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The Inverse Problem of Linear
Lagrangian Dynamics
A comprehensive study is reported herein for the evaluation of Lagrangian functions for
linear systems possessing symmetric or nonsymmetric coefficient matrices. Contrary to
popular beliefs, it is shown that many coupled linear systems do not admit Lagrangian
functions. In addition, Lagrangian functions generally cannot be determined by system
decoupling unless further restriction such as classical damping is assumed. However, a
scalar function that plays the role of a Lagrangian function can be determined for any
linear system by decoupling. This generalized Lagrangian function produces the equa-
tions of motion and it contains information on system properties, yet it satisfies a modified
version of the Euler–Lagrange equations. Subject to this interpretation, a solution to the
inverse problem of linear Lagrangian dynamics is provided. [DOI: 10.1115/1.4038749]
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1 Introduction

The direct problem of Lagrangian dynamics involves the deri-
vation of equations of motion of a system with an assigned
Lagrangian function. In contrast, the inverse problem is concerned
with finding a scalar function such that the associated
Euler–Lagrange equations are equivalent to the assigned equa-
tions of motion. This scalar function, termed a Lagrangian, pro-
vides a highly compact form of storage of information on system
properties; it generates the equations of motion among other
things. Owing to utility in several fields, the inverse problem,
sometimes referred to as the inverse problem of the calculus of
variations, is a well-trodden problem that has attracted the atten-
tion of many researchers in the past century.

Darboux [1] demonstrated the existence of Lagrangians for
single-degree-of-freedom (SDOF) systems. Leitmann obtained
Lagrangians associated with nonpotential forces for which a varia-
tional principle exists [2]. Subsequently, Udwadia et al. [3]
derived the Lagrangians connected with general nonpotential
forces. He [4] used the semi-inverse method to derive Lagrangians
of the Korteweg-de Vries and Schr€odinger equations. Musielak
et al. [5] derived Lagrangians of nonlinear SDOF systems with
variable coefficients and presented methods to obtain standard and
nonstandard Lagrangians of SDOF systems [6]. A Lagrangian is
referred to as standard (or natural) if it can be expressed as the dif-
ference between kinetic and potential energy terms; otherwise, the
Lagrangian is termed nonstandard (or non-natural). These and
other earlier works [7–9] have addressed the inverse problem for
SDOF systems.

Solution of the inverse problem for multi-degree-of-freedom
(MDOF) systems poses a greater challenge because the equations
of motion are usually coupled; it is thus not permissible to focus
on individual component equations [10,11]. General conditions
for the existence of Lagrangians are provided by the so-called
Helmholtz conditions [12,13], an assessment of which requires

the solution of certain partial differential equations. Udwadia and
Cho [14] obtained Lagrangians for a class of SDOF and MDOF
linear systems by invoking the Helmholtz conditions. In general,
the Helmholtz conditions offer little assistance in the solution
of the inverse problem for MDOF systems. Douglas [15] and
Crampin et al. [16] addressed the inverse problem for two-degree-
of-freedom systems using Riquier theory with an exhaustive
case-by-case examination. Recently, Udwadia [17] obtained
Lagrangians for classically damped linear systems using modal
analysis. However, damped linear systems are generally not ame-
nable to modal analysis [18].

It will be demonstrated in this paper that system decoupling,
used successfully by Udwadia [17] for classically damped sys-
tems, cannot be extended to obtain Lagrangians for general linear
systems. It will also be shown that many coupled systems do not
admit Lagrangian functions, but a scalar function that plays the
role of a Lagrangian function can be found for every linear sys-
tem. The organization of this paper is as follows: The inverse
problem of linear Lagrangian dynamics is formulated in Sec. 2,
and solutions for SDOF and classically damped MDOF linear sys-
tems are reviewed. This is followed in Sec. 3 by a concise exposi-
tion of an extension of modal analysis to decouple nondefective
MDOF linear systems in real space. The effect of decoupling
transformations on the Euler–Lagrange equations is examined in
Sec. 4, where generalized Lagrangian functions are determined.
Defective linear systems are explored in Sec. 5, and the existence
of Lagrangian functions for coupled linear systems is addressed in
Sec. 6. Finally, a summary of findings is provided in Sec. 7. Six
examples are supplied throughout the paper for illustration.

2 Problem Statement

The equation of motion of an n-degree-of-freedom linear sys-
tem can be written as

M€q þ C _q þKq ¼ 0 (1)

where M, C, and K are arbitrary n� n matrices with M assumed
invertible. These coefficient matrices are real, but they need not
possess the familiar properties of symmetry and positive
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definiteness. Thus, Eq. (1) may represent gyroscopic and circula-
tory systems [11]. The generalized coordinate

q ¼ ½ q1 q2 � � � qn �T (2)

is an n-dimensional vector. Equation (1) is one of the most com-
monly used equations in science and engineering.

When M, C, and K are symmetric and positive definite, they
are referred to as the mass, damping, and stiffness matrices,
respectively. In this case, Eq. (1) is termed a damped linear sys-
tem. From a practical viewpoint, there is no loss of generality in
assuming that M is invertible. If necessary, static condensation
may be applied initially to reduce the number of degrees-of-
freedom in order to guarantee that M is invertible [19]. Because
M is nonsingular, it is convenient to take M ¼ I and write Eq. (1)
as

€q þ C _q þKq ¼ 0 (3)

where C and K are arbitrary, real n� n matrices.
Define the derivative of a multivariate scalar function F with

respect to an n-dimensional vector such as q in Eq. (2) by

@F

@q
¼ @F

@q1

@F

@q2

� � � @F

@qn

� �T

(4)

Concisely speaking, the inverse problem of linear Lagrangian
dynamics amounts to finding a scalar function Lðq; _q; tÞ that satis-
fies the corresponding Euler–Lagrange equation:

d

dt

@L

@ _q

� �
� @L

@q
¼ Y q; _q; €q; tð Þ €q þ C _q þKqð Þ ¼ 0 (5)

where Yðq; _q; €q; tÞ is a nonsingular n� n matrix multiplier. A
general solution to the inverse problem has never been reported in
the open literature. However, Lagrangian functions have already
been determined for SDOF and classically damped MDOF linear
systems. These solutions are now summarized.

2.1 Lagrangians for Single-Degree-of-Freedom Systems. A
linear SDOF system of the form

€p þ d _p þ bp ¼ 0 (6)

where d and b are real constants, admits the Lagrangian function
[17]

L p; _p; tð Þ ¼ 1

2
_p2 þ d _ppþ d2

2
p2

� �
edt � b

2
p2edt (7)

and, alternatively, a more compact Lagrangian function

L p; _p; tð Þ ¼ 1

2
_p2edt � b

2
p2edt (8)

As direct verification, substitute either Eq. (7) or Eq. (8) into the
corresponding Euler–Lagrange equation to yield

d

dt

@L

@ _p

� �
� @L

@p
¼ edt €p þ d _p þ bpð Þ ¼ 0 (9)

from which the equation of motion (6) can be extracted because
edt 6¼ 0 for all t.

