DEG that is truly DEGs ). In both 

works, the authors highlight the problem of previous RNAseq benchmark studies 
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relying on simulated data and/or technical replicates for evaluating DEG 

workflows (Bacarella et al., 2018; Stupnikov et al., 2021). Stupnikov and 

colleagues reported that NOISeqBio was the most robust at controlling the FDR 

across different sample sizes, sequencing depth, and expression levels, in 

comparison to Deseq2 on biological replicates [Stupnikov et al., 2021]. A similar 

result was observed in the comparison across different read depths and sample 

sizes (Bacarella et al., 2018); however, they note that for sample numbers below 

five, NOISeqBio exhibits high sensitivity (recall more true DEG) but at the cost of 

low precision (more false positives). Thus, using a low sample size in NOISeqBio 

may increase the type I error rate (false positives).  Regarding my tRNAseq, I 

surmise that the NOISeqBio false positive DEGs are likely those whose theta 

values,ϴa, overlap with the noise distribution fo (Figure 1C).  

In conclusion, the hydro-tRNAseq dataset in this study is a poor fit to the 

negative binomial model and related Poisson-Tweedie count distributions, which 

would partially explain why non-parametric NOISeqBio yields more statistically 

differentially expressed tRNAs than DESeq2. As more studies profiling tRNA 

gene expression is published, it would be worthwhile to extend this kind of 

analysis to multiple tRNAseq datasets from different species as well as different 

tRNAseq library preparation protocols. 
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Figure 1: Differential Gene Expression using DESeq2 (parametric) and NOISeqBio 

(non-parametric) 

A: DESeq2 gene-wise mean-dispersion plot of the fitted negative binomial model for the 

Drosophila larval CNS hydro-tRNAseq dataset (n=106 genes) comprising 3 biological 

replicates from neuron and neuroblast tissues. 

B: NOISeqBio’s  empirical distributions modelling data noise, fo, and variation in gene 

expression between conditions, fa, p0 is the estimated probability of non-differentially 

expressed.  Red circle highlights the differential expression parameter that overlaps with 

the null noise distribution.  

C: Venn diagram showing overlap of differentially expressed tRNA genes reported by 

DESeq2 (FDR-adjusted p-value = 0.1) and NOISeqBio (posterior probability threshold 

=0.9; equivalent to FDR=0.1).  

D: Barplot showing the number of tRNA genes (based on DESeq2 normalized counts) 

that fit the count distributions from the Poisson-Tweedie family. Distribution parameters 

were estimated via Newton-maximum likelihood estimation.  
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Figure 1: Differential Gene Expression using DESeq2 (parametric) and NOISeqBio (non-

parametric) 

E,F: Quantile-quantile plots visualizing the fit between the normalized counts of nuclear tRNA 

genes that are differentially expressed by DESeq2 and NOISeqBio, and the theoretical negative 

binomial model that is constructed using the dispersion parameter estimated by DESeq2 

estimated . 
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Chapter 4: Kingdom-wide Analysis of Fungal Transcriptomes and tRNAs 
Reveals Conserved Patterns of Adaptive Evolution* 

 

*Original publication:  Wint R, Salamov A, Grigoriev IV. 2022. Kingdom-wide 
analysis of fungal transcriptomes and tRNAs 1235 reveals conserved patterns of 
adaptive evolution. Mol Biol. Evol. 1236 https://doi.org/10.1093/molbev/msab372  

 

Key words: codon usage, tRNA, translation, selection, fungi, gene expression, 
macroevolution, machine learning 
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Background 

The billion-year-old kingdom Fungi, comprising at least 1.5 million species, is 
deeply intertwined with the diversification and maintenance of terrestrial 
ecosystems (Berbee and Taylor, 2017). Paleo-botanical studies credit mutualistic 
symbiosis for the successful colonization of land by primitive plants – resulting in 
the greening of the Earth that facilitated the evolution of more complex animal 
forms (Field et al., 2015). Indeed, 90% of extant plant species still rely on 
mycorrhizal fungi for nutrient uptake and resistance to pathogens and abiotic 
stressors (Eva et al., 2018). Many fungi are also pathogens of plants, fungi, and 
animals and pose an emerging medical threat to humans (Janbon et al., 2019).  
The diversity of fungal bioproducts is leveraged in biotechnology to manufacture 
commercial enzymes, medicines, and even biofuel (Sepala et al., 2017). 
Therefore, a comprehensive understanding of the evolution of fungal genomes 
and traits is valuable for several applications. 

Protein-coding genes evolved codon usage bias due to the combined but uneven 
effects of adaptive and non-adaptive influences. Thus, codon usage analysis is 
an established framework for studying the evolution of protein-coding genes. 
Studies in model fungi agree on codon usage bias as an adaptation for fine-
tuning gene expression levels; however, such knowledge is lacking for most 
other fungi.  Comparative studies aim to disentangle the trait variation due to 
shared ancestry versus adaptation. Because of common descent, phenotypic 
traits from closely related species are likely to violate the identically and 
independently distributed requirement of standard regression tests, which risks 
an increase in type I errors. Phylogenetic comparative methods (PCMs) are 
regression algorithms that account for phylogenetic signals in comparative trait 
data (Felenstein,1985). The phylogenetic signal is the tendency of closely related 
species to exhibit greater similarities in traits than other species when sampled 
randomly from the same phylogenetic tree. The strength and direction of the 
phylogenetic signal are used to infer whether trait variation exhibits signs of 
evolution due to genetic drift, stabilizing selection, or divergent or convergent 
evolution (Blomberg et al., 2003; Pagel et al.,1999). PCMs have been applied to 
interrogate macroevolutionary questions such as the evolution of fungal modes of 
nutrition (James, 2006), the evolution of physiological and behavioral traits in 
primates (Kamilar and Cooper, 2010), plant-pollinator co-evolution (Smith et 
al.,2010), trait evolution by adaptive radiation in reptiles and avians (Pichereira-
Donoso et al., 2015; McEntee et al., 2018). However, the application of PCMs is 
rather limited in cross-species codon usage studies (Sharp, 2010; LaBella et al., 
2019). Recent large-scale sequencing projects have advanced our 
understanding of fungal phylogeny (Grigoriev et al., 2014; Ahrendt et al., 2018), 
thereby broadening the scope for comparative studies. 

Here, we aimed to detail the evolutionary and functional underpinnings of codon 
usage variation in Kingdom Fungi by analyzing transcriptomic and tRNA data 
from over 400 representative species that are distributed across 18 taxonomic 
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classes and 6 major phyla (Spatafora et al., 2017). Principal component analysis 
of codon usage frequencies effectively separated the species into respective 
sub-kingdoms, with the rare codons AUAIle and GGGGly driving the codon-specific 
variation. Using phylogenetic reconstruction methods, we inferred the 
macroevolutionary processes, including adaptive mechanisms, that explain the 
change in codon usage and tRNA patterns over time. We also performed 
genome-level analyses to examine the relationship between codon usage, tRNA 
supply, and gene expression levels. Phylogenetic signals of codon frequencies 
and genomic tRNA abundance were weaker than expected by genetic drift and 
phylogenetic relatedness. Yet, most genomes converged toward translation bias, 
wherein the most abundant mRNAs are enriched with codons for major tRNAs, in 
contrast to the low abundant mRNAs having greater codon bias for minor tRNAs. 
Finally, given the prevalence of adaptive codon usage, we present a neural 
network, Codon2Vec, that directly takes the coding sequences as input to reliably 
predict expression (median accuracy of 83.8% ±0.05). Altogether, our results 
support that natural selection for the efficiency of mRNA translation is a 
conserved influence among fungi.  

 

 

RESULTS 

1. Codon usage bias is evolutionarily correlated with the usage of GC-
ending codons 

We obtained whole transcriptomes and predicted tRNA genes from 459 species 
sampled from six out of the eight recognized fungal phyla (Methods). Namely, 52 
species belonging to the four early-diverging phyla of Chytridiomycota, 
Blastidiomycota, Zoopagomycota, Mucoromycota, and 408 species from the two 
dikarya phyla Basidiomycota and Ascomycota. Dikarya is the more species-rich 
sub-kingdom comprising 98% of all fungi - but 90% of our dataset - and is 
characterized by a more complex sexual lifecycle (Stajich et al., 2009). 

