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Modeling Commonsense Reasoning via Analogical Chaining: A Preliminary Report  
 

Joseph A. Blass (joeblass@u.northwestern.edu) 

Kenneth D. Forbus (forbus@northwestern.edu) 
Northwestern University, 2133 Sheridan Road, 

Evanston, IL 60208 

 

Abstract 

Understanding the nature of commonsense reasoning is one of 
the deepest questions of cognitive science. Prior work has 
proposed analogy as a mechanism for commonsense reasoning, 
with prior simulations focusing on reasoning about continuous 
behavior of physical systems. This paper examines how 
analogy might be used in commonsense more broadly. The two 
contributions are (1) the idea of common sense units, 
intermediate-sized collections of facts extracted from 
experience (including cultural experience) which improves 
analogical retrieval and simplifies inferencing, and (2) 
analogical chaining, where multiple rounds of analogical 
retrieval and mapping are used to rapidly construct 
explanations and predictions. We illustrate these ideas via an 
implemented computational model, tested on examples from 
an independently-developed test of commonsense reasoning.  

Keywords: Analogical Reasoning; Commonsense Reasoning; 
Analogical Abduction 

Introduction 

Consider three situations. (1) A person throws a crumpled-up 

piece of paper the size of an egg at another person’s head. (2) 

is like (1), but the item thrown is an actual egg. (3) is like (1), 

but the item is a small, white stone of the same size. Despite 

these situations’ similarities, you would likely interpret the 

first as a playful action, the second as emotionally aggressive 

but perhaps not too harmful, and the third as a serious act of 

aggression. These conclusions come quickly and easily to us, 

without conscious pondering. Such extremely rapid 

construction of explanations and predictions is a hallmark of 

commonsense reasoning. 

Several models for commonsense reasoning have been 

proposed, ranging from logical reasoning using general, first-

principles axioms (e.g. Davis, 1990, Lenat, 1995) to 

numerical simulation (e.g. Battaglia et al., 2013). We take 

analogical reasoning as a promising approach for explaining 

commonsense reasoning, for three reasons. First, analogical 

reasoning can work with partial knowledge: we may not have 

a fully articulated general theory of how much harm being hit 

by something might have, but if we have examples, we can 

still work with those. Second, analogical generalization 

provides a potential mechanism for learning probabilistic 

generalizations to represent experience. Third, analogy can 

allow a system to generate multiple inferences by importing 

whole relational structures from a single case, rather than 

requiring separate rules for each inference. 

Our prior work on exploring analogy in commonsense 

reasoning focused on reasoning about the behavior of 

                                                           
1 We are inspired by the Goldilocks Effect argument for 

analogical reasoning (Finlayson & Winston, 2005). 

continuous systems (e.g. Forbus & Gentner, 1997; Forbus 

2001). Here we explore how analogy might be used for 

commonsense more broadly. We have argued that much of 

human abduction and prediction might be explained by 

analogy over experiences and generalizations constructed 

from experience (Forbus, 2015). This paper explores in more 

detail how that might work. Specifically, we propose that 

multiple analogical retrievals are used to quickly elaborate a 

situation, providing a set of plausible explanations and 

predictions. We call this process analogical chaining (AC). 

The units that are retrieved might be specific situations or 

larger structures, such as traditional scripts (e.g. Schank & 

Abelson, 1977) and frames (e.g. Minsky, 1974), if they are 

good matches for the situation. However, we also propose 

that experience is factored into Common Sense Units, cases 

in the case-based reasoning sense, that are typically larger 

than single facts and smaller than frames or scripts1. A CSU 

consists of several facts that connect, for example, an event 

of a particular type with a precursor or with a potential 

outcome. Such cases can be useful for prediction when the 

precursor matches the current situation, and for explanation 

when the outcome matches the current situation (Forbus, 

2015). Because they are smaller, they should be more easily 

transferrable to a wider range of situations, because they 

contain less non-overlapping information.  

We begin by reviewing the structure-mapping models that 

this model is built upon, and the Cyc-derived ontology used. 

We describe our model, including our hypotheses about the 

nature of CSUs and the computational issues raised by AC. 

We present an experiment where a pool of CSUs are used to 

answer questions from the Choice of Plausible Alternatives 

(COPA, Roemmele et al., 2011) test of commonsense 

reasoning. We close with related and future work. 