2.2 Lagrangians for Classically Damped Linear Systems.
Suppose the coefficient matrices C and K are symmetric and posi-
tive definite. Associated with Eq. (3) is the symmetric eigenvalue
problem Ku ¼ ku. Owing to the positive definiteness of K, all
eigenvalues kj ðj ¼ 1; 2;…; nÞ are positive, and the corresponding

eigenvectors uj are real and orthonormal. Define the modal matrix
by

U ¼ ½u1 u2 � � � un � (10)

If Eq. (3) is classically damped, then it is amenable to modal anal-
ysis. Using the modal transformation q ¼ Up, the matrices C and
K are diagonalized simultaneously in real space such that

UTU ¼ I; UTCU ¼ diag½dj�; UTKU ¼ diag½bj� (11)

In other words, Eq. (3) becomes decoupled in the modal
coordinate

p ¼ ½ p1 p2 � � � pn �T (12)

Under the assumption of classical damping, Udwadia [17]
decoupled Eq. (3) into n independent SDOF systems from which
the Lagrangian functions

L q; _q; tð Þ ¼ 1

2
_qTeCt _q þ _qTeCtCqþ 1

2
qTeCtC2q

� �

� 1

2
qTeCtKq (13)

and

L q; _q; tð Þ ¼ 1

2
_qTeCt _q � 1

2
qTeCtKq (14)

were constructed by using Eqs. (7) and (8), respectively. Substi-
tute either Eq. (13) or Eq. (14) into Eq. (5) to obtain

d

dt

@L

@ _q

� �
� @L

@q
¼ eCt €q þ C _q þKqð Þ ¼ 0 (15)

from which the equation of motion (3) is recovered because
detðeCtÞ 6¼ 0 for all t. In general, there is no reason why damping
in a linear system should be classical. A necessary and sufficient
condition [18] under which Eq. (3) is classically damped is given
by

CK ¼ KC (16)

Practically speaking, classical damping implies that energy dissi-
pation is almost uniformly distributed throughout a system. Exper-
imental modal testing suggests that no physical system is strictly
classically damped [20]; damping in linear systems is routinely
nonclassical.

3 Generalization of Modal Analysis

The key to successful derivation of Lagrangian functions for
classically damped linear systems, as described earlier, is decou-
pling: the conversion of a given MDOF system into a series of
independent SDOF systems. Recently, classical modal analysis
has been extended to decouple practically any linear system in
real space [21–23]. To be specific, a real and invertible transfor-
mation has been determined to convert Eq. (3) into

€p þ D _p þ Bp ¼ 0 (17)

for which the n� n coefficient matrices D and B are real and diag-
onal. Unless Eq. (3) represents a classically damped system, the
elements of D and B are not those specified by Eq. (11). There are
no scientific restrictions on this extension of modal analysis,
which is termed the method of phase synchronization. All parame-
ters required for decoupling are obtained through the solution of
the quadratic eigenvalue problem

ðIk2 þ CkþKÞv ¼ 0 (18)
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which yields 2n eigenvalues kj ðj ¼ 1; 2;…; 2nÞ and eigenvectors
vj. System (3) is nondefective if each repeated eigenvalue of Eq.
(18) possesses a full complement of independent eigenvectors. In
order to provide a concise exposition, it is assumed that all eigen-
values of Eq. (18) are distinct, which guarantees that Eq. (3) is
nondefective. If C and K are randomly chosen from a uniform
distribution, the probability that all eigenvalues of Eq. (18) are
distinct is one [21]. Indeed, almost all linear systems are charac-
terized by distinct eigenvalues. Defective systems, which must
possess repeated eigenvalues, will be addressed in Sec. 5.

3.1 Methodology for Decoupling Nondefective Linear
Systems. To streamline the presentation, an implementation2 of
phase synchronization to decouple nondefective systems with dis-
tinct eigenvalues is summarized as a series of tasks.

Task 1. Solve the quadratic eigenvalue problem (18) and index
the eigensolutions.

There are 2n eigensolutions, and any complex eigensolutions
occur in complex conjugate pairs. Let 2c eigenvalues be complex
and the remaining 2r ¼ 2ðn� cÞ be real. Denote the first c eigen-
values kj ðj ¼ 1; 2;…; cÞ as the c complex eigenvalues with posi-
tive imaginary parts arranged in order of increasing magnitude of
their imaginary parts:

S1 ¼ fk1; k2;…; kc : 0 < Im½k1� � Im½k2� � � � � � Im½kc�g (19)

Enumerate the remaining c complex eigenvalues, which are the
complex conjugates of kj with negative imaginary parts, in such a
way that

S3 ¼ fknþ1 ¼ k1; knþ2 ¼ k2;…; knþc ¼ kcg (20)

Arrange the 2r real eigenvalues in accordance with a
primary–secondary pairing scheme [22], where the r largest eigen-
values are referred to as primary eigenvalues and the r smallest
eigenvalues are termed secondary eigenvalues. Enumerate the r
real secondary eigenvalues in order of increasing magnitude such
that

S2 ¼ fkcþ1; kcþ2;…; kn : kcþ1 < kcþ2 < � � � < kng (21)

Also arrange the remaining r real primary eigenvalues in order of
increasing magnitude:

S4 ¼ fknþcþ1; knþcþ2;…; k2n : knþcþ1

< knþcþ2 < � � � < k2ng (22)

Thus, the 2n eigenvalues are partitioned into four disjoint subsets.
A different indexing scheme for the eigensolutions may be used.

Task 2. Normalize the eigenvectors of Eq. (18).
After the eigensolutions have been indexed, the 2n eigenvectors

vj and vnþj ðj ¼ 1; 2;…; nÞ are normalized in accordance with

2kjv
T
j vj þ vT

j Cvj ¼ kj � knþj (23)

2knþjv
T
nþjvnþj þ vT

nþjCvnþj ¼ knþj � kj (24)

The normalization scheme represented by Eqs. (23) and (24)
reduces to mass-normalization (with M ¼ I in this case) for
undamped or classically damped systems [19,21]. This is an
optional task and a different normalization scheme for the eigen-
vectors may also be used.

Task 3. Construct the decoupled system (17) from the eigenval-
ues of Eq. (18).

Using the indexed eigenvalues, assemble the following n� n
matrices:

K1 ¼ diag½k1; k2;…; kn�; K2 ¼ diag½knþ1; knþ2;…; k2n� (25)

The real and diagonal coefficient matrices of the decoupled sys-
tem (17) are given by

D ¼ �ðK1 þ K2Þ; B ¼ K1K2 (26)

Note that D and B are independent of eigenvector normalization
because they are constructed from the eigenvalues only.