We measured the degree of codon usage bias by computing the effective 
number of codons, ENC, for each species (Wright, 1990). ENC ranges from 20 to 
61, where 20 represents an extreme bias of using only one codon per amino 
acid, while 61 represents uniform synonymous codon usage, that is, no bias. The 
mean ENC values ranged from 32.8 (high bias) to 56.9 (weak bias). To visualize 
the macroevolutionary pattern of codon usage bias, we applied continuous 
maximum likelihood ancestral state reconstruction (Revell, 2013) that projected 
the species' ENC values onto a pruned phylogenetic tree. The ancestral 
reconstruction shows that the more biased genomes accumulate in the early-
diverging lineages (Figure 1A), with the most codon-biased genomes occurring in 
Neocallimastigomycota, the earliest diverging class of free-living fungi (Berbee 
and Taylor, 2017). Also, there is more fluctuation in codon bias along the upper 
branches that slows down upon the divergence of Agaricomycotina, the largest 



104 
 

 

 

class (~70%) in Basidiomycota. Similarly, species in Ascomycota exhibit less 
variation in their codon bias. Variation in the GC-content at the third codon 
position (GC3%) is closely linked to codon usage bias since all degenerate 
amino acids allow for silent G or C substitutions. The mean GC3% ranges from 
10.6% to 85.1%, with a median of 57%. Overall, early-diverging fungi exhibit, on 
average, lower GC3% but more variability among individual values (Figure 1A).  

Next, we assessed the evolutionary relationship between codon usage bias and 
GC3% using phylogenetic independent contrast (PIC). PIC regression corrects 
for phylogenetic non-independence by using the contrasts between nodes 
instead of the trait values directly (Garland et al., 1992). For the entire tree, the 
PIC model ENC~GC3 yielded a negative coefficient of -13.51 (adjusted R2 
=10.9%, p-value=2.69e-12). Because PIC is calculated without an intercept term, 
the R2 coefficient is the square of Pearson’s R correlation coefficient. Therefore, 
codon usage bias and GC3% are moderately correlated (Pearson’s R=32.6%). 
Although it may be reasonable to assume the evolutionary GC3-bias is driven by 
the usage of G/C-ending codons, it was found that the usage of certain G/C-
ending codons was negatively correlated with GC3-bias in some plants and 
prokaryotes (Palidwor et al., 2010). To evaluate the relationship between codon 
usage and GC3-bias, we computed the phylogenetic-corrected Pearson’s 
correlation between individual codon frequencies (normalized for amino acid 
usage), GC3%, and ENC separately (Figure 1B). The usage of all G/C-ending 
codons is positively correlated with GC3%, whereas all A/U-ending codons are 
anticorrelated with GC3%. All G/C-ending codons negatively correlated with 
ENC, which means that the increase in usage of G/C-ending codons correlates 
with an increase in codon bias. Conversely, the usage of all A/U-ending 
negatively correlates with codon bias. Interestingly, we obtained different 
correlation values between codon bias and the normalized codon frequencies 
with and without phylogenetic correction. Without the correction, some A/U-
codons positively correlate with codon bias, and some G/C-ending codons 
negatively correlate with codon bias (Figure 1C). This discrepancy suggests that 
codon frequencies also have a phylogenetic signal.  

Since the relationship between codon bias and GC3% seems inverted for the 
early-diverging and dikaryic lineages (Figure 1), we split the tree into the 
separate sub-kingdoms and re-evaluated the phylogenetic correlation between 
codon usage bias and GC3%. Codon bias and GC3% are evolutionarily 
anticorrelated in the early-diverging subtree (coefficient=21.1, R2 =32.6%, p-
value=7.16e-6, number of tips=51 species). In contrast, dikarya species are 
positively GC3%-biased (coefficient= -29.8, R2 =49.3%, p-value<2.16e-16; 
number of tips=367). 

Fitting macroevolutionary models to codon usage bias 

Phenotypic variation among extant species is a confluence of shared ancestry 
and responses to neutral and adaptive processes. Interspecies codon usage bias 
is widely held to explain by neutral drift (Grantham et al., 1980). To determine the 
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pattern of evolution that best explains codon usage bias, we fitted 4 different 
likelihood models of macroevolution to the ENC and GC3 values: 1) Brownian 
motion (drift/random walk), 2) Ornstein-Uhlenbeck (fluctuating directional 
selection), 3) early-burst (exponential decrease in trait variation over time), and 
4) delta (rate shifted Brownian motion) (Pennell et al., 2014). Notably, Brownian 
motion is the null hypothesis of genetic drift that models interspecies trait data as 
a random walk (Felestein, 1985). Based on the goodness-of-fit Akaike 
information criterion (AIC) scores, the early-burst model, which simulates 
adaptive radiation, best explained the phylogenetic variation of both codon bias 
and GC3% (Supp. Table 2). Macroevolution by adaptive radiation is 
characterized by higher rates of trait evolution early in a clade’s history, followed 
by an exponential decline through time (Simpson, 1953). 

2. Codon-level macroevolutionary analysis reveals codon frequencies as 
mostly deviate from genetic drift.  

Since variation in the frequencies of synonymous codons underlies codon usage 
bias, we examined the macroevolutionary trends of the individual codons. First, 
we quantified transcriptome-wide relative synonymous codon usage (RSCU) of 
the 59 degenerate codons (Sharp et al., 1986). RSCU=1 means codons are used 
according to neutral or uniform expectation. Importantly, RSCU normalizes codon 
frequencies within their amino acid class which minimizes amino acid 
composition effects. To characterize which codons fungi generally prefer for 
making proteins, we quantified the most (highest RSCU) and least (lowest 
RSCU) preferred codons. Overall, C-ending codons consistently had the highest 
transcriptomic representation across the amino acid types (Figures S1A, S1C).  

To summarize the variation of interspecies codon usage, we performed 
multivariate analysis using principal component analysis (PCA) on the 59 RSCU 
x 459 species matrix. The first two principal components explained 82% of the 
interspecies variation (Figure 2A). PC1 (78% explained variance) separated 
species according to differences in GC-content at the third codon position 
(GC3%), wherein loadings of G/C- and A/U- ending codons are equally but 
inversely correlated to PC1 (Figure 2B). This finding aligns with previous work 
that establishes variation in G+C content as the major determinant of 
interspecies differences in CUB (Chen et al., 2004; Novoa et al., 2019). The 
second principal component, PC2 (4.0% explained variance is driven by 
differences in individual codon frequencies, with the strongest signal due to the 
rare codons GGGGly and AUAIle (Figure 2B; S1B). Notably, PCA separated the 
species into their sub-kingdoms (Figure 2A). 

The sub-kingdom clustering by the PCA led us to measure the extent to which 
phylogenetic effect (i.e., phylogenetic relatedness) underlies the choice of codon 
representation in the transcriptome. To this end, we computed the Blomberg’s K 
statistic (Methods) of the normalized codon frequencies. Blomberg’s K measures 
the strength and direction of trait evolution relative to that expected under the 
Brownian motion model that considers the phylogenetic distance as the only 
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predictor of trait similarity among species (Blomberg et al., 2003). All codons 
reported statistically significant phylogenetic signals (p-values<0.05). However, 
the strength and direction of evolution, even among synonymous codons, varied 
(Figure 2C). 34/59 codons exhibited a low phylogenetic signal (K<1), suggesting 
variation due to convergent evolution (Revell et al., 2008; Kamilar and Cooper, 
2013). 10 out of the 59 codons followed the expected Brownian process (K=1) of 
genetic drift. 15 out of the 59 codons exhibited high phylogenetic signal (K>1) 
indicative of either stabilizing selection or low rates of evolution (Blomberg et al., 
2003). We also fitted different models of macroevolution to the individual codon 
frequencies. Like genomic CUB, adaptive radiation was the best fitting model for 
all the 59 degenerate codons (Supp. Data). Taken together, these findings 
highlight that individual codons follow different modes of evolution. Importantly, 
the frequencies of 49 out of 59 codons are not fully explained by phylogenetic 
relatedness that is expected under genetic drift.   

3. Identification of phylogenetically rare tRNAs and strong evolutionary 
preference for Inosine34-modified tRNAs   

Considering that the frequencies of most codons deviated from genetic drift, the 
next logical step was to analyze the tRNA gene sets since codon usage is widely 
believed to co-evolve with tRNA supply in several species (Sharp et al., 2010). 
Both the number of distinct tRNA anticodon types and total tRNA genes 
(tRNAome) vary widely across the 459 genomes under study. The median 
number of distinct anticodon types is 44, ranging from a maximum of 58 in 
Ascobolus immerses and a minimum of 18 in Sporobolomyces linderae (Figure 
S2A). Like all previously studied genomes, no species in our dataset possessed 
the full theoretical complement of 61 tRNA anticodon families (Marck and 
Grosjean, 2002). Interestingly, we identified 11 species possessing less than 30 
anticodons, which is the theoretical minimum for decoding the standard genetic 
code (Marck and Grosjean, 2002). The median tRNAome is 144 genes, with a 
minimum of 24 and a maximum of 3481. A.immersus and Melampsora allii-
populina both possess extreme tRNAomes of 3481 and 2216 genes, 
respectively.   