Background 

Analogy is an important tool for reasoning and decision-

making; we use past experiences to understand and make 

decisions in new situations (Markman & Medin 2002). We 

use Gentner’s (1983) structure-mapping theory of analogical 

reasoning, which argues that analogy involves finding an 

alignment between two structured descriptions. The 

Structure-Mapping Engine (SME, Forbus et al. 2016) is a 

computational model of analogy and similarity based on 

structure mapping theory2. SME takes in two structured, 

relational cases (a base and a target) and computes up to three 

mappings between them. These include the correspondence 

between the two cases, candidate inferences suggested by the 

2 See (Gentner & Forbus, 2011) for a survey of other models. 
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mapping, and a similarity score that serves as a measure of 

how good the mapping is. If a candidate inference involves 

an entity not present in the other case, that entity is 

hypothesized as a skolem entity. 

Running SME across every case in memory would be 

prohibitively expensive, and implausible for human-scale 

memories. MAC/FAC (Forbus et al. 1995) retrieves cases 

that may be helpful for analogical reasoning from a case 

library, without relying on any indexing scheme. It takes in a 

probe case like those used by SME, as well as a case library 

of other such cases. MAC/FAC efficiently generates 

remindings, which are SME mappings, for the probe case 

with the most similar case retrieved from the case library. 

MAC/FAC proceeds in two stages: first, it computes dot 

products between content vectors of the probe and each case 

in the case library, a coarse approximation for scalability. Up 

to the three most similar cases are passed to the second stage, 

which uses SME to calculate similarity based on structured 

descriptions. Typically only one, but up to three if close, 

retrievals are output by MAC/FAC. 

We use the Cyc ontology (Lenat, 1995) as a source of 

representations. The subset of contents of ResearchCyc that 

we use for our knowledge base contains over 110,000 

concepts and over 32,000 relations, constrained by over 3.8 

million facts. We extend this knowledge base to support 

qualitative reasoning, analogical reasoning and learning, and 

additional lexical and semantic information. The knowledge 

is partitioned into over 58,000 microtheories, which can be 

linked via inheritance relationships to form logical 

environments to support and control reasoning.  The 

MiddleEarthMt or other microtheories representing fictional 

worlds, for example, are rarely useful in commonsense 

reasoning (although the converse is not true). Microtheories 

simplify the consideration of alternatives during reasoning. 

Using ResearchCyc representations allows us to leverage 

the several person-centuries of work that has gone into its 

development, but also reduces the risk of tailorability. By 

using natural language inputs and someone else’s 

representations, we reduce the chance that our results are an 

effect of having spoon-fed answers to our systems. 

Common Sense Units 

People are spontaneously reminded of similar prior 

situations. We further hypothesize that experience, both 

direct and culturally transmitted (e.g., reading, watching 

videos) is carved up into smaller pieces as well, and 

combined via analogical generalization to create probabilistic 

structures (via SAGE, McLure et al. 2015). These lack logical 

variables but can behave like rules when applied by analogy, 

and serve as grist for analogical reasoning about novel 

situations. Because they include fewer statements they are 

less specific (in the model theory sense), and more likely to 

match to a wide range of cases. 

We think of CSUs as the set of facts surrounding a 

particular common plausible inference. For example, a CSU 

for reciprocity might encode simply that one agent performs 

a positive deed for another, which causes the other agent to 

perform a positive deed for the first at some future time. 

CSUs are intended to be smaller than situations, hence 

making them more compositional. We have not yet explored 

learning CSUs, because we first want to establish that they 

can be useful. The current paper provides evidence for this. 

Analogical Chaining (AC) 

Many prior computational models of analogical reasoning 

have treated analogy as a one-shot process, where a single 

analog is retrieved and used, or perhaps replaced with another 

if the first is not satisfactory. We go beyond that here by 

chaining analogies, i.e. using the elaboration of a situation via 

analogical inferences to retrieve yet more analogs, similar to 

how chaining in logical inference works. This is conceptually 

similar to Derivational Analogy (Veloso & Carbonell, 1993; 

differences discussed below). 

AC proceeds as follows. The case library of CSUs is a 

stand-in for some of the commonsense knowledge a human 

gains over their lifetime. The current situation (the target) is 

used as a probe for MAC/FAC over the case library. If no 

mapping is produced, the program seeks another reminding, 

without cases that were rejected or previously used. If a 

mapping is found, any candidate inferences are asserted into 

an inference context, along with statements indicating what 

category any skolems belong to. Inferences are placed in a 

separate context from the case because there is no guarantee 

that they are correct. Another retrieval is then performed, 

with the probe being the union of the target and the inference 

context. If no information was added to the case, the 

previously retrieved analog is suppressed, to prevent looping. 