Task 4. Construct the real decoupling transformation.
Assemble the following n� n matrices of eigenvectors:

V1¼ ½v1 v2 � � � vn �; V2¼ ½vnþ1 vnþ2 � � � v2n � (27)

The decoupling transformation, when cast in the state space, is
linear and time-invariant such that

p

_p

" #
¼ S

q

_q

" #
¼ S1 S2

S3 S4

" #
q

_q

" #
¼ S1qþ S2 _q

S3qþ S4 _q

" #
(28)

where the 2n� 2n real and invertible matrix S is given by

S ¼ I I

K1 K2

� �
V1 V2

V1K1 V2K2

� ��1

(29)

By expansion, the n� n submatrices Si ði ¼ 1; 2; 3; 4Þ have the
representations

S1 ¼ ½ðV1K1Þ�1 � ðV2K2Þ�1�
� ½V1ðV1K1Þ�1 � V2ðV2K2Þ�1��1

(30)

S2 ¼ ðV�1
1 � V�1

2 Þ½ðV1K1ÞV�1
1 � ðV2K2ÞV�1

2 �
�1

(31)

S3 ¼ ðV�1
1 � V�1

2 Þ½V1ðV1K1Þ�1 � V2ðV2K2Þ�1��1
(32)

S4 ¼ ðK1V�1
1 � K2V�1

2 Þ½ðV1K1ÞV�1
1 � ðV2K2ÞV�1

2 �
�1

(33)

If written in configuration space, the decoupling transformation
becomes linear and time-varying [21,23]. To streamline the
manipulations, only the state-space decoupling transformation
will be used.

3.2 Reduction to Classical Modal Analysis. The decoupling
procedure discussed previously is a direct extension of modal
analysis. If Eq. (3) is undamped or classically damped, the
eigenvectors of Eq. (18) coincide with the normal modes of the
system up to arbitrary signs in the columns of the modal matrix U
defined in Eq. (10). It can be shown that Eqs. (30)–(33) simplify
to

S1 ¼ S4 ¼ U�1 ¼ UT; S2 ¼ S3 ¼ 0 (34)

As a consequence, the decoupled coordinate p and the original
coordinate q are just connected by the modal transformation
q ¼ Up. With different indexing schemes, phase synchronization
generates all possible decoupled forms into which a linear system
(with symmetric or nonsymmetric coefficients) can be trans-
formed in real space [22,23].

4 Generalized Lagrangian Functions and Modified

Euler–Lagrange Equations

As explained in Sec. 3, Eq. (3) can be decoupled into Eq. (17)
using an extension of modal analysis. Upon decoupling, one
obtains n independent SDOF systems of the form

€pj þ dj _pj þ bjpj ¼ 0 (35)2A computer program for decoupling linear systems is available upon request.
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where dj ¼ �ðkj þ knþjÞ ðj ¼ 1; 2;…; nÞ and bj ¼ kjknþj are constants that populate the diagonal of the coefficient matrices D and B,
respectively. Recalling Eq. (7), a Lagrangian function associated with Eq. (35) is

Lj pj; _pj; t
� � ¼ 1

2
_p2

j þ dj _pjpj þ
d2

j

2
p2

j

� �
edjt � bj

2
p2

j edjt (36)

It follows that a Lagrangian function for the entire decoupled system (17) is given by [17]

L p; _p; tð Þ ¼
Xn

j¼1

Lj pj; _pj; t
� �

¼ 1

2
_pTeDt _p þ _pTeDtDpþ 1

2
pTeDtD2p

� �
� 1

2
pTeDtBp

(37)

It is straightforward to verify that Eq. (37) is indeed a Lagrangian function for the decoupled system (17) because the equation
of motion is recovered from evaluating the associated Euler–Lagrange equation

d

dt

@L

@ _p

� �
� @L

@p
¼ 0 (38)

Using Eq. (28), the Lagrangian function Lðp; _p; tÞ for the decoupled system can be expressed in terms of the original coordinate q,
resulting in a function

L̂ q; _q; tð Þ ¼ 1

2
qT ST

3 eDtS3 þ ST
3 eDtDS1 þ

1

2
ST

1 eDtD2S1 � ST
1 eDtBS1

� �
q

þ 1

2
_qT ST

4 eDtS4 þ ST
4 eDtDS2 þ

1

2
ST

2 eDtD2S2 � ST
2 eDtBS2

� �
_q

þ _qT ST
4 eDtS3 þ

1

2
ST

4 eDtDS1 þ ST
2 eDtDS3 þ ST

2 eDtD2S1

� �
� ST

2 eDtBS1

� �
q (39)

Under the assumption of classical damping, L̂ðq; _q; tÞ would be a
Lagrangian function for the original system (3). This is precisely
the approach adopted by Udwadia [17] in the derivation of Eq.
(13). However, L̂ðq; _q; tÞ as given by Eq. (39) generally does not
satisfy the Euler–Lagrange equation in q, i.e.,

d

dt

@L̂

@ _q

" #
� @L̂

@q
6¼ Y q; _q; €q; tð Þ €q þ C _q þKqð Þ (40)

for any Yðq; _q; €q; tÞ. Thus, L̂ðq; _q; tÞ is not a Lagrangian function
for Eq. (3) even though, as a scalar function, L̂ðq; _q; tÞ still pro-
vides compact storage of system properties. What equation is sat-
isfied by L̂ðq; _q; tÞ? Can L̂ðq; _q; tÞ generate the equation of
motion?

4.1 Transformation of Euler–Lagrange Equations. The
inverse of Eq. (28) can be written as

q

_q

� �
¼S�1 p

_p

� �
¼T

p

_p

� �
¼ T1 T2

T3 T4

� �
p

_p

� �
¼ T1pþT2 _p

T3pþT4 _p

� �
(41)

where the 2n� 2n matrix T is real and invertible with submatri-
ces Ti ði ¼ 1; 2; 3; 4Þ given by

T1 ¼ ðV1K2 � V2K1ÞðK2 � K1Þ�1
(42)

T2 ¼ ðV2 � V1ÞðK2 � K1Þ�1
(43)

T3 ¼ ðV1 � V2ÞðK1K2ÞðK2 � K1Þ�1
(44)

T4 ¼ ðV2K2 � V1K1ÞðK2 � K1Þ�1
(45)

Denote the elements of T1 and T3 by T1;ij ði; j ¼ 1; 2;…; nÞ and
T3;ij, respectively. Using Eq. (41),

@L

@pj
¼
Xn

i¼1

@L̂

@qi

@qi

@pj
þ @L̂

@ _qi

@ _qi

@pj
þ @L̂

@t

@t

@pj

" #

¼
Xn

i¼1

@L̂

@qi
T1;ij þ

@L̂

@ _qi

T3;ij

" #
(46)

As a consequence,

@L

@p
¼ TT

1

@L̂

@q
þ TT

3

@L̂

@ _q
(47)

Likewise,

@L

@ _p
¼ TT

2

@L̂

@q
þ TT

4

@L̂

@ _q
(48)

Recall that Lðp; _p; tÞ is a Lagrangian function for the decoupled
system (17), satisfying Eq. (38). Substitute Eqs. (47) and (48) into
Eq. (38) to obtain

TT
4

d

dt

@L̂

@ _q

" #
� TT

1

@L̂

@q

 !
þ TT

2

d

dt

@L̂

@q

" #
� TT

3

@L̂

@ _q

 !
¼ 0 (49)

This is the equation satisfied by L̂ðq; _q; tÞ. Moreover, evaluation
of this equation yields an equation from which the equation of
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motion (3) can be extracted. One would consider L̂ðq; _q; tÞ as a
generalized Lagrangian function and Eq. (49) as a modified
Euler–Lagrange equation.