Next, we measured the phylogenetic signal of the copy number for tRNAs that 
are cognate to the 59 degenerate sense codons. Like most codons, tRNAs also 
exhibited a phylogenetic signal that is lower than expected by drift, with K ranging 
from 0.02 to 0.70. These weak phylogenetic signals are consistent with tRNA 
gene dosage as evolutionarily labile (Heurto et al., 2010). 44 out of 59 sense 
tRNAs yielded a statistically significant phylogenetic signal (p<0.05). The lack of 
phylogenetic signal (p>0.05) in the remaining 15 tRNAs implies that they either 
evolved completely independent of phylogeny or are mostly absent in the fungal 
genomes since entire tRNA families are known to be extinct in certain clades 
(Rak et al., 2018). To this end, we identified 19 tRNA anticodon types that rarely 
occur among the fungal genomes, three of which are nonsense suppressors 
(tRNASup (UUA), tRNASup (CUA), tRNASeC (UCA)) (Figure 3A). 14 out of the 16 
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rare sense tRNAs overlapped with the 15 tRNAs that lacked phylogenetic signal 
(Figure 3B). Only tRNAIle (UAU) is prevalent yet lacks a phylogenetic signal. In 
other words, close relatives are no similar in their genomic copies of tRNAIle 
(UAU) than if they were randomly placed on the tree. This finding may be 
explained by highly accelerated birth-death evolution or anticodon shifts of 
tRNAIle (UAU) along the phylogeny (Velandia-Huerto et al., 2016).  

Detection of selenocysteine-tRNAs in dikarya genomes 

Here, we would like to report the detection of selenocysteine tRNA (SeC-tRNA). 
At the time of this finding, tRNAs corresponding to the 21st amino-acid 
selenocysteine were considered absent in all fungi (Lobanov et al., 2007) until 
Mariotti et al. uncovered the presence of tRNASeC (UCA) in nine early-diverging 
fungi (Mariotti et al., 2019). However,, all three of our Sec-tRNA positive fungi – 
Rhodocollybia butyracea, Sugiyamaella americana, and Lollipopaia minuta – are 
dikarya from Basidiomycota and Ascomycota phyla (Supplemental Table 3). We 
identified the presence of tRNASeC (UCA) in these three genomes based on 
overlapping results from at least one of the general-purpose tRNA gene finders, 
tRNAscanSE2.0 (Chan and Lowe, 2106) or aragorn1.2.38 (Laslett and Canback, 
2004), and the specialized tRNASeC gene finder Secmarker (Santesmasses et al., 
2017). As a negative control, we repeated the analysis on the well-studied fungal 
genomes of S.cerevisiae and N.crassa. Even with the unrealistically relaxed 
parameters, tRNASeC (UCA) was not detected in either genome.  

Next, we examined the prevalence of inosine-modified tRNAs. Adenosine-to-
inosine (6-deaminated adenosine) conversion is the most common post-
transcriptional editing in eukaryotic RNAs (Nishikura, 2016). In eukaryotes, A34-
to-I34 conversion is restricted among the eight tRNA types: tRNAThr(AGU), 
tRNAIle(AAU), tRNAPro(AGG),  tRNAArg(ACG), tRNALeu(AAG), tRNAAla (AGC), 
tRNAVal(AAC), and tRNASer(AGA). Inosine-34 tRNAs (INN) decode both NNC 
and NNU codons in eukaryotes (Rafels-Ybern et al., 2017). Although both INN 
and GNN tRNAs decode C-ending codons, the I: C anticodon-codon bond is 
known to be less stable than the G: C bond (Hoernes et al.; 2018). Yet, we found 
that for the amino acids that are recognized by isoacceptor pairs of GNN and a 
putatively inosinylated ANN, the GNN iso-acceptor is mostly absent within the 
genomes (Figure 3C). For example, tRNALeu (GAG) is the rarest tRNA, being 
predicted in only 1/459 species (Figure 3A), yet its Watson-Crick cognate codon 
CUC is the commonly most preferred for encoding leucine (347/459 species; 
Supp. Figure 2A). Likewise, the usage of the AUC codon is frequently the most 
preferred for isoleucine, yet its cognate tRNAIle (GAU) is rarely present (16/459 
species). According to wobble rules, both Leu-CUC and Ile-AUC codons are 
decoded by inosine-modified tRNALeu (AAG) and tRNAIle (AAU), respectively. In 
contrast, when the ANN tRNA is not a target of inosinylation, the GNN iso-
acceptor is far more prevalent (Figure 3D). As previously mentioned, genomes in 
our dataset are mostly biased for NNC codons (S2A), so this finding suggests 
that inosine-modified tRNAs are positively selected for in fungi. To summarize, 
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phylogenetic comparative analyses revealed that the interspecies variation of 
codon usage bias and individual codon frequencies do not support genetic drift 
as the dominant mode of evolution.  

 

4.  Signatures of neutral and adaptive evolution on intra-genomic codon 
usage bias 

Having analyzed codon usage patterns at the macroevolutionary scale, we next 
sought to disentangle the signatures of adaptive and neutral evolution on within-
genome codon usage bias. At the organismal level, codon usage bias is a 
composite of drift, neutral and adaptive mutational bias (dos Reis, 2009). To 
determine whether codon usage bias is driven solely by GC-compositional 
mutational bias in each species, we compared the empirical effective number of 
codons (ENC) of all coding sequences to their theoretical ENC that is expected 
under the neutral-mutational model. The neutral-mutational model is the null 
hypothesis that selection pressure does not act on the synonymous third codon 
position sites; rather, codon bias is only a function of GC3% (Wright 1990). The 
codon usage bias of 458 out of 459 species deviated significantly from neutral 
expectation (paired Wilcoxon signed-rank test p-values<0.05; Figure 4A). Next, 
we assessed each species’ fit to neutral expectation by computing the R2 
between empirical and theoretical ENC of all coding sequences within each 
genome (Figure 4B). The R2 values ranged from 0.0001 to 0.88. 70 genomes, 
mostly dikarya, reported an R2 value of at least 0.75 (‘Very Strong’), which 
indicates that their codon usage bias is largely influenced by neutral mutational 
bias. Notably, early-diverging species make up 12% of the dataset, but 28% of 
the genomes with ‘Weak’ neutral mutational bias.  

Fungal transcriptome-wide codon usage and tRNA copy number are positively 
correlated 

Another signature of natural selection is the correlation between codon 
frequencies and the supply of cognate tRNAs (Sharp et al., 2010). To explore 
this, we computed Spearman’s rank coefficient between transcriptome-wide 
relative codon frequencies (RSCU) and tRNA gene copy number. 313/459 
species yielded significant and positive correlations (p-values<0.05; Fig 4C). 
Those species with non-significant correlation tend to possess single copy tRNA 
gene sets. Across the species, the most overrepresented codons – highest 
transcriptome-wide RSCU - generally match tRNAs with higher copy number 
(mean tRNA gene copy number of 5.3) compared to most underrepresented 
codons (mean of 1.3 tRNA gene copy number, one-sided paired Wilcoxon signed 
ranked test p-value = 1.05e-54; Figure 4D). 

In summary, we showed that variation in the genome-level codon usage bias is 
influenced by both neutral (GC3-composition) and adaptive mutational bias 
(cognate tRNAs).  
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5. Differential adaptation to the genomic tRNA abundance underlies 
expression-linked codon usage bias 

Here, we explored the functional implications of adaptive codon usage bias by 
analyzing the contribution of gene expression to codon preferences. Because we 
have RNAseq data for most species in our dataset (432/459), we could 
empirically investigate expression-linked codon usage bias. To this end, we 
filtered the top 10% (‘high’) and bottom 10% (‘low’) of expressed coding 
sequences as the working dataset for each species since directional selection 
acts at the extremes. We observed that for most species, PCA on the 59-
dimensional matrix of codon frequencies (RSCU) separated the genes according 
to expression level (Figure 5A; Supp Data). The trend suggests that gene 
expression level is a driver of codon usage patterns.  