When information is added to the inference context, 

previously rejected CSUs are freed up to be retrieved against 

in case they might build off the inferences made. The process 

repeats until an answer has been found (for a question-

answering task) or there are no more inferences to carry over 

into the target case (Figure 1). 

There are several potential advantages to this model. Cases 

can be dynamically added to the case library, and can be used 

immediately. AC enables both inference about what is 

present in the case (filling in implicit relational links) as well 

as abductive explanations for what caused an event or 

predictions about what might happen next. 

The strongest advantage of analogical reasoning is that, 

unlike logical inference, it does not require a fully articulated 

logically quantified theory. The difficulty in creating such 

theories is well-known, and seems to stem from two reasons. 

First, people have difficulty articulating a complete, accurate 

account of their reasoning. Second, their models tend to be 

full of gaps and unintended consequences. By contrast, 

reasoning by analogy from experience does not require a 

complete axiomatic theory of, for example, causality or 

human actions. It only requires examples with explanations 

specific to those cases. Analogical reasoning moreover is 

guided by what has happened, rather than what might be 

logically possible. To be sure, analogy can go awry as well – 

no powerful reasoning system with imperfect information 

and finite resources can always guarantee valid results.  AC 
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should provide a compression of the inference space, both in 

terms of the number of inferences completed per step and 

fewer inappropriate branches explored, compared to logical 

chaining.  

Simulation 

Method 

To explore the plausibility of these ideas, we implemented 

AC using the Companion cognitive architecture (Forbus et al. 

2009). For testing, we focused on a small subset of COPA 

training set questions3, and automatically encoded the 

questions and the majority of the CSUs via natural language 

understanding capabilities built into the architecture. These 

include six questions involving the causes and consequences 

of situations involving violent impacts, and a seventh 

question involving boiling water. These questions are shown 

in Figure 2. This paper uses question 461 for illustration. 

                                                           
3 We use training set questions here because publishing test set 

questions would violate the security of the test. 

We created 32 CSUs designed to be relevant to the topics 

of the questions, plus distractors. These CSUs ranged in size 

from 2 to 8 facts. COPA questions are designed so that both 

answers are actually plausible, but one answer is always more 

plausible than the other. Consequently, CSUs that would 

contribute to incorrect answers were encoded as part of the 

set, as well as several CSUs irrelevant to answering the 

specific questions chosen (for example, that a system with a 

faulty component may malfunction). Sample CSUs are 

shown in Figure 3. Representations for 19 CSUs were almost 

214: The vandals threw a rock at the window. 

What happened as a RESULT? 

    The window [cracked / fogged up]. 

294: The egg splattered. What was the CAUSE of 

this? 

    I [dropped / boiled] it. 

347: The boy got a black eye. What was the CAUSE 

of this? 

    The bully [mocked /punched] the boy. 

370: The water in the teapot started to boil. 

What happened as a RESULT? 

    The teapot [cooled / whistled]. 

390: The truck crashed into the motorcycle on 

the bridge. What happened as a RESULT? 

 [The motorcyclist died / The bridge collapsed]. 

461: The mother called an ambulance. What was 

the CAUSE of this? 

 Her son [lost his cat / fell out of his bed]. 

496: My ears were ringing. What was the CAUSE of 

this? 

    I went to a [museum / concert]. 

 

Figure 2: The Selected COPA Questions and Answers 

When a loved one is hurt, you call an ambulance. 
(loves caller6829 person6293) 

(senderOfInfo call22246 caller6829) 

(communicationTarget call22246 ambulance22371) 

(isa ambulance22371 Ambulance) 

(isa call22246 MakingAPhoneCall) 

(causes-PropProp  

 (and (objectHarmed someHarm1523 person6293) 

      (loves caller6829 person6293)) 

 (and (isa call22246 MakingAPhoneCall)  

      (senderOfInfo call22246 caller6829) 

      (communicationTarget call22246 ambulance22371) 

      (isa ambulance22371 Ambulance))) 

********* 

Mothers love their sons (similar CSUs cover mothers & daughters) 
(isa mother22349 HumanMother) 

