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Abstract—Most of the water utilities in the U.S. consume a 

lot of electrical energy for water treatment and delivery. Despite 

being large energy consumers, priority is not given to electric 

load forecasting in water utilities. An accurate forecast of 

electric load can pave the way to shaving peak demand and 

reducing high electricity bills. This paper applies a popular 

statistical approach named Auto Regressive Integrated Moving 

Average (ARIMA) and Deep Learning techniques to forecast 

daily electric load over a period of a month and 15-minute 

moving average electric load of a day for two sites in a southern 

California water utility. A comparative performance of these 

techniques with relevant error metrics has been introduced. The 

electric load of a water treatment plant and a pumping station 

have been forecasted with these two methods.  Deep Learning 

techniques result in better load prediction for both accounts and 

in both time resolutions. This allows operators to take possible 

appropriate actions resulting in reduced electrical demand for 

any given billing period.  

Keywords— water utility, water energy nexus, load 

forecasting, Auto Regressive Integrated Moving Average, Long 

Short Term Memory, deep learning, statistical approach 

I. INTRODUCTION  

Water districts are one of the largest energy consumers. 
The water supply and wastewater facilities use 69.4 billion 
kWh energy per year in the U.S. [1].Despite heavy energy 
consumption, water utility companies do not pay much 
attention to their electricity usage for treating and delivering 
water. The main priorities of the water utilities include the 
maintenance of the water quality and assurance of the 
uninterrupted service to its customers. The lack of attention in 
adopting necessary steps for using energy efficiently results in 
higher demand during critical time periods, unregulated 
demand strategies and increases in electricity bills. 

Water Treatment Plants (WTP) and Pumping Stations (PS) 
are two main types of electricity use in water utilities. Water 
treatment plant collects water from either surface reservoirs or 
underground aquifers, and then treat water to disinfect it and 
make it drinkable. Purification and maintaining the quality of 
water are the main responsibilities for the operators of the 
water treatment plants. Electric load demand for WTPs vary 
according to the treatment process and time of the day.  
Pumping stations are of two major types: 1. water pumping 
from wells and 2. booster stations and water storage tanks for 
water distribution.  Their operation is somewhat unpredictable 
in nature and they do not strictly follow any pattern or 
seasonality due to the limitations of the availability and quality 
of water. 

High electricity usage in a typical water district puts them 
into Time of Use (TOU) based rate schedules, which have 
charges such as on-peak, mid-peak and off-peak for the same 
day. Demand charge at on-peak periods is very high compared 
to other periods of the day. Demand charges are based on the 

highest 15 minute rolling averages over a billing period 
occurring at the appropriate time periods. The consumer is 
also responsible for facilities related demand charge, which is 
related to the maximum demand of the month irrespective of 
the time period. In most cases, the demand charge constitutes 
more than half of the total electric charge for any billing cycle. 
Inappropriate water treatment work scheduling and ignoring 
TOU based electricity rates result in large electricity bill for 
water utilities. Prior knowledge of electric load profile can 
alleviate this situation and promote efficient operation of a 
water utility. 

Electric load forecasting has been used for utilities, 
residential and commercial consumers for a long time. As 
water demand is needed to be known for water utility 
operators, water demand forecasting has been a common 
practice for a long time. Econometric models, Artificial 
Neural Network (ANN) approaches and probabilistic 
prediction methods are done for long and short term water 
demand forecasting [2-3]. To the best of our knowledge, not 
many works have been done to forecast the water utilities 
electric load. The electric load and water demand of the water 
utilities are not linearly correlated. Statistical approaches of 
load forecasting are being used as standard operations of 
electric load forecasting. Auto Regressive Moving Average 
(ARIMA) is the most popular time series approach of load 
forecasting for stationary data. Recently, different Deep 
Learning techniques are being developed and implemented for 
time series forecasting. Recurrent Neural Network (RNN) is 
being widely used due to it’s robustness and capability of 
handling data for a longer time interval [4-6].  