Not an artifact: PCA arch of high expressed genes caused by strong deviation 
from neutral compositional bias 

Intriguingly, the pattern of only the high expressed genes clustering as an arch in 
Z. heterogamous also appeared in 27 other species (left panel Figure 5A; Supp 
Data). Guttman or arch effect in dimensionality reduction techniques, such as 
PCA or correspondence analysis, is observed when the first two transformed 
axes are curvilinear because the structure of the data is dominated by a single 
latent variable that gradually shifts from one extreme to another, i.e., the data 
points lie on a gradient (Diaconis et al., 2008; Ngyuen et al., 2019). Given that 
codon usage is influenced by both directional neutral and selection pressures, we 
hypothesized that the latent gradient underlying the high expressed genes 
represents the shift in influence of neutral to selection pressures. To explore this 
in Z. heterogamous, we generated an ENC-GC3 neutrality plot in which the 
standard curve is the expected relationship between ENC and GC3% when 
codon usage is solely explained by neutral compositional bias (Wright 1990).  
The neutrality plot confirmed our hypothesis as the genes become more C3-
biased with increasing distance from the neutral curve (Figures 5B). However, 
the low expressed gene set did not exhibit such marked deviation from neutral 
codon usage bias (Figures 5C). Indeed, the latent gradient responsible for the 
arch is increased C3 usage and decreased A3 usage (Figure 5D; S3A-C). We 
identified a similar pattern for 19 of the remaining 27 ‘arch’ species in which their 
high expressed genes also lie on a C3% gradient when projected onto the first 
two principal components (Figure S3G) and deviating from the expected neutral 
curve (Figure S3H). This led us to revisit the compositional bias analysis 
performed in the previous section, where we found that 24 out of these 28 
species, including Z.heterogamus, fell in the ‘Weak’ category (Figure 4B, S3D). 
Additionally, 24/28 of them are AU3-biased (mean GC3 <50%), and 22 of them 
are early-diverging fungi (Figure S3D). Together, these results suggest that 
selection is particularly stronger in the highly expressed genes of these species. 
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High expressed genes preferentially use codons decoded by major tRNAs but 
avoid codons decoded by minor tRNAs 

We then asked if the divergent codon preference between the high and low 
expressed genes is related to adaptation to translation efficiency (Duret, 2000). 
To this end, we measured the fraction of preferred and non-preferred codons that 
are decoded by major and minor tRNAs per species. Preferred codons are 
significantly enriched (higher RSCU) in the high expression gene set, whereas 
non-preferred codons are enriched (higher RSCU) in the low expression set 
(Benjamini-Hochberg adjusted p-values <0.05) (Yannai et al., 2018). We 
observed that C-ending codons are mostly preferred by high expressed genes 
compared to A-ending codons in low expressed genes (Figure S3E). Major and 
minor tRNAs have the highest and lowest copy numbers, respectively, within an 
amino acid class. Overall, highly expressed genes preferentially use codons that 
are decoded by major tRNAs, which is indicative of selection for rapidly 
translated codons (Figure 5E). On average, 43% of preferred codons are 
recognized by major tRNAs compared to 24% by minor tRNAs ((Figure 5E; 
paired Wilcoxon signed-rank test p-value = 4.02e-66). Conversely, non-preferred 
codons better matched minor tRNAs (mean fraction = 34%) than major tRNAs 
(Figure 5F; mean fraction = 18%; Wilcoxon p-value=1.43 e-64;). 

Because we identified the widespread preference for inosine-modified tRNAs, we 
extended our analysis to account for inosine-34 wobble decoding. This resulted 
in a marked increase in the mean fraction of preferred decoded by major tRNAs 
from 43% to 66% (Wilcoxon p-value = 7.96e-70), but the mean fraction of 
preferred codons matching minor tRNAs remained the same. For example, the 
match rate in Z.heterogamus rose from 56% to 81%. In 84% of the species, at 
least 50% of their preferred codons are cognate to their major tRNAs when 
inosine34 decoding is considered (Figure 5E). However, the inclusion of I34 
modification did not substantially alter the fraction of non-preferred codons 
decoded by minor tRNAs or major tRNAs (18%; Wilcoxon p-value = 3.86e-62) 
(Figure 5F). Therefore, the codon bias in high expressed genes can be partially 
explained by selective usage of inosine34 decoded codons. These results align 
with experiments in mammalian and bacterial systems that demonstrated 
improved agreement between codon usage and tRNA abundance when I34 
modification is accounted for and that transcripts with codon compositions that 
matched I34 tRNAs were more efficiently translated (Novoa et al., 2012).  

Prevalence of codon optimization for translation in high expressed genes shows 
signs of convergent evolution 

To quantify the association between expression-linked codon bias and 
adaptation to the tRNA supply in a genome, we derived the translation bias score 
(TBS) (Methods). Formally, TBS is the difference between the fractions of 
preferred codons and non-preferred codons for major tRNAs normalized by their 
sum. A TBS of +1 indicates that the codon bias of highly expressed genes 
confers them exclusive access to the most abundant tRNAs in the cellular pool 
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compared to the lowest expressed genes; whereas a TBS of 0 means that there 
is no competition for major tRNAs between the high and lowest expressed gene 
sets. Among the 432 species analyzed, the mean TBS is +0.40 when restricted 
to Watson-Crick pairing, and a mean of +0.54 when I34 wobble is considered 
(Figure 5G). That is, on average, 54% more of the major tRNAs are decoding 
high expressed genes than the low expressed genes, which we interpret as 
selection for translation speed. However, there are a few species that possess 
negative TBS meaning their low expressed genes are more codon biased for 
major tRNAs. 

We wondered if the skewness of translation bias scores (TBS) toward positive 
values is a consequence of phylogenetic relatedness since species richness is 
unevenly distributed along our fungal tree. To measure the strength of the 
phylogenetic effect of the TBS values, we computed Blomberg’s K statistic, which 
yielded K=0.12 for Watson-Crick pairing and K=0.18 for inosine-34 wobble 
decoding (both p-values = 0.01). These low K values indicate that distantly 
related species have more similar translation bias scores than expected by 
phylogenetic distance, a pattern often attributed to convergent evolution (Revell 
et al., 2008). As a complementary approach, testing different macroevolutionary 
models supports the Ornstein-Uhlenbeck process of fluctuating directional 
selection as the best fit for translation bias (Figure 5H). Additionally, the ancestral 
state reconstruction shows that similarly high translation bias is distributed across 
multiple and distant lineages (Figure S3F). Therefore, both phylogenetic methods 
agree on adaptive codon usage bias - at least in the context of gene expression - 
as a realization of convergent evolution. Altogether, the concordance between 
tRNA supply and expression-linked codon preferences supports selection on 
codon usage for translation accuracy and speed in fungi. 

6: Codon2Vec neural network for predicting the expression of coding 
sequences 

Building predictive models for gene expression remains a pertinent challenge in 
genomics. Inspired by natural language processing models (Mikolov et al., 2013), 
we implemented a 3-layer neural network -Codon2Vec - that predicts expression 
class (‘high’ or ‘low’) directly from input coding sequences (Figure 6A; Methods). 
A neural network is a supervised algorithm that can model complex non-linear 
patterns that underlie the data. The first layer of Codon2Vec performs 
featurization of input sequences by mapping each codon type to a real-valued 
vector or ‘embeddings’ in Euclidean space. The codon embeddings are adjusted 
during model training to minimize the error between the predicted and ground 
truth labels.   

To achieve a balanced dataset, we trained Codon2vec on the coding sequences 
from the top and bottom 10% expression. The training data was split into 
70:20:10 for training: validation: test sets. Model selection was determined based 
on the training and validation sets. Final predictive performance was reported on 
the hold-out test set using the metrics: misclassification error, area-under-the-
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receiver-operator-characteristic curve (AUC-ROC), sensitivity, and specificity 
(Methods). An AUC-ROC of 0.5 indicates that a model failed at learning and 
instead makes random predictions. When applied separately to 300 different 
species, Codon2Vec achieved a high median AUC-ROC score of 83.8% (Figure 
6C). Randomizing the association between the input and class labels ablated 
Codon2Vec’s discriminative power and drove the AUC-ROC to 0.5 or random 
predictions (Figures 6C; S4D).   

We hypothesized that the model’s decision boundary is the differential codon 
bias that exists between the sequences in the high expression and low 
expression classes. To this end, we computed the difference between the mean 
ENC of the expression classes (DOM-ENC) and measured the Spearman’s rank 
correlation between the species-specific AUC-ROC scores and the DOM-ENCs, 
but there was no significant correlation (R=0.1, p-value = 0.074). Since codons 
are the features, we repeated the procedure using the frequency of optimal 
codon (Ikemura 1981) (DOM-FOP). This resulted in a significant and positive 
correlation (Spearman’s rank coefficient R=0.45, p-value= 1.05e-16) (Figure 6D). 
We interpret this as the model performing better on genomes that have a wider 
margin of optimal codon content between the high and low expressed genes. As 
a sanity check to see if the length of coding sequences was a confounding 
variable, we found no significant correlation (R=0.1, p-value=0.0755). 
Remarkably, Codon2Vec learned the intrinsic differences in optimal codon 
content between high and low expressed genes even though we did not explicitly 
provide this property.  