(sons mother22349 son26849) 

(loves mother22349 son26849) 

(causes-PropProp  

 (and (isa mother22349 HumanMother) 

      (sons mother22349 son26849)) 

 (loves mother22349 son26849))  

********* 

Falling out of bed hurts. 
(isa bed2498 Bed-PieceOfFurniture) 

(isa fall24789 FallingEvent) 

(isa impact1953 ViolentImpact) 

(objectHarmed impact1953 person22386) 

(primaryObjectMoving fall24789 person22386) 

(causes-PropProp  

 (and (isa fall24789 FallingEvent) 

     (from-UnderspecifiedLocation bed2498 person22386)  

      (isa bed2498 Bed-PieceOfFurniture)  

      (primaryObjectMoving fall24789 person22386))  

 (and (isa impact1953 ViolentImpact)  

      (objectHarmed impact1953 person22386))) 

Figure 3: CSUs required to solve COPA question 461. 

Figure 1: Analogical Chaining Workflow for answering COPA questions 
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entirely automatically generated by our NLU system, with 

only causal representations manually edited (described next). 

The remaining 13 CSUs also began as automatically 

processed natural language, but required more significant 

manual changes, due to various limitations of the NLU 

system, mostly involving words unknown to the system. 

Causal representations automatically generated from 

natural language were modified by hand. The NLU system 

generates structurally flat causal representations, which are 

difficult for SME to operate over. For example, saying that 

someone you loved being hurt leads to calling them an 

ambulance results in an underspecified causal relation. That 

information was automatically extracted by the NLU system 

but not connected to the causal fact; we edited those facts to 

connect those relevant automatically generated facts (Figure 

4). Additionally, we added facts to several CSUs indicating 

that a particular event was an instance of a ViolentImpact, (a 

new concept for our system), and removed facts which made 

the CSU overly specific (i.e., information that would be worn 

away via analogical generalization).  

Since AC involves within-domain analogies, we use 

required partition constraints (Forbus et al., 2016) to restrict 

matching entities to be within the same categories. For 

example, matches with the CSU in Figure 3 had the constraint 

that ambulance and phone call could only be placed in 

correspondence with an ambulance and a phone call, 

respectively.  

For each question, the Companion read the question and 

answers into separate microtheories. The system read and 

understood the questions without human intervention. The 

Companion automatically filtered out the phrase asking for 

cause or effect, since we found that for most COPA questions 

only one answer is plausible regardless of which is asked for. 

The Companion then used AC to flesh out the question, 

storing the inferences in a separate microtheory.  

After each extension, the Companion would check whether 

it had reasoned its way to one of the answers, using SME. 

The base normalized score (i.e. the similarity of the 

base/target divided by the similarity of the base with itself) 

measures how much of the base is covered by the match. 

Here, an answer is used as the base and the union of the 

question and inferences microtheories are used as the target. 

If the base normalized score of the comparison is above 

0.999, all the facts in the answer have identical (but for entity 

tokens) corresponding facts in the reasoning microtheory, 

and the model selects that answer as correct. 

Results 

Of the seven questions selected, a Companion using AC was 

able to answer six correctly. Most inferences generated 

through chaining either helped the system find the answer or 

were perfectly plausible (Figure 5), although in some cases it 

considered at least one strange possibility before finding the 

right answer (Figure 6). Answering five of these six questions 

correctly involved chaining through the same CSU 

expressing that a violent impact causes harm, demonstrating 

that AC can use the same CSU in different contexts. 

Question 461 was the only question which was not 

answered correctly from its raw NLU output, which included 

representations that prevented SME from detecting success. 

Specifically, in the correct answer “her son fell out of his 

bed,” the multiple possessives “her” and “his” were 

interpreted as (possesses mother son) and (possesses his bed), 

which are reasonable. However, the coreference system did 

not resolve “his” to “son” (i.e., (possesses son bed)), and the 

CSU did not contain the first “possesses” fact (another fact in 

the CSU expressed the mother/son relationship), so the base 

normalized score of the match was not quite high enough to 

detect success. However, there was still the information that 

the son fell out of a bed, if not his bed. To verify this analysis, 

we removed these extra “possesses” facts, and the system was 

able to correctly find the answer. 