Why does L̂ðq; _q; tÞ satisfy the Euler–Lagrange Eq. (5) when
system (3) is classically damped? Why is it necessary to use Eq.
(49) in general to extract the equation of motion? If Eq. (3) repre-
sents a classically damped system, then Eq. (34) is applicable. In
this case, the upper half of the decoupling transformation (28)
reduces to the modal transformation q ¼ Up and the lower half
reduces to _q ¼ U _p. The generalized Lagrangian function
L̂ðq; _q; tÞ in Eq. (39) reduces to a traditional Lagrangian function
given by Eq. (13). Equivalently, under the assumption that Eq. (3)
is classically damped, T1 ¼ T4 ¼ U and T2 ¼ T3 ¼ 0. In this
case, Eq. (49) simplifies to a traditional Euler–Lagrange equation
given by Eq. (5). Essentially, the state-space decoupling transfor-
mation (28) or (41) becomes a configuration-space transformation
under classical damping. A configuration-space transformation
modifies the Euler–Lagrange equation by introducing only a
matrix multiplier, and essentially L̂ðq; _q; tÞ satisfies Eq. (5). In
general, Eq. (28) or Eq. (41) is a genuine state-space transforma-
tion, which modifies the Euler–Lagrange equation to the form rep-
resented by Eq. (49).

In summary, system decoupling in real space, an approach uti-
lized by Udwadia [17], always produces a scalar function
L̂ðq; _q; tÞ, which is either a Lagrangian function or a generalized
Lagrangian function. In either case, L̂ðq; _q; tÞ can be used to gen-
erate the equation of motion (3) and it contains information on
system properties. Can a Lagrangian function be determined for
any linear system? It will be shown in Sec. 6 that many coupled
linear systems do not admit Lagrangian functions. In the search of
a general solution to the inverse problem of linear Lagrangian
dynamics, the generalized Lagrangian functions may be the best
one can achieve. Two examples will illustrate the exposition given
in this section.

Example 1. Consider a nonclassically damped system specified
by

€q þ 0:7 �0:1
�0:1 0:2

� �
_q þ 2 �1

�1 2

� �
q ¼ 0 (50)

This is a realization of Eq. (3). Solution of the quadratic eigen-
value problem (18) yields

K1¼
�0:1792þ1:0008i 0

0 �0:2708þ1:6819i

" #
; K2¼K1 (51)

V1¼
0:7328�0:0949i 0:7152þ0:1634i

0:7180þ0:0945i �0:7118þ0:1601i

" #
; V2¼V1 (52)

The real and diagonal coefficient matrices of the decoupled sys-
tem (17) are given by

D ¼ 0:3584 0

0 0:5416

� �
; B ¼ 1:0337 0

0 2:9022

� �
(53)

The real decoupling transformations (28) and (41) are, respec-
tively, defined by the matrices

S¼
S1 S2

S3 S4

" #
¼

0:6740 0:7294 �0:0948 0:0944

0:7474 �0:7282 0:0972 0:0952

0:2840 �0:2836 0:7498 0:7011

�0:0991 �0:0932 0:6889 �0:7376

2
6666664

3
7777775

(54)

T ¼
T1 T2

T3 T4

2
4

3
5

¼

0:7158 0:7415 �0:0948 0:0972

0:7349 �0:6860 0:0944 0:0952

0:0980 �0:2820 0:7498 0:6889

�0:0976 �0:2763 0:7011 �0:7376

2
6666664

3
7777775

(55)

The scalar function, or generalized Lagrangian function, in Eq.
(39) is

L̂ðq; _q; tÞ ¼ e0:3584t

� 0:1455q2
1 � 0:5543q1q2 � 0:2548q2

2 þ 0:2640 _q2
1

þ 0:3607q1 _q1 � 0:0427q2 _q1 þ 0:5351 _q2 _q1 þ 0:2270q1 _q2

� 0:1787q2 _q2 þ 0:2533 _q2
2

0
BBB@

1
CCCA

þe0:5416t

� 0:7847q2
1 þ 1:5096q1q2 � 0:7079q2

2 þ 0:2424 _q2
1

� 0:1316q1 _q1 � 0:0075q2 _q1 � 0:5352 _q2 _q1 � 0:2748q1 _q2

þ 0:4029q2 _q2 þ 0:2405 _q2
2

0
BBB@

1
CCCA (56)

Using Eqs. (55) and (56) to evaluate Eq. (49), one obtains

0:7328e0:3584t 0:7180e0:3584t

0:7152e0:5416t �0:7118e0:5416t

" #

� €q þ
0:7 �0:1

�0:1 0:2

" #
_q þ

2 �1

�1 2

" #
q

 !
¼ 0 (57)

Observe that

det

0:7328e0:3584t 0:7180e0:3584t

0:7152e0:5416t �0:7118e0:5416t

2
64

3
75

0
B@

1
CA ¼ �1:0351e0:9t 6¼ 0

(58)
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for all t. Therefore, the equation of motion (50) can be extracted
from Eq. (57). Indeed, the generalized Lagrangian function
L̂ðq; _q; tÞ generates the equation of motion specified by Eq. (50)
from a modified Euler–Lagrange equation.