 

Discussion  

Much of our understanding of codon usage is inferred from collating findings 
across single-species analyses. To better detail the evolutionary mechanisms 
that have shaped codon usage patterns through time, we employed a 
phylogenetic comparative approach to analyze hundreds of representative 
species that span the major phyla of Kingdom Fungi. We showed neglecting the 
phylogenetic effect can lead to different conclusions about the influence of 
individual codons on the degree of codon bias (Figure 1C). Our 
macroevolutionary analyses support, contrary to the widely held neutral-drift 
hypothesis, adaptive mechanisms as the driver of interspecies codon usage 
patterns in fungi. Fitting of various likelihood models of trait evolution to our 452-
taxa phylogenetic tree showed that variation in codon usage bias and GC3% 
best fit the pattern generated by adaptive radiation. Additionally, the phylogenetic 
effect on most codon frequencies was found to be stronger or weaker than 
expected by random drift, a sign that is usually interpreted as stabilizing selection 
or convergent evolution respectively (Losos 2011, Revel et al., 2008). Adaptive 
codon usage was also evident in the genome-level analyses. Gene expression 
level and codon usage were broadly correlated as principal component analysis 
separated the highest and lowest expressed genes based on their codon usage 
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patterns. In some species, primarily early-diverging, the deviation of high 
expressed genes from compositional bias was strong enough to dominate the 
signal captured by both principal components resulting in a Guttman effect. Since 
differential codon bias could arise by a neutral mechanism such as GC-biased 
gene conversion (Marais, 2003), we demonstrated how this prevalent pattern of 
expression-linked codon bias reflected differences in translation efficiency. 
Broadly, the high expressed genes preferentially used codons matching the most 
abundant tRNAs, whereas the low expressed genes were more biased for 
codons read by the least abundant tRNAs. Moreover, the pervasive trend of 
codon optimization of high expressed genes for translation efficiency, which we 
quantified using our translation bias scores, infers convergent evolution as the 
phylogenetic effect was significantly weaker than expected by Brownian motion 
trait evolution. Altogether, these findings are consistent with the influence of 
natural selection on codon usage to promote translation efficiency. Our results on 
the prevalence of adaptive codon usage bias in fungi are consistent with the 
recent sub-phylum-wide codon usage analysis of Sacchoromycotina budding 
yeasts (LaBella et al.,2019). 

Macroevolutionary analyses of codon usage reveal the influence of adaptive 
mechanisms 

Although claims about codon usage are usually based on single-species 
analyses, we believed that inferences about the mode and tempo of codon usage 
macroevolution would further elucidate the adaptive significance of codon usage 
patterns. Principally, we found that the tempo of codon usage bias (CUB), and 
the evolutionarily correlated GC3%, in our 452-taxa tree best follow the pattern of 
adaptive radiation. Other fungal phylogenomic studies, primarily in mushroom-
forming (Agaricomycetes) lineages, have also reported evidence of adaptative 
radiation for certain morphological traits (Varga et al., 2018; Gaya et al., 2015; 
Nagy et al., 2012). Various hypotheses exist for the intrinsic and ecological 
drivers of fungal radiations, including the evolution of complex fruiting bodies 
(Varga et al., 2018), transition to mutualism (Sanchez-Garcia and Matheny, 
2017), and defense mechanisms (Gaya et al., 2015; Nagy et al., 2012). Previous 
studies have linked CUB to ecological specialization (Roller et al., 2013; Botzman 
et al., 2011). Badet et al. uncovered that generalist parasitic fungi are more 
codon biased than non-parasitic fungi (Badet et al., 2017). Our finding raises the 
question of what ecological opportunities underlie the macroevolution of codon 
usage bias (CUB). Visual inspection of our ancestral reconstruction shows that 
the decrease in the variability of CUB coincides with the divergence within 
Basidiomycota. Basidiomycota (club fungi) comprises about one-third of all fungi 
(Stajich et al., 2009). Saprophytic Agaricomycotina accounts for two-thirds of 
basidiomycetic fungi, whereas the two minor but earlier diverged classes - 
Puccinomycotina and Ustilaginomycotina – are mostly plant parasites (Mao et al., 
2019). Relatedly, ancestral reconstruction of fungal nutritional modes showed 
that parasitism is non-randomly distributed along the tree and more prevalent in 
earlier-diverged lineages (James et al., 2006). Taken together, the evolution of 
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CUB in fungi may be connected to lifestyle adaptation. We believe that a deeper 
study of the macroevolutionary relationship between CUB and the various 
ecological specialization in fungi is needed. 

 

Selection for translation efficiency may explain convergent codon usage in fungi 

Macroevolutionary analyses revealed that variation in synonymous codons is 
mostly convergent. The normalized frequencies of 34/59 codons yielded 
significantly low Blomberg’s K values, indicating distantly related lineages are 
more similar in their codon choices than expected phylogenetic relatedness, i.e., 
convergence (Kamilar and Cooper, 2013). Causes of convergent evolution are 
generally attributed to shared constraints (molecular/ genetic/ physiological/ 
ecological, etc.) that limit or bias the production of phenotypic variation or, to a 
lesser extent, random chance (Losos, 2011a). Here, we reason that the 
macroevolutionary convergence of codon usage frequencies reflect the shared 
constraints imposed by neutral - for example, GC-compositional bias - and 
adaptive pressures, for example, selection for balancing codon representation 
with tRNA supply (Figures 4B, 4C, 5E). Moreover, the maximum likelihood best 
fits the translation bias scores to the Ornstein-Uhlenbeck process of optima-
directed trait evolution (Butler et al., 2004), lends further evidence that adaptative 
mechanisms have influenced codon usage patterns over time. That is, the 
convergence of highly expressed genes being codon-biased for the most 
abundant tRNAs compared to low expressed genes suggests that efficient 
protein synthesis is one of the selective optima that has constrained fungal codon 
usage. This assertion is consistent with genome-engineering experiments that 
first demonstrated how codon optimization in highly expressed genes exerts 
global effects on cellular fitness by promoting rapid turnover of free ribosomes 
enabling translation initiation on other transcripts (Frumkin et al., 2018).  

Selection for translation efficiency is expected to favor those codons with better 
anticodon-codon pairing kinetics (Higgs and Petrov, 2008). Possibly, the weaker 
I: C anticodon-codon bond (Hoernes et al., 2018) promotes faster dissociation of 
the discharged tRNA from the ribosomal E-site, leading to less ribosome pausing 
and more available free ribosomes. This model may explain the conserved 
preference for inosine-modified tRNAs (INN) over GNN isoacceptors (Figure 3C), 
especially the general bias for tRNAINN decoded codons – primarily C-ending – 
observed in high expressed genes (Figure 5E). In light of this, a component of 
the general GC3-bias among fungi may actually be a C3-bias due to selection for 
INN tRNAs.  

Here, we highlight the limitations of our study and potential areas for 
improvement. We assumed that the tRNA concentration scale with tRNA copy 
number, which is the general case in unicellular organisms, for example, 
chromatin profiling in S.cerevisiae revealed all tRNA genes as transcriptionally 
active (Harismendy et al., 2003). Like all statistical models, inference from 
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phylogenetic comparative methods (PCM) is constrained by assumptions and 
uncertainty. The main assumptions of PCMs are: 1) the phylogenetic tree is 
accurate, 2) all the extant taxa are represented 3) there is measurement error in 
the trait data. Our 452-taxa tree does not preclude biased inference due to 
uneven taxon sampling since we used a limited number of representative species 
per clade.  While we are using the best available molecular tree, given the 
vastness of the kingdom Fungi and ongoing sequencing campaigns, we foresee 
updates in the fungal phylogeny (Ahrendt et al., 2018). Lastly, various 
evolutionary processes may give rise to the same phylogenetic pattern, and 
current macroevolutionary models may be limited in their capability to capture 
more complex patterns of trait evolution (Losos et al., 2011b). 

 

In a minority of species, the low expressed genes were more codon biased for 
the major tRNAs (Figure 5G). This rather counterintuitive finding joins two 
previous works that challenge the default view that selection is reserved for 
codon usage of highly expressed genes (Zhou et al., 2009; Yannai et al., 2018). 
Codon usage in low expressed CDS may be influenced by selection for mRNA 
structure, mRNA stability to support sufficient protein production, or co-
translational protein folding of structural sites that are sensitive to translation 
speed or accuracy (Zouridis et al., 2008; Zhou et al., 2009). Other than 
translation efficiency, the co-variation between codon usage bias and gene 
expression levels may reflect selection for mRNA stability as certain codons 
mitigate ribosomal stalling, as observed in S.cerevisiae (Presynak et al., 2015), 
or linked transcriptional efficiency as seen in N. crassa (Zhou et al., 2016; Zhao 
et al., 2021). 