Was analogical chaining necessary? Yes, since every 

question required two or three analogies to reach the correct 

answer. For example, after amending question 461 as noted 

(causes-PropProp  

 (and (isa rock2942-skolem StoneStuff)  

      (isa throw2912-skolem ThrowingAnObject)  

      (objectActedOn throw2912-skolem rock2942-skolem)  

      (target throw2912-skolem person6293-skolem))  

 (and (isa someHarm1523-skolem ViolentImpact)  

      (objectHarmed someHarm1523-skolem  

                    person6293-skolem)))   

********* 

(causes-PropProp  

 (and (from-UnderspecifiedLocation bed2498-skolem  

                                  person6293-skolem) 

      (isa bed2498-skolem Bed-PieceOfFurniture)  

      (isa fall24789-skolem FallingEvent)  

      (primaryObjectMoving fall24789-skolem            

                           person6293-skolem))  

 (and (isa someHarm1523-skolem ViolentImpact)  

      (objectHarmed someHarm1523-skolem  

                    person6293-skolem)))  

Figure 5: Plausible inferences for question 461: the 

person was hit by a rock; the person fell out of bed (correct) 

 

(causes-PropProp  

  (and (isa someHarm1523-skolem Concert) 

       (isa go-to35116-skolem AttendingSomething)  

   (toLocation go-to35116-skolem someHarm1523-skolem)  

    (performedBy go-to35116-skolem person5082-skolem)  

       (loudnessOfEvent someHarm1523-skolem Loud)))  

  (and (isa someHarm1523-skolem ViolentImpact)  

       (objectActedOn someHarm1523-skolem  

                      ear2942-skolem)  

       (isa ear2942-skolem Ear))) 

Figure 6: Implausible inference for question 461: the 

harm was a concert which hurt their ears 

(communicationTarget call22246 ambulance22371) 

(isa ambulance22371 Ambulance) 

(isa call22246 MakingAPhoneCall) 

(loves caller6829 person6293) 

(senderOfInfo call22246 caller6829) 

(causes-Underspecified love9172 call22246) 

********* 

(causes-PropProp  

 (and (objectHarmed someHarm1523 person6293)  

      (loves caller6829 person6293))  

 (and (communicationTarget call22246 ambulance22371)  

      (isa ambulance22371 Ambulance)  

      (isa call22246 MakingAPhoneCall)  

      (senderOfInfo call22246 caller6829))) 

Figure 4: Top: the NLU-output CSU about calling an 

ambulance when a loved one is hurt. Bottom: the 

causal fact after manual editing (other facts the same) 
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above, the system was able to find the answer only after 

retrieving and applying the three CSUs in Figure 2. It first 

postulated that a loved one had been hurt, then that it was her 

son, and from a fall. We suspect that most COPA questions 

should be answerable within three AC steps, but confirming 

this remains future work.  

Related Work 

As of this writing, three other systems have been tested on 

COPA, all focused on text analysis. Gordon et al. (2011) used 

Pointwise Mutual Information to evaluate how often words 

in the questions co-occurred with words in the answer. While 

their system performed significantly above chance (65.4% 

accuracy), it only slightly gained in accuracy as the training 

corpus dramatically increased, from 106 to 107 stories. 

Goodwin et al. (2012) achieved a similar performance with 

other textual analysis techniques (63.4% accuracy), but found 

that using multiple components in their analysis did not 

significantly improve accuracy over using only bigram co-

occurrence. Luo et al. (2016) achieved higher accuracy 

(70.2%) using a large corpus to automatically extract causal 

relationships between concepts, then using this extracted 

information to determine the ‘causal strength’ between a 

question and each of its answers. While the extracted causal 

information appears more effective than the other two 

techniques, it still requires that information to be represented 

in the training corpus, which much of commonsense 

knowledge is not. Together these findings suggest that there 

are upper limits to text-based techniques, which argues for 

investigating approaches like ours that use conceptual 

representations. Of course, all three of these techniques were 

able to attempt the entire COPA test. AC will require a large 

case library of CSUs before we test it on the full COPA test. 

Derivational analogy, as implemented in the PRODIGY 

architecture, similarly chains together previously known 

cases to derive solutions to problems (Veloso & Carbonell, 

1993). It plans for a goal by analogy to plans that previously 

achieved a similar goal, with subgoals recursively planned for 

by analogy. Stored cases are indexed by and retrieved via 

their justifications, initials states, and goal states. 