Example 2. A gyroscopic system is defined by

€q þ 0 �0:2
0:2 0

� �
_q þ 1 0

0 4

� �
q ¼ 0 (59)

This is a realization of Eq. (3) with a nonsymmetric coefficient
matrix. Solution of the quadratic eigenvalue problem (18) yields

K1 ¼
0:9934i 0

0 2:0132i

� �
; K2 ¼ K1 (60)

V1 ¼
�1:0022 �0:1330i
0:0661i 1:0088

� �
; V2 ¼ V1 (61)

The real and diagonal coefficient matrices of the decoupled sys-
tem (17) are given by

D ¼ 0; B ¼ 0:9869 0

0 4:0531

� �
(62)

The real decoupling transformations (28) and (41) are, respec-
tively, defined by the matrices

S¼ S1 S2

S3 S4

� �
¼

�0:9936 0 0 �0:0651

0 0:9741 0:0647 0

0 0:2603 �0:9805 0

�0:0647 0 0 0:9870

2
664

3
775 (63)

T¼ T1 T2

T3 T4

� �
¼

�1:0022 0 0 �0:0661

0 1:0088 0:0665 0

0 0:2678 �1:0022 0

�0:0657 0 0 1:0088

2
664

3
775 (64)

The scalar function, or generalized Lagrangian function, in Eq.
(39) is

L̂ðq; _q; tÞ ¼ �0:4850q2
1 � 1:8890q2

2 � 0:5106q2 _q1 þ 0:4723 _q2
1

� 0:1276q1 _q2 þ 0:4850 _q2
2 (65)

Using Eqs. (64) and (65) to evaluate Eq. (49), one obtains

�0:9805 0

0 0:9870

� �
€qþ 0 �0:2

0:2 0

� �
_qþ 1 0

0 4

� �
q

� �
¼ 0 (66)

It follows that the equation of motion (59) can be extracted. This
example demonstrates that systems with nonsymmetric coeffi-
cients can be readily treated.

5 Defective Linear Systems

Although defective or degenerate systems do not occur rou-
tinely, they have been studied by a number of authors [24,25]. If
system (3) is defective, there is a repeated eigenvalue of Eq. (18)
that does not possess a full set of independent eigenvectors, which
must be supplemented with generalized eigenvectors. As demon-
strated in Ref. [26], decoupling a defective system (3) is a delicate
procedure that can easily vary on a case-by-case basis, but regard-
less it is always possible to decouple Eq. (3) into Eq. (17).

5.1 Decoupling of Defective Linear Systems. In general, the
real and invertible decoupling transformation in the state space

that connects systems (3) and (17) is time-varying and has the
form [26]

p

_p

� �
¼ Vp

VpJp

� �
eJpte�Jqt Vq

VqJq

� ��1
q

_q

� �
¼ SðtÞ q

_q

� �
(67)

In Eq. (67), Jq represents a 2n� 2n Jordan matrix of the indexed
eigenvalues, and Vq is an n� 2n matrix of the corresponding
eigenvectors. The 2n� 2n Jordan matrix Jp is generally a modi-
fied form of Jq whose structure imposes the eigenvalue pairing
schemes required for decoupling; the associated n� 2n matrix Vp

enforces these pairing schemes. The time-varying transformation
(67) generally cannot be simplified when system (3) is defective.
However, under special circumstances, it is possible to obtain
explicit forms for the real 2n� 2n transformation matrix SðtÞ in
Eq. (67) and its submatrices SiðtÞ ði ¼ 1; 2; 3; 4Þ [26]. For exam-
ple, suppose all eigenvalues of system (3) are complex, but only
2N < 2n of these eigenvalues are distinct. Assume that each
defective eigenvalue has unit geometric multiplicity. Denote the
algebraic multiplicity by mk ðk ¼ 1; 2;…;NÞ, and let Jk be an
mk � mk Jordan block associated with one of the N unique eigen-
values kk with positive imaginary part:

Jk ¼

kk 1 0 � � � 0

0 kk 1 � � � 0

� . .
. . .

. . .
.

�

0 � � � 0 kk 1

0 � � � 0 0 kk

2
66666664

3
77777775
¼ kkImk

þ

0 1 0 � � � 0

0 0 1 � � � 0

0 0 0 . .
.

�

� � � 0 1

0 0 0 � � � 0

2
66666664

3
77777775

¼ Kk þNk (68)

If an eigenvalue kk is not repeated, then mk ¼ 1. With unit geomet-
ric multiplicity, kk possesses a single eigenvector vk

1 and mk � 1
generalized eigenvectors that can be arranged in an n� mk matrix
Vk:

Vk ¼ ½ vk
1 vk

2 � � � vk
mk
� (69)

From the matrices Jk, Vk, Kk, and Nk, construct the n� n matrices

J ¼ diag½J1; J2;…; JN �; V ¼ ½V1 V2 � � � VN � (70)

and

K ¼ diag½K1;K2;…;KN �; N ¼ diag½N1;N2;…;NN � (71)

where K and N commute in multiplication. The defective system
(3) is decoupled into Eq. (17) with coefficient matrices

D ¼ �ðKþ KÞ; B ¼ KK (72)

This structure implies that the n independent SDOF systems asso-
ciated with Eq. (17) consist of N collections of mk identical sys-
tems with generally different initial conditions. This decoupled
form is achieved by setting

Jq¼diag½J;J�; Vq¼½V V �; Jp¼diag½K;K�; Vp¼½I I� (73)

in Eq. (67), yielding

SðtÞ¼
S1ðtÞ S2ðtÞ

S3ðtÞ S4ðtÞ

2
4

3
5¼ e�Nt 0

0 e�Nt

2
4

3
5 I I

K K

2
4

3
5 V V

VJ VJ

2
4

3
5
�1

(74)

where

S1ðtÞ ¼ e�Nt½ðVJÞ�1 � ðVJÞ�1�½VðVJÞ�1 � VðVJÞ�1��1
(75)

S2ðtÞ ¼ e�Nt½V�1 � V
�1�½ðVJÞV�1 � ðVJÞV�1��1

(76)

S3ðtÞ¼e�Nt½KðVJÞ�1�KðVJÞ�1�½VðVJÞ�1�VðVJÞ�1��1
(77)
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S4ðtÞ ¼ e�Nt½KV�1 � KV
�1�½ðVJÞV�1 � ðVJÞV�1��1

(78)

If system (3) is nondefective, then N ¼ 0, J ¼ K, and the time-
varying Eqs. (75)–(78) reduce, as expected, to their time-invariant
counterparts Eqs. (30)–(33) with K ¼ K1, K ¼ K2, V ¼ V1, and
V ¼ V2. When some of the defective eigenvalues are real, concise
forms for SiðtÞ are typically not available. It is too laborious to
provide an exhaustive summary of decoupling defective systems
herein, so the interested reader is referred to Ref. [26] for addi-
tional details.