We also identified fungi possessing less than the theoretical minimum of 30 tRNA 
anticodons required for standard mRNA translation (Marck and Grosjean et al., 
2002). Interestingly, 7 out of these 11 species are mutualistic symbionts - 
Sporobolomyces linderae, Cenococcum geophilum, Meliniomyces bicolor, 
Neocallimastix californiae – or pathogens/parasites - Teratosphaeria nubilosa, 
Mixia osmundae, Elsinoe ampelina. Perhaps their reduced tRNA gene set reflect 
lifestyle adaptations such as selection for rapid DNA replication, or importing 
necessary tRNA molecules from the host - a rare mechanism for eukaryotes that 
was first observed in plasmodium parasites (Bour et al., 2016). This mechanism 
may explain how Mixia osmundae maintains survival as a biotrophic intracellular 
parasite in plants (Toome et al., 2014). Also, these minimalist fungi may also 
employ promiscuous super-wobbling decoding, as observed in plastomes of 
vascular plants (Rogalski et al., 2008). Therefore, these minimalist symbionts 
would make ideal candidates for studying non-standard translation of the genetic 
code and the co-evolution of decoding strategies within a eukaryotic host-
symbiont pair. 

Codon2Vec: Addition of a sequence-to-expression model to the functional codon 
usage toolkit 
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We believe the value of Codon2Vec is twofold. Because the model is trained on 
whole coding sequences, it learns a more biologically meaningful representation 
of the codon usage patterns. Codon order, such as codon-pair bias, has been 
shown to also contribute to the protein yield of highly expressed genes 
(Cannarozzi et al., 2010; Gamble et al., 2016). But standard codon-based 
approaches are limited in capturing effects due to codon frequency. Because the 
model algorithm represents codons as vectors (‘embeddings’) in Euclidean 
space, in principle, contextually related codons are projected close together in 
embedding space (Mikolov et al., 2013). Secondly, unlike standard approaches, 
Codon2Vec is not restricted to a pre-defined reference set of genes. Moreover, 
Codon2Vec bypasses the need for artisanal feature selection since it extracts 
information directly from sequences and expression data, and the function that 
maps codons to real-valued vectors is also learned during training. Although 
neural networks are regarded as decision ‘ black-boxes,’ we showed that the 
model is at least learning to classify coding sequences based on differences in 
codon optimality. However, neural networks can learn complex functions, so 
there may be other sequence/codon usage properties that it may have learned. 
Embedding neural networks have also been used for other biological 
applications, like predicting chemical and physicochemical properties from 
protein sequences (Yang et al., 2018) and gene annotation (Du et al., 2018). 
Once trained on the host’s gene expression data, Codon2Vec can then serve as 
an oracle to guide the codon optimization of exogenous genes.  A nice follow-up 
would be to experimentally validate Codon2Vec’s predictions in optimizing 
heterologous gene expression systems. 

In conclusion, by combining genomics and macroevolutionary analyses, we 
characterized the significance of and prevalence of adaptive processes in 
shaping fungal protein-coding genes. In the age of ‘big genomics data,’ it would 
be interesting to see if similar macroevolutionary modes and mechanisms explain 
interspecific codon usage variation in other clades.  
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FIGURE LEGEND 

 

Figure 1: Inferring the tempo and mode of the evolution of codon usage 
bias and GC3% in fungi 

Ancestral reconstruction of the codon usage bias, measured by the mean 
effective number of codons (ENC) and GC3-content projected onto a pruned 
fungal phylogenetic tree (number of tips =417 species). Color gradient represents 
the trait values for species at the tips and estimated trait values for internal 
nodes. Species with higher codon usage bias, i.e., lower ENC and low GC3%, 
primarily accumulate in the early-diverging lineages. The size of the tree 
obscures tip labels, but greater details are available in supplementary data. 
Photo credits: https://mycocosm.jgi.doe.gov/mycocosm/ 

B: Cluster heatmap showing phylogenetic corrected Pearson’s R correlation 
between normalized codon usage, GC3-content (GC3%), and ENC, which is the 
inverse of codon bias. G/C-ending codons are all positively correlated with 
GC3% and codon bias, whereas A/U-ending codons are all negatively correlated 
with GC3% and codon bias.  

C:  Scatterplot showing Pearson’s R correlation coefficients between individual 
codon frequencies and codon bias (ENC) with and without correcting for 
phylogenetic signal.   

Figure 2: Phylogenetic analysis of transcriptome-wide codon usage 
frequencies  

A: Principal component analysis on RSCU matrix clusters species into the 
dikarya and early-diverging sub-kingdoms, primarily along the axis of PC2. Each 
dot is a species whose color and shape represent its sub-kingdom.  

 B: PCA biplot of the loadings showing the contribution of each codon to PC1 
and PC2. Codons are colored based on the G/C or A/U composition of the third 
base. A/U and G/U-ending codons equally but inversely contribute to the PC1 
score of a species. On the other hand, differences in PC2 species scores 
primarily correlate with the usage of the rare codons, GGGGly and AUAIle (see 
also S1D).   

C:  Stripplot shows the variation in the phylogenetic signal of the frequencies of 
degenerate codons. 49/59 codons reported Blomberg’s K not equal to 1, 
suggesting they evolved at a rate less than or greater than the rate expected by 
genetic drift modeled by Brownian motion (BM). All p-values are statistically 
significant (<0.05). 

 

 

https://mycocosm.jgi.doe.gov/mycocosm/
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Figure 3: Analysis of tRNA gene composition across the phylogeny 

A:  Prevalence of each tRNA anticodon type across the 459 fungal genomes 
based on tRNAscanSE2.0 predictions. Low-quality tRNA and pseudogenes with 
a covariance score below 50.0 are not included. Rare tRNAs are highlighted in 
red. 

B:  Overlap between tRNAs rarely present in fungal genomes and tRNAs with 
non-significant phylogenetic signal (p-value >0.05 for Blomberg’s K). 
tRNAIle(UAU) is the only phylogenetically non-significant tRNA that is not rare. 
This suggests that this tRNA gene’s evolution is de-coupled from phylogeny.  

C, D: Evolutionary bias for the inosine-34 modification. For amino acids decoded 
by both ANN and GNN tRNAs, when the first anticodon position is a target of A-
to-I editing, the INN tRNAs are more prevalent while the GNN isoacceptor is rare. 
D: However, if the ANN tRNA is not a target of A-to-I editing, then the GNN 
isoacceptor is more prevalent, and the ANN is rare.  

Figure 4: Signatures of mutational bias and natural selection on within-
genome codon usage bias 

A: Deviation of genomic ENC values from Wright’s neutral mutational model. The 
outer histogram shows the distribution of the mean difference between the 
empirical ENC and theoretical ENC that is expected by GC3-compositional bias 
measured in each of the 459 species. Inset displays the Wilcoxon signed-rank p-
values (log base 10) that measure the significance of deviation. 458/459 species 
reported significant p-values (right of red dashed line). Both y-axes represent the 
number of species.  

B. Variation in the influence of neutral pressures on species’ codon usage bias. 
Swarmplot of species’ R2 values (n points =459 species) that measures the fit 
between empirical codon usage bias (‘ENC_obs’) and theoretical codon usage 
bias (‘ENC_theo’) expected solely due to GC3-compositional bias, grouped by 
‘Very Strong’ (R2 >=0.75), ‘Strong’ (0.75> R2 >=0.5), ‘Moderate’ (0.5 > R2 >=0.25) 
and ‘Weak’ (R2<0.25).  

C: Codon frequency correlates with tRNA copy number. The histogram shows 
the distribution of Spearman ρ correlation coefficient between RSCU and 
cognate tRNA gene copy number. 313/459 species reported statistically 
significant p-values (p<0.05). The black line is the mean correlation coefficient.   

D: Histogram showing differences in the tRNA copy numbers for the codons with 
highest and lowest representation (RSCU) in the transcriptome over all the 459 
species Inset: Distribution of the copy numbers of tRNAs (y-axis) for the codons 
with highest (red) and least (blue) transcriptome-wide RSCU. The most 
frequently used codons are decoded by tRNAs with higher copy numbers, 
whereas the least frequent codons are decoded low copy-number tRNAs.  
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 Figure 5: Expression-linked codon usage bias correlates with tRNA supply 

A: High and low expressed genes exhibit different codon usage patterns. 
Example of PCA applied to the codon usage 59-dimensional RSCU matrix of the 
top (‘high’) and bottom (‘low’) 10% expressed genes. Each dot is a gene. The 
right panel is the more common cluster pattern. The left panel depicts Guttman 
(‘arch’) effect in the high expressed genes of  Z.heterogamus. 