It may be possible to reduce electric demand for any 15 
minute period without interrupting water service. Optimal use 
of multiple pump motors can help reduce the high peak 
demand especially during the high cost peak demand period 
and handle the TOU electric bill issues. With prior knowledge 
based plan, it is possible to implement demand management 
strategies, which include putting a limit on the maximum 
number of pumps running at the same time, and longer 
operation of pump motors instead of shorter periods of on-off 
operations [7]. These steps can eventually help to reduce the 
peak demand and result in lower electricity bill.  

The main contributions of this work are threefold. 

1. Load forecasting techniques have been developed to 
forecast the electric load of a water utility. 

2. Evaluation of both statistical and deep learning 
approaches for different sizeable water utility accounts. 

3. Selection of the appropriate method for load 
forecasting to introduce the opportunity of electricity bill 
saving for the water utilities.                      
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This paper has the following subsections. Section II 
describes the system, Section III states the methodology, and 
Section IV discusses the experiment, while simulation results 
and performance evaluation are shown in Section V and VI. 
Finally, the conclusions are drawn in Section VII 

II. SYSTEM DESCRIPTION 

The water district is a municipal water district in southern 
California which supplies adequate water for landowners and 
residents. It consists of 17 water storage reservoirs with a 
capacity of nearly 80 million gallons of water using over 400 
miles of potable water pipelines. The water treatment plant 
treats up to 34 million gallons of water each day. In addition, 
the water reclamation facility produces up to 2 million 
gallons of recycled water per day. 

After a brief review of the 15-minute demand profile of 
different sites, two sites have been selected. One is water 
treatment plant and the other one is a general water pump 
station. The water treatment plant has a daily average demand 
of 331.06 kW and the pumping station has a daily average 
demand of 51.28 kW. There are 10 large pumps in water 
treatment plant whereas there are 5 pumps in the pumping 
station. All pumps are from 50 hp to 250 hp range. 

III. METHODOLOGY 

Auto Regressive Integrated Moving Average (ARIMA) is 
a popular method for time series analysis and forecasting the 
future values. Deep learning techniques like Long Short Term 
Memory (LSTM) are also capable of time series data 
prediction. The water utility electric load has been forecasted 
using both these approaches.  

A. ARIMA  

ARIMA has been proposed by Box and Jenkins [8]. This 
approach is being used to predict the stationary data. In case 
the data is non stationary, the data can be made stationary by 
differencing and ARIMA can be applied after that. Two types 
of ARIMA are usually used: a. seasonal, b. non-seasonal. As 
the data used here have not shown any trend or seasonality 
after the seasonal decomposing, non-seasonal ARIMA has 
been used here. Non-seasonal ARIMA can be modeled by the 
following equation. 

(1-Φ1B-Φ2B2-…-ΦpBp) (1-B)d yt = θ0+ (1+θ1B+θ2B2+…θqBq) 
εt                                                   (1)                                                     

 where B is backshift operator and can be expressed as Byt 
= yt-1, εt  is white noise and θ0 is a constant. p is the auto 
regressive order and q defines the moving average order. d is 
the degree of differencing to make the data stationary. Φ1 Φ2 

Φ3 …. Φp and θ1 θ2 θ3….. θq are autoregressive and moving 
average coefficients respectively. 

B. LSTM Network 

Long Short Time Memory (LSTM) network is a special 
type of Recurrent Neural Network (RNN). Conventional RNN 
approaches can not learn and apply the long term sequential 
values to predict the data for the future values. LSTM 
eliminates the vanishing gradient problem of vanilla RNN 
which fails to hold the memory of long term lagged values [9]. 