5.2 Transformation of Euler–Lagrange Equations. A
Lagrangian function Lðp; _p; tÞ for the decoupled system (17),
whether or not Eq. (3) is defective, can always be expressed as
Eq. (37). When Lðp; _p; tÞ is expressed in terms of the original sys-
tem coordinate q, the resulting function L̂ðq; _q; tÞ still has the
form given by Eq. (39), but the submatrices Si are time-varying if
Eq. (3) is defective. When all eigenvalues are complex, Si ¼ SiðtÞ
are specified by Eqs. (75)–(78). The inverse of Eq. (67) involves a
matrix T, which is also time-varying and is defined as follows:

TðtÞ ¼ S�1ðtÞ ¼ V V

VJ VJ

" #
I I

K K

" #�1
eNt 0

0 eNt

" #

¼
T1ðtÞ T2ðtÞ
T3ðtÞ T4ðtÞ

" #
(79)

T1ðtÞ ¼ ðVK � VKÞðK � KÞ�1eNt (80)

T2ðtÞ ¼ ðV � VÞðK � KÞ�1eNt (81)

T3ðtÞ ¼ ½ðVJÞK � ðVJÞK�ðK � KÞ�1eNt (82)

T4ðtÞ ¼ ðVJ � VJÞðK � KÞ�1eNt (83)

Because Ti are time-varying, it can be shown that the modified
Euler–Lagrange equation satisfied by L̂ðq; _q; tÞ has the form

TT
4

d

dt

@L̂

@ _q

" #
� TT

1 � _T
T

2

� 	
@L̂

@q

 !

þ TT
2

d

dt

@L̂

@q

" #
� TT

3 � _T
T

4

� 	
@L̂

@ _q

 !
¼ 0 (84)

This is a generalization of Eq. (49) when system (3) is defective.
As in the nondefective case, Eq. (84) implies that L̂ðq; _q; tÞ is

generally not a Lagrangian function for the defective system (3),
but evaluation of Eq. (84) allows Eq. (3) to be unpacked from
L̂ðq; _q; tÞ.

Example 3. Consider a nonclassically damped system of the
form (3) specified by

€q þ 2 �1

�1 2

� �
_q þ 2 �1

�1 5

� �
q ¼ 0 (85)

Solution of the quadratic eigenvalue problem (18) indicates that
the system is defective with a repeated complex eigenvalue such
that

J ¼ �1þ i
ffiffiffi
2
p

1

0 �1þ i
ffiffiffi
2
p

� �
; V ¼ �i

ffiffiffi
2
p

3

1 0

� �
(86)

K ¼ ð�1þ i
ffiffiffi
2
p
ÞI; N ¼ 0 1

0 0

� �
(87)

The real and diagonal coefficient matrices of the decoupled sys-
tem (17) are given by

D ¼ 2I; B ¼ 3I (88)

The real decoupling transformations (74) and (79) are, respec-
tively, defined by the matrices

SðtÞ ¼
S1ðtÞ S2ðtÞ

S3ðtÞ S4ðtÞ

" #

¼

�t=4 1� t=4 0 �t=4

1=4 1=4 0 1=4

�t=4� 1=4 5t=4� 1=4 �t=2 t=4þ 3=4

1=4 �5=4 1=2 �1=4

2
6666664

3
7777775

(89)

TðtÞ ¼
T1ðtÞ T2ðtÞ
T3ðtÞ T4ðtÞ

" #
¼

�1 3� t �1 �t

1 t 0 0

3 3t� 1 1 tþ 2

0 1 1 t

2
666664

3
777775 (90)

The scalar function, or generalized Lagrangian function, in Eq.
(39) is

L̂ q; _q; tð Þ ¼ e2t

3

32
q2

1 �
9

32
q2

2 þ
1

8
_q2

1 þ
9

32
_q2

2 �
13

16
q1q2 þ

1

4
q1 _q1 �

5

16
q1 _q2 �

1

2
q2 _q1 þ

7

16
q2 _q2

� �

þ t
1

8
q2

1 þ
5

4
q2

2 �
1

8
q1q2 þ

1

8
q1 _q1 �

3

8
q1 _q2 �

3

8
q2 _q1 þ

5

4
q2 _q2 �

3

8
_q1 _q2

� �

þ t2 1

16
q2

1 þ
7

16
q2

2 þ
1

8
_q2

1 �
1

16
_q2

2 �
5

8
q1q2 þ

1

4
q1 _q1 �

1

8
q1 _q2 �

1

2
q2 _q1 �

1

8
q2 _q2

� �

2
666666664

3
777777775

(91)

Using Eqs. (90) and (91) to evaluate Eq. (84), one obtains

�te2t=2 3e2t=4

e2t=2 0

� �
€qþ 2 �1

�1 2

� �
_qþ 2 �1

�1 5

� �
q

� �
¼ 0 (92)

Since the matrix multiplier is nonsingular for all t, the
equation of motion (85) is extracted from Eq. (92). This
example demonstrates that defective systems can indeed be
tackled.
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6 Existence of Lagrangian Functions for Linear

Systems

In this section, it will be shown that some coupled linear sys-
tems do not admit Lagrangian functions. Most of the Lagrangian
functions for MDOF linear systems reported in the literature
[12,14,17] are bilinear of the form

L q; _q; tð Þ ¼ 1

2
qTA1 tð Þqþ 1

2
_qTA2 tð Þ _q þ _qTA3 tð Þq (93)

where AiðtÞ ði ¼ 1; 2; 3Þ are real n� n matrices that may depend
on time. Note that Eq. (93) is a general form that accommodates
both standard and nonstandard Lagrangians. In addition, suppose
that, for example, it is required that the kinetic energy of Eq. (3)
be expressible as a quadratic form of the velocities and the coeffi-
cients of the quadratic form can be time-varying. Then a Lagran-
gian function for this subclass of Eq. (3), if it exists, is reducible
to the form given by Eq. (93). Evaluating the Euler–Lagrange
equation (5) with Eq. (93) and matching coefficients yields the
system of equations

1

2
A2 tð Þ þ AT

2 tð Þ
� �

¼ Y tð Þ (94)

1

2
_A2 tð Þ þ _A

T

2 tð Þ
� 	

þ A3 tð Þ � AT
3 tð Þ

� �
¼ Y tð ÞC (95)

_A3 tð Þ � 1

2
A1 tð Þ þ AT

1 tð Þ
� �

¼ Y tð ÞK (96)

These equations imply that YðtÞ 6¼ 0 is symmetric and satisfies
the matrix differential equation

€YðtÞ � _YðtÞC ¼ KTYðtÞ � YðtÞK (97)

However, due to the symmetry of YðtÞ, Eq. (97) constitutes an
overdetermined system of differential equations. There are n2 sca-
lar differential equations associated with Eq. (97), but only nðnþ
1Þ=2 solutions are needed because YðtÞ is symmetric. With C and
K arbitrary for Eq. (3), it is generally not possible to make the n2

scalar differential equations consistent, so an admissible nontrivial
solution YðtÞ does not exist. Thus, system (3) will generally not
admit Lagrangian functions of the form given by Eq. (93) unless
restrictions are placed on the coefficient matrices C and K. It is
important to note that the existence of an acceptable solution YðtÞ
does not guarantee the existence of a corresponding Lagrangian
function. However, if there is no admissible solution to Eq. (97),
then a Lagrangian does not exist for system (3).