B-D: ENC-GC3 plot of Z.heterogamus genes elucidates source of PCA arch 
effect.  The solid red line in scatterplots B and C represents the expected curve 
when codon usage bias is only affected by neutral mutation pressure. B) Codon 
usage bias of high expressed genes deviate strongly from neutral mutation 
pressure while becoming more C3-biased but C) low expressed genes better fit 
expected neutrality. D)  Arch effect captured the variation in C3% due to neutral 
and selection pressures.  

E and F: Highly expressed genes are biased for translationally optimal codons. 
E) Fraction of preferred codons (significantly enriched in the top 10% expressed 
genes) that are decoded by major (most abundant) and minor (least abundant) 
tRNA isoacceptor per genome (n=432 species) with and without the inclusion of 
inosine-34 modification. F) Paired comparison of the fraction of non-preferred 
codons (significantly enriched in the bottom 10% expressed genes) recognized 
by major and minor tRNAs. 

G: Distribution of the translation bias scores (TBS) across all 432 species. TBS is 
the difference between the fraction codons enriched in the 10% highest versus 
lowest expressed transcripts normalized by their sum. The positively skewed 
distribution indicates that the highest expressed transcripts are generally codon-
biased for rapid translation.  

H: Akaike information criterion (AIC) goodness-of-fit evaluation of the various 
maximum likelihood macroevolutionary models fitted to translation bias scores (n 
species tips=396). ‘BM’=Brownian motion, ‘OU’= Orhnstein-Uhlenbeck. The OU 
model of fluctuation directional selection yielded the lowest AIC, and therefore 
the best fit model.  

 

Figures 6: Neural network uses codons as features to predict gene 
expression. 

A: Schema of Codon2Vec. Codon2vec is a fully connected multi-layer neural 
network that uses an embedding layer to transform codons in the input coding 
sequences to a real-valued vector. The final output of the model is a vector of 
probabilities for each gene expression class (i.e., “high” or “low”). Detailed 
description in Methods. 

B: Codon2Vec’s performance on a single species. Model performance is 
evaluated on the hold-out test sets based on the area under the curve of the 
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receiver-operating-characteristics curve (AUC-ROC). An AUC score of 0.5 
(dashed line) represents random predictions.  

C: Model generalizability: Codon2Vec achieves high predictive performance on 
300 different species. However, shuffling of ground truth labels independent of 
input sequences ablated Codon2Vec’s ability to learn meaningful associations. 

D: Codon2Vec‘s prediction accuracy (AUC-ROC) positively and significantly 
correlates with differential usage of optimal codons between high and low 
expressed genes. The frequency of optimal codons (FOP) is another standard 
CUB metric (Ikemura 1981; Methods).  
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MATERIAL AND METHODS  

Genomic Data Acquisition 

All 459 whole fungal transcriptomes, as well as the corresponding RNA-
sequencing expression data and eukaryotic cluster of orthologous (KOGs) 
annotations, were downloaded from the Joint Genome Institute’s Mycocosm 
database (https://mycocosm.jgi.doe.gov). Only coding sequences (CDS) longer 
than 150bp with annotated start and stop codons were retained for downstream 
analysis. 

tRNA gene prediction: tRNA genes were predicted with tRNA-scanSE2.0 (Lowe 
and Chan 2016) with eukaryotic-specific parameters. For quality control, only 
high-confidence tRNA genes with a covariance score of at least 50 were retained 
for analyses. tRNA gene copy number was used as the proxy for tRNA 
abundance.  

Seleno-cysteine tRNA identification 

High-confidence tRNA genes are assigned a tRNA-scanSE score of 50 and over. 
After applying the cut-off covariance score of 50, 6 genomes still retained high-
scoring Sec-tRNA genes. To independently validate these tRNAscanSE 
predictions, these genomes were re-analyzed with another highly accurate but 
more conservative general-purpose tRNA gene finder aragorn1.2.38 (Laslett & 
Canback, 2004) using eukaryotic-specific parameters and a Sec-tRNA specific 
gene finder Secmarker (2015 Guigo). The final SeC positive species were taken 
as an overlap of any of these general gene-finders with the specialized 
Secmarker program.  

Codon Usage Metrics 

The effective number of codons (ENC), which measures the degree of 
synonymous codon bias of gene or genome, was computed from coding 
sequences using CodonW 1.4.4 (Peden, 1995; Wright 1990). 

 The theoretical ENC is the expected value estimated solely based on GC3% due 
to neutral mutational bias. The theoretical ENC of a gene g that is only influenced 
by GC3-compositional bias was computed according to (Wright 1990) using 
custom python3 code.  

ENCtheo = 2 + GC3g + (29 / GC3g
2 + (1-GC3g)2)  

G+C composition at 3rd codon position (GC3-content):  GC3%was computed 
using CodonW 1.4.4 (Peden 1995) 

Relative synonymous codon usage (RSCU) is the ratio of observed usage to 
the expected uniform usage within its amino acid class. RSCU is invariant to 
sequence length or amino acid composition. The RSCU of the 59 degenerate 
codons was computed using custom python3 scripts according to (Sharp and 

https://mycocosm.jgi.doe.gov/fungi
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Li,1987). Six-fold amino acids (Leucine, Serine, Arginine) were split into 2-fold 
and 4-fold codon groups. 

Preferred and Non-preferred codons were selected in each species based on 
the top and bottom 10% of expressed coding sequences. A codon is considered 
preferred if its RSCU value was significantly higher in the highly expressed CDS 
set (Mann-Whitney U test, Benjamini-Hochberg adjusted p-value <0.05). 
Conversely, a non-preferred codon reported a significantly higher RSCU in the 
low expressed CDS set. With this definition, more than one synonymous codon 
of an amino acid may be preferred or non-preferred.  

Frequency of optimal codons (Fop): Fop was computed according to (Ikemura 
1981) using custom python3 scripts based on optimal codons derived from a 
reference set of top 30 highly expressed ribosomal genes.  

Translation Bias Score, TBS: We introduce our TBS to measure the extent to 
which the codon usage of an organism’s gene expression reflects adaptation for 
the cellular tRNA supply based on the equation: 

((fraction of preferred codons decoded by major tRNAs) – (fraction of non-
preferred codons decoded by major tRNAs)) / (sum of the fractions) 

Major tRNAs are the most abundant tRNA isoacceptor within an amino acid 
class, either based on gene copy number or tRNA concentration. In this paper, 
we used gene copy number as a proxy for cellular tRNA concentrations. 

Comparative Phylogenetic Calculations  

We downloaded from the fungal phylogenetic tree from Joint Genome Institute 
Mycocosm (https://mycocosm.jgi.doe.gov). The phylogenetic tree was then 
pruned using Dendropy package (v4.40) in python3.7. Taxonomic ranks were 
obtained from National Center for Biotechnology Information (NCBI).  

Phylogenetic Independent Contrasts (PIC) models the trait covariation according 
to the formula Y = β X +ε, where Y and X are traits and β is the evolutionary 
correlation coefficient that quantifies the degree of coevolution between traits X 
and Y. Phylogenetic independent contrast was computed with the picante 
package in R (Kembel et al., 2010). 

Both Maximum likelihood continuous ancestral trait reconstruction was performed 
using contMap(model=Brownian motion) function from the package phytools 
(Revell 2011). Blomberg’s K statistic were computed using the phylosig() function 
in phytools library (Revell 2012) implementation in R which p-values are 
calculated based on 100 permutations.  

Fitting and evaluation of maximum likelihood evolutionary models for continuous 
character evolution were performed using the geiger library (Pennell et al., 2014) 
in R. 

Correlation, Hypothesis and Multivariate analyses  

https://mycocosm.jgi.doe.gov/
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All correlation and significance tests were done using the scipy (v1.3.1) and 
statsmodels(0.10.1) libraries in python3.7. Principal component analysis (PCA) 
was performed using the scikit-learn (v0.21.3; Pedregrosa et al., 2011) in 
python3.7.  

Supervised Neural Network Codon2Vec 

Codon2Vec is an artificial neural network (ANN) that learns the species-specific 
dependency between the codon composition (features) of a coding sequence 
(CDS) and expression level. A neural network is a class of machine learning 
algorithms that uses layers of interconnected computation nodes to learn 
complex patterns that underlie the data. We implemented and trained 
Codon2Vec using the keras (v2.2.4) (Chollet 2015) with tensorflow v1.8 backend, 
and scikit-learn libraries in Python3.7. 

Available as a command-line tool for download at this github repository. 

Dataset Collection and Preprocessing 

We selected CDS from the top and bottom 10% of expression distribution relative 
to the mean expression.  Each CDS was represented as a vector of codons in 
sequence. Then each unique codon is assigned a unique integer (tokenization) 
such that each CDS becomes recoded as a vector of integers. Finally, the 
lengths of the CDS were set to a fixed size of 2000, either by trimming longer 
sequences or padding with zeroes. The input and output data were shuffled and 
partitioned into 70% training set, 20% validation set and 10% test set. The 
training set is used to learn the model weights, whereas the validation set is used 
to fine-tune the model’s generalizability by evaluating whether the model is over- 
or under-fitting on data it was not trained on. The final evaluation is performed on 
the test set.  