Derivational analogy differs from AC as we have described 

it in three important ways. First, our cases are stored and 

retrieved without requiring any information about what they 

previously allowed the system to conclude. Although this 

means that sometimes a highly dissimilar yet nonetheless 

relevant case may not be retrieved by MAC/FAC, it also 

circumvents issues with indexing and retrieval, and enables 

AC to use a relevant case even when it has not been useful in 

similar past situations. Second, derivational analogy was 

specifically used to create plans to achieve goals, rather than 

to explain a state of affairs or predict future outcomes. It is 

not clear whether derivational analogy could be used for tasks 

that cannot be easily framed in terms of planning or problem-

solving (although answering COPA questions could be 

framed in such a way). Finally, PRODIGY made use of both 

case-based and first-principles reasoning. AC does not use 

any first-principles reasoning at any stage. 

Much AI research on commonsense reasoning has relied 

on formal logic and deductive inference (see Davis, 1990 and 

Mueller, 2014). All such approaches rely on using large 

numbers of logically quantified axioms. We have noted 

several problems with this approach, including the difficulty 

of constructing correct logically quantified axioms. Analogy 

only requires acquiring relevant cases and refining them via 

analogical generalization, rather than complete and correct 

domain theories. Furthermore, reasoning using formal logic 

must proceed serially: each inference rule asserts only its 

consequences. AC also proceeds serially, but a highly 

relevant case can lead to several inferences (not necessarily 

derivable from the same logical rule) being asserted at once, 

potentially reducing the number of inference steps needed. 

In Explanation-Based Learning (EBL) (DeJong, 2006), a 

human provides a formal domain theory and examples from 

a domain to a system, which it uses to refine its own formal 

theory of that domain. AC differs in that it only requires the 

human to provide (in simplified natural language) cases that 

illustrate an underlying principle, rather than the logic of that 

underlying principle, which is simpler for non-experts. Also, 

the domain theories generated through EBL are still in logic 

and as such face the same drawbacks listed above. 

AnalogySpace (Speer, Havasi & Lierberman 2008) used a 

large knowledge base of commonsense assertions in natural 

language to make predictions about concepts, which could 

then be compounded with further predictions. However, they 

define similarity as a linear operation over feature vectors, 

using a reduced-dimensionality approximation of MAC’s 

dot-product of content vectors to retrieve relevant concepts, 

and do not include any measure of structural similarity. 

Furthermore, this work was only used to predict features of 

individual concepts, and it is unclear how it would scale up 

to explain or predict larger cases. 

Though AC generates possible explanations for situations, 

it differs from using logic for abduction (e.g. Hobbs, 2006) 

since it does not require a logically quantified domain theory, 

and does prediction as well as explanation.  

The importance of the Goldilocks Principle, using cases 

that are neither too small or too large in analogical matching, 

was highlighted by Finlayson and Winston (2005), which 

helped inspire our thinking about CSUs.. 

Conclusions and Future Work 

There is already evidence that analogy is widely used in 

human cognition (Gentner, 2003), so it would be surprising 

if it were not used for commonsense reasoning. This paper 

has explored how that might work. We proposed Common 

Sense Units, intermediate-sized representations, closer to 

rules in size than raw experiences, but still without logical 

variables, as a means of encoding experience that supports 

flexible analogical processing. We proposed analogical 

chaining, the repeated use of analogies to rapidly construct 

explanations and predications, as a means of performing 

commonsense reasoning. While AC is serial at the level of 

applying an analog, it is parallel with respect to the 

application of candidate inferences within a step, thereby 
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being more efficient than traditional chaining with logical 

axioms. The bundling of common patterns of facts via CSUs 

also provides more focus for each inference step. CSUs and 

AC were used to answer COPA questions, demonstrating its 

potential as a model of commonsense reasoning.  

We plan to explore several directions of future work. First, 

we plan to expand our NLU capabilities to support fully 

automatic construction of CSUs from natural language, rather 

than mixing automatic generation with some manual editing, 

both to reduce tailorability and to expand coverage, including 

crowdsourcing CSUs (c.f. Li et al., 2013). Extracting CSUs 

from larger stories via analogical generalization is, we think, 

a promising approach. Second, we plan to expand the 

reasoning techniques used for checking the validity of 

retrieved cases, skolem resolution, and determining when 

sufficient reasoning has been done. Answers to multiple-

choice questions can also help guide chaining. Finally, we 

plan to test the expanded model on the entire COPA and other 

commonsense reasoning tests, such as Winograd schemas4. 
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