To examine Eq. (97) more intimately, assume that Eq. (3) has
two degrees-of-freedom, with

C ¼
c11 c12

c21 c22

" #
; K ¼

k11 k12

k21 k22

" #
;

YðtÞ ¼
y1ðtÞ y2ðtÞ
y2ðtÞ y3ðtÞ

" #
¼

y1 y2

y2 y3

" # (98)

In this case, the four component equations associated with Eq.
(97) can be written explicitly as

€y1 � c11 _y1 � c21 _y2 ¼ 0 (99)

€y2 � c12 _y1 � c22 _y2 þ k12y1 þ ðk22 � k11Þy2 � k21y3 ¼ 0 (100)

€y2 � c11 _y2 � c21 _y3 � k12y1 � ðk22 � k11Þy2 þ k21y3 ¼ 0 (101)

€y3 � c12 _y2 � c22 _y3 ¼ 0 (102)

Notice that y2 must simultaneously satisfy two differential equa-
tions, Eqs. (100) and (101). Subtract Eq. (101) from Eq. (100) to
obtain

�c12 _y1 þ ðc11 � c22Þ _y2 þ c21 _y3 þ 2k12y1 þ 2ðk22 � k11Þy2

� 2k21y3 ¼ 0 (103)

If a Lagrangian function of the form (93) exists, there must be at
least one nontrivial solution to Eq. (103) for which yj ðj ¼ 1; 2; 3Þ
are not all zero. Since the elements crs ðr; s ¼ 1; 2Þ and krs are
arbitrary, the only way Eq. (103) will always be satisfied is for
yj ¼ 0 and _yj ¼ 0, which contradicts the requirement that some yj

be nontrivial. Consequently, Lðq; _q; tÞ defined by Eq. (93) is a
Lagrangian function for a subclass of Eq. (3) only, i.e., there are
systems of the form given by Eq. (3) that do not admit Lagrangian
functions.

6.1 Deductions Using Helmholtz Conditions. If system (3)
possesses a Lagrangian function Lðq; _q; tÞ, the corresponding
Euler–Lagrange equation (5) generates the system of equations

Gðq; _q; €q; tÞ ¼ Yðq; _q; €q; tÞð€q þ C _q þKqÞ (104)

Equation (104) must satisfy the Helmholtz conditions, which are
necessary and sufficient conditions for the existence of Lðq; _q; tÞ
and can be specified in component form [13] as

@Gi

@€qj

¼ @Gj

@€qi

;
@Gi

@qj
� @Gj

@qi
¼ 1

2

d

dt

@Gi

@ _qj

� @Gj

@ _qi

" #
;

@Gi

@ _qj

þ @Gj

@ _qi

¼ d

dt

@Gi

@€qj

þ @Gj

@€qi

" # (105)

where i; j ¼ 1; 2;…; n. Consider a subclass of Eq. (3) with
Yðq; _q; €q; tÞ ¼ YðtÞ. The ith component of Eq. (104) is given by

Giðq; _q; €q; tÞ ¼
Xn

j¼1

Yij €qj þ
Xn

m;j¼1

YimCmj _qj þ
Xn

m;j¼1

YimKmjqj (106)

where i ¼ 1; 2;…; n, and Y ¼ ½Yij�, C ¼ ½Cij�, and K ¼ ½Kij�. Note
that

@Gi

@€qj

¼ Yij;
@Gi

@ _qj

¼
Xn

m¼1

YimCmj;
@Gi

@qj
¼
Xn

m¼1

YimKmj (107)

The first part of Eq. (105) implies that Yij ¼ Yji, and thus YðtÞ
must be symmetric. The second part of Eq. (105) yields

Xn

m¼1

YimKmj �
Xn

m¼1

YjmKmi ¼
1

2

Xn

m¼1

_Y imCmj � _Y jmCmi

� �
(108)

and therefore

YK�KTY ¼ 1

2
_YC� CT _Y½ � (109)

Likewise, the third part of Eq. (105) gives

CTY ¼ 2 _Y � YC (110)

Differentiating Eq. (110) and combining with Eq. (109) results in
Eq. (97). Thus, application of the Helmholtz conditions leads to
the same conclusion regarding the existence of Lagrangian func-
tions as before.

Three examples are supplied to demonstrate how solution of
Eq. (97) could generate a Lagrangian function for Eq. (3), if it
exists.
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Example 4. Consider a subclass of Eq. (3) consisting of non-
classically damped systems with two degrees-of-freedom such
that the symmetric and positive–definite coefficient matrices C
and K do not commute in multiplication. In this case, c21 ¼ c12

and k21 ¼ k12 so that Eq. (103) becomes

c12ð _y3 � _y1Þ þ ðc11 � c22Þ _y2 þ 2k12ðy1 � y3Þ
þ 2ðk22 � k11Þy2 ¼ 0 (111)

The remaining elements of C and K are arbitrary, and thus Eq.
(111) is satisfied only when

_y1 ¼ _y3; _y2 ¼ 0; y1 ¼ y3; y2 ¼ 0 (112)

To determine the existence of a Lagrangian function, there are
multiple cases to consider. First, assume that _y1 ¼ _y3 ¼ 0 so that
y1 ¼ y3 ¼ a ¼ constant. In other words, YðtÞ ¼ aI and _YðtÞ ¼ 0,
and Eqs. (99)–(102) are immediately satisfied. Indeed, it can be
verified by substitution that YðtÞ ¼ aI is an admissible solution of
Eq. (97). However, as will be deduced by contradiction, a corre-
sponding Lagrangian function does not exist. From Eqs. (94) and
(95), YðtÞ ¼ aI implies that A3ðtÞ � AT

3 ðtÞ ¼ aC This cannot be
true because A3ðtÞ � AT

3 ðtÞ is skew-symmetric and C is symmet-
ric. If A3ðtÞ ¼ 0, then either a ¼ 0, which is not admissible
because it results in the trivial solution YðtÞ ¼ 0, or C ¼ 0, which
means that the system is undamped.

Next, assume that _y1 ¼ _y3 6¼ 0 and _y1 ¼ _y3 is not constant.
Because y1 ¼ y3, Eqs. (99)–(102) imply that c11 ¼ c22 and
c12 ¼ c21 ¼ 0. That means C ¼ c11I, in which case CK ¼ KC
and the assumption that C and K do not commute in multiplica-
tion is contradicted.

Finally, assume that _y1 ¼ _y3 ¼ b ¼ constant 6¼ 0. Invoke Eqs.
(99)–(102) to obtain c11 ¼ c22 ¼ 0 and c12 ¼ c21 ¼ 0. That means
C ¼ 0 and the system is undamped. Therefore, the only valid
solution to Eq. (97) is the trivial solution YðtÞ ¼ 0, and a Lagran-
gian function of the form given by Eq. (93) does not exist as long
as C and K are arbitrary and do not commute in multiplication.