LSTM has a hidden unit embedded with four layers inside 
it. The first one is forget gate (ft) that decides which data 
should be kept or forgot. The other two gates are input (it) and 
output (ot) gates. All these three gates are sigmoid functions 
and can be expressed in the form of equations (2-4).The new 

cell state (ct) and the output of the hidden layer (ht) are being 
updated based on the values of previous three gates. They can 
be modeled by equations (5-6). 𝜎𝑔  and 𝜎ℎ  are sigmoid and 

hyperbolic tangent functions respectively. 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑜, 𝑊𝑐 and 

𝑏𝑓 , 𝑏𝑖 , 𝑏𝑜, 𝑏𝑐   are the weights and biases of the forget gate, 

input gate, output gate and cell state respectively. The input 
vector at each time step t is denoted by 𝑥𝑡.  

ft = 𝜎𝑔(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)           (2) 

it = 𝜎𝑔(𝑊𝑖  . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)          (3) 

ot = 𝜎𝑔(𝑊𝑜  . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)          (4) 

ct = 𝑓𝑡 ∗ 𝑐𝑡−1 +  𝑖𝑡 ∗ [𝜎ℎ(𝑊𝑐  . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)]          (5) 

ht =𝑜𝑡 ∗  𝜎ℎ𝑐𝑡                                                            (6) 

IV. EXPERIMENT 

A. Data Collection and Preprocessing 

The load forecasting is done for both 15-minute and 24-

hour resolution. April 2018 data are used for 15-minute load 

prediction. The electricity demand data from May 2017- 

April 2018 have been used as baseline data for daily load 

prediction. The daily average was calculated from available 

15-minute rolling average data. The water treatment plant has 

a daily high demand whereas the electricity demand for the 

pumping station is low. 

The daily load data of first eleven months have been used 

for model validation in ARIMA modeling and test set in 

LSTM network for both accounts. The data of month of April 

has been used for validating models. The last day of April is 

used for validating the 15 minute resolution model. Figure 1 

shows the daily average electric load of first eleven months 

for treatment plant and pumping station. 

 

 
 

Fig 1: Average Daily Load Profile used as Test Set for a Day Ahead Model 
Formulation: Water Treatment Plant and Pumping Station 
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Fig 2: April (First 29 Days) Load Profile used as Test Set for a 15 Minute 

Ahead Model Formulation: Water Treatment Plant and Pumping Station 
 

B. Model Selection for ARIMA 

The first step of applying ARIMA model is to check the 
stationarity of the data. Stationarity of any time series data set 
means that the corresponding value does not change with time. 
The mean of the data set remains constant. Augmented Dicky-
Fuller (ADF) test is widely used to check the stationarity of 
the data. The WTP data have showed non stationarity property 
whereas the pumping station data have done the opposite of 
ADF test for both daily and 15-minute data sets. By assigning 
value to the degree of differencing (d), the non-stationary data 
can be made stationary. Seasonal decomposition is done to 
find any trend or seasonality. No data sets have showed any 
particular trend or seasonality. Hence, non-seasonal ARIMA 
is used to perform load forecasting. 

Next, the autoregressive and moving average orders are 

needed to be selected for modeling. To find out the best suited 

autoregressive order and moving average order for modeling 

ARIMA, the Auto Correlation Function (ACF) and Partial 

Auto Correlation Function (PACF) have been plotted for four 

datasets. ACF plots of all data sets are non-decaying 

functions and converge into 95% confidence interval after a 

lot of lags. This plot intends that a high autoregressive order 

is needed for modeling which is computationally expensive 

too.   The PACF plots also converge after a high number of 

lags. This explains similarly that higher moving average 

orders are needed to perform ARIMA modeling. Higher 

orders of p,d,q to perform modeling are computationally 

expensive. Therefore, in order to find the best fit, ARIMA has 

been implemented for 0 ≤ p,q ≤ 3 and the best fit has been 

chosen for this interval. 

To find the best fit of the ARIMA model, Akaike 

Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) determines the goodness of fit of the 

developed model [10-11]. 