Model training  

Codon2Vec is a feedforward ANN with 3 fully connected computation layers - 
embedding layer, rectified linear unit (ReLu) activation layer and sigmoid output 
layer. We also incorporated “drop-out” regularization to reduce overfitting.  Each 
layer is described in more detail in the subsequent paragraphs. 

Learning optimized model weights 

A node is the fundamental computation unit of an ANN. In a fully connected ANN, 
all nodes of a layer receive the weighted output of each node from the previous 
layer. The weights (W) represent the relative importance of a node to the model 
performance. During the forward pass of training, the input (X) undergoes a 
series of matrix multiplications and non-linear transformations (ᶲ) as it flows 
sequentially between nodes in each layer until the predicted output is generated 
in the final layer. 

Generating prediction:             �̂� =   ᶲ (WT X) , where X and W are matrices 

https://github.com/rhondene/Codon2Vec
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Model weights (W) were randomly initialized based on the Glorot uniform 
distribution. We chose the binary cross-entropy loss as the optimization objective 

that computes the error between the predicted output (�̂�) and ground truth (Y). 

Loss(Y, �̂�) = - (Y * log(�̂�) + (1 - Y) * log(1 - �̂�)) 

where (�̂�) ∈ {0,1} and Y is binary encoded as 0 or 1  

In the backward pass of training, the contribution of the current set of weights (W) 
to the model error is computed by taking the partial derivative of the loss function 
with respect to each layer’s weights (W). The weights are then updated by their 
gradients in the direction that minimizes the loss function.  Weights were tuned 
via backpropagation using the Adam optimization, a variant of stochastic gradient 
descent based on adaptive learning (Kingma et al., 2014). 

Model architecture 

The first layer serves as feature extraction by learning the weights that map each 
of the 64 unique codon features to a meaningful dense real-valued 4-dimensional 
vector (embeddings) in Euclidean space. The number 4 is a hyperparameter. 
The advantages of embedding representation are: 1) the features that maximize 
model performance are learned directly from the CDS 2) the numerical 
transformation of codons makes modeling amenable to neural networks, and 2) it 
is more computationally efficient than the alternative one-hot representation as 
each codon would have been assigned a 1x64 dimensional sparse vector of 
mostly zeroes compared to Codon2Vec’s 1x4 dimensional dense vector.  

The second layer applies the ReLu activation function to the weighted sum of 
outputs from the embedding layer. The ReLu function is a widely preferred non-
linear transformation for the inner (hidden) layers of neural networks because it 
speeds up convergence, and is robust to vanishing gradients. 

                                ReLu (x) = max(0, x)  

Finally, the output layer applies the sigmoid function that maps the continuous 
values to a real value between 0 and 1, such that the final output is a 2-
dimensional vector of the prediction probabilities for each expression class. 

Model Evaluation  

We evaluated Codon2Vec’s predictive performance using misclassification error, 
sensitivity, specificity and precision on the test set. Let TP, TN, FP, FN denote 
true positives, true negatives, false positives and false negatives, respectively:  

Misclassification error = 1 - (TP+TN) / (TP+TN+FP+FN) 

Sensitivity = TP/(TP+FN) 

Specificity = TN / (TN+FP) 

Precision = TP/ (TP+FP) 
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Furthermore, we plotted the receiver-operating characteristic curves and 
calculated the area under the ROC curve (AUC-ROC). 

Data availability  

All custom python3 and R scripts will be available 
https://github.com/rhondene/Adaptive_Codon_Usage_Kingdom_Fungi 
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Supplemental Figures and Legend 

Figure S1: Summary of the most and least preferred codons in fungal genomes 

A-B: Most and least preferred codons in the 21 degenerate amino acid group (6-box 

amino acids are disaggregated). A) “Most preferred” codons have the highest 

transcriptome-wide relative synonymous codon usage (RSCU) in their degenerate amino 

acid family. B) “Least preferred” codons have the lowest transcriptome-wide RSCU in 

their degenerate amino acid family. With these definitions, multiple codons may be 

‘most’ or ‘least’ preferred in the transcriptomes. 

C:  Summary of the preference of NNX codons is preferred (highest RSCU) and no-

preferred (lowest RSCU) in the species’ transcriptomes. 

D: Heat map showing the distribution of the relative loadings for each codon on the first 

three principal components.  

Figure S2: Variation in tRNA composition 

A:  Distribution of the number of distinct tRNA anticodon types across the 459 species 

B:  Distribution of the log base 10 of the total number of tRNA genes (tRNAome) 

 

Figure S3: Expression-linked codon usage bias and adaptation for translation 

efficiency 

A-C: Scatterplots showing only the high expressed genes after principal component 

analysis was performed on 59-RSCU matrix of high and low expressed genes of 

Z.heterogamus. A) High expressed genes colored by fraction of A-ending codons (A3%), 

B) G-ending codons and C) U-ending codons. The latent gradient underlying the arch 

effect is change in A3% and C3% (Figure 5D). 

D:  The GC3-content and goodness-of-fit to GC3-compositional bias of the 27 species 

whose high expressed genes formed an arch pattern (Guttman effect) when PCA was 

applied to RSCU of their low and high expressed genes. On the x-axis, early-diverging 

species are colored in red, and dikarya in blue. 

E: Identity and distribution of codons that are preferred according to transcript 

abundance. Stripplot showing codons are preferred (significantly higher RSCU in high 

expressed genes than low expressed genes) and non-preferred (significantly higher 

RSCU in low expressed genes) across the 420 species with available RNAseq data. 

F:  Projection of translation bias scores onto the fungal tree shows that codon bias in 

high expressed genes for major tRNAs emerges in multiple and across distantly related 

lineages. 

G:   Scatterplots of the 27 species whose high expressed genes form an arched cluster 

when projected on the first two principal component axes after PCA was performed on 

the 59-RSCU matrix of their high and low expressed genes. 
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H:  To assess the strength of composition bias on the codon usage of the high 

expressed genes in Figure S3G, we made an ENC-GC3 plot where the standard curve 

is the expected relationship between codon bias (ENC) and GC-content at the 3rd codon 

position (GC3%) in the absence of selection [Wright 1990]. 

Figure S4: Architecture and performance of Codon2Vec neural network  

A: Illustration of how Codon2vec’s preprocesses coding sequences in order to extract 

codons are features. 

B: Distribution of the mean CDS lengths across the 459 genomes.  

C-E: CodonVec’s performance on conditionally and constitutively expressed 

genes at different growth-stages: To test how the model responds to expression 

dynamics, we used  growth-stage specific (blastospore and hyphal) RNAseq data of  

Metarhizium anisopliae (Iwanicki et al, 2020) to separately train growth-stage specific 

models .Conditionally (genes expressed as high in one condition but low in the other) 

and constitutively expressed genes (genes with fold change= between conditions) were 

held-out test sequences used for model prediction C) The blastospore-specific model, 

‘Blastospore-C2V’, predicted the blastospore high expressed test sequences with higher 

probabilities that the hyphal-specific model (Hyphae-C2V). D) Conversely, the hyphal-

specific model predicted high expressed hyphal sequences with higher probabilities. E) .  

Both stage-specific models performed similarly on genes that did change expression 

between the blastospore and hyphal stage. Prediction probabilities are mean of 30 

iterations.  

Table S1: Phyla level analysis of the evolutionary relationship between codon bias 

and GC3-content 

Summary of regression results of phylogenetic independent contrasts (PIC) between 

effective number of codons (ENC) and GC3-content (ENC~GC3) to individual 

superphyla and sub-phyla that have at least 10 species to ensure sufficient statistical 

power to detect phylogenetic signal [Blomberg et al 2003].  Phyla level results are 

consistent with sub-kingdom patterns in that all dikaryic phyla show positive correlation 

between ENC and GC3%, whereas all the early-diverging phyla are negatively GC3-

biased 

Table S2. Summary of the relative fit of various macroevolutionary models for 

codon usage bias and GC3-content.  The early-burst model reports the lowest Akaike 

information criterion (AIC) score making it the best-fitting model for both genomic codon 

usage bias, as measured by ENC, and GC3-content. The early-burst model detects trait 

evolution by adaptive radiation.  

Table S3:  

Table showing the species with selenocysteine tRNA (SeC-tRNA) predicted by 

tRNAscanSE2.0 after low quality covariance scores (<50) were removed. The SeC-tRNA 

predictions are compare to another general purpose tRNA gene finder (Aragorn) and 

selenocysteine tRNA specific tool (SeCmaker) 
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