Example 5. Suppose system (3) is gyroscopic with skew-
symmetric C and symmetric and positive-definite K. Substitute
c21 ¼ �c12 and k21 ¼ k12 into Eq. (103) to obtain

�c12ð _y3þ _y1Þþðc11� c22Þ _y2þ2k12ðy1� y3Þ
þ2ðk22�k11Þy2¼ 0 (113)

The remaining elements of C and K are arbitrary, and thus Eq.
(113) is satisfied only when

y1 ¼ y3 ¼ aðtÞ; y2 ¼ 0; _y2 ¼ 0; _y1 ¼ � _y3 (114)

However, y1 ¼ y3 ¼ aðtÞ and _y1 ¼ � _y3 cannot be simultaneously
satisfied unless aðtÞ ¼ 0, which is not admissible because this
results in the trivial solution YðtÞ ¼ 0. Therefore, it must be that
aðtÞ ¼ a ¼ constant 6¼ 0, so an admissible solution to Eq. (97) is
YðtÞ ¼ aI, which can be easily verified by direct substitution.
Does a Lagrangian function exist if YðtÞ ¼ aI? Let a ¼ 1 so
YðtÞ ¼ I. Equation (94) implies that A2ðtÞ ¼ Iþ R1ðtÞ, where
R1ðtÞ is a skew-symmetric matrix. Choose R1ðtÞ ¼ 0 for simplic-

ity. In this case, Eq. (95) reduces to A3ðtÞ � AT
3 ðtÞ ¼ C. But C is

skew-symmetric, and therefore A3ðtÞ ¼ ð1=2ÞCþ R2ðtÞ, where
R2ðtÞ is a symmetric matrix. Choose R2ðtÞ ¼ 0 for convenience.
It follows from Eq. (96) that A1ðtÞ ¼ �Kþ R3ðtÞ, where R3ðtÞ is
skew-symmetric. Let R3ðtÞ ¼ 0 for convenience. Then
A1ðtÞ ¼ �K, A2ðtÞ ¼ I, and A3ðtÞ ¼ ð1=2ÞC in Eq. (96). The
gyroscopic system (3) admits the Lagrangian function

L q; _qð Þ ¼ 1

2
_qT _q � 1

2
qTKqþ 1

2
_qTCq (115)

which was reported by Udwadia and Cho [14].

Example 6. Let system (3) be classically damped. Udwadia [17]
demonstrated that such a system admits Lagrangians given by
Eqs. (13) and (14). To arrive at these results, instead of analyzing
condition (103) for general yjðtÞ ðj ¼ 1; 2; 3Þ and _yjðtÞ, it is sim-
pler in this case to consider initial conditions yjð0Þ and _yjð0Þ that
satisfy Eq. (103) at t ¼ 0, infer the existence of a corresponding
solution YðtÞ consistent with these initial conditions, verify that
YðtÞ satisfies Eq. (97), and then confirm that associated Lagran-
gians exist.

Because C and K are symmetric in this case, c21 ¼ c12 and
k21 ¼ k12, and thus Eq. (103) becomes

c12ð _y3� _y1Þþðc11�c22Þ _y2þ2k12ðy1�y3Þ
þ2ðk22�k11Þy2¼ 0 (116)

Note that C and K also commute in multiplication, so the remain-
ing components of C and K are not arbitrary and satisfy

c11k12 þ c12k22 ¼ c12k11 þ c22k12 (117)

Does there exist at least one solution to condition (116) under the
constraint (117)? Evaluate Eq. (116) at t ¼ 0:

c12ð _y3;0 � _y1;0Þ þ ðc11 � c22Þ _y2;0 þ 2k12ðy1;0 � y3;0Þ
þ 2ðk22 � k11Þy2;0 ¼ 0 (118)

where yj;0 ¼ yjð0Þ and _yj;0 ¼ _yjð0Þ. Equation (118) is satisfied
when, say

y1;0 ¼ a; y2;0 ¼ 0; y3;0 ¼ a; _y1;0 ¼ ac11; _y2;0 ¼ ac12;

_y3;0 ¼ ac22 (119)

with a ¼ constant 6¼ 0, which implies

Yð0Þ ¼ a 0

0 a

� �
¼ aI; _Yð0Þ ¼ ac11 ac12

ac12 ac22

� �
¼ aC (120)

Is there a solution YðtÞ associated with these initial conditions?
By inspection, the solution YðtÞ ¼ aeCt satisfies the initial condi-
tions in Eq. (120), and substitution into Eq. (97) verifies that YðtÞ
is an admissible solution.

Is there a Lagrangian that corresponds to YðtÞ ¼ aeCt? For con-
venience, set a ¼ 1, and hence A2ðtÞ ¼ eCt þ R2ðtÞ from Eq. (94),
where R2ðtÞ is a skew-symmetric matrix that is chosen to be
R2ðtÞ ¼ 0. As a result, and because C is symmetric, Eq. (95)
reveals that A3ðtÞ is a symmetric matrix. Equation (96) implies
A1ðtÞ ¼ �eCtKþ _A3ðtÞ þ R1ðtÞ, for which R1ðtÞ is a skew-
symmetric matrix; R1ðtÞ ¼ 0 is a convenient choice. Thus, with
A1ðtÞ ¼ �eCtKþ _A3ðtÞ, A2ðtÞ ¼ eCt, and A3ðtÞ symmetric, Eq.
(93) defines a family of Lagrangian functions associated with
YðtÞ ¼ eCt. If A3ðtÞ ¼ ð1=2ÞeCtC, then the corresponding Lagran-
gian is given by Eq. (13); taking A3ðtÞ ¼ 0 yields the Lagrangian
function (14).

7 Conclusions

A comprehensive study of the evaluation of Lagrangian func-
tions for linear systems has been reported. The major results, sum-
marized in the following statements, are applicable to both
nondefective and defective linear systems possessing either sym-
metric or nonsymmetric coefficient matrices.

(1) While Lagrangian functions for decoupled linear systems
can be readily found, coupled linear systems may or may
not admit Lagrangian functions.

(2) Using an extension of modal analysis, any linear system
can be decoupled in real space. Subsequently, a scalar func-
tion that plays the role of a Lagrangian function can be
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determined. This scalar function is either a traditional
Lagrangian function or a generalized Lagrangian function.

(3) A generalized Lagrangian function determined by system
decoupling still produces the equation of motion and it still
contains information on system properties. However, it sat-
isfies a modified version of the Euler–Lagrange equation.

Given that many coupled linear systems do not admit tradi-
tional Lagrangian functions, generalized Lagrangian functions
may be the best that one can achieve. Subject to this interpreta-
tion, a solution to the inverse problem of linear Lagrangian
dynamics has been provided. Six examples have been supplied for
illustration.
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