AIC= -2log(maximum likelihood) + 2k                   (7) 

where k is independently adjusted number of parameters 

within the model. 

      BIC= -2log(maximum likelihood) + 
𝑘𝑙𝑜𝑔(𝑛)

𝑛
                     (8) 

where k is as stated above, and n is the number of samples 

used for modeling.  

      AIC is used to select the best ARIMA model here. 

ARIMA is an inappropriate model for very short term load 

forecasting such as 15 minute load forecasting. Hence, the 

ARIMA model of 15 minute data sets for given interval of 

p,d,q results in a very high value of AIC and large residuals. 

This leads to a large prediction error in turn. So, ARIMA is 

modeled here for daily load prediction only. AIC values for 

ARIMA model of daily load forecasting are showed in table 

I.   

TABLE I.  ARIMA MODEL SELECTION FOR DAILY LOAD 

FORECASTING 

Account Name (p,d,q) order AIC 

Treatment Plant (1,1,1) 3431.9993 

Pumping Station (2,1,2) 2918.1322 

 

C. Model Selection for LSTM 

 The LSTM model has been applied to the datasets using 
Keras. This modeling has been applied for one step ahead 
forecasting of utility load. Firstly, the data sets are made 
stationary by applying differencing operations. Then this 
sequential series is transformed to supervised problem for the 
LSTM method to be applied. To implement hyperbolic 
tangent function and sigmoid function, the data have been 
rescaled. Adam optimizer is used with default parameters of 
learning rate (0.001), exponential decay rates (0.9 and 0.999) 
and epsilon (10E-8) for Keras [12]. Adam optimizer is mostly 
used for non convex problems and the hyperparameters 
require less tuning. The batch size, no of layers and no of 
epochs have been tuned to find the best fit for the fitted model. 
Finally, inverse scaling is applied to convert the data into 
actual scale. Figure 3 shows the flow of modeling LSTM. 

 

 

Fig 3: LSTM Modeling Flow Diagram 

 

V. SIMULATION RESULTS 

A. ARIMA Modeling Results 

Figure 4 and 5 demonstrate the forecasted load values for 
the month of April along with the actual load values for the 
respective accounts. The daily load data for WTP is steady but 
does not follow any pattern. Our optimal ARIMA model for 
the given bound can not predict the data properly beforehand. 
Rather, it results in a steady load value after a few predicted 
values and shows that ARIMA modeling is inappropriate for 
the WTP data prediction. 

On the other hand, the load of the pumping station 
fluctuates rapidly. The motors turn on and off rapidly. 
ARIMA modeling can’t keep track of the sudden fluctuation 
of this load behavior and hence results in inappropriate 
forecasting. Absence of seasonality or pattern is another 
reason for this failure in forecasting. 
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Fig 4: Forecasted Daily Load with ARIMA Modeling: WTP 

 

 
 
Fig 5: Forecasted Daily Load with ARIMA Modeling: PS 

 

B. LSTM Modeling Results 

Figure 6 and 7 are showing the LSTM forecasted daily 
load values for the month of April along with the actual load 
values for the respective accounts. Our optimal LSTM model 
can predict the WTP data properly beforehand. It captures the 
rise and fall of WTP data and results in a good prediction. For 
pumping station load, LSTM predicts better than ARIMA too. 
The ARIMA model can not follow the rapid fluctuation 
whereas LSTM follows the fluctuation in most of the cases. It 
gives poor results on only two occasions. Hence, it results in 
a good prediction.  

 
 
Fig 6: Forecasted Daily Load with LSTM modeling: WTP 

 

 
 

Fig 7: Forecasted Daily Load with LSTM modeling: PS 

 

 Figure 8 and 9 are showing the 15 minute LSTM 
forecasted load values for the last day of April. LSTM works 
better for higher resolution and short term load prediction too 
whereas ARIMA can not produce better predictions for 
shorter periods. 

 

Fig 8: Forecasted 15 Minute Load with LSTM Modeling: WTP 

 

 

Fig 9: Forecasted 15 Minute Load with LSTM Modeling: PS 

VI. PERFORMANCE EVALUATION 

To evaluate the performance of both models for different 
time resolutions, Root Mean Square Error (RMSE) and Mean 
Absolute Percentage Error (MAPE) metrics have been used. 

RMSE=   √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝐴𝑐𝑡𝑢𝑎𝑙)2𝑛

𝑖=1

𝑛
                                      (9) 

MAPE=  (
1

𝑛
∑

|𝐴𝑐𝑡𝑢𝑎𝑙−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

|𝐴𝑐𝑡𝑢𝑎𝑙|

𝑛
𝑖=1 ) × 100%                  (10) 
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RMSE (eq. 9) is a common metric to evaluate the 
performance as it gives larger weightage to the error 
calculation and penalizes the large errors. Lower RMSE 
values are preferable for good prediction. LSTM results in 
lower RMSE for daily load prediction of both data sets. 

MAPE (eq. 10) is a metric to show the variances in data. 
RMSE values don’t change for high variances in data sets. The 
WTP load does not have high variance unlike the PS data sets. 
Hence, both the modeling result in lower MAPE values for 
WTP daily load prediction. But the PS load results in higher 
MAPE values for large fluctuations in demand. 

Table II shows the RMSE and MAPE values for the daily 
predicted load. LSTM results in lower RMSE and MAPE 
values for all cases. In case of RMSE, LSTM results in 75.5% 
error reduction for WTP and 17.3% reduction for PS. In case 
of MAPE, LSTM results in 78.4% error reduction for WTP 
and 10% reduction for pumping station. 

For 15 minute resolution, ARIMA results in higher error 
metric values. Hence, it is incompatible with LSTM modeling 
for the same time resolution. For WTP data, LSTM results in 
42.13 RMSE and 9.27% MAPE. It produces 15.64 RMSE and 
46.7% MAPE for 15 minute resolution data of pumping 
station.  15-minute load forecasting works better for PS data 
in comparison to day ahead forecasting whereas daily 
forecasting is more preferable to WTP demand prediction. As, 
pumping station activities are fixed for a particular time period 
in a day, its load consumption does not usually depend on very 
earlier values. On the other hand, the nature of WTP load is 
dependent on older values. 

TABLE II.  PERFORMANCE EVALUATION FOR DAILY LOAD 

PREDICTION 

Modeling Accounts RMSE MAPE (%) 

ARIMA 
WTP 85.68 25.58 

PS 35.94 158.71 

LSTM 
WTP 20.96 5.51 

PS 29.71 142.9 

 

VII. CONCLUSION 

The electric load forecasting is important for large water 
utilities as unregulated pumping activities result in large 
electricity bills caused by high kW demand. Knowing the 
predicted values ahead of time, initiatives may be taken to 
reduce this high demand. This load forecast was done for both 
15 minute and daily resolution of electric load. Electric 
utilities use highest 15-minute peak demand data for 

calculating monthly peak demand. Auto Regressive Integrated 
Moving Average (ARIMA) results in poor values and high 
residuals for higher data resolution and is not as accurate as 
Long Short Term Memory (LSTM) forecasting of the same 
resolution. LSTM can be handy for very short term load 
forecasting for water utilities. The electric load variation of 
water utilities does not have any resemblance to any other 
large electricity users. LSTM provides a 75.54% reduction in 
RMSE and 78.46% reduction in MAPE in comparison to 
ARIMA for water treatment plants. For pumping station, 
LSTM results in 17.33% lower RMSE and 9.96% lower 
MAPE values compared to ARIMA. As, the data sets do not 
show any specific trend or seasonality and highly non linear 
in nature, deep learning techniques and neural networks are 
likely to be more useful for accurate prediction.  
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